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Summary

We evaluate the effects of data dimension on the asymptotic normality of the empirical
likelihood ratio for high-dimensional data under a general multivariate model. Data dimen
sion and dependence among components of the multivariate random vector affect the empir
ical likelihood directly through the trace and the eigenvalues of the covariance matrix. The
growth rates to infinity we obtain for the data dimension improve the rates of Hjort et al.
(2008).

Some key words: Asymptotic normality; Data dimension; Empirical likelihood; High-dimensional data.

1. Introduction

Since Owen (1988, 1990) introduced empirical likelihood, it has been extended to a wide
range of settings as a tool for nonparametric and semiparametric inference. Its most attractive

property is its permitting likelihood-like inference in nonparametric or semiparametric settings,
largely due to its sharing two key properties with the conventional likelihood: Wilks' theorem
and Bartlett correction (Hall & La Scala, 1990; DiCiccio et al., 1991; Chen & Cui, 2006).

High-dimensional data are increasingly common; for instance, in DNA and genetic microarray

analysis, marketing research and financial applications. There is a rapidly expanding literature
on multivariate analysis where the data dimension depends on the sample size and grows
to infinity as -> oo; see, for example, Portnoy (1984, 1985) in the context of M-estimation,
Bai & Saranadasa (1996) for two-sample test for means, Ledoit & Wolf (2002) and Schott (2005)
for testing a specific covariance structure and Schott (2007) for tests with more than two samples.

Given the interest in both high-dimensional data and empirical likelihood, there is a need
to evaluate the behaviour of the latter when the data dimension and the sample size increase
simultaneously. In this paper, we evaluate the effects of the data dimension and dependence on
the asymptotic normality of the empirical likelihood ratio statistic for the mean.

This content downloaded from 116.1.3.20 on Mon, 24 May 2021 08:40:48 UTC
All use subject to https://about.jstor.org/terms

迹 征值特

湂
同时地痛点{



712 Song Chen, Liang Peng and Ying-Li Qin

Let X\,..., Xn be independent and identically distributed /^-dimensional random vectors in
Rp with mean vector = ( ,..., ) and nonsingular variance matrix . Let

( ) = sup I n?=17t/ : n? > 0, ^ , = 1, ^tt;X? = (1)\ /= /= /
be the empirical likelihood for and let ( ) ? ?2 log{?"L?(^)} be the empirical likelihood
ratio statistic. When is fixed, Owen (1988, 1990) showed that

> ( ) -> X2P (2)

in distribution as -> oo, which mimics Wilks' theorem for parametric likelihood ratios. An
extension of the above result for parameters defined by general estimating equations is given in
Qin & Lawless (1994).

As -> oo for high-dimensional data, the natural substitute for (2) is

(2 ,2{ { ) - ] ^ N(0, 1) (3)

in distribution as ?> oo, since 2 is asymptotic normal with mean and variance 2p. A key
question is how large the dimension can be while (3) remains valid. In a recent study, Hjort et al.

(2008) have established that it is = o(n1^) under the assumptions:

Assumption 1. The eigenvalues of are uniformly bounded away from zero and infinity, and

Assumption 2. All components of X? are uniformly bounded random variables.

When Assumption 2 is relaxed, we have:

Assumption 2!. EQlp^^X^) and p~x Y*=l E(\x\j) - ^) are bounded for some q ^ 4,
wherell ? || is the Euclidean norm. Hjort et al. (2008) showed that (3) is valid if ^3+6/(^~2)/w -* 0.

When q = 4 in Assumption 2', it means = o(n]/6). Hence, there is a significant slowing
down on the rate of -> oo when Assumption 2 is weakened. Tsao (2004) found that, when
is moderately large but fixed, the distribution of { ) has an atom at infinity for fixed n: the
probability of ( ) = oo is nonzero. Tsao showed that, if and increase at the same rate such
that / ^ 0-5, the probability of ( ) = oo converges to 1 since the probability of being
contained in the convex hull of the sample converges to 0. These reveal the effects of on the
empirical likelihood from another perspective.

In this paper, we analyze the empirical likelihood for high-dimensional data under a general

multivariate model, which facilitates a more detailed analysis than Hjort et al. (2008) and al
lows less restrictive conditions. The analysis requires neither the largest eigenvalue of nor
E(\\p~l^2Xi 11^) to be bounded, and hence accommodates a wider range of dependences among
components of X?.

