where $H_n = S_n - (\bar{X} - \mu)(\bar{X} - \mu)^T$. Thus, $q_n(\mu)$ can be readily computed without solving the nonlinear equation (5) as for the full empirical likelihood. The least-squares empirical likelihood nonlinear equation (5) as for the full empirical likelihood. The least-squares empirical likelihood r_1 is a first-order approximation to the full empirical likelihood ratio, and r_1 in r_2 in r_3 in r_4 in r_1 , r_2 is r_3 in r_4 in r_1 , r_2 is r_3 in r_4 in r_1 , r_2 is r_3 in r_4 in r distribution when p is fixed.

The least-squares empirical likelihood is less affected by higher dimension. In particular, if $k \geqslant 3$ in (4), then

$$
(2p)^{-1/2}{q_n(\mu) - p} \to N(0, 1)
$$
 (12)

in distribution as $n \to \infty$ when $p = o(n^{2/3})$, which improves the rate given by Theorem 3 for the full empirical likelihood ratio $w_n(\mu)$.

To appreciate (12), we note from (11) that

$$
q_n(\mu) = n(\bar{X} - \mu)^T \Sigma^{-1} (\bar{X} - \mu) + n(\bar{X} - \mu)^T (H_n^{-1} - \Sigma^{-1}) (\bar{X} - \mu).
$$
 (13)

Then, following a similar line to the proof of Lemma 6,

$$
n(\bar{X} - \mu)^{T} (H_{n}^{-1} - \Sigma^{-1})(\bar{X} - \mu) = O_{p}(p^{2}/n) = o_{p}(p^{1/2}).
$$

As the first term on the right-hand side of (13) is asymptotically normal with mean p and variance $2p$ as conveyed in (10), (12) is valid.

If we confine ourselves to specific distributions, faster rates for p can be established. For example, if the data are normally distributed, the least-squares empirical likelihood ratio is the example, if the data are normally distributed, the least-squares empirical likelihood ratio is the Hotelling-T² statistic, which is shown in Bai & Saranadasa (1996) to be asymptotically normal

if $p/n \to c \in [0, 1)$.
 $\chi = \mathbb{E}_1 * p \mathbb{E}_2 \iff \int_{j=2}^{j=1} \left(\frac{\overline{\chi}_{11}}{\chi_{12}} \right) \left(\frac{\overline{\chi}_{21}}{\chi_{22}} \right) = \left(\begin{array}{cc} \frac{\overline{\chi}_{11}}{\$ if $p/n \rightarrow c \in [0, 1)$. \sum_{x} , \sum_{x} + \sum_{x} " - …

4. Numerical results cx ⁼ ^z ^⑩ ^管 Zzr ⁺ Zrb (ztn) + (…)Entn 。 EB ^E ²³

" …

We report results from a simulation study designed to evaluate the asymptotic normality of the empirical likelihood ratio. The $p \times 1$ independent and identically distributed data v $\frac{X}{X}$ were generated from a moving average model, $\frac{X}{X}$ We report results from a simulation study designed to evaluate the asymptotic normality of
the empirical likelihood ratio. The $p \times 1$ independent and identically distributed data vectors
 $\{X_i\}_{i=1}^n$ were generated fro $\left\{\frac{r}{i}\right\}_{i=1}^{n}$ W(
 $\frac{r}{i}$, $\frac{r}{i}$, $\frac{m}{i}$, $\frac{m}{i}$, $\frac{m}{i}$, $\frac{m}{i}$
 $\frac{m}{i}$, $\frac{m}{i}$, $\frac{m}{i}$, $\frac{m}{i}$
 $\frac{m}{i}$, $\frac{m}{i}$ We report results from
the empirical likelihood
 $\{X_i\}_{i=1}^n$ were generated if
 $\{x_{n-1} = x_n + p x_n\}$
 $\{x_n = x_n + p x_{n+1}\}$
where, for each *i*, the im lood ratio. The $p \times 1$ independent and identically distributed data vect
ted from a moving average model,
 $X_{ij} = Z_{ij} + \rho Z_{ij+1}$ $(i = 1, ..., n, j = 1, ..., p),$ $\overline{z} = \begin{pmatrix} \frac{2n - 2y}{2} \\ \frac{2n - 2y}{2} \end{pmatrix}$

 $X_{ij} = Z_{ij} + pZ_{ij+1}$ $(t = 1, ..., n, j = 1,...)$.
X_n = $\bar{\mathbf{x}}_n$ + $\rho \, \mathbf{g}_n$ (ή = = = ₁₂ + | p = ₁₃
|-
X₁ = = = 12 + | p = 13 + … $\mathbb{R}^{\mathbb{Z}}$ by $\mathbb{R}^{\mathbb{Z}}$ by $\mathbb{R}^{\mathbb{Z}}$ by $\mathbb{R}^{\mathbb{Z}}$ by $\mathbb{R}^{\mathbb{Z}}$ by $\mathbb{R}^{\mathbb{Z}}$

and unit variance. We considered two distributions for the innovation Z_{ij} . One is the standard norand unit variance. We consider the innovations for the innovation \mathbb{R} in the standard normal norm mal distribution, and the other is a standardized version of a Pareto distribution with distribution Function $(1 - x + 3)I(x \ge 1)$, we standardized the Pareto random variables so that they had zero mean and unit variance. The first distribution has only four finite moments, we had ('), whereas $k = \infty$ for the normally distributed innovations. In both distributions, $\sum_{i} \frac{1}{b} a_i$
tivariate random vector with zero mean and covariance $\Sigma = (\sigma_{ij})_{p \times p}$, where $\sigma_{ii} = 1$, $\sigma_{ii \pm 1}$
and $\sigma_{ij} = 0$ f and $\sigma_{ij} = 0$ for $|i - j| > 1$. We set ρ to be 0.5 throughout the simulation. $\binom{1}{i} + \binom{2+i}{i} + \binom{2+i}{i}$ and $\sigma_{ij} = 0$ for μ β | > 1. We set p to be 0.5 diffeographic the simulation. (6, $\frac{1}{5}$ σ_{11} , σ_{22}
 σ_{23} , σ_{34} , σ_{35} , σ_{36} , σ_{37}

To make p and n merease simultaneously, we considered two growth rates for p with respect to n: (i) $p = c_1n^{0.4}$ and (ii) $p = c_2n^{0.24}$. We chose the sample size $n = 200$, 400 and 800. By assigning $c_1 = 3$, 4 and 5 in the faster growth rate setting (i), we obtained three dimensions for assigning $c_1 = 5$, r and 5 in the faster growth rate setting (i), we column three dimensions cach sample size, which were $p = 25,33$ and 43 for $n = 200, p = 35,44$ and 38 for $n = 400$; and $p = 42$, 55 and 72 for $n = 800$, respectively. For the slower growth rate setting (ii), to maintain a certain amount of increase between successive dimensions when n was increased, we assigned larger $c_2 = 4$, 6 and 8, which led to $p = 14$, 17 and 20 for $n = 200$; $p = 21$, 25 and 30 for $n = 400$; and $p = 29$, 34 and 40 for $n = 800$, respectively.
We carried out 500 simulations for each of the (p, n) -combinations and for each of the two

We carried out $\frac{1}{200}$ simulations for each of the (p, n) -combinations and for each of the t innovation distributions. Figure 1 displays Q-Q plots of standardized empirical likelihood ratio {