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where Hn = Sn ? (X ? )( ? ) . Thus, qn(?) can be readily computed without solving the
nonlinear equation (5) as for the full empirical likelihood. The least-squares empirical likelihood

ratio is a first-order approximation to the full empirical likelihood ratio, and qn(?) -> Xp in
distribution when is fixed.

The least-squares empirical likelihood is less affected by higher dimension. In particular, if
k > 3 in (4), then

(2Prl'2{qM-p}^N(p9l) (12)
in distribution as ?> oc when = o{n2^), which improves the rate given by Theorem 3 for the
full empirical likelihood ratio ( ).

To appreciate (12), we note from (11) that

qn(ji) = n(X - ) '\ - ) + n(X - )\ ; - ~ ){ - ). (13)
Then, following a similar line to the proof of Lemma 6,

n(X - ) ( -1 - - )( - ) = Op(p2/n) = { '2).
As the first term on the right-hand side of (13) is asymptotically normal with mean and variance

2p as conveyed in (10), (12) is valid.
If we confine ourselves to specific distributions, taster rates for can be established. For

example, if the data are normally distributed, the least-squares empirical likelihood ratio is the

Hotelling- 2 statistic, which is shown in Bai & Saranadasa (1996) to be asymptotically normal
ifp/n c e [0, 1).

4. Numerical results

We report results from a simulation study designed to evaluate the asymptotic normality of
the empirical likelihood ratio. The 1 independent and identically distributed data vectors
{Xi}"=i were generated from a moving average model,

Xij = Zij + pZij+i (i = 1, .... n, y' = l,...,/?),

where, for each /, the innovations {Z/y}^1 were independent random variables with zero mean
and unit variance. We considered two distributions for the innovation Zy. One is the standard nor
mal distribution, and the other is a standardized version of a Pareto distribution with distribution

function (1 ? x~4'5)I(x ^ 1). We standardized the Pareto random variables so that they had zero
mean and unit variance. As the Pareto distribution has only four finite moments, we had k = 1 in

(4), whereas k = oo for the normally distributed innovations. In both distributions, X? is a mul

tivariate random vector with zero mean and covariance = ( ^) 9 where / = 1, a?\ =
and = 0 for \i ? j\ > 1. We set to be 0-5 throughout the simulation.

To make and increase simultaneously, we considered two growth rates for with respect
to n: (i) = c\n0'4 and (ii) = C2n0'24. We chose the sample size = 200, 400 and 800. By
assigning c\ =3,4 and 5 in the faster growth rate setting (i), we obtained three dimensions for

each sample size, which were = 25,33 and 43 for = 200; = 33,44 and 58 for = 400; and
= 42, 55 and 72 for = 800, respectively. For the slower growth rate setting (ii), to maintain

a certain amount of increase between successive dimensions when was increased, we assigned
larger c2 = 4, 6 and 8, which led to = 14, 17 and 20 for = 200; = 21, 25 and 30 for
= 400; and = 29, 34 and 40 for = 800, respectively.
We carried out 500 simulations for each of the (p, ^-combinations and for each of the two

innovation distributions. Figure 1 displays Q-Q plots of standardized empirical likelihood ratio
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