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Abstract

The empirical likelihood ratio statistics are constructed for the parameters in

spatial autoregressive models with spatial autoregressive disturbances. It is

shown that the limiting distributions of the empirical likelihood ratio statis-

tics are chi-squared distributions, which are used to construct confidence

regions for the parameters in the models.
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1 Introduction

Spatial data are common in ecology, environmental health and epidemi-

ology, where sampling units are geographical areas or spatially located indi-

viduals (Cressien, 1993). Analysis of spatial data is challenged by the spatial

correlation among the observations. In this article, the following spatial au-

toregressive model with spatial autoregressive disturbances ( spatial ARAR

model) is investigated:

Yn = ρ1WnYn +Xnβ + u(n), u(n) = ρ2Mnu(n) + ε(n), (1.1)

where n is the number of spatial units, ρj , j = 1, 2, are the scalar autore-

gressive parameters with |ρj | < 1, j = 1, 2, β is the k× 1 vector of regression

parameters, Xn = (x1, x2, · · · , xn)τ is the non-random n×k matrix of obser-

vations on the independent variable, Yn = (y1, y2, · · · , yn)τ is an n×1 vector
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of observations on the dependent variable, Wn and Mn are n × n spatial

weighting matrices of constants, ε(n) is an n×1 vector of model errors which

satisfies

Eε(n) = 0, V ar(ε(n)) = σ2In.

The ρ1Wn term is a spacial lag in the dependent variable and its coefficient

represents the spatial influence due to neighbors realized dependent vari-

able. The ρ2Mn term is a spacial lag in the disturbances and its coefficient

represents the spacial effect of unobservables on neighboring units. This

model is introduced by Cliff and Ord (1973). Excellent surveys and develop-

ments in testing and estimation of this model can be found in Cliff and Ord

(1973), Anselin (1988), Cressien (1993), Anselin and Bera (1998), Kelejian

and Prucha (2001), & Liu et al. (2010), among others.

There are two major estimation approaches for the corresponding pa-

rameters of the spatial ARAR model. One is the maximum likelihood (ML)

method (e.g. Anselin, 1988). The other is the generalized method of mo-

ments (GMM) by Liu et al. (2010). The asymptotic properties of the max-

imum likelihood estimator (MLE) and the GMM estimator for the spatial

ARAR model are investigated by Anselin (1988) and Liu et al. (2010), re-

spectively. However, it may not be easy to use these normal approxima-

tion results to construct confidence region for the parameters in the spatial

ARAR model as the asymptotic covariance in the asymptotic distribution

is unknown. In this article, we propose to use the empirical likelihood (EL)

method introduced by Owen (1988, 1990) to construct confidence region for

the parameters in the spatial ARAR model. The shape and orientation of

the EL confidence region are determined by data and the confidence region is

obtained without covariance estimation. These features of the EL confidence

region are the major motivations for our current proposal. A comprehensive

review on EL for regressions can be found in Chen and Keilegom (2009).

More references on EL methods can be found in Owen (2001), Qin and Law-

less (1994), Chen and Qin (1993), Zhong and Rao (2000) and Wu (2004),

among others.
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The main challenge in using the EL method to the spatial ARAR model

is that the estimating equation for the spatial ARAR model is a linear-

quadratic form of ε(n) (e.g. (2.1)–(2.4)). The idea to use the EL method for

the spatial ARAR model is to introduce a martingale sequence to transform

the linear-quadratic form into a linear form. It is interesting to note that the

estimation equations for other spatial models may have the linear-quadratic

forms. Therefore this approach of transformation also opens a way to use

EL methods to more general spatial models. The applications of EL method

to other spatial models are left for our future study. After the completion of

this article, we are informed that Jin and Lee (2019) independently investi-

gate the generalized empirical likelihood (GEL) estimation and tests of the

spatial ARAR models by exploring an inherent martingale structure. It is

noted that the model and method used in Jin and Lee (2019) are more gen-

eral than those in this article. However, the statistical inference in Jin and

Lee (2019) is based on the EL point estimator. This article focuses on the

construction of the EL confidence intervals. There is no need to construct

the point estimation of parameters by using EL method. Therefore, the

regularity conditions in Jin and Lee (2019) are stronger than those in this

article. One can also see, based on the results in Jin and Lee (2019), that

the EL estimator for the model in this article is efficient in the sense that

the asymptotic variance of the EL estimator is the same as the maximum

likelihood estimator when the ε(n) is normally distributed.

The article is organized as follows. Section 2 gives the main results.

Results from a simulation study are reported in Section 3. All the technical

details are presented in Section 4.

2 Main Results

We continue with model (1.1). Let An(ρ1) = In − ρ1Wn, Bn(ρ2) = In −
ρ2Mn and suppose that An(ρ1) and Bn(ρ2) are nonsingular. Then

Yn = A−1
n (ρ1)Xnβ +A−1

n (ρ1)B
−1
n (ρ2)ε(n).

3
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At this moment, suppose that ε(n) is normally distributed, which is used to

derive the EL statistic only and not employed in our main results. Then the

log-likelihood function based on the response vector Yn is

L = −n

2
log(2π)− n

2
log σ2 + log |An(ρ1)|+ log |Bn(ρ2)| −

1

2σ2
ετ(n)ε(n),

where ε(n) = Bn(ρ2){An(ρ1)Yn−Xnβ}. LetGn=Bn(ρ2)WnA
−1
n (ρ1)B

−1
n (ρ2),

Hn = MnB
−1
n (ρ2), G̃n = 1

2(Gn+Gτ
n) and H̃n = 1

2(Hn+Hτ
n). It can be shown

that (e.g. Anselin, 1988, pp. 74-75)

∂L/∂β =
1

σ2
Xτ

nB
τ
n(ρ2)ε(n),

∂L/∂ρ1 =
1

σ2
{Bn(ρ2)WnA

−1
n (ρ1)Xnβ}τ ε(n)

+
1

σ2
{ετ(n)Bn(ρ2)WnA

−1
n (ρ1)B

−1
n (ρ2)ε(n) − σ2tr(A−1

n (ρ1)Wn)}

=
1

σ2
{Bn(ρ2)WnA

−1
n (ρ1)Xnβ}τ ε(n) +

1

σ2
{ετ(n)G̃nε(n) − σ2tr(G̃n)},

∂L/∂ρ2 =
1

σ2
{ετ(n)H̃nε(n) − σ2tr(H̃n)},

∂L/∂σ2 =
1

2σ4
(ετ(n)ε(n) − nσ2).

