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Abstract

Statistical methods with empirical likelihood (EL) are appealing and effective especially

in conjunction with estimating equations through which useful data information can be adap-

tively and flexibly incorporated. It is also known in the literature that EL approaches encounter

difficulties when dealing with problems having high-dimensional model parameters and esti-

mating equations. To overcome the challenges, we begin our study with a careful investigation

on high-dimensional EL from a new scope targeting at estimating a high-dimensional sparse

model parameters. We show that the new scope provides an opportunity for relaxing the

stringent requirement on the dimensionality of the model parameter. Motivated by the new

scope, we then propose a new penalized EL by applying two penalty functions respectively reg-

ularizing the model parameters and the associated Lagrange multipliers in the optimizations

of EL. By penalizing the Lagrange multiplier to encourage its sparsity, we show that drastic

dimension reduction in the number of estimating equations can be effectively achieved with-

out compromising the validity and consistency of the resulting estimators. Most attractively,

such a reduction in dimensionality of estimating equations is actually equivalent to a selection

among those high-dimensional estimating equations, resulting in a highly parsimonious and

effective device for high-dimensional sparse model parameters. Allowing both the dimension-

alities of model parameters and estimating equations growing exponentially with the sample

size, our theory demonstrates that the estimator from our new penalized EL is sparse and con-

sistent with asymptotically normally distributed nonzero components. Numerical simulations

and a real data analysis show that the proposed penalized EL works promisingly.
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1 Introduction

Statistical approaches using estimating equations are widely applicable to solve a broad class of

practical problems. The most influential special cases of estimating equations include the funda-

mental maximum likelihood score equations and those from the popular generalized methods of

moments (Hansen, 1982). The approaches of using estimating equations are particularly appeal-

ing in practice with merits from requiring less stringent distributional assumptions on the data

model, yet being adaptable to flexibly incorporate suitable information and conditions extracted

from practical features in various scenarios of interests.

Empirical likelihood (EL, hereinafter) (Owen, 2001) coupled with estimating equations has

been demonstrated successful since the seminal work of Qin and Lawless (1994). It is particularly

appealing that the maximum EL estimator asymptotically achieves the semiparametric efficiency

bound (Qin and Lawless, 1994). The properties of EL are also desirable through some higher order

analyses (Newey and Smith, 2004; Chen and Cui, 2006, 2007). Moreover, the Wilks’ theorems

(Owen, 2001; Qin and Lawless, 1994) for EL ensure that EL ratio is asymptotically central chi-

square distributed when evaluated at the truth. Hence, EL provides an analogous device to the

conventional fully parametric likelihood for statistical inferences, but without requiring a fully

parametric likelihood built upon more stringent distributional assumptions.

In recent years, high data dimensionality in practice has attracted increasing research attention

and brought unprecedented challenges to approaches based on estimating equations and EL. On

one hand, studies in Chen, Peng and Qin (2009), Hjort, McKeague and Van Keilegom (2009),

Tang and Leng (2010), Leng and Tang (2012), and Chang, Chen and Chen (2015) reveal that

conventional asymptotic schemes and results for EL are expected to work only when both the

dimensionality of the parameter p and the number of the estimating equations r are growing at

some rate slower than the sample size n. On the other hand, however, challenges due to high-

dimensionality require a capacity to deal with cases where both p and r can be much larger than

n. Tang and Leng (2010), Leng and Tang (2012), and Chang, Chen and Chen (2015) attempt to

utilize sparsity of the model parameters by applying penalty functions on those parameters. Their

results show that sparse estimators with good properties are achievable. However, the restriction

from the data dimensionality is not alleviated by using penalized EL in their works.

The challenges for EL from high data dimensionality are well documented in the literature,

and there are recent investigations on the remedies. Tsao (2004) found that for fixed n with mod-

erately large fixed p, the probability that the truth is contained in the EL based confidence region

can be substantially smaller than the nominal level, resulting in the under-coverage problem. As

remedies, Tsao and Wu (2013, 2014) propose extended EL to address the under-coverage problems

due to the constraints on the parameter space. With a modification avoiding equality constraints,

Bartolucci (2007) propose a penalized EL method via optimizing products of probability weights

penalized by a loss function depending on the model parameter. Lahiri and Mukhopadhyay

(2012) propose a different type of loss from that in Bartolucci (2007) and study its properties

with high-dimensional model parameter and dependent data. To our best knowledge, no es-
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timation problems have been investigated with the EL formulations of Bartolucci (2007) and

Lahiri and Mukhopadhyay (2012).

In this paper, from a new scope on investigating high-dimensional sparse model parameters, we

study the properties of EL by carefully examining the impacts from the data dimensionally, and

exploring the opportunity from targeting at the sparse model parameter. We find that consistently

estimating high-dimensional sparse model parameter by a penalized EL is feasible with fewer

number of estimating functions than the model parameter. Such an observation motivates us

to propose a new penalized EL approach to tackle high-dimensional statistical problems where

both the numbers of model parameters and estimating equations, p and r respectively, can grow

at an exponential rate of the sample size n. We solve the problem by employing two penalty

functions when constructing the EL with high-dimensional estimating equations. Specifically, the

first penalty function is on the magnitude of the model parameters with the goal to encourage

sparsity in the resulting estimator. Additionally, a second penalty function is imposed on the

Lagrange multiplier to encourage its sparsity when optimizing the EL evaluated at given values of

the parameters. We also observe that obtaining a sparse Lagrange multiplier in EL is equivalent to

reducing the dimensionality r via an effective selection among those estimating equations, which

itself is an interesting problem and a new scope; see our discussions in Sections 2 and 3.

Here we note that the effect of the sparsity encouraging penalty on the Lagrange multiplier

relates to the methods for selecting moments in the GMM methods, a problem that has been

extensively studied in the econometrics literature; see, among others, Cheng and Liao (2015) and

reference therein. Recently, Cheng and Liao (2015) and Shi (2016) study the problem with many

moment conditions for estimating a fixed dimensional model parameter. Cheng and Liao (2015)

propose to treat the sample averages of the moment conditions as additional parameters to be

optimized, and to apply the L1 penalty on them to encourage sparsity so that effective moment

selection can be achieved. The role of the L1 penalty in their approach is seen similar to ours on the

Lagrange multiplier for the purpose of moment selection. In light of the Dantzig selector approach

of Candes and Tao (2007), Shi (2016) propose a new EL formulation by relaxing the equality

constraints to inequality ones involving some regularization parameter, so that effective selection

of the moment conditions is also achieved. Nevertheless, none of Cheng and Liao (2015) and Shi

(2016) investigates the impacts from diverging number of model parameters that potentially can

be sparse.

Our investigation contributes to the area of EL with high-dimensional statistical problems

from a new scope. Our approach successfully extends the EL approach with estimating functions

to scenarios allowing both p and r growing exponentially with the sample size n. As shown in

Sections 2 and 3, new results for high-dimensional penalized EL are established, and many of

them are interesting in both areas of EL and estimating equations. Our analysis first reveals

a result of its own interests that substantially broadens the understanding of the relationship

between the number of estimating equations r and the number of model parameters p with

penalized EL. Surprisingly, we find that with an appropriate penalization, a consistent and sparse

estimator of the model parameter actually does not require r ≥ p, thanks to the new scope

2



from estimating a sparse model parameter. In particular, we show that a sparse estimator with

s nonzero components for the p-dimensional parameter technically may only require that the

number of estimating equations r to be no less than s. Such a result crucially supports the

motivation in our new penalized EL approach for the second penalty function imposed on the

Lagrange multiplier to reduce the effective number of estimating equations actually involved

in the high-dimensional penalized EL. That is, the resulting sparse Lagrange multiplier from

the penalization is equivalent to a selection among available estimating equations for the model

parameters. Our theory shows that the penalized EL estimator is consistent and can estimate the

zero components of the model parameters as zero with probability tending to one. Additionally,

the nonzero components of the penalized EL estimator is asymptotically normally distributed.

The rest of this paper is organized as follows. The new scope with high-dimensional sparse

model parameter on EL and penalized EL is investigated in Section 2. The new penalized EL

with an additional penalty function on the Lagrange multiplier and its properties for estimating

high-dimensional sparse model parameters are given in Section 3. An algorithm using coordinate

descent for solving the penalized EL is presented in Section 4. Numerical examples with simulated

and real data are shown in Section 5. Some discussions are given in Section 6. All technical

details are provided in Section 7. The Supplementary Material contains more technical proofs of

the theoretical results.

2 Empirical likelihood and penalized empirical likelihood

2.1 An overview of empirical likelihood with diverging dimensionality

Let us define some notations first. For a q-dimensional vector a = (a1, . . . , aq)
T, let |a|∞ =

max1≤k≤q |ak|, |a|1 =
∑q

k=1 |ak| and |a|2 = (
∑q

k=1 a
2
k)

1/2 be its L∞-norm, L1-norm, and L2-norm,

respectively. For a q × q matrix M = (mij)q×q, let ‖M‖∞ = max1≤i≤q
∑q

j=1 |mij |, ‖M‖2 =

λ
1/2
max(MTM) and ‖M‖F = (

∑q
i,j=1m

2
ij)

1/2 be the L∞-norm, L2-norm and Frobenius-norm of M,

respectively.

Let X1, . . . ,Xn be d-dimensional independent and identically distributed generic observations

and θ = (θ1, . . . , θp)
T be a p-dimensional parameter with support Θ. For an r-dimensional

estimating function g(X;θ) = {g1(X;θ), . . . , gr(X;θ)}T, the information for the model parameter

θ is collected by the unbiased moment condition

E{g(Xi;θ0)} = 0, (2.1)

where θ0 ∈ Θ is the unknown truth. When the sample size n grows, following Hjort, McKeague and Van Keilegom

(2009) and Chang, Chen and Chen (2015), the observations {g(Xi;θ)}
n
i=1 can be viewed as a tri-

angular array where r, p, d, Xi, θ and g(X;θ) may all depend on the sample size n. Following

the idea of EL (Owen, 1988, 1990), Qin and Lawless (1994) investigate an EL with estimating

equations:

L(θ) = sup

{ n∏

i=1

πi : πi > 0,

n∑

i=1

πi = 1,

n∑

i=1

πig(Xi;θ) = 0

}
. (2.2)
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By maximizing L(θ) with respect to θ, one obtains the so-called maximum EL estimator θ̂ =

argmaxθ∈Θ L(θ). Maximizing (2.2) can be carried out equivalently by solving the corresponding

dual problem, implying

θ̂ = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

n∑

i=1

log{1 + λTg(Xi;θ)}, (2.3)

where Λ̂n(θ) = {λ ∈ R
r : λTg(Xi;θ) ∈ V, i = 1, . . . , n} for θ ∈ Θ and V is an open interval

containing zero.

In a conventional setting when p and r are fixed as n → ∞, r ≥ p is required to ensure

that all components of θ are identifiable. In high-dimensional cases, however, it is documented

in the literature that accommodating a diverging r is a key difficulty for EL; see, among others,

Hjort, McKeague and Van Keilegom (2009), Chen, Peng and Qin (2009), Leng and Tang (2012),

and Chang, Chen and Chen (2015). The reason is that the Lagrange multiplier λ ∈ R
r in (2.3)

is of the same high dimensionality r. Since |λ|2 is required to be op(1) in theoretical analyses of

EL, high-dimensional r is clearly cumbersome. A direct consequence is that dimensionality p and

r for EL in (2.2) can only be accommodated at some polynomial rate of the sample size n .

To explore EL with high-dimensional statistical problems, let us begin with elucidating their

impacts on the EL estimator synthetically from the sample size n, the number of estimating

functions r, and the dimensionality of the model parameter p. We first present a general result

for the maximum EL estimator θ̂ with r estimating equations.

Proposition 1. Assume that there exist uniform constants C1 > 0, C2 > 1 and γ > 2 such that

max
1≤j≤r

E

{
sup
θ∈Θ

|gj(Xi;θ)|
γ

}
≤ C1, (2.4)

and

P

[
C−1
2 ≤ inf

θ∈Θ
λmin

{
1

n

n∑

i=1

g(Xi;θ)g(Xi;θ)
T

}

≤ sup
θ∈Θ

λmax

{
1

n

n∑

i=1

g(Xi;θ)g(Xi;θ)
T

}
≤ C2

]
→ 1.

(2.5)

If r = o(n1/2−1/γ), then θ̂ defined in (2.3) satisfies |ḡ(θ̂)|2 = Op(r
1/2n−1/2) where ḡ(θ̂) =

n−1
∑n

i=1 g(Xi; θ̂).

Conditions for Proposition 1 are conventional ones and are mild. The requirement (2.4) ensures

that some moments with order larger than 2 exist for the estimating functions, and (2.5) says that

the sample covariance matrices of the estimating functions should behave reasonably well. Con-

sistent with the finding in Hjort, McKeague and Van Keilegom (2009) and Chen, Peng and Qin

(2009), the higher the order of the moment γ is, the more estimating functions can be accommo-

dated. When the estimating functions are bounded, γ = ∞, r is allowed to be o(n1/2).

The key implication of Proposition 1 is that the sample mean of the estimating functions is

well behaving, regardless the dimensionality of the model parameter p is. That is, with r unbiased
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estimating functions, the optimum |ḡ(θ̂)|2 is Op(r
1/2n−1/2). Hence the impact on the behavior of

the estimating function is the dimensionality r, which cannot grow faster than n1/2 as n → ∞.

Clearly, the impact from p on the maximum EL estimator is on the identifiability of the model

parameter. That is, θ̂ in (2.3) is not uniquely defined when r < p with no further constraints,

rendering ambiguity and inapplicability of the EL methods for estimating high-dimensional model

parameters. An example of the situation is that the identifiability issue happens in the classical

linear models when the model matrix is not of full rank, so that the minimum of the least squares

criterion function well exists but the ordinary least squares estimator is not uniquely defined in

that case.

To solve the problem, our next objective is to illustrate that identifying a sparse p-dimensional

model parameter is still feasible.

2.2 High-dimensional sparse model parameter

The intuition here is that if one concerns instead a high-dimensional sparse model parameter θ

such that most of its components are zeros, then identification and estimation of such a model pa-

rameter are feasible with fewer estimating functions by EL with appropriate penalization. Specif-

ically, we write θ0 = (θ01, . . . , θ
0
p)

T and let S = {1 ≤ k ≤ p : θ0k 6= 0} with s = |S|. Here S

is an unknown set, and the number of nonzero components s is much smaller than p. Without

loss of generality, we let θ0 = (θT

0,S ,θ
T

0,Sc)T where θ0,S ∈ R
s being the nonzero components and

θ0,Sc = 0 ∈ R
p−s. For identification of the sparse model parameter, we impose the following

condition.

Condition 1. Assume that

inf
θ∈{θ=(θT

S ,θ
T
Sc)T∈Θ:|θS−θ0,S |∞>ε,θSc=0}

|E{g(Xi;θ)}|∞ ≥ ∆(ε) (2.6)

for any ε > 0, where ∆(·) is a positive function satisfying lim infε→0+ ε−β∆(ε) ≥ K1 for some

uniform constants K1 > 0 and β > 0.

The identification condition (2.6) can be viewed as a dedicated one for estimating sparse model

parameters. Condition 1 is not stringent, and it ensures identifying the nonzero components

of θ locally. Studying local optimums in high-dimensional statistical problems is common in

the literature with reasonable technical conditions; see, for example, Lv and Fan (2009) and

Zhang (2010). Condition 1 means that the mean values of the estimating functions at the truth

adequately differ from those outside a small neighborhood of the sparse support of θ0. Here

β is some generic constant related to the consistency result in Proposition 2. For estimating a

high-dimensional mean parameter with g(X;θ) = X − θ, we can choose ∆(ε) = ε and β = 1

in Condition 1. For linear regression model, g(X;θ) = Z(Y − ZTθ) with Z and Y being the

covariates and response variable respectively, and X = (Y,ZT)T, we can select ∆(ε) = ε‖Σ−1
Z,S‖

−1
∞

in Condition 1, where ΣZ,S = E(ZSZ
T

S). More generally, if there is a subset E ⊂ {1, . . . , r}

with |E| = s and [E{∇θS
gE(Xi;θ)}]

−1 exists where gE(·) collects the set of estimating functions
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indexed by E , then we can select ∆(ε) = ε infθ∈{θ=(θT
S ,θT

Sc)T:θSc=0} ‖[E{∇θS
gE(Xi;θ)}]

−1‖−1
∞ in

Condition 1. Intuitively, Condition 1 ensures the identifiability of the s nonzero components of

θ0 so that a consistent sparse estimator is possible as n → ∞, provided r ≥ s, r1/2n−1/2 → 0,

and conditions in Proposition 2.