Our main finding is that the effect of the dimensionality and the dependence among components

of X\ on the empirical likelihood are leveraged through ( ), the trace of the covariance matrix
and its largest eigenvalue . We provide a general rate for the dimension p, which is shown

to be dependent on tr?E) and . In particular, under Assumptions 1 and 2, = o(n1/2), which
improves ? o(nXf2>) of Hjort et al. (2008). This is likely to be the best rate for in the context
of the empirical likelihood as = o(n1^2) is the sufficient and necessary condition for the
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Empirical likelihood 713

convergence of the sample covariance matrix to under the trace-norm when all the eigenvalues
of are bounded.

2. Preliminaries

Suppose that each of the independent and identically distributed observations X? e Rp is
specified by X? = Zi + , where is a m matrix, m ^ /?, and ,? = (Zn,..., Zimf is a
random vector such that

E(Zi) = 0, var(Z?) = Im, E (zf) = m4k e (0, oo), (4)

E(Z%-.-Z^=E(Z%)---E(Z^,
whenever X)f=i a ^ 4? and / ? ? ? + lq. Here ? is some positive integer and Im is the
m-dimensional identity matrix.

The above multivariate model, employed in Bai & Saranadasa (1996), means that each X?
is a linear transformation of some m-variate random vector Zz . An important feature is that
m, the dimension of Z?, is arbitrary provided m ^ and = , which can generate a rich
collection of X? from ,? with the given covariance . It also requires that power transformations

of different components of Z; are uncorrelated, which is weaker than assuming that they are
independent. The model (4) encompasses many multivariate models. It includes the elliptically
contoured distributions with Z? = RU^ where R is a nonnegative random variable and is
the uniform random vector on the unit sphere (Fang & Zhang, 1990). The multivariate normal
and /-distribution are elliptically contoured, and so are a mixture of normal distributions whose

density is defined by / n(x | , ~2 )a ( ), where n(x \ , ) is the density of ( , ) and
w(v) is the distribution function of a nonnegative univariate random variable (Anderson, 2003).
Both the moment conditions and the correlation are imposed on ,? rather than X?. This model
structure allows the moments of \\X? ? \\2 to be derived and allows us to conduct a more
detailed analysis than possible in Hjort et al. (2008).

The integer k determines the number of finite moments for Zu. As k ^ 1, each Zu has at least

finite fourth moments. This is the minimal moment condition to ensure the convergence of the

largest eigenvalue of the sample covariance matrix to the largest eigenvalues of (Yin et al.,
1988; Bai et al., 1998), and hence the convergence of the sample covariance matrix to under
the matrix norm based on the largest eigenvalue. By inspecting the proofs given in the Appendix,

we see that a divergent sample covariance matrix would dramatically alter the asymptotic mean
and variance of the empirical likelihood ratio. Hence, it is unclear if (3) would remain true.

From the standard empirical likelihood solutions (Owen, 1988, 1990) that are valid for any p,

fixed or growing, the optimal weights i for the optimization problem (1) are

1 1
,? =1 1 + ( -

where Rp is a Lagrange multiplier satisfying

g(?) = y-^JLif-= o. (5)

Hence, the empirical likelihood Ln(?) equals n~nY["=l{l+kT(X? ? )}~1. As the maxi
mum empirical likelihood is attained at , = n~l (i = !,...,?), the empirical likelihood ratio
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714 Song Chen, Liang Peng and Ying-Li Qin
statistic is

( ) = -2 log{nnLn(?)} = 2 ? log{l + ( , - )}.
?=\

Throughout the paper we let \(A) ^ ? ? ? < YP(A) denote the eigenvalues and let tr(^4) denote
the trace operator of a matrix A. When A = , we write y7 ( ) as y7 (y = 1,..., p). It is assumed
throughout the paper that \ ^ C\ for some positive constant C\.

3. Effects of high dimension

The Lagrange multiplier defined in (5) is a key element in any empirical likelihood formula
tion, and reflects the implicit nature of the methodology. When is fixed, Owen (1990) showed
that

\\ \\ = ( ~['2). (6)

This has been the prevailing order for the except in nonparametric curve estimation, where is
replaced by the effective sample size (Chen, 1996). When grows with n, (6) is no longer valid.