Letting above derivatives be 0, we obtain the following estimating equations:

Xτ
nB

τ
n(ρ2)ε(n) = 0, (2.1)

{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τ ε(n) + {ετ(n)G̃nε(n) − σ2tr(G̃n)} = 0, (2.2)

ετ(n)H̃nε(n) − σ2tr(H̃n) = 0, (2.3)

ετ(n)ε(n) − nσ2 = 0. (2.4)

We use g̃ij , h̃ij , bi and si to denote the (i, j) element of the matrix G̃n, the

(i, j) element of the matrix H̃n, the i-th column of the matrix Xτ
nB

τ
n(ρ2) and
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the i-th component of the vector Bn(ρ2)WnA
−1
n (ρ1)Xnβ, respectively, and

adapt the convention that any sum with an upper index of less than one is

zero. To deal with the quadratic forms in (2.2) and (2.3), we follow Kelejian

and Prucha (2001) to introduce a martingale difference array. Define the

σ-fields: F0 = {∅,Ω},Fi = σ(ε1, ε2, · · · , εi), 1 ≤ i ≤ n. Let

Ỹin = g̃ii(ε
2
i − σ2) + 2εi

i−1∑

j=1

g̃ijεj , Z̃in = h̃ii(ε
2
i − σ2) + 2εi

i−1∑

j=1

h̃ijεj . (2.5)

Then Fi−1 ⊆ Fi, Ỹin is Fi− measurable and E(Ỹin|Fi−1) = 0. Thus {Ỹin,Fi,

1 ≤ i ≤ n} and {Z̃in,Fi, 1 ≤ i ≤ n} form two martingale difference arrays

and

ετ(n)G̃nε(n) − σ2tr(G̃n) =
n∑

i=1

Ỹin, ετ(n)H̃nε(n) − σ2tr(H̃n) =
n∑

i=1

Z̃in. (2.6)

Based on (2.1) to (2.6), we propose the following EL ratio statistic for

θ=̂(βτ , ρ1, ρ2, σ
2)τ ∈ Rk+3:

Ln(θ) = sup
pi,1≤i≤n

n∏

i=1

(npi),

where {pi} satisfy

pi ≥ 0, 1 ≤ i ≤ n,
n∑

i=1

pi = 1,

n∑

i=1

pibiεi = 0,

n∑

i=1

pi

{
g̃ii(ε

2
i − σ2) + 2εi

i−1∑

j=1

g̃ijεj + siεi

}
= 0,

n∑

i=1

pi

{
h̃ii(ε

2
i − σ2) + 2εi

i−1∑

j=1

h̃ijεj

}
= 0,

n∑

i=1

pi(ε
2
i − σ2) = 0.
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Let

ωi(θ) =

⎛

⎜⎜⎜⎜⎝

biεi

g̃ii(ε
2
i − σ2) + 2εi

∑i−1
j=1g̃ijεj + siεi

h̃ii(ε
2
i − σ2) + 2εi

∑i−1
j=1h̃ijεj

ε2i − σ2

⎞

⎟⎟⎟⎟⎠

(k+3)×1

,

where εi is the i-th component of ε(n) = Bn(ρ2){An(ρ1)Yn−Xnβ}. Following
Owen (1990), one can show that

pi =
1

n
· 1

1 + λτ (θ)ωi(θ)
, 1 ≤ i ≤ n,

and

�n(θ)=̂− 2 logLn(θ) = 2
n∑

i=1

log{1 + λτ (θ)ωi(θ)}, (2.7)

where λ(θ) ∈ Rk+3 is the solution of the following equation:

1

n

n∑

i=1

ωi(θ)

1 + λτ (θ)ωi(θ)
= 0. (2.8)

Let μj = E(εj1), j = 3, 4. Use V ec(diagA) to denote the vector formed by

the diagonal elements of a matrix A and use ||a|| to denote the L2-norm of

a vector a. Furthermore, Let 1n present the n-dimensional (column) vector

with 1 as its components. To obtain the asymptotical distribution of �n(θ),

we need following assumptions.

A1. {εi, 1 ≤ i ≤ n} are independent and identically distributed random

variables with mean 0, variance σ2 > 0 and E|ε1|4+η1 < ∞ for some

η1 > 0.