As a special case when Sc is empty, Condition 1 for identification becomes a global one for a

dense model parameter θ:

inf
θ∈{θ∈Θ:|θ−θ0|∞>ε}

|E{g(Xi;θ)}|∞ ≥ ∆(ε), (2.7)

where ∆(·) is a positive function satisfying lim infε→0+ ε−β∆(ε) ≥ K1 for some uniform constants

K1 > 0 and β > 0. Similar global identification conditions can be found in Chen (2007) and

Chen and Pouzo (2012) for some other models.

To estimate a sparse model parameter with unknown zero components, we consider a penalized

EL estimator as

θ̃n = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑

i=1

log{1 + λTg(Xi;θ)}+ n

p∑

k=1

P1,π(|θk|)

]
, (2.8)

where θ = (θ1, . . . , θp)
T, and P1,π(·) is a penalty function with tuning parameter π. For any

penalty function Pτ (·) with tuning parameter τ , let ρ(t; τ) = τ−1Pτ (t) for any t ∈ [0,∞) and

τ ∈ (0,∞). We assume the penalty function P1,π(·) belongs to the following class as considered

in Lv and Fan (2009):

P = {Pτ (·) : ρ(t; τ) is increasing in t ∈ [0,∞) and has continuous derivative ρ′(t; τ) for

t ∈ (0,∞) with ρ′(0+; τ) ∈ (0,∞), where ρ′(0+; τ) is independent of τ}.
(2.9)

The class of penalty function by (2.9) is broad and general. The commonly used L1 penalty,

SCAD penalty (Fan and Li, 2001) and MCP penalty (Zhang, 2010) all belong to the class P. For

establishing the consistency of θ̃n, we also assume the following condition.

Condition 2. The function gj(X;θ) is continuously differentiable with respect to θ ∈ Θ for any

X and j = 1, . . . , r satisfying the conditions

max
1≤j≤r

max
k/∈S

E

{
sup
θ∈Θ

∣∣∣∣
∂gj(Xi;θ)

∂θk

∣∣∣∣
}

≤ K2 (2.10)

for some uniform constant K2 > 0, and

sup
θ∈Θ

max
1≤j≤r

max
k/∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gj(Xi;θ)

∂θk

∣∣∣∣
}

= Op(ϕn) (2.11)

holds for some ϕn > 0, which may diverge with n.

Condition 2 is on the continuity of the estimating function with respect to θ. Typically,

smooth estimating functions can be assumed to have bounded derivatives so that Condition 2 is

easily satisfied. At the sample level, considering the high-dimensionality of the problem, we can
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accommodate diverging ϕn in (2.11) so that our results hold in broad situations. If there exist

envelop functions Bn,jk(·) such that |∂gj(X;θ)/∂θk| ≤ Bn,jk(X) for any θ ∈ Θ, j = 1, . . . , r and

k /∈ S, and |E{Bm
n,jk(Xi)}| ≤ Km!Hm−2 for anym ≥ 2 and j = 1, . . . , r and k /∈ S, whereK andH

are two uniform positive constants independent of j and k. Then by Theorem 2.8 of Petrov (1995),

we know sup1≤j≤r supk/∈S n−1
∑n

i=1Bn,jk(Xi) = Op(1) provided that max{log r, log p} = o(n).

Therefore, (2.11) holds with ϕn = 1, accommodating exponentially growing dimensionality r and

p. Since the identifiability condition (2.6) only provides a lower bound for the difference between

|E{g(Xi;θ)}|∞ and 0 when θ = (θT

S ,θ
T

Sc)T satisfying |θS − θ0,S |∞ > ε and θSc = 0, we make use

of (2.10) to derive a lower bound for |E{g(Xi;θ)}|∞ when θ = (θT

S ,θ
T

Sc)T satisfies θSc 6= 0 but

|θSc |1 is small, and then θ0 is a local minimizer for |E{g(Xi;θ)}|∞. For special case with linear

models, Condition (2.10) becomes one similar to the well known crucial irrepresentable condition

(Zhao and Yu, 2007) for sparse linear regression at the population level. We have the following

proposition on the properties of the penalized EL estimator (2.8).

Proposition 2. Let P1,π(·) ∈ P for P defined in (2.9). Define an =
∑p

k=1 P1,π(|θ
0
k|) and bn =

max{rn−1, an}. Assume that (2.4), (2.5), Conditions 1 and 2 hold. Suppose that

max
k∈S

sup
0<t<|θ0

k
|+cn

P ′
1,π(t) = O(χn) (2.12)

for some χn → 0 and cn → 0 with b
1/(2β)
n c−1

n → 0. If r = o(n1/2−1/γ), max{bn, rsχnb
1/(2β)
n } =

o(n−2/γ) and r1/2ϕnmax{r1/2n−1/2, s1/2χ
1/2
n b

1/(4β)
n } = o(π), then there exists a local minimizer

θ̃n ∈ Θ for (2.8) such that |θ̃n,S − θ0,S |∞ = Op{b
1/(2β)
n } and P(θ̃n,Sc = 0) → 1 as n → ∞.

In Proposition 2, an depends on the truth of the model parameter and the tuning parameter π

in the penalty function. For a typical penalty function belonging to (2.9) and a model parameter

with s nonzero components, it is the case that an = O(sπ) → 0 as n → ∞. Requirements

on the first derivative of the penalty function via χn is to control the bias introduced by the

penalty function P1,π(·) on θ̃n. See (7.3) in Section 7.2 for details. If we propose the condition

bn = o(mink∈S |θ0k|
2β) on the magnitudes of the nonzero components of θ0, (2.12) can be replaced

by

max
k∈S

sup
c|θ0

k
|<t<c−1|θ0

k
|

P ′
1,π(t) = O(χn) (2.13)

for some constant c ∈ (0, 1). For those asymptotically unbiased penalty functions like SCAD

and MCP, χn is exactly 0 in (2.13) for n sufficiently large provided that the nonzero components

of θ0 are not too small in the sense that the signal strength does not diminish to zero too

fast, i.e. bn = o(mink∈S |θ0k|
2β); see also Fan and Li (2001). Hence, if β = 1 in Condition 1,

|θ̃n,S − θ0,S |∞ = Op(b
1/2
n ) → 0 as n → ∞. Further, if π is chosen as O{(n−1 log p)1/2}, a common

one in the literature, then |θ̃n,S − θ0,S |∞ = Op{s
1/2(n−1 log p)1/4}, providing a conservative

convergence rate of the estimator θ̃n,S .

Let Fn(θ) = max
λ∈Λ̂n(θ)

n−1
∑n

i=1 log{1 + λTg(Xi;θ)} +
∑p

k=1 P1,π(|θk|). The rationale of

Proposition 2 is that for θ = (θT

S ,θ
T

Sc)T in a small neighborhood of θ0 such that |θS − θ0,S |∞ ≥

εn takes value departing from θ0, i.e., ∆(εn) decays to zero at some slow enough rate, Fn(θ)
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takes a value larger than ξnFn(θ0) for some diverging ξn with probability tending to 1; see also

Chang, Tang and Wu (2013, 2016) for such a phenomenon of EL. Then with the penalty function

encouraging sparsity of θ̃n, we are able to establish the consistency of the penalized EL estimator

for a sparse model parameter.

Our Proposition 2 shows that the penalized EL can consistently estimate a high-dimensional

model parameter with p growing exponentially with n provided bn → 0, though the requirement

on r remains in a way such that r = o(n1/2). The development of Proposition 2 is fundamentally

facilitated by our motivation: to estimate a high-dimensional sparse model parameter. With

the new identification condition (2.6), sparse and consistent estimator can be obtained by using

penalized EL. The intuition of our results is clear: to identify s nonzero components of a sparse

p-dimensional model parameter, one essentially requires r (r ≥ s) informative estimating func-

tions for those s components. The practical interpretation is also clear: given fewer estimating

functions than the model parameters, a reasonable direction is to identify and estimate a sparse

model parameter. Such an observation is consistent with the ones found in Gautier and Tsybakov

(2014) for high-dimensional instrumental variables regression with endogenity where the number

of instrumental variables may be less than the model parameters in the regression problems.

3 A new penalized empirical likelihood

With the penalized EL estimator θ̃n in (2.8) capable of handling high-dimensional model param-

eter with fewer number of estimating functions, our next goal is to accommodate a more general

situation: allowing both r and p to grow exponentially with n. For such a purpose, we propose

to update the penalized EL estimator with an extra penalty encouraging sparsity in λ:

θ̂n = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑

i=1

log{1 + λTg(Xi;θ)} − n

r∑

j=1

P2,ν(|λj |) + n

p∑

k=1

P1,π(|θk|)

]
, (3.1)

where θ = (θ1, . . . , θp)
T, λ = (λ1, . . . , λr)

T, and P1,π(·) and P2,ν(·) are two penalty functions

with tuning parameters π and ν, respectively. Our motivation is that with appropriately chosen

penalty function P2,ν(·) and tuning parameter ν, the estimator θ̂n is associated with a sparse

Lagrange multiplier λ. Since sparse λ effectively uses a subset of the estimating functions g(·; ·),

r itself can be allowed to be large as long as the number of nonzero components in λ is small,

essentially satisfying the requirement in Proposition 2. Hence, one expects analogous properties

of (3.1) to those in Proposition 2, but now being capable of accommodating high-dimensional p

and r simultaneously.

Not surprisingly, involving the penalty P2,ν(·) makes the technical analysis much more chal-

lenging, especially when we are handling exponentially diverging p and r with n → ∞. For θ ∈ Θ
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and λ ∈ Λ̂n(θ), we define

f(λ;θ) =
1

n

n∑

i=1

log{1 + λTg(Xi;θ)} −

r∑

j=1

P2,ν(|λj |),

Sn(θ) = max
λ∈Λ̂n(θ)

f(λ;θ) +

p∑

k=1

P1,π(|θk|).

Here f(λ;θ) is a function of λ upon given θ. Let λ̂(θ) = argmax
λ∈Λ̂n(θ)

f(λ;θ) be the Lagrange

multiplier defined at θ ∈ Θ. For any subset A ⊂ {1, . . . , r}, we denote by gA(Xi;θ) the subvector

of g(Xi;θ) with components indexed by A. We write ḡA(θ) = n−1
∑n

i=1 gA(Xi;θ), V̂A(θ) =

n−1
∑n

i=1 gA(Xi;θ)gA(Xi;θ)
T and VA(θ) = E{gA(Xi;θ)gA(Xi;θ)

T}. For any θ ∈ Θ and j =

1, . . . , r, define ḡj(θ) = n−1
∑n

i=1 gj(Xi;θ). We first characterize the properties of λ̂(θ) for θ

near the truth θ0. To do this, we assume the following condition for the existence of higher

order moments, a similar one to the common technical conditions on the tail probability in high-

dimensional statistical analysis.

Condition 3. There exist some K3 > 0 and γ > 4 such that

max
1≤j≤r

E

{
sup
θ∈Θ

|gj(Xi;θ)|
γ

}
≤ K3.

Let ρ2(t; ν) = ν−1P2,ν(t). We also take P2,ν(·) ∈ P for P defined in (2.9), so that ρ′2(0
+; ν) is

independent of ν. We write it as ρ′2(0
+) for simplicity and define Mθ = {1 ≤ j ≤ r : |ḡj(θ)| ≥

νρ′2(0
+)} for any θ ∈ Θ. Proposition 3 below shows that for any θ near the truth θ0, the support

of the Lagrange multiplier λ̂(θ) is a subset of Mθ with probability approaching one.

Proposition 3. Let {θn} be a sequence in Θ and P2,ν(·) ∈ P be a convex function for P defined

in (2.9). For some C ∈ (0, 1), define M∗
θn

= {1 ≤ j ≤ r : |ḡj(θn)| ≥ Cνρ′2(0
+)}. Assume

Condition 3 hold. Further, for the sequence {θn}, we assume that the eigenvalues of V̂Mθn
(θn) are

uniformly bounded away from zero and infinity with probability approaching one, and |ḡMθn
(θn)−

νρ′2(0
+)sgn{ḡMθn

(θn)}|2 = Op(un) for some un → 0. Let max1≤j≤r n
−1

∑n
i=1 |gj(Xi;θn)|

2 =

Op(ςn) for some ςn > 0 that may diverge with n. If m
1/2
n unςn = o(ν) and m

1/2
n unn

1/γ = o(1)

where mn = |M∗
θn
|, then with probability approaching one there exists a sparse local maximizer

λ̂(θn) = (λ̂n,1, . . . , λ̂n,r)
T for f(λ;θn) satisfying the three results: (i) |λ̂(θn)|2 = Op(un), (ii)

supp{λ̂(θn)} ⊂ Mθn
, and (iii) sgn(λ̂n,j) = sgn{ḡj(θn)} for any j ∈ Mθn

with λ̂n,j 6= 0.

Conditions in Proposition 3 play roles from a few aspects. First, the sequence {θn} can be

taken as one that approaches the truth θ0 as n → ∞. Then ḡMθn
(θn) will be small when

n is large. As shown in the proof, νρ′2(0
+)sgn{ḡMθn

(θn)} is the asymptotically leading term of

ḡMθn
(θn). The reason is that the tuning parameter ν typically diminishes to 0 at some slower rate

than n−1/2, so that νρ′2(0
+)sgn{ḡMθn

(θn)} leads to a non-negligible contribution in the limiting

distribution of θ̂n, and our analysis shows that it leads to a correctable bias term in θ̂n. Upon

removing the leading order term, we assume that |ḡMθn
(θn)−νρ′2(0

+)sgn{ḡMθn
(θn)}|2 = Op(un)

with un → 0, which is a condition that can be easily satisfied. Requirement on the eigenvalues
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of V̂Mθn
(θn) is natural so that we can characterize the limiting behavior of the estimator θ̂n.

Furthermore, mn is taken to be an upper bound of the size of Mθn
, the generic description such

as m
1/2
n unςn = o(ν) and m

1/2
n unn

1/γ = o(1) can be viewed as characterizing the capacity of the

penalized EL under which it is reliable for consistent estimators, depending on the behavior of

the estimating function g(·; ·) on its continuity and tail probabilistic properties.

Proposition 3 implies that when θ is approaching θ0, the sparse λ in (3.1) effectively conducts

a moments selection by choosing the estimating functions in a way that ḡj(θ) has large absolute

deviation from 0. Let µj(θ) = E{gj(Xi;θ)}, then we know that µj(θ0) = 0 and ḡj(θ) → µj(θ) in

probability as n → ∞. If we take θ to be in the neighborhood of θ0, then the first order Taylor

expansion gives that µj(θ) = µj(θ)− µj(θ0) = {∇θµj(θ
∗)}T(θ − θ0) for some θ∗ between θ and

θ0. Hence, those components of the estimating functions with large magnitude in the derivative of

their expected value with respect to θ will be selected. Since larger derivative indicates a steeper

direction towards the truth θ0, making it easier and more informative to find the optimum.

Therefore, selecting components in Mθ is seen sensible. However, we note that without further

strong and likely to be unrealistic conditions on the shape of the estimating functions, Mθ cannot

be controlled as a fixed set even at the limiting case when n → ∞, so that it will depend on the

value of the parameter θ. Instead of requiring that Mθ to be fixed, we show in the following

that for any choice of its subset satisfying some reasonable conditions, the resulting penalized EL

estimator is consistent and asymptotically normally distributed.

Let

ℓn = max
θ∈{θ=(θT

S ,θ
T
Sc)T∈Θ:|θS−θ0,S |∞≤cn,θSc=0}

|Mθ| (3.2)

for some cn → 0 satisfying b
1/(2β)
n c−1

n → 0 where bn is more clearly specified in Condition 6 below.

Based on Proposition 3, we know the support of Lagrange multiplier λ̂(θ) is a subset of Mθ

with probability approaching one when θ is in a small neighborhood of θ0. Here ℓn is a technical

device controlling the maximum number of effective estimating functions when applying the new

penalized EL, and it can be viewed as a cap of the r in Proposition 2. Though ℓn is a technical

device, we remark that, practically, one can always achieve the control of the nonzero components

of λ by appropriately choosing the tuning parameter ν.

To establish the consistency of the penalized EL estimator θ̂n defined in (3.1), we need the

following extra regularity conditions on the continuity and probabilistic behavior of the estimating

functions.

