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where H, = S, — (X — u)(X — u)". Thus, ¢,(x) can be readily computed without solving the
nonlinear equation (5) as for the full empirical likelihood. The least-squares empirical likelihood
ratio is a first-order approximation to the full empirical likelihood ratio, and g,(u) — X,% in
distribution when p is fixed.

The least-squares empirical likelihood is less affected by higher dimension. In particular, if

k > 3 in (4), then

2p)"*{gu(w) — p} = N(0, 1) (12)

in distribution as # — oo when p = o(n?/?), which improves the rate given by Theorem 3 for the
full empirical likelihood ratio w, ().
To appreciate (12), we note from (11) that

gn() = n(X = )" £~ X — ) + (X - w)"(H; ' = BN - ). (13)
Then, following a similar line to the proof of Lemma 6,
n(X — )" (B, ' = Z7)(X = 1) = 0p(p*/n) = 0,(p'?).
As the first term on the right-hand side of (13) is asymptotically normal with mean p and variance
2p as conveyed in (10), (12) is valid.
If we confine ourselves to specific distributions, faster rates for p can be established. For
example, if the data are normally distributed, the least-squares empirical likelihood ratio is the

Hotelling-7"? statistic, which is shown in Bai & Saranadasa (1996) to be asymptotically normal
if p/n — ¢ €0, 1).
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the empirical likelihood ratio. The p x 1 independent and identically distributed data vectors
{X;}]_, were generated from a moving average model. p ( 2o in
7= 2a tn\)

2z,

where, for each i, the innovations {Z; j}f_;_}_ 11 were independent random variables with zero mean
and unit variance. We considered two distributions for the innovation Z;;. One is the standard nor-
mal distribution, and the other is a standardized version of a Pareto distribution with distribution
function (1 — x~#3)I(x > 1). We standardized the Pareto random variables so that they had zero
mean and unit variance. As the Pareto distribution has only four finite moments, we had ¥ = 1 in
(4), whereas & = oo for the normally distributed innovations. In both distributions, X; is a mul-

tivariate random vector with zero mean and covariance X = (0;)pxp, Where 0;; = 1, 0341 = p ( s

and 0;; = 0 for |i — j| > 1. We set p to be 0-5 throughout the simulation.

To make p and » increase simultaneously, we considered two growth rates for p with respect
to n: (i) p = c1n®* and (ii) p = c,n%?*. We chose the sample size n = 200, 400 and 800. By
assigning ¢; = 3, 4 and 5 in the faster growth rate setting (i), we obtained three dimensions for
each sample size, which were p = 25,33 and 43 forn = 200; p = 33,44 and 58 for » = 400; and
p =42, 55 and 72 for n = 800, respectively. For the slower growth rate setting (ii), to maintain
a certain amount of increase between successive dimensions when n was increased, we assigned
larger ¢; = 4, 6 and 8, which led to p = 14, 17 and 20 for n = 200; p = 21, 25 and 30 for
n = 400; and p = 29, 34 and 40 for n = 800, respectively.

We carried out 500 simulations for each of the (p, n)-combinations and for each of the two

{ innovation distributions. Figure 1 displays Q-Q plots of standardized empirical likelihood ratio
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We report results from a simulation study designed to evaluate the asymptotlc"normahty of