A2. Let Wn,Mn, A
−1
n (ρ1), B

−1
n (ρ2) and {xi} be as described above. They

satisfy the following conditions:

(i) The row and column sums of Wn,Mn, A
−1
n (ρ1) and B−1

n (ρ2) are

uniformly bounded in absolute value;

(ii) {xi} are uniformly bounded.
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A3. There is a constants cj > 0, j = 1, 2, such that 0 < c1 ≤ λmin(
n−1Σk+3

)
≤ λmax

(
n−1Σk+3

)
≤ c2 < ∞, where λmin(A) and λmax(A)

denote the minimum and maximum eigenvalues of a matrix A, respec-

tively,

Σk+3 = Στ
k+3 = Cov

{
n∑

i=1

ωi(θ)

}
=

⎛

⎜⎜⎜⎜⎝

Σ11 Σ12 Σ13 Σ14

Σ21 Σ22 Σ23 Σ24

Σ31 Σ32 Σ33 Σ34

Σ41 Σ42 Σ43 Σ44

⎞

⎟⎟⎟⎟⎠
, (2.9)

where

Σ11 = σ2{Bn(ρ2)Xn}τBn(ρ2)Xn,

Σ12 = σ2{Bn(ρ2)Xn}τBn(ρ2)WnA
−1
n (ρ1)Xnβ

+μ3{Bn(ρ2)Xn}τV ec(diagG̃n),

Σ13 = μ3{Bn(ρ2)Xn}τV ec(diagH̃n),Σ14 = μ3{Bn(ρ2)Xn}τ1n

Σ22 = 2σ4tr(G̃n
2
)

+σ2{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τBn(ρ2)WnA

−1
n (ρ1)Xnβ

+(μ4 − 3σ4)||V ec(diagG̃n)||2

+2μ3{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagG̃n),

Σ23 = 2σ4tr(G̃nH̃n) + (μ4 − 3σ4)V ecτ (diag(G̃n))V ec(diag(H̃n))

+μ3{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagH̃n),

Σ24 = (μ4 − σ4)tr(G̃n) + μ3{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τ1n,

Σ33 = 2σ4tr(H̃n
2
) + (μ4 − 3σ4)||V ec(diag(H̃n))||2,

Σ34 = (μ4 − σ4)tr(H̃n),Σ44 = n(μ4 − σ4).
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Remark 1. (2.9) is verified in the proof of Lemma 3. Conditions A1 to A3

are common assumptions for spatial models. For example, A1 and A2 are

used in Assumptions 1, 4, 5 and 6 in Lee (2004), the analog of 0 < c1 ≤
λmin

(
n−1Σk+3

)
(e.g. n−1σ2

˜Q
≥ c for some constant c > 0 in Lemma 1 in this

article) is employed in the assumption of Theorem 1 in Kelejian and Prucha

(2001). From Conditions A1 and A2, one can see that λmax

(
n−1Σk+3

)
≤

c2 < ∞. For the sake of argument, we list this consequence of A1 and A2

as a condition here.

We now state the main results.

Theorem 1. Suppose that Assumptions (A1) to (A3) are satisfied. Then

under model (1.1), as n → ∞,

�n(θ)
d−→ χ2

k+3,

where χ2
k+3 is a chi-squared distributed random variable with k + 3 degrees

of freedom.

Let zα(k + 3) satisfy P (χ2
k+3 ≤ zα(k + 3)) = α for 0 < α < 1. It follows

from Theorem 1 that an EL based confidence region for θ with asymptotically

correct coverage probability α can be constructed as

{θ : �n(θ) ≤ zα(k + 3)}.

In some occasions, one may want to obtain the confidence region for ψ =

(βτ , ρ1, ρ2)
τ ∈ Rk+2. To serve this, we can let �n2(ψ) = 2 log{Ln(θ̂)} −

2 log{Ln(ψ, σ̂
2)}, where θ̂ and σ̂2 are the EL estimators of θ and σ2 (with

ψ fixed for the later estimator), respectively. Then following the proof of

Corollary 5 in Qin and Lawless (1994), we have the following result.

Theorem 2. Suppose that Assumptions (A1) to (A3) are satisfied. Then

as n → ∞,

�n2(ψ)
d−→ χ2

k+2,

where χ2
k+2 is a chi-squared distributed random variable with k + 2 degrees

of freedom.
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Based on this result, the EL based confidence region for ψ with asymp-

totically correct coverage probability α can be constructed as

{ψ : �n2(ψ) ≤ zα(k + 2)}.

3 Simulations

According to Anselin (1988), when the error term ε(n) is normal dis-

tributed, the likelihood ratio (LR) LR(θ0) = 2(L(θ̂) − L(θ0)) is asymptoti-

cally distributed as χ2
k+3 under the null hypothesis: θ = θ0, where L is the

corresponding log-likelihood and θ̂ is the maximum likelihood estimator. It

follows that the LR based confidence region for θ with asymptotically correct

coverage probability α can be constructed as

{θ : LR(θ) ≤ zα(k + 3)}.

We note that the LR method requires to know the form of the distribution

of the population in study, while the EL method does not.

We conducted a small simulation study to compare the finite sample

performances of the confidence regions based on EL and LR methods with

confidence level α = 0.95, and report the proportion of LR(θ0) ≤ z0.95(k+3)

and �n(θ0) ≤ z0.95(k + 3) respectively in our 2,000 simulations, where θ0 is

the true value of θ. The results of simulations are reported in Tables 1, 2

and 3.

In the simulations, we used the model: Yn = ρ1WnYn+Xnβ+u(n), u(n) =

ρ2Mnu(n) + ε(n) with Xn = (x1, x2, · · · , xn)τ , xi = i
n+1 , 1 ≤ i ≤ n, β =

3.5, (ρ1, ρ2) were taken as (−0.85,−0.15), (−0.85, 0.15) (0.85,−0.15) and

(0.85, 0.15), respectively, and ε′is were taken from N(0, 1), t(5) and χ2
4 − 4,

respectively.

For the contiguity weight matrix Wn = (Wij), we took Wij = 1 if spatial

units i and j are neighbours by queen contiguity rule (namely, they share

common border or vertex), Wij = 0 otherwise (Anselin, 1988, p.18). We

first considered three ideal cases of spatial units: n = m × m regular grid

with m = 7, 10, 13, denoting Wn as grid49, grid100 and grid169, respectively.