Condition 4. There exist uniform constants 0 < K4 < K5 such that K4 < λmin{VF (θ0)} ≤

λmax{VF (θ0)} < K5 for any F ⊂ {1, . . . , r} with |F| ≤ ℓn, where ℓn is defined in (3.2).
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Condition 5. Assume that

sup
θ∈Θ

max
1≤j≤r

max
k/∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gj(Xi;θ)

∂θk

∣∣∣∣
2}

= Op(ξn),

sup
θ∈Θ

max
1≤j≤r

max
k∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gj(Xi;θ)

∂θk

∣∣∣∣
2}

= Op(ωn),

sup
θ∈Θ

max
1≤j≤r

{
1

n

n∑

i=1

|gj(Xi;θ)|
4

}
= Op(̺n)

for some ξn > 0, ωn > 0 and ̺n > 0 that may diverge with n.

Condition 6. Let bn = max{an, ν
2} with an =

∑p
k=1 P1,π(|θ

0
k|). There exist χn → 0 and cn → 0

with b
1/(2β)
n c−1

n → 0 for β defined in Condition 1 such that maxk∈S sup0<t<|θ0
k
|+cn P

′
1,π(t) = O(χn).

Here Condition 4 is actually a weaker one than that in (2.5) in the sense that it only requires the

population covariance matrices of subsets of estimating functions need to well behave at the truth

θ0. The first two bounds in Condition 5 are used to characterize the behavior of the eigenvalues

of V̂F (θ) when θ in a small neighborhood of θ0; see Lemma 1 in Section 7.4. We do not impose

explicit rate on ξn, ωn, and ̺n, so that the conditions are generally not restrictive. Similar to

our earlier discussion for ϕn in (2.11) in Condition 2, we can actually choose ξn = ωn = ̺n = 1

under some additional mild conditions provided that max{log r, log p} = o(n). Condition 6 is

similar to (2.12) in Proposition 2 with a differently defined bn. Similar to that in Proposition

2, Condition 6 can be replaced by (2.13) if the minimal signal strength condition is satisfied for

appropriately chosen tuning parameter π. Then χn = 0 when n is large for those asymptotically

unbiased penalty functions like SCAD and MCP.

We now present the following theorem for the consistency of θ̂n.

Theorem 1. Let P1,π(·), P2,ν(·) ∈ P for P defined in (2.9), and P2,ν(·) be a convex function with

bounded second derivative around 0. Assume Conditions 1–6 hold. Let bn = max{an, ν
2} with

an =
∑p

k=1 P1,π(|θ
0
k|), and κn = max{ℓ

1/2
n n−1/2, s1/2χ

1/2
n b

1/(4β)
n }. If log r = o(n1/3), ̺n = o(n2),

s2ℓnωnb
1/β
n = o(1), ℓ2nn

−1̺n log r = o(1), max{bn, ℓnκ
2
n} = o(n−2/γ), ℓ

1/2
n ̺

1/2
n κn = o(ν) and

ℓ
1/2
n ξ

1/2
n max{ℓnν, s

1/2χ
1/2
n b

1/(4β)
n } = o(π), then there exists a local minimizer θ̂n ∈ Θ for (3.1)

such that |θ̂n,S − θ0,S |∞ = Op{b
1/(2β)
n } and P(θ̂n,Sc = 0) → 1 as n → ∞.

Theorem 1 establishes the consistency of θ̂n in the sense that |θ̂n − θ0|∞
p
−→ 0. The con-

vergence rate Op{b
1/(2β)
n } is a conservative one before we establish the asymptotic normality

of the penalized EL estimator θ̂n,S later. Under additional regularity conditions, such a rate

can be improved as Op(ν). Results in Theorem 1 holds for broad situations accommodat-

ing various cases of the estimating functions. In reasonable cases that we discussed earlier,

χn = 0 and ξn = ωn = ̺n = 1. Theorem 1 holds provided that log r = o(n1/3), ℓn =

o(min{n1/2(log r)−1/2, n1/2−1/γ}), an = o(min{s−2βℓ−β
n , n−2/γ}), and the tuning parameters ν

and π satisfy ℓnn
−1/2 = o(ν), ν = o(min{s−βℓ

−β/2
n , n−1/γ}) and ℓ

3/2
n ν = o(π). Noticing that
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an . sπ, by choosing π = o(min{s−2β−1ℓ−β
n , s−1n−2/γ}) can ensure the consistency result. Ad-

ditionally, we note that s ≤ ℓn. Thus by letting log r ≍ nτ and ℓn ≍ nδ for some τ ∈ [0, 13 )

and δ ∈ [0,min{γ−4
7γ , 1

6β+7}), θ̂n satisfies Theorem 1 if ν ≍ n−φ1 and π ≍ n−φ2 with φ1 ∈

(max{3βδ
2 , 1

γ },
1
2 − δ) and φ2 ∈ (max{(3β + 1)δ, 2

γ + δ}, φ1 −
3δ
2 ), which are reasonable choices for

the tuning parameters.

To further establishing the limiting distribution of θ̂n,S , we need the following two additional

conditions.

Condition 7. For each j = 1, . . . , p, gj(X;θ) is twice continuously differentiable with respect to

θ in Θ for any X, and

sup
θ∈Θ

max
1≤j≤r

max
k1,k2∈S

{
1

n

n∑

i=1

∣∣∣∣
∂2gj(Xi;θ)

∂θk1∂θk2

∣∣∣∣
2}

= Op(̟n)

for some ̟n ≥ 0 that may diverge with n.

Condition 8. LetQF = [E{∇θS
gF (Xi;θ0)}]

T[E{∇θS
gF (Xi;θ0)}] for any F ⊂ {1, . . . , r}. There

exist uniform constants 0 < K6 < K7 such that K6 < λmin(QF ) ≤ λmax(QF ) < K7 for any F

with s ≤ |F| ≤ ℓn.

Following similar discussion for Condition 5, ̟n = 1 in Condition 7 for reasonable models in

practice. Let Rn = supp{λ̂(θ̂n)} and define

ĴRn = {∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n){∇θS
ḡRn(θ̂n)},

ψ̂Rn
= Ĵ−1

Rn
{∇θS

ḡRn(θ̂n)}
TV̂−1

Rn
(θ̂n)

{
1

n

n∑

i=1

gRn(Xi; θ̂n)

1 + λ̂(θ̂n)Tg(Xi; θ̂n)

}
.

(3.3)

We have the following limiting distribution for θ̂n,S .

Theorem 2. Let P1,π(·), P2,ν(·) ∈ P for P defined in (2.9), and P2,ν(·) be a convex function

with bounded second derivative around 0. Assume Conditions 1–8 hold. Let bn = max{an, ν
2}

with an =
∑p

k=1 P1,π(|θ
0
k|), and κn = max{ℓ

1/2
n n−1/2, s1/2χ

1/2
n b

1/(4β)
n }. If log r = o(n1/3), ̺n =

o(n2), bn = o(n−2/γ), nsχ2
n = o(1), ℓ2n̺

1/2
n (log r)max{s2(ωn + s̟n)b

1/β
n , n−1(sωn + ℓn̺n) log r} =

o(1), nℓnκ
4
nmax{sωn, n

2/γ} = o(1), nℓns
2̟nmax{ℓ2nν

4, s2χ2
nb

1/β
n } = o(1), ℓ

1/2
n ̺

1/2
n κn = o(ν)

and ℓ
1/2
n ξ

1/2
n max{ℓnν, s

1/2χ
1/2
n b

1/(4β)
n } = o(π), then local minimizer θ̂n ∈ Θ for (3.1) specified in

Theorem 1 satisfies

n1/2αTĴ
1/2
Rn

(θ̂n,S − θ0,S − ψ̂Rn
)

d
−→ N(0, 1) (3.4)

as n → ∞, where ĴRn and ψ̂Rn
are defined in (3.3).

Theorem 2 shows that subject to a bias correction, the penalized EL estimator for nonzero

components is asymptotically normal in the sense of (3.4). The bias term ψ̂Rn
in (3.4) is due to

the penalty function P2,ν(·) used in (3.1); see also our discussion after the Proposition 3. Write

λ̂(θ̂n) = (λ̂1, . . . , λ̂r)
T. Furthermore, as shown in (7.10) in Section 7, the correctable bias term

12



is ψ̂Rn
= Ĵ−1

Rn
{∇θS

ḡRn(θ̂n)}
TV̂−1

Rn
(θ̂n)η̂Rn

where η̂ = (η̂1, . . . , η̂r)
T with η̂j = νρ′2(|λ̂j |; ν)sgn(λ̂j)

for λ̂j 6= 0 and η̂j ∈ [−νρ′2(0
+), νρ′2(0

+)] for λ̂j = 0.

Similar to that in Theorem 1, with reasonable cases χn = 0 and ξn = ωn = ̺n = ̟n = 1, de-

scriptions on the dimensionality in Theorem 2 can be simplified. If ℓn ≍ s, Theorem 2 holds pro-

vided that log r = o(n1/3), s = o(min{n1/3(log r)−2/3, n1/(10β+7)(log r)−2β/(10β+7), n(γ−4)/(7γ)}),

and ν and π satisfying sn−1/2 = o(ν), ν = o(min{n−1/γ , s−5β/2(log r)−β/2, n−1/4s−5/4}), s3/2ν =

o(π) and π = o(min{n−2/γs−1, s−5β−1(log r)−β}).

Generally speaking, conditions in Theorem 2 is stronger than those in Theorem 1, which can

be viewed as the expense for the stronger asymptotic normality results. In summary, we have

established that the sparse penalized EL estimator (3.1) has desirable properties including consis-

tency in estimating nonzero components and identifying zero components of θ0, and asymptotic

normality for the estimator of the nonzero components of θ0.

4 Algorithms for implementations

For ease and stability in implementations, we calculate the penalized EL estimator θ̂n by mini-

mizing the following slightly modified objective function:

θ̂n = argmin
θ∈Θ

max
λ∈Λ̂n(θ)

[ n∑

i=1

log⋆{1 + λ
Tg(Xi;θ)} − n

r∑

j=1

P2,ν(|λj |) + n

p∑

k=1

P1,π(|θk|)

]
, (4.1)

where log⋆(z) is a twice differentiable pseudo-logarithm function with bounded support adopted

from Owen (2001):

log⋆(z) =




log(z) if z ≥ ǫ;

log(ǫ)− 1.5 + 2z/ǫ− z2/(2ǫ2) if z ≤ ǫ;
(4.2)

where ǫ is chosen as 1/n in our implementations. Here P1,π(·) and P2,ν(·) are two penalty func-

tions with tuning parameters π and ν, respectively. In the optimization, we apply the quadratic

approximation (Fan and Li, 2001) to the penalty functions P1,π(·) and P2,ν(·). More specifically,

for a penalty function Pτ (·), the quadratic approximation states

Pτ (|t|) ≈ Pτ (|t0|) +
1

2

P ′
τ (|t0|)

|t0|
(t2 − t20) (4.3)

for t being in a small neighborhood of t0. The first and second derivatives are approximated by

P ′
τ (|t|) ≈

P ′
τ (|t0|)

|t0|
· t and P ′′

τ (|t|) ≈
P ′
τ (|t0|)

|t0|
.

The computation of EL is a challenging aspect, especially with high-dimensional p and r. To

compute the penalized EL estimator θ̂n, we propose to apply a modified two-layer coordinate

decent algorithm extending the one in Tang and Wu (2014). The inner layer of the algorithm

solves for λ with given θ by maximizing f(λ;θ) as given in Section 3. This layer only involves

maximizing a concave function, and hence is stable. The outer layer of the algorithm searches
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for the optimizer θ̂n. Both layers can be solved using coordinate descent by cycling through and

updating each of the coordinates; see Tang and Wu (2014).

In the inner layer, λ is solved at a given θ, which can be done by optimizing (4.1) with respect

to λ using coordinate descent. Suppose that λ starts at an initial value λ̂
(0)

. With the other

coordinates fixed, the (m+ 1)th Newton’s update for λj (j = 1, . . . , r), the jth component of λ,

is given by

λ̂
(m+1)
j = λ̂

(m)
j −

∑n
i=1 log

′
⋆(t

(m)
i )gj(Xi;θ)− nP ′

2,ν(|λ̂
(m)
j |)

∑n
i=1 log

′′
⋆(t

(m)
i ){gj(Xi;θ)}2 − nP ′′

2,ν(|λ̂
(m)
j |)

, (4.4)

where t
(m)
i = 1 + g(Xi;θ)

Tλ̂
(m)

with λ̂
(m)

= (λ̂
(m)
1 , . . . , λ̂

(m)
r )T. The procedure cycles through

all the r components of λ and is repeated until convergence. During this process, the objective

function needs to be checked to ensure it gets optimized in each step. If not, the step size continues

to be halved until the objective function gets driven in the right direction. The iterative updating

procedure (4.4) can be viewed as sequential univariate optimizations. The convergence rate and

stability are studies in the optimization literature; see for example Friedman et al. (2007) and

Wu and Lange (2008).

The outer layer of the algorithm is to optimize (4.1) with respect to the parameter θ, the main

interest of the penalized EL, using the coordinate descent algorithm. At a given λ, the algorithm

updates θk (k = 1, . . . , p), by minimizing Sn(θ) defined in Section 3 with respect to θk with other

θl (l 6= k) fixed. Suppose that θ starts at an initial value θ̂
(0)

. The (m + 1)th update for θk is

given by

θ̂
(m+1)
k = θ̂

(m)
k −

∑n
i=1 log

′
⋆(s

(m)
i )w

(m)
ik + nP ′

1,τ (|θ̂
(m)
k |)

∑n
i=1[log

′′
⋆(s

(m)
i ){w

(m)
ik }2 + log′⋆(s

(m)
i )z

(m)
ik ] + nP ′′

1,τ (|θ̂
(m)
k |)

, (4.5)

where s
(m)
i = 1 + λTg(Xi; θ̂

(m)
), w

(m)
ik = λT∂g(Xi; θ̂

(m)
)/∂θk and z

(m)
ik = λT∂2g(Xi; θ̂

(m)
)/∂θ2k

with θ̂
(m)

= (θ̂
(m)
1 , . . . , θ̂

(m)
p )T. Since quadratic approximations are applied in the algorithms, we

follow Fan and Li (2001) and set a component λ̂
(m)
j or θ̂

(m)
k as zero when it is less than a threshold

level say 10−3 in an iteration.

We summarize the computation procedure for θ and λ in the following pseudo-code. Suppose

ξ is a pre-defined small number, say, ξ = 10−4.
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1. Set the iteration counter m = 0, and initialize θ̂
(0)

and λ̂
(0)

;

2. Define the g(Xi;θ) function;

3. (Outer layer) For k = 1, . . . , p,

(a) Calculate θ̂
(m+1)
k as in (4.5);

(b) (Inner layer) For j = 1, . . . , r, update λ̂
(m)
j as λ̂

(m+1)
j defined in

(4.4);

4. If max1≤k≤p |θ̂
(m+1)
k − θ̂

(m)
k | < ξ, then stop;

5. Otherwise repeat steps 3 through 4.

5 Numerical examples

5.1 Estimating high-dimensional mean parameter

The first simulation study is to calculate the mean of a multivariate normal distribution in R
p.

Let X = (X1, . . . ,Xp)
T ∼ N(θ0,Σ). Suppose only three elements, X1,X2, and X5, have nonzero

means and the rest p−3 elements have zero means, i.e., θ0 = (5, 4, 0, 0, 1, 0, . . . , 0)T. The covariance

matrix Σ = (σkl)p×p is set as σkk = 1 for each k = 1, . . . , p and σkl = 0.9 for any k 6= l. The

estimating function is simply g(X;θ) = X− θ. In this case, the number of parameters p is equal

to the number of estimating equations r. We consider the underdetermined case where p = r > n.

We generate 100 random samples. The SCAD penalty (Fan and Li, 2001) is used for both the

penalty functions P1,π(·) and P2,ν(·) in (3.1) for all the numerical experiments in this paper.

Since local quadratic approximation is applied in the algorithms, the convexity requirements of

the results in Sections 2 and 3 are met.

Table 1 summarizes the results for (n, p) = (50, 100), (100, 200), and (100, 500). The proposed

penalized EL with two penalties (namely, PEL2) is compared to the single penalty approach

(PEL) discussed in Tang and Leng (2010). Three information criteria for choosing the tuning

parameters π and ν in the penalty functions – BIC (Schwarz, 1978), BICC (Wang, Li and Leng,

2009), and EBIC (Chen and Chen, 2008) – are used. In general, all the three BIC-type criteria

work similarly, with the latter two yield slightly fewer nonzero parameters. The results from MLE

for all p variables and the three true variables (i.e., MLE-Oracle) are also reported. The column of

θnonzero reports the average number of selected nonzero components. The column of θtrue reports

the average number of true nonzero components that are selected. The difference is the average

number of false predictors that get selected. The next column reports the model error (ME),

which is defined by ME = (θ̂− θ)T(θ̂− θ) for a given estimator θ̂. A smaller ME means a better

estimation and prediction. The last column reports the number of selected estimating equations.
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Obviously, in the single penalty approach, all equating equations are used since no selection is

performed. In each cell, standard error appears in the parentheses.