9
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Table 1: Coverage probabilities of the LR and EL confidence regions with

εi ∼ N(0, 1)

(ρ1, ρ2) Wn = Mn LR EL (ρ1, ρ2) Wn = Mn LR EL

(−0.85,−0.15) grid49 0.9405 0.8700 (−0.85, 0.15) grid49 0.9500 0.8835

grid100 0.9370 0.9220 grid100 0.9515 0.9290

grid169 0.9385 0.9290 grid169 0.9505 0.9360

W49 0.9460 0.8705 W49 0.9525 0.8780

I5
⊗

W49 0.9495 0.9380 I5
⊗

W49 0.9540 0.9485

W345 0.9485 0.9335 W345 0.9505 0.9435

(0.85,−0.15) grid49 0.9405 0.8830 (0.85, 0.15) grid49 0.9395 0.8725

grid100 0.9440 0.9185 grid100 0.9450 0.9180

grid169 0.9375 0.9220 grid169 0.9435 0.9265

W49 0.9395 0.8815 W49 0.9555 0.8905

I5
⊗

W49 0.9495 0.9395 I5
⊗

W49 0.9505 0.9485

W345 0.9535 0.9465 W345 0.9505 0.9460

Table 2: Coverage probabilities of the LR and EL confidence regions with

εi ∼ t(5)

(ρ1, ρ2) Wn = Mn LR EL (ρ1, ρ2) Wn = Mn LR EL

(−0.85,−0.15) grid49 0.8430 0.8030 (−0.85, 0.15) grid49 0.8395 0.7890

grid100 0.8470 0.8725 grid100 0.8440 0.8675

grid169 0.8230 0.8845 grid169 0.8265 0.8990

W49 0.8530 0.8070 W49 0.8560 0.8135

I5
⊗

W49 0.8315 0.9105 I5
⊗

W49 0.8300 0.9040

W345 0.8095 0.9065 W345 0.8095 0.9130

(0.85,−0.15) grid49 0.8550 0.8085 (0.85, 0.15) grid49 0.8555 0.8070

grid100 0.8340 0.8705 grid100 0.8355 0.8690

grid169 0.8120 0.8870 grid169 0.8275 0.8950

W49 0.8440 0.8175 W49 0.8335 0.8010

I5
⊗

W49 0.8105 0.9025 I5
⊗

W49 0.8130 0.9065

W345 0.8045 0.9100 W345 0.8125 0.9130
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Table 3: Coverage probabilities of the LR and EL confidence regions with

εi + 4 ∼ χ2
4

(ρ1, ρ2) Wn = Mn LR EL (ρ1, ρ2) Wn = Mn LR EL

(−0.85,−0.15) grid49 0.8465 0.7990 (−0.85, 0.15) grid49 0.8485 0.8010

grid100 0.8355 0.8630 grid100 0.8450 0.8735

grid169 0.8495 0.9100 grid169 0.8415 0.8985

W49 0.8570 0.7975 W49 0.8295 0.7710

I5
⊗

W49 0.8420 0.9200 I5
⊗

W49 0.8485 0.9140

W345 0.8615 0.9170 W345 0.8470 0.9205

(0.85,−0.15) grid49 0.8420 0.8060 (0.85, 0.15) grid49 0.8615 0.8120

grid100 0.8345 0.8720 grid100 0.8315 0.8540

grid169 0.8410 0.9025 grid169 0.8455 0.8975

W49 0.8385 0.7895 W49 0.8375 0.7945

I5
⊗

W49 0.8420 0.9050 I5
⊗

W49 0.8505 0.9100

W345 0.8430 0.9240 W345 0.8410 0.9240

Secondly, we used the weight matrix W49 related to 49 contiguous planning

neighborhoods in Columbus, Ohio, U.S., which appeared in Anselin (1988,

p. 188). Thirdly, Wn = I5
⊗

W49 was considered, where
⊗

is kronecker

product. This corresponds to the pooling of five separate districts with

similar neighboring structures in each district. Finally, weight matrix W345

was included in the simulations, which is related to 345 major cities (referring

to https://www.gadm.org/download country v3.html) in mainland, China.

A transformation is often used in applications to convert the matrix Wn

to the unity of row-sums. We used the standardized version of Wn in our

simulations, namely Wij was replaced by Wij/
∑n

j=1Wij . In the simulations,

we took Mn = Wn.

Simulation results show that the confidence regions based on LR behave

well with coverage probabilities very close to the nominal level 0.95 when

the error term εi is normally distributed, but not well in other cases. The

coverage probabilities of the confidence regions based on LR fall to the range

[0.8045,0.8560] for t distribution and [0.8295, 0.8615] for χ2 distribution,

which are far from the nominal level 0.95.
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We can see, from Tables 1, 2 and 3, the confidence regions based on EL

method converge to the nominal level 0.95 as the number of spatial units

n is large enough, whether the error term εi is normally distributed or not.

Our simulation results recommend EL method when we can not confirm the

normal distribution of the error term.

4 Proofs

In the proof of the main results, we need to use Theorem 1 in Kelejian

and Prucha (2001). We now state this result. Let

Q̃n =
n∑

i=1

n∑

j=1

anijεniεnj +
n∑

i=1

bniεni,

where εni are real valued random variables, and the anij and bni denote the

real valued coefficients of the linear-quadratic form. We need the following

assumptions in Lemma 1.

(C1) {εni, 1 ≤ i ≤ n} are independent random variables with mean 0 and

sup1≤i≤n,n≥1E|εni|4+η1 < ∞ for some η1 > 0;

(C2) For all 1 ≤ i, j ≤ n, n ≥ 1, anij = anji, sup1≤j≤n,n≥1

∑n
i=1 |anij | < ∞,

and supn≥1 n
−1

∑n
i=1 |bni|2+η2 < ∞ for some η2 > 0.

Given the above assumptions (C1) and (C2), the mean and variance of Q̃n

are given as (e.g. Kelejian and Prucha, 2001)

μ
˜Q
=

n∑

i=1

aniiσ
2
ni,

σ2
˜Q

= 2
n∑

i=1

n∑

j=1

a2nijσ
2
niσ

2
nj +

n∑

i=1

b2niσ
2
ni

+
n∑

i=1

{a2nii(μ
(4)
ni − 3σ4

ni) + 2bnianiiμ
(3)
ni }, (4.1)

with σ2
ni = E(ε2ni) and μ

(s)
ni = E(εsni) for s = 3, 4.
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Lemma 1. Suppose that Assumptions C1 and C2 hold true and n−1σ2
˜Q
≥ c

for some constant c > 0. Then

Q̃n − μ
˜Q

σ
˜Q

d−→ N(0, 1).

Proof. See Theorem 1 and Remark 12 in Kelejian and Prucha (2001).

Lemma 2. Let η1, η2, · · · , ηn be a sequence of stationary random variables,

with E|η1|s < ∞ for some constants s > 0 and C > 0. Then

max
1≤i≤n

|ηi| = o(n1/s), a.s.

Proof. Using Borel-Cantelli lemma and following the proof of (2.3) in

Owen (1990), one can prove Lemma 2.

Lemma 3. Suppose that Assumptions (A1) to (A3) are satisfied. Then as

n → ∞,

Zn = max
1≤i≤n

||ωi(θ)|| = op(n
1/2) a.s., (4.2)

Σ
−1/2
k+3

n∑

i=1

ωi(θ)
d−→ N(0, Ik+3), (4.3)

n−1
n∑

i=1

ωi(θ)ω
τ
i (θ) = n−1Σk+3 + op(1), (4.4)

n∑

i=1

||ωi(θ)||3 = Op(n), (4.5)

where Σk+3 is given in (2.9).

Proof. Note that

Zn ≤ max
1≤i≤n

||biεi||+ max
1≤i≤n

∣∣∣∣∣∣
g̃ii(ε

2
i − σ2) + 2εi

i−1∑

j=1

g̃ijεj + siεi

∣∣∣∣∣∣

13
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+ max
1≤i≤n

∣∣∣∣∣∣
h̃ii(ε

2
i − σ2) + 2εi

i−1∑

j=1

h̃ijεj

∣∣∣∣∣∣
+ max

1≤i≤n
|ε2i − σ2|

≤ max
1≤i≤n

||biεi||+ max
1≤i≤n

|g̃ii(ε2i − σ2)|+ max
1≤i≤n

∣∣∣∣∣∣
2εi

i−1∑

j=1

g̃ijεj

∣∣∣∣∣∣

+ max
1≤i≤n

|h̃ii(ε2i − σ2)|+ max
1≤i≤n

∣∣∣∣∣∣
2εi

i−1∑

j=1

h̃ijεj

∣∣∣∣∣∣

+ max
1≤i≤n

|siεi|+ max
1≤i≤n

|ε2i − σ2|.

By Conditions A1 and A2 and Lemma 2, we have

max
1≤i≤n

||biεi|| = max
1≤i≤n

||bi||op(n1/4) = op(n
1/4),

max
1≤i≤n

||siεi|| = max
1≤i≤n

||si||op(n1/4) = op(n
1/4),

max
1≤i≤n

∣∣∣∣∣∣
εi

i−1∑

j=1

g̃ijεj

∣∣∣∣∣∣
≤ ( max

1≤i≤n
|εi|)2 · max

1≤i≤n

⎛

⎝
i−1∑

j=1

|g̃ij |

⎞

⎠ = op(n
1/2),

max
1≤i≤n

|g̃ii(ε2i − σ2)| = max
1≤i≤n

|g̃ii|op(n1/2) = op(n
1/2),

max
1≤i≤n

|ε2i − σ2| = op(n
1/2).

Similarly,

max
1≤i≤n

∣∣∣∣∣∣
εi

i−1∑

j=1

h̃ijεj

∣∣∣∣∣∣
= op(n

1/2), max
1≤i≤n

|h̃ii(ε2i − σ2)| = op(n
1/2).

Thus Zn = op(n
1/2). (4.2) is proved.

For any given l = (lτ1 , l2, l3, l4)
τ ∈ Rk+3 with ||l|| = 1, where l1 ∈ Rk, lj ∈

R, j = 2, 3, 4. Then

lτωi(θ) = lτ1biεi + l2

⎧
⎨

⎩g̃ii(ε
2
i − σ2) + 2εi

i−1∑

j=1

g̃ijεj + siεi

⎫
⎬

⎭
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+l3

⎧
⎨

⎩h̃ii(ε
2
i − σ2) + 2εi

i−1∑

j=1

h̃ijεj

⎫
⎬

⎭+ l4(ε
2
i − σ2)

= (l2g̃ii+l3h̃ii + l4)(ε
2
i − σ2)+2εi

i−1∑

j=1

(l2g̃ij + l3h̃ij)εj+(lτ1bi + l2si)εi.

Thus

n∑

i=1

lτωi(θ) =

n∑

i=1

(l2g̃ii + l3h̃ii + l4)(ε
2
i − σ2) + 2

n∑

i=1

i−1∑

j=1

(l2g̃ij + l3h̃ij)εiεj

+

n∑

i=1

(lτ1bi + l2si)εi.

Let

Qn =

n∑

i=1

n∑

j=1

uijεiεj +

n∑

i=1

viεi,

where

uii = l2g̃ii + l3h̃ii + l4, uij = l2g̃ij + l3h̃ij(i 
= j), vi = lτ1bi + l2si.

Then

Qn =
n∑

i=1

lτωi(θ) =
n∑

i=1

⎧
⎨

⎩uii(ε
2
i − σ2) +

i−1∑

j=1

uijεiεj + viεi

⎫
⎬

⎭ .