It is clear from the table that the double-penalty approach outperforms the single-penalty

approach, as expected. A much smaller subset of variables get selected with almost all the three

true predictors identified by the double-penalty method. That says, the double-penalty approach

yields lower false positives and higher true positives. While in the single-penalty approach, fewer

true predictors are chosen in the larger set of selected variables or nothing can be picked out

if p ≫ n. What is the most interesting is that a small number (on average 5-8) of estimating

equations are selected in the double-penalty approach. As a result, the double-penalty method

yields a much smaller ME than the single-penalty method.

5.2 Linear regression

In this simulation study, we consider a linear regression model Yi = ZT

i θ0 + εi, where θ0 =

(3, 1.5, 0, 0, 2, 0, . . . , 0)T, Zi ∈ R
p are generated from N(0,Σ) with σkk = 1 for any k = 1, . . . , p

and σkl = 0.5 for any k 6= l, where Σ = (σkl)p×p, and εi is a standard normal distributed random

variable. Write Xi = (Yi,Z
T

i )
T. The estimating function is g(X;θ) = Z(Y − ZTθ) with p = r.

The model error (ME) in the regression setting is defined by ME = (θ̂ − θ)TΣ(θ̂ − θ) for a

given estimator θ̂. Table 2 reports the results for (n, p, r) = (50, 100, 100), (100, 200, 200), and

(100, 500, 500) with the columns defined in the same way as those in Table 1. Similar to the

previous example, the single-penalty approach (PEL) of Tang and Leng (2010) is compared with

the double-penalty approach (PEL2) together with the three BIC criteria for selecting the tuning

parameter(s). We also compare our method with the LASSO method with L1 penalty. Since

the number of parameters p doubles the number of subjects n, the MLE method does not work

in this example. We only report the results from MLE-Oracle (i.e., the MLE method using the

true predictors), which gives the smallest model error. In all the three settings, the single-penalty

method fails to select any predictor when using all r estimating equations. The double-penalty

method identifies all true predictors from a handful of selected ones in most cases by using only

a few estimating equations. With the default tuning parameter selection method in the LASSO,

we clearly see that the number of false inclusion of the predictors is high. Hence, compared with

LASSO method, we observe that our method has better performance in recovering a sparse model.

5.3 Regression model with repeated measures

This is an example with more estimating equations than the number of parameters, i.e., r > p.

Now we consider a repeated measures model such that yij = zT

ijθ0 + ǫij (i = 1, . . . , n; j = 1, 2),

where θ0 = (3, 1.5, 0, 0, 2, 0, . . . , 0)T ∈ R
p, zij are generated from N(0,Σ) with σkl = 0.5|k−l|,

where Σ = (σkl)p×p. The random errors (ǫi1, ǫi2)
T are generated from a two-dimensional normal

distribution with mean zero and unit marginal compound symmetry covariance matrix with ρ =

0.7.
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(n, p, r) Method θnonzeros θtrue ME No. EE’s

(50, 100, 200) MLE-Oracle 3 (0) NA 0.062 (0.009) NA

MLE 100 (0) 3 (0) 2.096 (0.287) NA

PEL-BIC 24.06 (4.13) 0.72 (0.12) 33.276 (1.507) 100 (0)

PEL-BICC 23.15 (4.08) 0.69 (0.12) 33.635 (1.483) 100 (0)

PEL-EBIC 23.15 (4.08) 0.69 (0.12) 33.635 (1.483) 100 (0)

PEL2-BIC 3.41 (0.17) 2.81 (0.04) 0.332 (0.041) 5.11 (0.34)

PEL2-BICC 3.29 (0.15) 2.80 (0.04) 0.302 (0.041) 6.13 (0.33)

PEL2-EBIC 3.15 (0.13) 2.76 (0.05) 0.341 (0.052) 8.20 (0.21)

(100, 200, 400) MLE-Oracle 3 (0) NA 0.024 (0.003) NA

MLE 200 (0) 3 (0) 1.743 (0.179) NA

PEL-BIC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)

PEL-BICC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)

PEL-EBIC 22.02 (6.02) 0.33 (0.09) 38.078 (1.073) 199.98 (0.02)

PEL2-BIC 6.41 (1.84) 2.84 (0.04) 0.333 (0.091) 6.67 (0.23)

PEL2-BICC 6.18 (1.84) 2.82 (0.04) 0.352 (0.092) 6.64 (0.23)

PEL2-EBIC 5.82 (1.86) 2.80 (0.04) 0.372 (0.094) 6.69 (0.24)

(100, 500, 1000) MLE-Oracle 3 (0) NA 0.031 (0.005) NA

MLE NA NA NA NA

PEL-BIC 85.71 (22.69) 0.51 (0.14) 37.585 (1.193) 500 (0)

PEL-BICC 0 (0) 0 (0) 42 (0) 500 (0)

PEL-EBIC 0 (0) 0 (0) 42 (0) 500 (0)

PEL2-BIC 2.88 (0.11) 2.70 (0.06) 0.356 (0.057) 6.40 (0.36)

PEL2-BICC 2.82 (0.09) 2.70 (0.06) 0.376 (0.058) 6.53 (0.35)

PEL2-EBIC 2.83 (0.09) 2.71 (0.06) 0.369 (0.058) 6.97 (0.32)

Table 1: Simulation results for mean of a normal distribution based on 100 random samples. Here

θnonzero is the average number of selected nonzero components, θtrue is the average number of

true nonzero components that are selected, ME reports the model error, and No.EE’s reports the

number of estimating equations selected.
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(n, p, r) Method θnonzeros θtrue ME No. EE’s

(50, 100, 100) MLE-Oracle 3 (0) NA 0.069 (0.005) NA

LASSO 15.21 (0.88) 3 (0) 0.439 (0.034) NA

PEL-BIC 0 (0) 0 (0) 28.75 (0) 100 (0)

PEL-BICC 0 (0) 0 (0) 28.75 (0) 100 (0)

PEL-EBIC 0 (0) 0 (0) 28.75 (0) 100 (0)

PEL2-BIC 6.39 (0.52) 2.98 (0.02) 0.497 (0.069) 10.46 (0.46)

PEL2-BICC 6.33 (0.52) 2.98 (0.02) 0.498 (0.069) 10.49 (0.46)

PEL2-EBIC 6.06 (0.52) 2.97 (0.02) 0.531 (0.07) 10.43 (0.47)

(100, 200, 200) MLE-Oracle 3 (0) NA 0.047 (0.005) NA

LASSO 17.79 (0.87) 3 (0) 0.374 (0.019) NA

PEL-BIC 0 (0) 0 (0) 28.75 (0) 200 (0)

PEL-BICC 0 (0) 0 (0) 28.75 (0) 200 (0)

PEL-EBIC 0 (0) 0 (0) 28.75 (0) 200 (0)

PEL2-BIC 9.22 (1.27) 3 (0) 0.647 (0.118) 5.38 (0.17)

PEL2-BICC 9.28 (1.28) 3 (0) 0.651 (0.119) 5.39 (0.17)

PEL2-EBIC 8.38 (1.03) 3 (0) 0.632 (0.119) 5.34 (0.17)

(100, 500, 500) MLE-Oracle 3 (0) NA 0.039 (0.003) NA

LASSO 23.79 (1.23) 3 (0) 0.507 (0.028) NA

PEL-BIC 0 (0) 0 (0) 28.75 (0) 500 (0)

PEL-BICC 0 (0) 0 (0) 28.75 (0) 500 (0)

PEL-EBIC 0 (0) 0 (0) 28.75 (0) 500 (0)

PEL2-BIC 6.28 (1.31) 3 (0) 0.601 (0.083) 5.48 (0.16)

PEL2-BICC 5.96 (1.31) 3 (0) 0.593 (0.085) 5.38 (0.17)

PEL2-EBIC 6.04 (1.32) 3 (0) 0.602 (0.086) 5.41 (0.16)

Table 2: Simulation results for linear regression based on 100 replicates. Here θnonzero is the

average number of selected nonzero components, θtrue is the average number of true nonzero

components that are selected, ME reports the model error, and No.EE’s reports the number of

estimating equations selected.
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Let Yi = (yi1, yi2)
T and Zi = (zT

i1, z
T

i2)
T respectively collect the response and predictor vari-

ables, and write Xi = (YT

i ,Z
T

i )
T. To incorporate the dependence among the repeated measures

from the same subject when estimating θ0, we use the quadratic estimating equations proposed

by Qu, Lindsay and Li (2000):

g(Xi;θ) =




ZT

i v
−1/2
i M1v

−1/2
i (Yi − ZT

i θ)
...

ZT
i v

−1/2
i Mmv

−1/2
i (Yi − ZT

i θ)


 ,

where vi is a diagonal matrix of the conditional variances of subject i, and Mj (j = 1, . . . ,m)

are working correlation matrices. Note that when m = 1, i.e., using only one working correlation

matrix M1, the model becomes the one in Liang and Zeger (1986) and we have r = p. Here we

choose two sets of basis matrices with M1 being the identity matrix of size ni and M2 being

the compound symmetry with the diagonal elements of 1 and off-diagonal elements of ρ. In our

setting, ni = 2 and therefore r = 2p estimating equations to estimate p parameters. For each

simulation, we repeat the experiment 100 times.

We obtain the same quantities as those in the example of Section 5.2, and report them in

Table 3. In comparison of the single-penalty method, we can conclude from Table 3, with the

columns defined in the same way as those in Table 2, that the proposed double-penalty method

has much better performance. This confirms the efficacy and efficiency of adding the additional

penalty on the Lagrange multiplier λ, which performs the selection of estimating equations by

reducing the number of estimating equations to less than 10.

5.4 Trial of activity for adolescent girls 2 (TAAG2)

We apply the penalized EL with two penalties to examine the individual-, social-, and neighborhood-

level factors associated with adolescent girls’ physical activity over time in the Trial of Activity

for Adolescent Girls 2 (TAAG2) (Young et al., 2014; Grant, Young and Wu, 2015). The 589 girls

in the Maryland site from TAAG2 were collected data at 8th grade (2009) and 11th (2011)

grade. The response variable, moderate to vigorous physical activity (MVPA) minutes, were as-

sessed from accelerometers. Forty-two variables to be considered include: (1) demographic and

psychosocial information (individual- and social-level variables) that were obtained from question-

naires; (2) height, weight, and triceps skinfold to assess body composition; and (3) geographical

information systems and self-report for neighborhood-level variables. There are 554 girls have

complete information for all 42 variables and are used in this analysis.

A two-time point longitudinal linear mixed effects model is used to identify factors that are

most relevant to MVPA. A similar model as in Section 5.3 is used with two working correlation

structure matrices. Our double-penalty EL method identifies four variables are related to MVPA:

Self-management strategies, Self-efficacy, Perceived barriers, and Social support. In particular,

higher Self-management strategies, Self-efficacy, Social support and lower Perceived barriers are

associated with higher MVPA. Our finding confirms the previous results in Young et al. (2014);

Grant, Young and Wu (2015).
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(n, p, r) Method θnonzeros θtrue ME No. EE’s

(50, 100, 200) MLE-Oracle 3 (0) NA 0.023 (0.002) NA

MLE 100 (0) 3 (0) 3.446 (0.106) NA

PEL-BIC 0 (0) 0 (0) 15.25 (0) 200 (0)

PEL-BICC 0 (0) 0 (0) 15.25 (0) 200 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 200 (0)

PEL2-BIC 27.92 (2.51) 2.95 (0.04) 5.252 (0.871) 5.29 (0.23)

PEL2-BICC 27.00 (2.69) 2.95 (0.04) 4.532 (0.552) 5.21 (0.24)

PEL2-EBIC 24.80 (2.87) 2.94 (0.04) 4.657 (0.625) 5.26 (0.25)

(100, 200, 400) MLE-Oracle 3 (0) NA 0.014 (0.001) NA

MLE 200 (0) 3 (0) 3.438 (0.068) NA

PEL-BIC 0 (0) 0 (0) 15.25 (0) 400 (0)

PEL-BICC 0 (0) 0 (0) 15.25 (0) 400 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 400 (0)

PEL2-BIC 45.46 (4.37) 3 (0) 5.241 (0.793) 5.51 (0.19)

PEL2-BICC 43.00 (4.25) 2.99 (0.01) 4.736 (0.659) 5.50 (0.18)

PEL2-EBIC 42.40 (4.33) 2.99 (0.01) 4.546 (0.649) 5.52 (0.19)

(100, 500, 1000) MLE-Oracle 3 (0) NA 0.011 (0.001) NA

MLE NA NA NA NA

PEL-BIC 0 (0) 0 (0) 15.25 (0) 1000 (0)

PEL-BICC 0 (0) 0 (0) 15.25 (0) 1000 (0)

PEL-EBIC 0 (0) 0 (0) 15.25 (0) 1000 (0)

PEL2-BIC 30.02 (6.11) 2.93 (0.03) 2.300 (0.359) 6.70 (0.16)

PEL2-BICC 26.73 (6.02) 2.93 (0.03) 2.430 (0.377) 6.62 (0.16)

PEL2-EBIC 25.09 (5.91) 2.93 (0.03) 2.415 (0.377) 6.59 (0.16)

Table 3: Simulation results for regression model for longitudinal data with repeated measures

based on 100 replicates. Here θnonzero is the average number of selected nonzero components,

θtrue is the average number of true nonzero components that are selected, ME reports the model

error, and No.EE’s reports the number of estimating equations selected.
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6 Discussion

We study a new penalized EL approach with two penalties, with one encouraging sparsity of

the estimator and the other encouraging sparsity of the Lagrange multiplier in the optimizations

associated with the EL. Such an approach utilizes sparsity in the target parameters and effectively

achieves a moment selection procedure for estimating the sparse parameter. Both theory and

numerical examples confirm the merits of the new penalized EL.

One interesting extension of the approach is to explore inferences with estimating equations

after the variable selection procedure. Such a direction is a suitable stage for EL method with

estimating equations who takes advantage of adaptivity to various moment conditions with less

stringent distributional assumptions. The other interesting and challenging problem is to explore

the optimality of the sparse estimator using estimating equations with high data dimensionality.

Semiparametric efficiency of EL with estimating equations is shown in Qin and Lawless (1994).

However, when the paradigm shifts to high-dimensional statistical problems, the efficiency of the

sparse estimator respecting its nonzero components remains open for further investigations. We

plan to address the problems in future works.
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7 Proofs

In the sequel, we use the abbreviations “w.p.a.1” and “w.r.t” to denote, respectively, “with

probability approaching one” and “with respect to”, and C denotes a generic positive finite

constant that may be different in different uses. For simplicity and when no confusion arises,

we use notation hi(θ) as equivalent to h(Xi;θ) for a generic q-dimensional multivariate function

h(·; ·) and denote by hi,k(θ) the kth component of hi(θ). Let h̄(θ) = n−1
∑n

i=1 hi(θ), and

h̄k(θ) = n−1
∑n

i=1 hi,k(θ) be the kth component of h̄(θ). For a given set L ⊂ {1, . . . , q}, we

denote by hL(·; ·) the subvector of h(·; ·) collecting the components indexed by L. Analogously,

we let hi,L(θ) = hL(Xi;θ) and h̄L(θ) = n−1
∑n

i=1 hi,L(θ). For an s1 × s2 matrix B = (bij), let

|B|∞ = max1≤i≤s1,1≤j≤s2 |bij|, ‖B‖1 = max1≤j≤s2

∑s1
i=1 |bij |, ‖B‖∞ = max1≤i≤s1

∑s2
j=1 |bij | and

‖B‖2 = λ
1/2
max(BBT) where λmax(BBT) denotes the largest eigenvalue of BBT. Specifically, if

s2 = 1, we use |B|1 =
∑s1

i=1 |bi1| and |B|2 = (
∑s1

i=1 b
2
i1)

1/2 to denote the L1-norm and L2-norm of

the s1-dimensional vector B, respectively.
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7.1 Proof of Proposition 1

Define An(θ,λ) = n−1
∑n

i=1 log{1 + λ
Tgi(θ)} for any θ ∈ Θ and λ ∈ Λ̂n(θ). We first prove that

max
λ∈Λ̂n(θ0)

An(θ0,λ) = Op(rn
−1). Let λ̃ = argmax

λ∈Λ̂n(θ0)
An(θ0,λ). Pick δn = o(r−1/2n−1/γ)

and r1/2n−1/2 = o(δn), which is guaranteed by r2n2/γ−1 = o(1). Let λ̄ = argmaxλ∈Λn
An(θ0,λ)

where Λn = {λ ∈ R
r : |λ|2 ≤ δn}. It follows from Markov inequality that max1≤i≤n |gi(θ0)|2 =

Op(r
1/2n1/γ). Then max1≤i≤n,λ∈Λn

|λTgi(θ0)| = op(1). By Taylor expansion, it holds w.p.a.1 that

0 = An(θ0,0) ≤ An(θ0, λ̄) = λ̄
T
ḡ(θ0)−

1

2n

n∑

i=1

λ̄
T
gi(θ0)gi(θ0)

Tλ̄

{1 + cλ̄
T
gi(θ0)}2

≤ |λ̄|2|ḡ(θ0)|2 − C|λ̄|22{1 + op(1)},

(7.1)

for some |c| < 1. Notice that |ḡ(θ0)|2 = Op(r
1/2n−1/2), (7.1) yields that |λ̄|2 = Op(r

1/2n−1/2) =

op(δn). Therefore, λ̄ ∈ int(Λn) w.p.a.1. Since Λn ⊂ Λ̂n(θ0) w.p.a.1, λ̃ = λ̄ w.p.a.1 by the

concavity of An(θ0,λ) and Λ̂n(θ0). Hence, by (7.1), we have max
λ∈Λ̂n(θ0)

An(θ0,λ) = Op(rn
−1).