To obtain the asymptotic distribution of Qn, we need to check Condition

C2. From Condition A2(i), it can be shown that

n∑

i=1

|uij | ≤ |l2|
n∑

i=1

|g̃ij |+ |l3|
n∑

i=1

|h̃ij |+ |l4| ≤ C.

And by Cr-inequality, we have

n−1
n∑

i=1

|vi|3 ≤ Cn−1
n∑

i=1

|lτ1bi|3 + Cn−1
n∑

i=1

|l2si|3. (4.6)

Further,

n−1
n∑

i=1

|lτ1bi|3 ≤ C max
1≤i≤n

||xi||3 max
1≤i≤n

( n∑

k=1

|bik|
)3

≤ C, (4.7)
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where bik is the (i, k)-element of Bn(ρ2). On the other hand, by Condition

A2, it can be shown that

n−1
n∑

i=1

|l2si|3 ≤ C. (4.8)

From (4.6)–(4.8), it follows that n−1
∑n

i=1 |vi|3 ≤ C. Therefore, Condition

C2 is satisfied.

We now derive the variance of Qn. It can be shown that

n∑

i=1

n∑

j=1

u2ij =

n∑

i=1

{
(l2g̃ii + l3h̃ii + l4)

2 +
∑

i�=j

(l2g̃ij + l3h̃ij)
2

}

= 2l2l4tr(G̃n) + 2l3l4tr(H̃n) + 2l2l3tr(G̃nH̃n)

+nl24 + l22tr(G̃n
2
) + l23tr(H̃n

2
),

n∑

i=1

u2ii =
n∑

i=1

(l2g̃ii + l3h̃ii + l4)
2

= l22||V ec(diag(G̃n))||2 + l23||V ec(diag(H̃n))||2 + nl24

+2l2l4tr(G̃n)+2l3l4tr(H̃n)+2l2l3Vec
τ(diag(G̃n))Vec(diag(H̃n)),

n∑

i=1

v2i =
n∑

i=1

(lτ1bi + l2si)
2

= lτ1

( n∑

i=1

bib
τ
i

)
l1 + l22

n∑

i=1

s2i + 2lτ1

( n∑

i=1

bisi

)
l2

= lτ1{Bn(ρ2)Xn}τBn(ρ2)Xnl1

+l22{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τBn(ρ2)WnA

−1
n (ρ1)Xnβ

+2lτ1 l2{Bn(ρ2)Xn}τBn(ρ2)WnA
−1
n (ρ1)Xnβ,

and that

n∑

i=1

uiivi =
n∑

i=1

(l2g̃ii + l3h̃ii + l4)(l
τ
1bi + l2si)

= lτ1 l2

n∑

i=1

big̃ii + l22

n∑

i=1

g̃iisi + lτ1 l3

n∑

i=1

bih̃ii + l2l3

n∑

i=1

sih̃ii
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+lτ1 l4

n∑

i=1

bi + l2l4

n∑

i=1

si

= lτ1 l2{Bn(ρ2)Xn}τV ec(diagG̃n)

+l22{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagG̃n)

+lτ1 l3{Bn(ρ2)Xn}τV ec(diagH̃n)

+l2l3{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagH̃n)

+lτ1 l4{Bn(ρ2)Xn}τ1n + l2l4{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τ1n,

where 1n is the n-dimensional vector with 1 as its components. It follows

from (4.1) that the variance of Qn is

σ2
Q = 2

n∑

i=1

n∑

j=1

u2ijσ
4 +

n∑

i=1

v2i σ
2 +

n∑

i=1

{u2ii(μ4 − 3σ4) + 2uiiviμ3}

= 2σ4

{
2l2l4tr(G̃n) + 2l3l4tr(H̃n) + 2l2l3tr(G̃nH̃n)

+nl24 + l22tr(G̃n
2
) + l23tr(H̃n

2
)

}
+ σ2

[
lτ1{Bn(ρ2)Xn}τBn(ρ2)Xnl1

+l22{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τBn(ρ2)WnA

−1
n (ρ1)Xnβ

+2lτ1 l2{Bn(ρ2)Xn}τBn(ρ2)WnA
−1
n (ρ1)Xnβ

]

+(μ4 − 3σ4)

{
l22||V ec(diag(G̃n))||2 + l23||V ec(diag(H̃n))||2 + nl24

+2l2l4tr(G̃n) + 2l3l4tr(H̃n) + 2l2l3V ecτ (diag(G̃n))V ec(diag(H̃n))

}

+2μ3

[
lτ1 l2{Bn(ρ2)Xn}τV ec(diagG̃n)

+l22{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagG̃n)

+lτ1 l3{Bn(ρ2)Xn}τV ec(diagH̃n)

+l2l3{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τV ec(diagH̃n)

+lτ1 l4{Bn(ρ2)Xn}τ1n + l2l4{Bn(ρ2)WnA
−1
n (ρ1)Xnβ}τ1n

]

= lτΣk+3l,
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where Σk+3 is given in (2.9). From Condition A3, one can see that n−1σ2
Q ≥

c1 > 0. From Lemma 1, we have

Qn − E(Qn)

σQ

d−→ N(0, 1).

Noting that E(Qn) = 0, we thus have (4.3).

Next we will prove (4.4), i. e.

n−1
n∑

i=1

{lτωi(θ)}2 = n−1σ2
Q + op(1). (4.9)

Let

Yin = lτωi(θ)

= uii(ε
2
i − σ2) + 2

i−1∑

j=1

uijεiεj + viεi

= uii(ε
2
i − σ2) +Biεi, (4.10)

where Bi = 2
∑i−1

j=1 uijεj + vi. Let F0 = {∅,Ω},Fi = σ(ε1, ε2, · · · , εi), 1 ≤
i ≤ n. Then {Yin,Fi, 1 ≤ i ≤ n} form a martingale difference array. Note

that

n−1
n∑

i=1

{lτωi(θ)}2 − n−1σ2
Q = n−1

n∑

i=1

(Y 2
in − EY 2

in)

= n−1
n∑

i=1

{Y 2
in − E(Y 2

in|Fi−1) + E(Y 2
in|Fi−1)− EY 2

in}

= n−1Sn1 + n−1Sn2, (4.11)

where Sn1 =
∑n

i=1{Y 2
in −E(Y 2

in|Fi−1)}, Sn2 =
∑n

i=1, {E(Y 2
in|Fi−1)−EY 2

in}.
Next we will prove

n−1Sn1 = op(1), (4.12)

and

n−1Sn2 = op(1). (4.13)
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It suffices to prove n−2ES2
n1 → 0 and n−2ES2

n2 → 0 respectively. Obviously,

Y 2
in = u2ii(ε

2
i − σ2)2 +B2

i ε
2
i + 2uiiBi(ε

2
i − σ2)εi.

Thus

E(Y 2
in|Fi−1) = u2iiE(ε2i − σ2)2 +B2

i σ
2 + 2uiiBiμ3.

It follows that

n−2ES2
n1 = n−2

n∑

i=1

E{Y 2
in − E(Y 2

in|Fi−1)}2

= n−2
n∑

i=1

E[u2ii{(ε2i − σ2)2 − E(ε2i − σ2)2}+B2
i (ε

2
i − σ2)

+2uiiBi(ε
3
i − σ2εi − μ3)]

2

≤ Cn−2
n∑

i=1

E[u4ii{(ε2i − σ2)2−E(ε2i − σ2)2}2]+Cn−2
n∑

i=1

E{B4
i (ε

2
i −σ2)2}

+Cn−2
n∑

i=1

E{u2iiB2
i (ε

3
i − σ2εi − μ3)

2}. (4.14)

By Condition A1, we have

n−2
n∑

i=1

E[u4ii{(ε2i − σ2)2 − E(ε2i − σ2)2}2] ≤ Cn−1 → 0, (4.15)

and

n−2
n∑

i=1

E{B4
i (ε

2
i − σ2)2} ≤ Cn−2

n∑

i=1

E(

i−1∑

j=1

uijεj + vi)
4

≤ Cn−2
n∑

i=1

E(
i−1∑

j=1

uijεj)
4 + Cn−2

n∑

i=1

v4i

≤ Cn−2
n∑

i=1

i−1∑

j=1

u4ijμ4 + Cn−2
n∑

i=1

(
i−1∑

j=1

u2ijσ
2)2 + Cn−2

n∑

i=1

(lτ1bi + l2si)
4

≤ Cn−1 → 0. (4.16)

Similarly, one can show that

n−2
n∑

i=1

E{u2iiB2
i (ε

3
i − σ2εi − μ3)

2} → 0. (4.17)
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From (4.14)-(4.17), we have n−2ES2
n1 → 0. Furthermore,

EY 2
in = E{E(Y 2

in|Fi−1)} = u2iiE(ε2i − σ2)2 + σ2E(B2
i ) + 2uiiμ3E(Bi)

= u2iiE(ε2i − σ2)2 + σ2(4

i−1∑

j=1

u2ijσ
2 + v2i ) + 2uiiμ3vi.

Thus,

n−2ES2
n2 = n−2E[

n∑

i=1

{E(Y 2
in|Fi−1)− EY 2

in}]2

= n−2E[
n∑

i=1

{B2
i σ

2 − σ2(4
i−1∑

j=1

u2ijσ
2 + v2i ) + 2uiiμ3(Bi − vi)}]2

= n−2
n∑

i=1

E[σ2{(2
i−1∑

j=1

uijεj)
2 − 4

i−1∑

j=1

u2ijσ
2}+ 4(

i−1∑

j=1

uijεj)viσ
2

+2uiiμ3(2
i−1∑

j=1

uijεj)]
2

≤ Cn−2
n∑

i=1

E{σ2(
i−1∑

j=1

uijεj)
2 −

i−1∑

j=1

u2ijσ
2}2+Cn−2

n∑

i=1

E{(
i−1∑

j=1

uijεj)viσ
2}2

+Cn−2
n∑

i=1

E{2uiiμ3(
i−1∑

j=1

uijεj)}2. (4.18)

Note that

n−2
n∑

i=1

E[σ2{(
i−1∑

j=1

uijεj)
2 −

i−1∑

j=1

u2ijσ
2}]2 ≤ n−2σ4

n∑

i=1

E(
i−1∑

j=1

uijεj)
4

≤ Cn−2
n∑

i=1

i−1∑

j=1

u4ijμ4 + Cn−2
n∑

i=1

(
i−1∑

j=1

u2ijσ
2)2 ≤ Cn−1 → 0, (4.19)

n−2
n∑

i=1

E{(
i−1∑

j=1

uijεj)viσ
2}2 = n−2σ6

n∑

i=1

v2i

i−1∑

j=1

u2ij ≤ Cn−2 → 0, (4.20)

and

n−2
n∑

i=1

E{2uiiμ3(
i−1∑

j=1

uijεj)}2=4μ2
3σ

2n−2
n∑

i=1

u2ii

i−1∑

j=1

u2ij≤Cn−1→0, (4.21)
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where we have used Conditions A1 and A2. From (4.18)–(4.21), we have

n−2ES2
n2 → 0. The proof of (4.9) is thus complete.