We then show |ḡ(θ̂)|2 = Op(r
1/2n−1/2). For δn specified above, let λ∗ = δnḡ(θ̂)/|ḡ(θ̂)|2, then

λ∗ ∈ Λn. By Taylor expansion, it holds w.p.a.1 that

An(θ̂,λ
∗) = λ∗,Tḡ(θ̂)−

1

2n

n∑

i=1

λ∗,Tgi(θ̂)gi(θ̂)
Tλ∗

{1 + cλ∗,Tgi(θ̂)}2

≥ δn|ḡ(θ̂)|2 − Cδ2n{1 + op(1)},

(7.2)

for some |c| < 1. Notice that An(θ̂,λ
∗) ≤ max

λ∈Λ̂n(θ̂)
An(θ̂,λ) ≤ max

λ∈Λ̂n(θ0)
An(θ0,λ) =

Op(rn
−1), thus |ḡ(θ̂)|2 = Op(δn). Consider any ǫn → 0 and let λ∗∗ = ǫnḡ(θ̂), then |λ∗∗|2 = op(δn).

Using the same arguments above, we can obtain ǫn|ḡ(θ̂)|
2
2 − Cǫ2n|ḡ(θ̂)|

2
2{1 + op(1)} = Op(rn

−1).

Then ǫn|ḡ(θ̂)|
2
2 = Op(rn

−1). Notice that we can select arbitrary slow ǫn → 0, following a standard

result from probability theory, we have |ḡ(θ̂)|22 = Op(rn
−1). Hence, we complete the proof. �

7.2 Proof of Proposition 2

Define Fn(θ) = max
λ∈Λ̂n(θ)

An(θ,λ) +
∑p

k=1 P1,π(|θk|) where θ = (θ1, . . . , θp)
T and An(θ,λ) =

n−1
∑n

i=1 log{1 + λ
Tgi(θ)}. Recall an =

∑p
k=1 P1,π(|θ

0
k|) and bn = max{rn−1, an}. As shown in

the proof of Proposition 1, max
λ∈Λ̂n(θ0)

An(θ0,λ) = Op(rn
−1) which implies Fn(θ0) = Op(rn

−1)+

an. Define Θ∗ = {θ = (θT

S ,θ
T

Sc)T : |θS − θ0,S |∞ ≤ ε, |θSc |1 ≤ n−1/2ϕ−1
n } for some fixed ε > 0.

Let θ̃n = argminθ∈Θ∗
Fn(θ). As Fn(θ̃n) ≤ Fn(θ0), we have Fn(θ̃n) ≤ Op(rn

−1) + an = Op(bn).

We will first show that θ̃n ∈ int(Θ∗) w.p.a.1. To do this, our proof includes two steps: (i) to

show that for any ǫn → ∞ satisfying bnǫ
2β
n n2/γ = o(1), there exists a uniform constant K > 0

independent of θ such that P{Fn(θ) > Kbnǫ
2β
n } → 1 as n → ∞ for any θ = (θT

S ,θ
T

Sc)T ∈ Θ∗

satisfying |θS − θ0,S |∞ > ǫnb
1/(2β)
n . Thus |θ̃n,S − θ0,S |∞ = Op{ǫnb

1/(2β)
n }. Notice that we can

select arbitrary slow diverging ǫn, following a standard result from probability theory, we have

|θ̃n,S − θ0,S |∞ = Op{b
1/(2β)
n }, (ii) to show that |θ̃n,Sc|1 < n−1/2ϕ−1

n .

For (i), we will use the technique developed for the proof of Theorem 1 in Chang, Tang and Wu

(2013). For any θ = (θT

S ,θ
T

Sc)T ∈ Θ∗ satisfying |θS − θ0,S |∞ > ǫnb
1/(2β)
n , define θ∗ = (θT

S ,0
T)T
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and let j0 = argmax1≤j≤r |E{gi,j(θ
∗)}|. Define µj0 = E{gi,j0(θ)}, µ

∗
j0

= E{gi,j0(θ
∗)}, and λ̃ =

δb
1/2
n ǫβnej0 where δ > 0 is a constant to be determined later, and ej0 is an r-dimensional vector with

the j0-th component being 1 and other components being 0. Without lose of generality, we assume

µ∗
j0

> 0. (2.4) and Markov inequality yield that max1≤i≤n |gi,j0(θ)| = Op(n
1/γ), which implies

max1≤i≤n |λ̃
T

gi(θ)| = Op(b
1/2
n ǫβnn1/γ) = op(1). Then λ̃ ∈ Λ̂n(θ) w.p.a.1. Write θ = (θ1, . . . , θp)

T

and λ̃ = (λ̃1, . . . , λ̃r)
T. By the definition of Fn(θ), it holds w.p.a.1 that

Fn(θ) ≥
1

n

n∑

i=1

log{1 + λ̃
T

gi(θ)}+

p∑

k=1

P1,π(|θk|)

≥
1

n

n∑

i=1

λ̃j0gi,j0(θ)−
1

2n

n∑

i=1

{λ̃j0gi,j0(θ)}
2

{1 + cλ̃j0gi,j0(θ)}
2

≥
1

n

n∑

i=1

λ̃j0gi,j0(θ)−
1

n

n∑

i=1

{λ̃j0gi,j0(θ)}
2

for some |c| < 1 and λ̃j0 = δb
1/2
n ǫβn. Therefore, it holds that

P
{
Fn(θ) ≤ Kbnǫ

2β
n

}

≤ P

[
1

n

n∑

i=1

{gi,j0(θ)− µj0} ≤ b1/2n ǫβn

{
K

δ
+

δ

n

n∑

i=1

g2i,j0(θ)

}
− µj0

]
+ o(1).

From (2.4) and Markov inequality, there exists a uniform positive constant L independent of θ

such that P{n−1
∑n

i=1 g
2
i,j0

(θ) > L} → 0. Thus, with δ = (K/L)1/2, we have

P
{
Fn(θ) ≤ Kbnǫ

2β
n

}
≤ P

[
1

n

n∑

i=1

{gi,j0(θ)− µj0} ≤ 2b1/2n ǫβn(KL)1/2 − µj0

]
+ o(1).

From (2.6) and (2.10), we know that µ∗
j0

≥ ∆(ǫnb
1/(2β)
n ) ≥ K1ǫ

β
nb

1/2
n /2 with K1 specified in (2.6)

for sufficiently large n, and

|µj0 − µ∗
j0 | ≤

∑

k/∈S

E

{
sup
θ∈Θ∗

∣∣∣∣
∂gi,j0(θ)

∂θk

∣∣∣∣
}
|θk| ≤ K2|θSc |1 = o(b1/2n )

for K2 specified in (2.10). Therefore, µj0 ≥ K1ǫ
β
nb

1/2
n /3 for sufficiently large n. For sufficiently

smallK independent of θ, we have 2b
1/2
n ǫβn(KL)1/2−µj0 ≤ −cµj0 for some 0 < c < 1, which implies

that n1/2{2b
1/2
n ǫβn(KL)1/2 − µj0} ≤ −cn1/2µj0 . −ǫβnb

1/2
n n1/2 → −∞. As n−1/2

∑n
i=1{gi,j0(θ) −

µj0}
d
−→ N(0, σ2) for some σ > 0, it holds that P{Fn(θ) ≤ Kbnǫ

2β
n } → 0. Hence, we complete the

proof for (i).

For (ii), if |θ̃n,Sc |1 = n−1/2ϕ−1
n , we define θ̃

∗

n = (θ̃
T

n,S , τ θ̃
T

n,Sc)T for some τ ∈ (0, 1) and will

show Fn(θ̃
∗

n) < Fn(θ̃n) w.p.a.1. Notice that θ̃n = argminθ∈Θ∗
Fn(θ). This will be a contradiction.

Therefore, |θ̃n,(2)|1 < n−1/2ϕ−1
n . Write θ̃n = (θ̃n,1, . . . , θ̃n,p)

T and θ̃
∗

n = (θ̃∗n,1, . . . , θ̃
∗
n,p)

T. By the

definition of Fn(θ) and the inequality Fn(θ̃n) ≤ Fn(θ0), it holds that

max
λ∈Λ̂n(θ̃n)

An(θ̃n,λ) ≤ max
λ∈Λ̂n(θ0)

An(θ0,λ) +

p∑

k=1

P1,π(|θ
0
k|)−

p∑

k=1

P1,π(|θ̃n,k|).
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On the other hand, it holds that

p∑

k=1

P1,π(|θ
0
k|)−

p∑

k=1

P1,π(|θ̃n,k|) ≤

s∑

k=1

P1,π(|θ
0
k|)−

s∑

k=1

P1,π(|θ̃n,k|)

≤

s∑

k=1

P ′
1,π{ck|θ̃n,k|+ (1− ck)|θ

0
k|}|θ̃n,k − θ0k|

= Op{sχnb
1/(2β)
n }

(7.3)

for some ck ∈ (0, 1). As we have shown in Section 7.1, max
λ∈Λ̂n(θ0)

An(θ0,λ) = Op(rn
−1). There-

fore, max
λ∈Λ̂n(θ̃n)

An(θ̃n,λ) = Op(rn
−1) +Op{sχnb

1/(2β)
n }. Pick δn satisfying δn = o(r−1/2n−1/γ)

and max{rn−1, sχnb
1/(2β)
n } = o(δ2n), which can be guaranteed by r2n2/γ−1 = o(1) and rsχnb

1/(2β)
n n2/γ =

o(1). Same as (7.2), we have

op(δ
2
n) = max

λ∈Λ̂n(θ̃n)
An(θ̃n,λ) ≥ δn|ḡ(θ̃n)|2 −Cδ2n{1 + op(1)},

which implies |ḡ(θ̃n)|2 = Op(δn). Following the same arguments in Section 7.1 below (7.2),

we have |ḡ(θ̃n)|2 = Op(r
1/2n−1/2) + Op{s

1/2χ
1/2
n b

1/(4β)
n }. Notice that |ḡ(θ̃

∗

n)|2 ≤ |ḡ(θ̃n)|2 +

|{∇θḡ(θ̄)}(θ̃
∗

n− θ̃n)|2 for some θ̄ lying on the jointing line between θ̃n and θ̃
∗

n. Since θ̃n,S = θ̃
∗

n,S ,

by (2.11), it holds that |{∇θḡ(θ̄)}(θ̃
∗

n−θ̃n)|2 = Op(r
1/2n−1/2). Hence, |ḡ(θ̃

∗

n)|2 = Op(r
1/2n−1/2)+

Op{s
1/2χ

1/2
n b

1/(4β)
n }. Write λ∗ = argmax

λ∈Λ̂n(θ̃
∗

n)
An(θ̃

∗

n,λ). Following the same arguments for

(7.1), it holds that |λ∗|2 = Op(r
1/2n−1/2) + Op{s

1/2χ
1/2
n b

1/(4β)
n }. Since θ̃

∗

n = (θ̃
T

n,S , τ θ̃
T

n,Sc)T and

Fn(θ̃n) ≥ An(θ̃n,λ
∗) +

∑p
k=1 P1,π(|θ̃n,k|), then

Fn(θ̃
∗

n) =
1

n

n∑

i=1

log{1 + λ∗,Tgi(θ̃
∗

n)}+

p∑

k=1

P1,π(|θ̃
∗
n,k|)

=
1

n

n∑

i=1

log{1 + λ∗,Tgi(θ̃n)}+

{
1

n

n∑

i=1

λ∗,T∇θgi(θ̌)

1 + λ∗,Tgi(θ̌)

}
(θ̃

∗

n − θ̃n) +

p∑

k=1

P1,π(|θ̃
∗
n,k|)

≤ Fn(θ̃n) +

{
1

n

n∑

i=1

λ∗,T∇θgi(θ̌)

1 + λ∗,Tgi(θ̌)

}
(θ̃

∗

n − θ̃n) +

p∑

k=s+1

P1,π(τ |θ̃n,k|)−

p∑

k=s+1

P1,π(|θ̃n,k|),

(7.4)

for some θ̌ lying on the jointing line between θ̃n and θ̃
∗

n. Notice that max1≤i≤n |λ
∗,Tgi(θ̌)| = op(1),

then
∣∣∣∣
{
1

n

n∑

i=1

λ∗,T∇θgi(θ̌)

1 + λ∗,Tgi(θ̌)

}
(θ̃

∗

n − θ̃n)

∣∣∣∣ ≤ |λ∗|2

∣∣∣∣
{
1

n

n∑

i=1

∇θgi(θ̌)

1 + λ∗,Tgi(θ̌)

}
(θ̃

∗

n − θ̃n)

∣∣∣∣
2

≤ |λ∗|2|θ̃n,Sc|1Op(r
1/2ϕn).

On the other hand,

p∑

k=s+1

P1,π(τ |θ̃n,k|)−

p∑

k=s+1

P1,π(|θ̃n,k|) =− (1− τ)

p∑

k=s+1

P ′
1,π{(ckτ + 1− ck)|θ̃n,k|}|θ̃n,k|

≤ − (1− τ)Cπ

p∑

k=s+1

|θ̃n,k| = −(1− τ)Cπ|θ̃n,Sc|1
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for some ck ∈ (0, 1). If r1/2ϕnmax{r1/2n−1/2, s1/2χ
1/2
n b

1/(4β)
n } = o(π), (7.4) implies Fn(θ̃

∗

n) <

Fn(θ̃n) w.p.a.1. Hence, we complete the proof of (ii).

Nextly, we will show P(θ̃n,Sc = 0) → 1. Define

Ĝn(θ,λ) =
1

n

n∑

i=1

log{1 + λTgi(θ)}+

p∑

k=1

P1,π(|θk|)

for θ = (θ1, . . . , θp)
T. Then θ̃n and its Lagrange multiplier λ̂ satisfy the score equation∇λĜn(θ̃n, λ̂) =

0. By the implicit theorem [Theorem 9.28 of Rudin (1976)], for all θ in a | · |2-neighborhood of

θ̃n, there is a λ̂(θ) such that ∇λĜn{θ, λ̂(θ)} = 0 and λ̂(θ) is continuously differentiable in θ. By

the concavity of Ĝn(θ,λ) w.r.t λ, Ĝn{θ, λ̂(θ)} = max
λ∈Λ̂n(θ)

Ĝn(θ,λ). Write λ̂ = (λ̂1, . . . , λ̂r)
T.

From the envelope theorem,

0 = ∇θĜn{θ, λ̂(θ)}
∣∣∣
θ=θ̃n

=
1

n

n∑

i=1

{∇θgi(θ̃n)}
Tλ̂

1 + λ̂
T

gi(θ̃n)
+

{ p∑

k=1

∇θP1,π(|θk|)

}∣∣∣∣
θ=θ̃n

.

Write ĥ = (ĥ1, . . . , ĥp)
T = ∇θĜn{θ, λ̂(θ)}|θ=θ̃n

. Let ρ1(t;π) = π−1P1,π(t). Since P1,π(·) ∈ P,

ρ′1(0
+;π) is independent of π. We write it as ρ′1(0

+) for simplicity. Therefore, for each k = 1, . . . , p,

ĥk =
1

n

n∑

i=1

r∑

j=1

λ̂j

1 + λ̂
T

gi(θ̃n)

∂gi,j(θ̃n)

∂θk
+ κ̂k,

where κ̂k = πρ′1(|θ̃k|;π)sgn(θ̃k) for θ̃k 6= 0 and κ̂k ∈ [−πρ′1(0
+), πρ′1(0

+)] otherwise. From Triangle

inequality, it holds that

sup
k/∈S

∣∣∣∣
1

n

n∑

i=1

r∑

j=1

λ̂j

1 + λ̂
T

gi(θ̃n)

∂gi,j(θ̃n)

∂θk

∣∣∣∣ ≤
[ r∑

j=1

|λ̂j | sup
k/∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gi,j(θ̃n)

∂θk

∣∣∣∣
}]

{1 + op(1)}

≤ Op(ϕn) ·

r∑

j=1

|λ̂j |

= Op

(
r1/2ϕnmax{r1/2n−1/2, s1/2χ1/2

n b1/(4β)n }
)
.

As r1/2ϕnmax{r1/2n−1/2, s1/2χ
1/2
n b

1/(4β)
n } = o(π), if θ̃k 6= 0 for some k /∈ S, then πρ′1(|θ̃k|;π)sgn(θ̃k)

will dominates the sign of ĥk. According to the arguments for the proof of Lemma 1 in Fan and Li

(2001), we know θ̃n,Sc = 0 w.p.a.1. Hence, we complete the proof of Proposition 2. �

7.3 Proof of Proposition 3

Recall Mθn
= {1 ≤ j ≤ r : |ḡj(θn)| ≥ νρ′2(0

+)} and M∗
θn

= {1 ≤ j ≤ r : |ḡj(θn)| ≥ Cνρ′2(0
+)}

for some C ∈ (0, 1). Clearly, Mθn
⊂ M∗

θn
. Recall mn = |M∗

θn
|. Given Mθn

, we select

δn satisfying δn = o(m
−1/2
n n−1/γ) and un = o(δn). Let λ̄n = argmaxλ∈Λn

f(λ;θn) where

Λn = {λ = (λT

Mθn
,λT

Mc
θn
)T ∈ R

r : |λMθn
|2 ≤ δn and λMc

θn
= 0}. For given Mθn

, Condi-

tion 3 and Markov inequality imply that max1≤i≤n |gi,Mθn
(θn)|2 = Op(m

1/2
n n1/γ), which leads to

max1≤i≤n |λ̄
T

ngi(θn)| = op(1). Write λ̄n = (λ̄n,1, . . . , λ̄n,r)
T. By the definition of λ̄n and Taylor
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expansion, noting P2,ν(t) = νρ2(t; ν) and ρ′2(t; ν) ≥ ρ′2(0
+) for any t > 0, we have

0 = f(0;θn) ≤ f(λ̄n;θn)

=
1

n

n∑

i=1

λ̄
T

ngi(θn)−
1

2n

n∑

i=1

λ̄
T

ngi(θ0)gi(θn)
Tλ̄n

{1 + cλ̄
T

ngi(θn)}
2

−

r∑

j=1

P2,ν(|λ̄n,j |)

≤ λ̄
T

n,Mθn
{ḡMθn

(θn)− νρ′2(0
+)sgn(λ̄n,Mθn

)} −
1

2
λmin{V̂Mθn

(θn)}|λ̄n,Mθn
|22{1 + op(1)}

≤ λ̄
T

n,Mθn
[ḡMθn

(θn)− νρ′2(0
+)sgn{ḡMθn

(θn)}]−
1

2
λmin{V̂Mθn

(θn)}|λ̄n,Mθn
|22{1 + op(1)}

Notice that |ḡMθn
(θn) − νρ′2(0

+)sgn{ḡMθn
(θn)}|2 = Op(un) and P[λmin{V̂Mθn

(θn)} ≥ C] → 1,

then |λ̄n,Mθn
|2 = Op(un) = op(δn). Write λ̄n,Mθn

= (λ̄1, . . . , λ̄|Mθn |
)T. We have w.p.a.1 that

0 =
1

n

n∑

i=1

gi,Mθn
(θn)

1 + λ̄
T

n,Mθn
gi,Mθn

(θn)
− η̂ (7.5)

where η̂ = (η̂1, . . . , η̂|Mθn |
)T with η̂j = νρ′2(|λ̄j |; ν)sgn(λ̄j) for λ̄j 6= 0 and η̂j ∈ [−νρ′2(0

+), νρ′2(0
+)]

for λ̄j = 0. (7.5) implies that η̂ = ḡMθn
(θn) +R with |R|∞ = Op(ς

1/2
n un). Since ς

1/2
n un = o(ν),

then w.p.a.1 sgn(λ̄j) = sgn{ḡj(θn)} for any λ̄j 6= 0.

We will show that λ̄n is a local maximizer for f(λ;θn) w.p.a.1. We first show that λ̄n =

argmaxλ∈Λ∗
n(θn) f(λ;θn) w.p.a.1, where Λ∗

n(θn) = {λ = (λT

M∗
θn
,λT

M∗,c
θn

)T ∈ R
r : |λM∗

θn
|2 ≤

ǫ,λM∗,c
θn

= 0} for some ǫ > 0. Notice that f(λ;θn) is concave w.r.t λ. To do this, it suffices to

show that w = λ̄
T

n,M∗
θn

=: (w1, . . . , wmn)
T ∈ R

mn satisfies the equation

0 =
1

n

n∑

i=1

gi,M∗
θn
(θn)

1 +wTgi,M∗
θn
(θn)

− η̂∗

w.p.a.1, where η̂∗ = (η̂∗1 , . . . , η̂
∗
mn

)T with η̂∗j = νρ′2(|wj |; ν)sgn(wj) for wj 6= 0 and η̂∗j ∈ [−νρ′2(0
+), νρ′2(0

+)]

for wj = 0. Based on (7.5), we know 0 = n−1
∑n

i=1 gi,j(θn)/{1 +wTgi,M∗
θn
(θn)} − η̂∗j holds for

any j ∈ Mθn
. For each j ∈ M∗

θn
\Mθn

, it holds that n−1
∑n

i=1 gi,j(θn)/{1 +wTgi,M∗
θn
(θn)} =

ḡj(θn) + Op(ς
1/2
n un) where Op(ς

1/2
n un) is uniform for any j ∈ M∗

θn
\Mθn

. Since Cνρ′2(0
+) ≤

|ḡj(θn)| < νρ′2(0
+) for j ∈ M∗

θn
\Mθn

, if ς
1/2
n un = o(ν), then |n−1

∑n
i=1 gi,j(θn)/{1+wTgi,M∗

θn
(θn)}| <

νρ′2(0
+) w.p.a.1 for any j ∈ M∗

θn
\Mθn

. This implies that there exists η̂∗j such that 0 =

n−1
∑n

i=1 gi,j(θn)/{1 +wTgi,M∗
θn
(θn)} − η̂∗j holds for any j ∈ M∗

θn
\Mθn

.

Secondly, we prove λ̄n is a local maximizer for f(λ;θn) over λ ∈ Λ̃n(θn) w.p.a.1, where

Λ̃n(θn) = {λ = (λT

M∗
θn
,λT

M∗,c
θn

)T ∈ R
r : |λM∗

θn
− λ̄n,M∗

θn
|2 ≤ o(un), |λM∗,c

θn

|1 = o(r−1/γn−1/γ)}.

Notice that max1≤i≤n,λ∈Λ̃n(θn)
|λTgi(θn)| = op(1). For any λ ∈ Λ̃n(θn), we write λ = (λT

M∗
θn
,λT

M∗,c
θn

)T

and denote by λ̃ = (λT

M∗
θn

,0T)T the projection of λ onto the subspace Λ∗
n(θn). We only need to

show

P

[
sup

λ∈Λ̃n(θn)

{f(λ;θn)− f(λ̃;θn)} ≤ 0

]
→ 1. (7.6)

By Taylor expansion, it holds that

sup
λ∈Λ̃n(θn)

{f(λ;θn)− f(λ̃;θn)} = sup
λ∈Λ̃n(θn)

{
1

n

n∑

i=1

gi(θn)
T(λ− λ̃)

1 + λT

∗gi(θn)
−

∑

j∈M∗,c
θn

P2,ν(|λj |)

}
,
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for some λ∗ lying on the jointing line between λ and λ̃. We have that

∣∣∣∣
1

n

n∑

i=1

gi(θn)
T(λ− λ̃)

1 + λT

∗gi(θn)

∣∣∣∣ ≤ Cνρ′2(0
+)

∑

j∈M∗,c
θn

|λj |+Op(m
1/2
n unςn) ·

∑

j∈M∗,c
θn

|λj |.

where the term Op(m
1/2
n unςn) is uniformly for any λ ∈ Λ̃n(θn). On the other hand, we have

∑

j∈M∗,c
θn

P2,ν(|λj |) ≥ νρ′2(0
+)

∑

j∈M∗,c
θn

|λj|.

Hence,

1

n

n∑

i=1

gi(θn)
T(λ− λ̃)

1 + λT

∗gi(θn)
−

∑

j∈M∗,c
θn

P2,ν(|λj |) ≤

{
− (1− C)νρ′2(0

+) +Op(m
1/2
n unςn)

} ∑

j∈M∗,c
θn

|λj |.

Notice that m
1/2
n unςn/ν → 0, then −(1 − C)νρ′2(0

+) + Op(m
1/2
n unςn) ≤ 0 w.p.a.1 which implies

(7.6) holds. Hence, λ̄n w.p.a.1 is a local maximizer of f(λ;θn). We complete the proof of

Proposition 3. �

7.4 Proof of Theorem 1

Let G0 = supp{λ̂(θ0)}. It holds that

max
λ∈Λ̂n(θ0)

f(λ;θ0) = max
η∈Λ̂†

n(θ0)

[
1

n

n∑

i=1

log{1 + ηTgi,G0
(θ0)} −

|G0|∑

j=1

P2,ν(|ηj |)

]

≤ max
η∈Λ̂†

n(θ0)

1

n

n∑

i=1

log{1 + ηTgi,G0
(θ0)},

where Λ̂†
n(θ0) = {η ∈ R

m0 : ηTgi,G0
(θ0) ∈ V, i = 1, . . . , n} for some open interval V containing

zero. Given G0, since |G0| ≤ ℓn, following the proof of Proposition 1, we have max
η∈Λ̂†

n(θ0)
n−1

∑n
i=1 log{1+

ηTgi,G0
(θ0)} = Op(ℓnn

−1) which implies max
λ∈Λ̂n(θ0)

f(λ;θ0) = Op(ℓnn
−1).

Recall an =
∑p

k=1 P1,π(|θ
0
k|), bn = max{ℓnn

−1, an, ν
2} and Sn(θ) = max

λ∈Λ̂n(θ)
f(λ;θ) +

∑p
k=1 P1,π(|θk|) for any θ = (θ1, . . . , θp)

T. Define Θ∗ = {θ = (θT

S ,θ
T

Sc)T : |θS − θ0,S |∞ ≤

ε, |θSc |1 ≤ ℵn} for some fixed ε > 0 and ℵn = min{sω
1/2
n b

1/(2β)
n ξ

−1/2
n , o(b

1/2
n ), o(ν̺

−1/2
n ℓ

−3/2
n ξ

−1/2
n )}.

Let θ̂n = argminθ∈Θ∗
Sn(θ). As we have shown above, P{Sn(θ0) ≤ an + Op(ℓnn

−1)} → 1 as

n → ∞. As Sn(θ̂n) ≤ Sn(θ0), we have P{Sn(θ̂n) ≤ an + Op(ℓnn
−1)} → 1 as n → ∞. We

will show that θ̂n ∈ int(Θ∗) w.p.a.1. Same as the proof of Proposition 2 stated in Section 7.2,

our proof includes two steps: (i) to show that for any ǫn → ∞ satisfying bnǫ
2β
n n2/γ = o(1),

there exists a uniform constant K > 0 independent of θ such that P{Sn(θ) > Kbnǫ
2β
n } → 1

as n → ∞ for any θ = (θT

S ,θ
T

Sc)T ∈ Θ∗ satisfying |θS − θ0,S |∞ > ǫnb
1/(2β)
n , which leads to

|θ̂n,S − θ0,S |∞ = Op{b
1/(2β)
n }. (ii) to show that |θ̂n,Sc|1 < ℵn. The proof of (i) is the same as

that stated in Section 7.2, thus we omit its proof and only show (ii) here. We need the following

lemma whose proof is given in the supplementary material.
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Lemma 1. Let F = {F ⊂ {1, . . . , r} : |F| ≤ ℓn} and Θn = {θ = (θT

S ,θ
T

Sc)T : |θS − θ0,S |∞ =

Op{b
1/(2β)
n }, |θSc |1 ≤ ℵn}. Assume that Conditions 4 and 5, then

sup
θ∈Θn

sup
F∈F

‖V̂F (θ)−VF (θ0)‖2 = Op{s(ℓnωnb
1/β
n )1/2}+Op{ℓn(n

−1̺n log r)
1/2}

provided that log r = o(n1/3), s2ℓnωnb
1/β
n = o(1) and ℓ2nn

−1̺n log r = o(1).

We begin to prove (ii) now. If |θ̂n,Sc |1 = ℵn, we define θ̂
∗

n = (θ̂
T

n,S , τ θ̂
T

n,Sc)T for some τ ∈ (0, 1)

and will show Sn(θ̂
∗

n) < Sn(θ̂n) w.p.a.1. Notice that θ̂n = argminθ∈Θ∗
Sn(θ). This will be a

contradiction. Therefore, |θ̂n,Sc|1 < ℵn. Write θ̂n = (θ̂n,1, . . . , θ̂n,p)
T. Notice that

max
λ∈Λ̂n(θ̂n)

f(λ; θ̂n) ≤ max
λ∈Λ̂n(θ0)

f(λ;θ0) +

p∑

k=1

P1,π(|θ
0
k|)−

p∑

k=1

P1,π(|θ̂n,k|),

by (7.3), we have max
λ∈Λ̂n(θ̂n)

f(λ; θ̂n) = Op(ℓnn
−1) + Op{sχnb

1/(2β)
n }. Pick δn satisfying δn =

o(ℓ
−1/2
n n−1/γ) and max{ℓnn

−1, sχnb
1/(2β)
n } = o(δ2n), which can be guaranteed by ℓnsχnb

1/(2β)
n n2/γ =

o(1) and ℓ2nn
2/γ−1 = o(1). Select λ∗ such that λ∗

M
θ̂n

= δn[ḡM
θ̂n
(θ̂n)−νρ′2(0

+)sgn{ḡM
θ̂n
(θ̂n)}]/|ḡM

θ̂n
(θ̂n)−

νρ′2(0
+)sgn{ḡM

θ̂n
(θ̂n)}|2 and λ∗

Mc

θ̂n

= 0. Write λ∗ = (λ∗
1, . . . , λ

∗
r)

T. Then

op(δ
2
n) = max

λ∈Λ̂n(θ̂n)
f(λ; θ̂n)

≥
1

n

n∑

i=1

log{1 + λ∗,Tgi(θ̂n)} −
r∑

j=1

P2,ν(|λ
∗
j |)

= λ
∗,T
M

θ̂n

ḡM
θ̂n
(θ̂n)−

1

2n

n∑

i=1

λ
∗,T
M

θ̂n

gi,M
θ̂n
(θ̂n)gi,M

θ̂n
(θ̂n)

Tλ∗
M

θ̂n

{1 + cλ∗,T
M

θ̂n

gi,M
θ̂n
(θ̂n)}2

−
∑

j∈M
θ̂n

P2,ν(|λ
∗
j |)

≥ λ
∗,T
M

θ̂n

ḡM
θ̂n
(θ̂n)− Cδ2n{1 + op(1)} − ν

∑

j∈M
θ̂n

ρ′2(cj |λ
∗
j |; ν)|λ

∗
j |

= λ
∗,T
M

θ̂n

ḡM
θ̂n
(θ̂n)− νρ′2(0

+)
∑

j∈M
θ̂n

|λ∗
j | − Cδ2n{1 + op(1)} − ν

∑

j∈M
θ̂n

cjρ
′′
2(c

∗
j |λ

∗
j |; ν)|λ

∗
j |
2

≥ λ
∗,T
M

θ̂n

{ḡM
θ̂n
(θ̂n)− νρ′2(0

+)sgn(λ∗
M

θ̂n

)} − Cδ2n{1 + op(1)}

for some c, cj , c
∗
j ∈ (0, 1). Recall M

θ̂n
= {1 ≤ j ≤ r : |ḡj(θ̂n)| ≥ νρ′2(0

+)}, then sgn(λ∗
M

θ̂n

) =

sgn{ḡM
θ̂n
(θ̂n)}. Thus |ḡM

θ̂n
(θ̂n) − νρ′2(0

+)sgn{ḡM
θ̂n
(θ̂n)}|2 = Op(δn). Using the technique

developed in Section 7.1, we have |ḡM
θ̂n
(θ̂n) − νρ′2(0

+)sgn{ḡM
θ̂n
(θ̂n)}|2 = Op(ℓ

1/2
n n−1/2) +

Op{s
1/2χ

1/2
n b

1/(4β)
n }.