Finally, we will prove (4.5). Note that

n∑

i=1

E||ωi(θ)||3 ≤
n∑

i=1

E||biεi||3 +
n∑

i=1

E|g̃ii(ε2i − σ2) + 2εi

i−1∑

j=1

g̃ijεj + siεi|3

+
n∑

i=1

E|h̃ii(ε2i − σ2) + 2εi

i−1∑

j=1

h̃ijεj |3

+
n∑

i=1

E|ε2i − σ2|3. (4.22)

By Conditions A1 and A2,

n∑

i=1

E||biεi||3 = O(n), (4.23)

n∑

i=1

E

∣∣∣∣∣∣
g̃ii(ε

2
i − σ2) + 2εi

i−1∑

j=1

g̃ijεj + siεi

∣∣∣∣∣∣

3

≤ C

n∑

i=1

E|g̃ii(ε2i − σ2)|3 + C

n∑

i=1

E

∣∣∣∣∣∣
2εi

i−1∑

j=1

g̃ijεj

∣∣∣∣∣∣

3

+ C

n∑

i=1

E|siεi|3

≤ C
n∑

i=1

E|g̃ii(ε2i − σ2)|3 + C
n∑

i=1

E|εi|3
i−1∑

j=1

E|g̃ijεj |3

+C
n∑

i=1

E|εi|3
⎧
⎨

⎩

i−1∑

j=1

E(g̃ijεj)
2

⎫
⎬

⎭

3/2

+ C
n∑

i=1

E|siεi|3 = O(n), (4.24)

n∑

i=1

E|ε2i − σ2|3 = O(n). (4.25)

From (4.22)–(4.25),we have

n∑

i=1

E||ωi(θ)||3 = O(n). (4.26)
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Further, using (4.26) and Markov inequality, we obtain
∑n

i=1||ωi(θ)||3 =

Op(n). Thus (4.5) is proved.

We now in the position to prove the main results in this article.

Proof of Theorem 1. Let λ = λ(θ), ρ0 = ||λ||, λ = ρ0η0. From (2.8),

we have
ητ0
n

n∑

j=1

ωj(θ)−
ρ0
n

n∑

j=1

(ητ0ωj(θ))
2

1 + λτωj(θ)
= 0.

It follows that

|ητ0 ω̄| ≥
ρ0

1 + ρ0Zn
λmin(S0),

where Zn is defined in (4.2), ω̄ = n−1
∑n

i=1 ωi(θ), S0 = n−1
∑n

i=1 ωi(θ)ω
τ
i (θ).

That is

|ητ0Σ
1/2
k+3Σ

−1/2
k+3 ω̄| ≥ ρ0

1 + ρ0Zn
λmin(S0),

i. e.

λmax(Σ
1/2
k+3)||η0|| · ||Σ

−1/2
k+3 ω̄|| ≥ ρ0

1 + ρ0Zn
λmin(S0).

Combining with Lemma 3 and Condition A3, we have

ρ0
1 + ρ0Zn

= Op(n
−1/2).

Therefore, from Lemma 3,

ρ0 = Op(n
−1/2).

Let γi = λτωi(θ). Then

max
1≤i≤n

|γi| = op(1). (4.27)

Using (2.8) again, we have

0 =
1

n

n∑

j=1

ωj(θ)

1 + λτωj(θ)

=
1

n

n∑

j=1

ωj(θ)−
1

n

n∑

j=1

ωj(θ){λτωj(θ)}
1 + λτωj(θ)

=
1

n

n∑

j=1

ωj(θ)− { 1
n

n∑

j=1

ωj(θ)ωj(θ)
τ}λ+

1

n

n∑

j=1

ωj(θ){λτωj(θ)}2
1 + λτωj(θ)
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=
1

n

n∑

j=1

ωj(θ)− { 1
n

n∑

j=1

ωj(θ)ωj(θ)
τ}λ+

1

n

n∑

j=1

ωj(θ)γ
2
j

1 + γj

= ω − S0λ+
1

n

n∑

j=1

ωj(θ)γ
2
j

1 + γj
.

Combining with Lemma 3 and Condition A3, we may write

λ = S−1
0 ω + ς, (4.28)

where ||ς|| is bounded by

n−1
n∑

j=1

||ωj(θ)||3||λ||2 = Op(n
−1).

By (4.27) we may expand log(1 + γi) = γi − γ2i /2+ νi where, for some finite

B > 0,

P (|νi| ≤ B|γi|3, 1 ≤ i ≤ n) → 1, as n → ∞.

Therefore, from (2.7), (4.28) and Taylor expansion, we have

�n(θ) = 2
n∑

j=1

log(1 + γj) = 2
n∑

j=1

γj −
n∑

j=1

γ2j + 2
n∑

j=1

νj

= 2nλτω − nλτS0λ+ 2
n∑

j=1

νj

= 2n(S−1
0 ω)τω + 2nςτω − nωτS−1

0 ω −

2nςτω − nςτS0ς + 2

n∑

j=1

νj

= nωτS−1
0 ω − nςτS0ς + 2

n∑

j=1

νj

= {nΣ−1/2
k+2 ω}τ{nΣ−1/2

k+2 S0Σ
−1/2
k+2 }−1{nΣ−1/2

k+2 ω}

−nςτS0ς + 2
n∑

j=1

νj .

From Lemma 3 and Condition A3, we have

{nΣ−1/2
k+3 ω}τ{nΣ−1/2

k+3 S0Σ
−1/2
k+3 )}−1{nΣ−1/2

k+3 ω} d−→ χ2
k+3.

23

Author's personal copy



Yongsong Qin

On the other hand, using Lemma 3 and above derivations, we can see that

nςτS0ς = Op(n
−1) = op(1) and

|
n∑

j=1

νj | ≤ B||λ||3
n∑

j=1

||ωj(θ)||3 = Op(n
−1/2) = op(1).

The proof of Theorem 1 is thus complete.
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