By Lemma 1 and Condition 4, we know λmin{V̂M
θ̂n
(θ̂n)} ≥ C w.p.a.1. Therefore Proposition

3 leads to |λ̂(θ̂n)|2 = Op(ℓ
1/2
n n−1/2)+Op{s

1/2χ
1/2
n b

1/(4β)
n }. Based on this property of the Lagrange

multiplier λ̂(θ̂n), we can follow the same arguments stated in Section 7.2 to construct (ii). Specif-

ically, write λ̂(θ̂n) and λ̂(θ̂
∗

n) as λ̂ = (λ̂1, . . . , λ̂r)
T and λ̂

∗
= (λ̂∗

1, . . . , λ̂
∗
r)

T, respectively. In the

sequel, we use θ̌ to denote a generic vector lying on the jointing line between θ̂n and θ̂
∗

n that may
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be different in different uses. Write θ̂
∗

n = (θ̂∗n,1, . . . , θ̂
∗
n,p)

T. By Taylor expansion, it holds that

Sn(θ̂
∗

n) =
1

n

n∑

i=1

log{1 + λ̂
∗,T

gi(θ̂
∗

n)} −
r∑

j=1

P2,ν(|λ̂
∗
j |) +

p∑

k=1

P1,π(|θ̂
∗
n,k|)

≤ Sn(θ̂n) +

r∑

j=1

P2,ν(|λ̂j |)−

r∑

j=1

P2,ν(|λ̂
∗
j |)

︸ ︷︷ ︸
I

+
1

n

n∑

i=1

λ̂
∗,T

∇θScgi(θ̌)

1 + λ̂
∗,T

gi(θ̌)
(θ̂

∗

n,Sc − θ̂n,Sc)

︸ ︷︷ ︸
II

+

p∑

k=s+1

P1,π(τ |θ̂n,k|)−

p∑

k=s+1

P1,π(|θ̂n,k|)

︸ ︷︷ ︸
III

.

(7.7)

We will show I + II + III < 0 w.p.a.1 as follows.

For I, we will first specify the convergence rate of |λ̂
∗
− λ̂|1. Define

Ĥn(θ,λ) =
1

n

n∑

i=1

log{1 + λTgi(θ)}+

p∑

k=1

P1,π(|θk|)−

r∑

j=1

P2,ν(|λj |) (7.8)

for any θ = (θ1, . . . , θp)
T and λ = (λ1, . . . , λr)

T. Then θ̂n and its Lagrange multiplier λ̂ satisfy

the score equation ∇λĤn(θ̂n, λ̂) = 0, i.e.

0 =
1

n

n∑

i=1

gi(θ̂n)

1 + λ̂
T

gi(θ̂n)
− η̂, (7.9)

where η̂ = (η̂1, . . . , η̂r)
T with η̂j = νρ′2(|λ̂j |; ν)sgn(λ̂j) for λ̂j 6= 0 and η̂j ∈ [−νρ′2(0

+), νρ′2(0
+)] for

λ̂j = 0. LetRn = supp{λ̂(θ̂n)}. Restricted onRn, for any θ ∈ R
p and ζ = (ζ1, . . . , ζ|Rn|)

T ∈ R
|Rn|

with each ζj 6= 0, define

m(ζ,θ) =
1

n

n∑

i=1

gi,Rn(θ)

1 + ζTgi,Rn(θ)
−w,

wherew = (w1, . . . , w|Rn|)
T with wj = νρ′2(|ζj |; ν)sgn(ζj). Then, λ̂Rn and θ̂n satisfym(λ̂Rn , θ̂n) =

0. By the implicit theorem [Theorem 9.28 of Rudin (1976)], for all θ in a | · |2-neighborhood of

θ̂n, there is a ζ(θ) such that m{ζ(θ),θ} = 0 and ζ(θ) is continuously differentiable in θ. Since

θ̂
∗

n,S = θ̂n,S , we have

|ζ(θ̂
∗

n)− λ̂Rn |1 =
∣∣{∇θζ(θ)|θ=θ̌}(θ̂

∗

n − θ̂n)
∣∣
1
≤

∥∥∇θScζ(θ)|θ=θ̌

∥∥
1
|θ̂

∗

n,Sc − θ̂n,Sc|1.

Notice that

∇θScζ(θ)
∣∣
θ=θ̌

=− (∇ζm)−1(∇θScm)
∣∣
θ=θ̌

=

(
1

n

n∑

i=1

gi,Rn(θ̌)gi,Rn(θ̌)
T

{1 + ζ(θ̌)Tgi,Rn(θ̌)}
2
+ νdiag[ρ′′2{|ζ1(θ̌)|; ν}, . . . , ρ

′′
2{|ζ|Rn|(θ̌)|; ν}]

)−1

×

{
1

n

n∑

i=1

∇θScgi,Rn(θ̌)

1 + ζ(θ̌)Tgi,Rn(θ̌)
−

1

n

n∑

i=1

gi,Rn(θ̌)ζ(θ̌)
T∇θScgi,Rn(θ̌)

{1 + ζ(θ̌)Tgi,Rn(θ̌)}
2

}

= : A(θ̌)×B(θ̌).
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Since max1≤i≤n |ζ(θ̌)
Tgi,Rn(θ̌)| = op(1), from Lemma 1, we know ‖A(θ̌)‖1 ≤ |Rn|

1/2‖A(θ̌)‖2 =

Op(ℓ
1/2
n ). Meanwhile, we have |B(θ̌)|∞ = Op(ξ

1/2
n ) which implies ‖B(θ̌)‖1 = Op(ξ

1/2
n ℓn). There-

fore, it holds that ‖∇θScζ(θ)|θ=θ̌‖1 ≤ ‖A(θ̌)‖1‖B(θ̌)‖1 = Op(ℓ
3/2
n ξ

1/2
n ), which implies |ζ(θ̂

∗

n) −

λ̂Rn |1 = Op(ℓ
3/2
n ξ

1/2
n )|θ̂n,Sc|1. Let λ̃ satisfy λ̃Rn = ζ(θ̂

∗

n) and λ̃Rc
n
= 0. For any j ∈ Rc

n, we have

1

n

n∑

i=1

gi,j(θ̂
∗

n)

1 + λ̃
T

gi(θ̂
∗

n)

=
1

n

n∑

i=1

gi,j(θ̂n)

1 + λ̃
T

gi(θ̂n)
+

[
1

n

n∑

i=1

∇θScgi,j(θ̌)

1 + λ̃
T

gi(θ̌n)
−

1

n

n∑

i=1

gi,j(θ̌)λ̃
T

∇θScgi(θ̌)

{1 + λ̃
T

gi(θ̌n)}2

]
(θ̂

∗

n,Sc − θ̂n,Sc)

=
1

n

n∑

i=1

gi,j(θ̂n)

1 + λ̂
T

gi(θ̂n)
−

[
1

n

n∑

i=1

gi,j(θ̂n)gi(θ̂n)
T

{1 + λ̌
T

gi(θ̂n)}2

]
(λ̃− λ̂) +Op(ξ

1/2
n )|θ̂

∗

n,Sc − θ̂n,Sc|1

=
1

n

n∑

i=1

gi,j(θ̂n)

1 + λ̂
T

gi(θ̂n)
+Op(̺

1/2
n )|λ̃− λ̂|1 +Op(ξ

1/2
n )|θ̂

∗

n,Sc − θ̂n,Sc|1

=
1

n

n∑

i=1

gi,j(θ̂n)

1 + λ̂
T

gi(θ̂n)
+ op(ν),

where the term op(ν) holds uniformly for any j ∈ Rc
n. Write λ̃ = (λ̃1, . . . , λ̃r)

T. Recall that ζ(θ̂
∗

n)

and θ̂
∗

n satisfy m{ζ(θ̂
∗

n), θ̂
∗

n} = 0, and (7.9) holds, then it holds w.p.a.1 that

0 =
1

n

n∑

i=1

gi(θ̂
∗

n)

1 + λ̃
T

gi(θ̂
∗

n)
− η̂∗

for η̂∗ = (η̂∗1 , . . . , η̂
∗
r )

T with η̂∗j = νρ′2(|λ̃j |; ν)sgn(λ̃j) for λ̃j 6= 0 and η̂∗j ∈ [−νρ′2(0
+), νρ′2(0

+)] for

λ̃j = 0. By the concavity of f(λ;θ) = n−1
∑n

i=1 log{1 + λTgi(θ)} −
∑r

j=1 P2,ν(|λj |), we know

λ̂
∗
= λ̃ w.p.a.1. Hence, |λ̂

∗
− λ̂|1 = Op(ℓ

3/2
n ξ

1/2
n )|θ̂n,Sc |1. This implies I = Op(ℓ

3/2
n ξ

1/2
n ν)|θ̂n,Sc|1.

Let J∗ = supp(λ̂
∗
). Notice that max1≤i≤n |λ̂

∗,T
gi(θ̌)| = op(1), then

|II| ≤ |λ̂
∗
|2

∣∣∣∣
{
1

n

n∑

i=1

∇θScgi,J∗(θ̌)

1 + λ̂
∗,T

gi(θ̌)

}
(θ̂

∗

n,Sc − θ̂n,Sc)

∣∣∣∣
2

≤ |λ̂
∗
|2|θ̂n,Sc|1Op(ℓ

1/2
n ξ1/2n ),

which implies II = max{ℓ
1/2
n n−1/2, s1/2χ

1/2
n b

1/(4β)
n }|θ̂n,Sc|1Op(ℓ

1/2
n ξ

1/2
n ). On the other hand, by

Taylor expansion, we have

III = −(1− τ)

p∑

k=s+1

P ′
1,π{(ckτ + 1− ck)|θ̂n,k|}|θ̂n,k| ≤ −(1− τ)Cπ|θ̂n,Sc|1

for some ck ∈ (0, 1). Since max{ℓ
3/2
n ξ

1/2
n ν, ℓnξ

1/2
n n−1/2, ℓ

1/2
n ξ

1/2
n s1/2χ

1/2
n b

1/(4β)
n } = o(π), (7.7) im-

plies Sn(θ̂
∗

n) < Sn(θ̂n) w.p.a.1. Hence, we complete the proof of (ii). Together with (i), we know

such defined θ̂n is a local minimizer of Sn(θ). Following the same arguments stated in Section

7.2, we can prove P(θ̂n,Sc = 0) → 1. We complete the proof of Theorem 1. �
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7.5 Proof of Theorem 2

Recall Rn = supp{λ̂(θ̂n)}. We still write λ̂ = λ̂(θ̂n) = (λ̂1, . . . , λ̂r)
T. For Ĥn(θ,λ) defined in

(7.8), we have ∇λĤn(θ̂n, λ̂) = 0, i.e.

0 =
1

n

n∑

i=1

gi(θ̂n)

1 + λ̂
T

gi(θ̂n)
− η̂, (7.10)

where η̂ = (η̂1, . . . , η̂r)
T with η̂j = νρ′2(|λ̂j |; ν)sgn(λ̂j) for λ̂j 6= 0 and η̂j ∈ [−νρ′2(0

+), νρ′2(0
+)] for

λ̂j = 0. By Taylor expansion, we have

0 =
1

n

n∑

i=1

gi,Rn(θ̂n)−
1

n

n∑

i=1

gi,Rn(θ̂n)gi,Rn(θ̂n)
Tλ̂Rn

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

2
− η̂Rn

,

for some |c| < 1, which implies

λ̂Rn =

[
1

n

n∑

i=1

gi,Rn(θ̂n)gi,Rn(θ̂n)
T

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

2

]−1

{ḡRn(θ̂n)− η̂Rn
}.

On the other hand, together with

0 = ∇θĤn(θ, λ̂(θ))
∣∣
θ=θ̂n

=

{
1

n

n∑

i=1

∇θgi(θ̂n)

1 + λ̂
T

gi(θ̂n)

}
T

λ̂+

{ p∑

k=1

∇θP1,π(|θk|)

}∣∣∣∣
θ=θ̂n

,

it holds that

0 =

{
1

n

n∑

i=1

∇θS
gi,Rn(θ̂n)

1 + λ̂
T

Rn
gi,Rn(θ̂n)

}
T
[
1

n

n∑

i=1

gi,Rn(θ̂n)gi,Rn(θ̂n)
T

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

2

]−1

{ḡRn(θ̂n)− η̂Rn
}+ κ̂S ,

(7.11)

where κ̂S = {
∑p

k=1∇θS
P1,π(|θk|)}|θS=θ̂n,S

. From Condition 6, it holds that |κ̂S |∞ = Op(χn).

We will use (7.11) to derive the limiting distribution of θ̂n,S . Before this, we need the following

lemmas.

Lemma 2. Assume the conditions of Theorem 1 hold. Then

∥∥∥∥
1

n

n∑

i=1

gi,Rn(θ̂n)gi,Rn(θ̂n)
T

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

2
− V̂Rn(θ0)

∥∥∥∥
2

= Op(ℓnn
−1/2+1/γ) +Op{ℓ

1/2
n s1/2χ1/2

n b1/(4β)n n1/γ},

and

∣∣∣∣
{
1

n

n∑

i=1

∇θS
gi,Rn(θ̂n)

1 + λ̂
T

Rn
gi,Rn(θ̂n)

−∇θS
ḡRn(θ̂n)

}
z

∣∣∣∣
2

= |z|2
[
Op(ℓns

1/2ω1/2
n n−1/2) +Op{ℓ

1/2
n sω1/2

n χ1/2
n b1/(4β)n }

]

holds uniformly for any z ∈ R
s.

Lemma 3. Assume the conditions of Theorem 1 and Condition 7 hold. Then

sup
F∈F

∣∣[∇θS
ḡF (θ̂n)−E{∇θS

gi,F (θ0)}]z
∣∣
2
= |z|2

[
Op{s

3/2ℓ1/2n ̟1/2
n b1/(2β)n }+Op{(n

−1sℓnωn log r)
1/2}

]

holds uniformly for any z ∈ R
s, where F is defined in Lemma 1.
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Lemma 4. Let ĴF = {∇θS
ḡF (θ̂n)}

TV̂−1
F (θ̂n){∇θS

ḡF (θ̂n)} for any F ∈ F , where F is defined in

Lemma 1. Assume the conditions for Lemma 3 and Condition 8 hold. If s2ℓ2nb
1/β
n ̺

1/2
n max{ωn, s̟n} log r =

o(1), n−1ℓ2nsωn̺
1/2
n (log r)2 = o(1) and n−1ℓ3n̺

3/2
n (log r)2 = o(1), we have

sup
F∈F

∣∣∣P
[
n1/2αTĴ

−1/2
F {∇θS

ḡF (θ̂n)}
TV̂−1

F (θ̂n)ḡF (θ0) ≤ u
]
− Φ(u)

∣∣∣ → 0, as n → ∞,

for any u ∈ R and α ∈ R
s, where Φ(·) is the cumulative distribution function of the standard

normal distribution.

Now we begin the proof of Theorem 2. Recall ĴRn = {∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n){∇θS
ḡRn(θ̂n)}.

For any α ∈ R
s with unit L2-norm, let δ = Ĵ

−1/2
Rn

α, then

|{∇θS
ḡRn(θ̂n)}δ|

2
2 = αT(UTU)−1/2UTV̂Rn(θ̂n)U(UTU)−1/2α

≤ λmax{V̂Rn(θ̂n)} · |U(UTU)−1/2α|22

= λmax{V̂Rn(θ̂n)},

where U = V̂
−1/2
Rn

(θ̂n){∇θS
ḡRn(θ̂n)}. Thus, by Lemma 1, |{∇θS

ḡRn(θ̂n)}δ|2 = Op(1). Mean-

while, notice that |δ|2 = Op(1). Lemma 2 yields that

∣∣∣∣
{
1

n

n∑

i=1

∇θS
gi,Rn(θ̂n)

1 + λ̂
T

Rn
gi,Rn(θ̂n)

}
δ

∣∣∣∣
2

= Op(1).

As shown in Section 7.4, |ḡM
θ̂n
(θ̂n)−νρ′2(0

+)sgn{ḡM
θ̂n
(θ̂n)}|2 = Op(ℓ

1/2
n n−1/2)+Op{s

1/2χ
1/2
n b

1/(4β)
n }.

From Proposition 3, we have |ḡRn(θ̂n)− η̂Rn
|2 = Op(ℓ

1/2
n n−1/2) +Op{s

1/2χ
1/2
n b

1/(4β)
n }. Following

Lemmas 2 and 3, (7.11) leads to

δT{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n){ḡRn(θ̂n)− η̂Rn
}

= Op

(
ℓ1/2n max{ℓnn

−1, sχnb
1/(2β)
n }max{s1/2ω1/2

n , n1/γ}
)
+Op(s

1/2χn).

Expanding ḡRn(θ̂n) around θ = θ0, it holds w.p.a.1 that

δT{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n)[{∇θS
ḡRn(θ̃)}(θ̂n,S − θ0,S)− η̂Rn

]

=− δT{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n)ḡRn(θ0) +Op(s
1/2χn)

+Op

(
ℓ1/2n max{ℓnn

−1, sχnb
1/(2β)
n }max{s1/2ω1/2

n , n1/γ}
)
,

(7.12)

where θ̃ is on the line joining θ0 and θ̂n. Notice that |ḡRn(θ̂n) − ḡRn(θ0)|2 ≤ |ḡRn(θ̂n)|2 +

|ḡRn(θ0)|2 = Op(ℓ
1/2
n ν) + Op{s

1/2χ
1/2
n b

1/(4β)
n }. By Taylor expansion, |ḡRn(θ̂n) − ḡRn(θ0)|2 ≥

λmin([∇θS
ḡRn(θ̇)]

T[∇θS
ḡRn(θ̇)])|θ̂n,S − θ0,S |2 for some θ̇ lying on the line jointing θ0 and θ̂n.

Same as Lemma 3, λmin([∇θS
ḡRn(θ̇)]

T[∇θS
ḡRn(θ̇)]) is bounded away from zero w.p.a.1, which

implies |θ̂n,S − θ0,S |2 = Op(ℓ
1/2
n ν) + Op{s

1/2χ
1/2
n b

1/(4β)
n }. Together with Condition 7, it holds

that |{∇θS
ḡRn(θ̃) − ∇θS

ḡRn(θ̂n)}(θ̂n,S − θ0,S)|2 = Op(ℓ
3/2
n s̟

1/2
n ν2) + Op{ℓ

1/2
n s2̟

1/2
n χnb

1/(2β)
n }.
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Therefore, (7.12) leads to

δTĴRn

[
θ̂n,S − θ0,S − Ĵ−1

Rn
{∇θS

ḡRn(θ̂n)}
TV̂−1

Rn
(θ̂n)η̂Rn

]

=− δT{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n)ḡRn(θ0) +Op(ℓ
3/2
n s̟1/2

n ν2) +Op{ℓ
1/2
n s2̟1/2

n χnb
1/(2β)
n }

+Op

(
ℓ1/2n max{ℓnn

−1, sχnb
1/(2β)
n }max{s1/2ω1/2

n , n1/γ}
)
+Op(s

1/2χn)

=−αTĴ
−1/2
Rn

{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n)ḡRn(θ0) +Op(ℓ
3/2
n s̟1/2

n ν2) +Op{ℓ
1/2
n s2̟1/2

n χnb
1/(2β)
n }

+Op

(
ℓ1/2n max{ℓnn

−1, sχnb
1/(2β)
n }max{s1/2ω1/2

n , n1/γ}
)
+Op(s

1/2χn).

Lemma 4 leads to n1/2αTĴ
−1/2
Rn

{∇θS
ḡRn(θ̂n)}

TV̂−1
Rn

(θ̂n)ḡRn(θ0) →d N(0, 1) as n → ∞. We

complete the proof of Theorem 2. �
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SUPPLEMENTARY MATERIAL 1

Supplementary Material for “A New Scope of Penalized
Empirical Likelihood with High-dimensional Estimating

Equations” by Chang, Tang and Wu.

Proof of Lemma 1

Notice that ‖V̂F (θ)−VF (θ0)‖2 ≤ ‖V̂F (θ)−V̂F (θ0)‖2+‖V̂F (θ0)−VF (θ0)‖2 for any F ∈ F and

θ ∈ Θn. Following the moderate deviation of self-normalized sums (Jing, Shao and Wang, 2003)

and Condition 5, it holds that max1≤j1,j2≤r |n
−1

∑n
i=1 gi,j1(θ0)gi,j2(θ0) − E{gi,j1(θ0)gi,j2(θ0)}| =

Op{(n
−1̺n log r)

1/2}, which implies supF∈F ‖V̂F (θ0)−VF (θ0)‖2 = Op{ℓn(n
−1̺n log r)

1/2} pro-

vided that log r = o(n1/3). For any z ∈ R
|F| with unit L2-norm, we have

∣∣zT{V̂F (θ)− V̂F (θ0)}z
∣∣ ≤ 1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2

+ 2λ1/2
max{V̂F (θ0)}

{
1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2

}1/2

,

which implies

sup
F∈F

‖V̂F (θ)− V̂F (θ0)‖2 ≤ sup
F∈F

{
1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2

}

+ 2 sup
F∈F

λ1/2
max{V̂F (θ0)} · sup

F∈F

{
1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2

}1/2

.

Write θ = (θT

S ,θ
T

Sc)T with θS ∈ R
s. By Taylor expansion and Cauchy-Schwarz inequality, we

have

1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2 ≤

2

n

n∑

i=1

∣∣∣∣
∂gi,F (θ̃)

∂θS
(θS − θ0,S)

∣∣∣∣
2

2

+
2

n

n∑

i=1

∣∣∣∣
∂gi,F (θ̃)

∂θSc

θSc

∣∣∣∣
2

2

≤ 2|θS − θ0,S |
2
1 max
1≤k1,k2≤s

∣∣∣∣
1

n

n∑

i=1

{
∂gi,F (θ̃)

∂θk1

}
T
{
∂gi,F (θ̃)

∂θk2

}∣∣∣∣

+ 2|θSc|21 max
s+1≤k1,k2≤p

∣∣∣∣
1

n

n∑

i=1

{
∂gi,F (θ̃)

∂θk1

}
T
{
∂gi,F (θ̃)

∂θk2

}∣∣∣∣,

for some θ̃ lying on the jointing line between θ0 and θ. By Condition 5,

max
1≤k1,k2≤s

∣∣∣∣
1

n

n∑

i=1

{
∂gi,F (θ̃)

∂θk1

}
T
{
∂gi,F (θ̃)

∂θk2

}∣∣∣∣ ≤
∑

j∈F

max
k∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gi,j(θ̃)

∂θk

∣∣∣∣
2}

≤ |F| max
1≤j≤r

max
k∈S

{
1

n

n∑

i=1

∣∣∣∣
∂gi,j(θ̃)

∂θk

∣∣∣∣
2}

= Op(ℓnωn).

Similarly, we have

max
s+1≤k1,k2≤p

∣∣∣∣
1

n

n∑

i=1

{
∂gi,F (θ̃)

∂θk1

}
T
{
∂gi,F (θ̃)

∂θk2

}∣∣∣∣ = Op(ℓnξn).
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Therefore,

1

n

n∑

i=1

|gi,F (θ)− gi,F (θ0)|
2
2 = Op(s

2ℓnωnb
1/β
n )

holds uniformly for θ ∈ Θn. Meanwhile, by Condition 4, it holds that supF∈F λmax{V̂F (θ0)} ≤ C

w.p.a.1. Then supθ∈Θn
supF∈F ‖V̂F (θ) − V̂F (θ0)‖2 = Op{s(ℓnωnb

1/β
n )1/2}. Thus we complete

the proof of Lemma 1. �

Proof of Lemma 2

As shown in Section 7.4, |λ̂|2 = Op(ℓ
1/2
n n−1/2)+Op{s

1/2χ
1/2
n b

1/(4β)
n } and max1≤i≤n |λ̂

T

Rn
gi,Rn(θ̂n)| =

Op(ℓnn
−1/2+1/γ) +Op{ℓ

1/2
n s1/2χ

1/2
n b

1/(4β)
n n1/γ} = op(1). Notice that |(1+ x)−2 − 1| ≤ 5|x| for any

|x| < 1/2, by Lemma 1, it holds that w.p.a.1
∥∥∥∥
1

n

n∑

i=1

gi,Rn(θ̂n)gi,Rn(θ̂n)
T

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

2
− V̂Rn(θ̂n)

∥∥∥∥
2

≤ 5λmax{V̂Rn(θ̂n)} max
1≤i≤n

|λ̂
T

Rn
gi,Rn(θ̂n)|

= Op(ℓnn
−1/2+1/γ) +Op{ℓ

1/2
n s1/2χ1/2

n b1/(4β)n n1/γ}.

For the second result, by Taylor expansion and Cauchy-Schwarz inequality, it holds that w.p.a.1
∣∣∣∣
{
1

n

n∑

i=1

∇θS
gi,Rn(θ̂n)

1 + λ̂
T

Rn
gi,Rn(θ̂n)

−∇θS
ḡRn(θ̂n)

}
z

∣∣∣∣
2

2

≤

[
1

n

n∑

i=1

λ̂
T

Rn
gi,Rn(θ̂n)gi,Rn(θ̂n)

Tλ̂Rn

{1 + cλ̂
T

Rn
gi,Rn(θ̂n)}

4

][
1

n

n∑

i=1

zT{∇θS
gi,Rn(θ̂n)}

T{∇θS
gi,Rn(θ̂n)}z

]

≤ λ̂
T

Rn
V̂Rn(θ̂n)λ̂Rn

[
1

n

n∑

i=1

zT{∇θS
gi,Rn(θ̂n)}

T{∇θS
gi,Rn(θ̂n)}z

]
{1 + op(1)}

(7.13)

for some |c| < 1. By Lemma 1, it holds that λ̂
T

Rn
V̂Rn(θ̂n)λ̂Rn ≤ λmax{V̂Rn(θ̂n)}|λ̂Rn |

2
2 =

Op(ℓnn
−1) + Op{sχnb

1/(2β)
n }. Meanwhile, write z = (z1, . . . , zs)

T, by Cauchy-Schwarz inequality

and Condition 5,

1

n

n∑

i=1

zT{∇θS
gi,Rn(θ̂n)}

T{∇θS
gi,Rn(θ̂n)}z ≤

|z|22
n

n∑

i=1

∑

j∈Rn

s∑

k=1

∣∣∣∣
∂gi,j(θ̂n)

∂θk

∣∣∣∣
2

= |z|22 · Op(ℓnsωn).

Therefore, (7.13) leads to
∣∣∣∣
{
1

n

n∑

i=1

∇θS
gi,Rn(θ̂n)

1 + λ̂
T

Rn
gi,Rn(θ̂n)

−∇θS
ḡRn(θ̂n)

}
z

∣∣∣∣
2

= |z|2[Op(ℓns
1/2ω1/2

n n−1/2) +Op{ℓ
1/2
n sω1/2

n χ1/2
n b1/(4β)n }].

(7.14)

We complete the proof of Lemma 2. �

Proof of Lemma 3

Notice that
∣∣[∇θS

ḡF (θ̂n)− E{∇θS
gi,F (θ0)}

]
z
∣∣
2

≤
∣∣{∇θS

ḡF (θ̂n)−∇θS
ḡF (θ0)}z

∣∣
2
+
∣∣[∇θS

ḡF (θ0)− E{∇θS
gi,F (θ0)}]z

∣∣
2

(7.15)
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for any z ∈ R
s. By Taylor expansion, Jensen’s inequality and Cauchy-Schwarz inequality, it holds

that w.p.a.1

∣∣{∇θS
ḡF (θ̂n)−∇θS

ḡF (θ0)}z
∣∣2
2
=
∑

j∈F

{
1

n

n∑

i=1

s∑

k=1

zk

s∑

l=1

∂2gi,j(θ̃)

∂θk∂θl
(θ̂l − θ0l )

}2

≤
|z|22
n

∑

j∈F

n∑

i=1

s∑

k=1

s∑

l=1

∣∣∣∣
∂2gi,j(θ̃)

∂θk∂θl

∣∣∣∣
2

|θ̂n,S − θ0,S |
2
2,

where θ̃ lies on the jointing line between θ0 and θ̂n. It follows from Condition 7 that

sup
F∈F

∣∣{∇θS
ḡF (θ̂n)−∇θS

ḡF (θ0)}z
∣∣
2
= |z|2 · Op{s

3/2ℓ1/2n ̟1/2
n b1/(2β)n }. (7.16)

On the other hand, by Cauchy-Schwarz inequality, it holds that

∣∣[∇θS
ḡF (θ0)− E{∇θS

gi,F (θ0)}]z
∣∣2
2

=
∑

j∈F

(
1

n

n∑

i=1

s∑

k=1

zk

[
∂gi,j(θ0)

∂θk
− E

{
∂gi,j(θ0)

∂θk

}])2

≤ |z|22
∑

j∈F

s∑

k=1

(
1

n

n∑

i=1

[
∂gi,j(θ0)

∂θk
− E

{
∂gi,j(θ0)

∂θk

}])2

.

Notice that

sup
1≤j≤r

sup
1≤k≤s

∣∣∣∣
1

n

n∑

i=1

[
∂gi,j(θ0)

∂θk
− E

{
∂gi,j(θ0)

∂θk

}]∣∣∣∣ = Op{(n
−1ωn log r)

1/2},

therefore

sup
F∈F

∣∣[∇θS
ḡF (θ0)− E{∇θS

gi,F (θ0)}]z
∣∣
2
= |z|2 ·Op{(n

−1sℓnωn log r)
1/2}.

Together with (7.16), (7.15) yields that

sup
F∈F

∣∣[∇θS
ḡF (θ̂n)− E{∇θS

gi,F (θ0)}]z
∣∣
2

= |z|2
[
Op{s

3/2ℓ1/2n ̟1/2
n b1/(2β)n }+Op{(n

−1sℓnωn log r)
1/2}

]
.

We complete the proof of Lemma 3. �

Proof of Lemma 4

For any F ∈ F , let JF = [E{∇θS
gi,F (θ0)}]

TV−1
F (θ0)[E{∇θS

gi,F (θ0)}]. Given F , by Lindeberg-

Feller Central Limit Theorem, we have

n1/2αTJ
−1/2
F [E{∇θS

gi,F (θ0)}]
TV−1

F (θ0)ḡF (θ0)
d
−→ N(0, 1).

Let Zi,F = αTJ
−1/2
F [E{∇θS

gi,F (θ0)}]
TV−1

F (θ0)gi,F (θ0). Applying Berry-Esseen inequality, we

have

sup
u∈R

∣∣∣P
[
n1/2αTJ

−1/2
F [E{∇θS

gi,F (θ0)}]
TV−1

F (θ0)ḡF (θ0) ≤ u
]
− Φ(u)

∣∣∣ ≤ Cn−1/2
E(|Zi,F |

3),
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where C is a uniform positive constant independent of F . By Cauchy-Schwarz inequality,

|Zi,F |
2 ≤ |V

−1/2
F (θ0)[E{∇θS

gi,F (θ0)}]J
−1/2
F α|22|V

−1/2
F (θ0)gi,F (θ0)|

2
2

≤ λ−1
min{VF (θ0)}|gi,F (θ0)|

2
2,

which implies

E(|Zi,F |
3) ≤ λ

−3/2
min {VF (θ0)}E{|gi,F (θ0)|

3
2} ≤ Cλ

−3/2
min {VF (θ0)}ℓ

3/2
n

for a uniform positive constant C independent of F . Therefore, if ℓn = o(n1/3), we have

sup
F∈F

sup
u∈R

∣∣∣P
[
n1/2αTJ

−1/2
F [E{∇θS

gi,F (θ0)}]
TV−1

F (θ0)ḡF (θ0) ≤ u
]
− Φ(u)

∣∣∣ → 0. (7.17)

Write ΨF = αTJ
−1/2
F [E{∇θS

gi,F (θ0)}]
TV−1

F (θ0)ḡF (θ0) and Ψ̂F = αTĴ
−1/2
F {∇θS

ḡF (θ̂n)}
TV̂−1

F (θ̂n)ḡF (θ0).

By Lemmas 2 and 3, noting supF∈F |ḡF (θ0)|2 = n−1/2ℓ
1/2
n ̺

1/4
n (log r)1/2, we have

sup
F∈F

|n1/2(Ψ̂F −ΨF )| = Op{sℓnω
1/2
n b1/(2β)n ̺1/4n (log r)1/2}+Op(ℓ

3/2
n n−1/2̺3/4n log r)

+Op{s
3/2ℓn̟

1/2
n b1/(2β)n ̺1/4n (log r)1/2}+Op(n

−1/2s1/2ℓnω
1/2
n ̺1/4n log r)

= op(1).

Hence, for any u ∈ R, (7.17) leads to the result. �
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