Theorem 1. If{tr(V)}4k-lYp = 0(n2k~l) a a 2 2 = o(n% then || || = [{ ( )/ '21

Theorem 1 implies that the effect of the dimension and dependence among components of X?

on the Lagrange multiplier is directly determined through ( ) and . The rate for | | | | can be

regarded as a generalization of (6) for a fixed since Op[{ ( )/ }1^2] degenerates to Op(n~1^2)
in that case.

We first study the effects of dimension on the asymptotic normality of ( ), assuming
existence of the minimal fourth moment for each Z;/. Later, we will increase the number of
moments. We assume for the time being that k = 1 in (4) and 5( ) = o(np). Since \ ^

( ) < pYp, this implies the conditions of Theorem 1.
We wish to establish an expansion for ( ). Put W? ? ( , ? ). From (A7) of the Ap

pendix, max \Wi \ = 0n(l), which allowsi=\,...,n

log{l + X\Xi - )} =Wi- Wf/2 + Wf /(l + )4, (7)

where |? | s? \XJ(X? ? )|. Expand (5) so that

0 = ?( ) = - - SnX + ?n,

where ? = n~x = ( - nWf/{\ + ?)3 for some |&| < \XT(X? - )| and S? =
"_1 ZUM - MXi - ?f- Hence,

X = S-\X-?) + S-x?n. (8)

From (7) and (8), we obtain an expansion for ( ):

( ) = n(X - ) -\ - )- n?nS;x ?? + ? ?= { ( ,? - )}3/0 + )4
= n{X - ) - ( - ) + ( - )^"1 - ^ - )

-n?nS^?n + ]Rn{\+op(\)}, (9)

where Rn = "= &T(Xi ? )}3. This expansion looks similar to that given in Owen (1990) for
a fixed p, but the stochastic order of each term requires careful evaluation as grows with n.
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Empirical likelihood 715

From Lemma 5 in the Appendix, we have

(2p)-V2{n(X - ) -\ - ) - }-+ N(0, 1) (10)

in distribution as -? oo, which is true under much weaker conditions, for instance p/n -> c >
0, by applying the martingale central limit theorem. Derivations given in the Appendix show that

the other two terms on the right-hand side of (9) are both op(p1/2). These lead us to establish (3)
as summarized in the following theorem.

Theorem 2. Ifk = 1 in (4) and tr^E)/* = o(np), then (3) is valid.

Theorem 2 indicates that, when is bounded, (3) is true if = ?(h1/4), which improves the
order = o(n1^6) obtained by Hjort et al. (2008) under the finite fourth moment condition of
Xj, which we do not need in our study. The conditions assumed under Theorem 2 are liberal
compared to Assumptions 1 and 2, and there is no explicit restriction on 9 which may diverge
to infinity as ?> oo.

Next we show that the dimension can increase more rapidly if Zu possesses more than
four moments. Assuming higher-order moments allows us to evaluate those terms in (9) more
accurately. Specifically, we will assume Zu has at least finite 12th moment, k ^ 3 in model (4).
The case k ^ 2 can be considered as a part of the case k ^ 1 whose analysis is covered by
Theorem 2. The following theorem, whose proof is given in an Iowa State University technical
report available from the authors, shows that = o(n1^2) is approachable.

Theorem 3. Ifk ^ 3 in (4), {tr??)}4k-1 = 0(n2k~l) and 2 5 = { ^' ^A% then (3)
is valid.

When is bounded, Theorem 3 implies that ( ) is asymptotically normally distributed
if = o(?1//2_1/^), which is close to 6>(?1/2) for k ^ 3 and improves the earlier rate o(n1^)
attained in Hjort et al. (2008). By reviewing the proof of Theorem 3, we can see that if Zy are all
bounded random variables the dimensionality can reach o(nl/2). We believe that = o(n1^2) is
the best rate for the asymptotic normality of the empirical likelihood ratio with the normalizing

constants and (2p)1^2, based on the following considerations. Lemma 4 in the Appendix implies
that, when the largest eigenvalue of is bounded, ||Si, ? || 0 in probability if and only
if = ( 2). Here |M||tr = {tr(??)}1!2 is the trace norm. Bai & Yin (1993) established the
convergence of Sn to with probability one if = o(n) under the matrix norm based on the
largest eigenvalue by assuming each Zn\ are independent and identically distributed. However,
it can be seen from our proofs in the technical report that the convergence of Sn to under the

trace norm is the one used in establishing various results for the empirical likelihood.

As shown by Theorems 2 and 3, when (3) is valid, the asymptotic mean and variance of
the empirical likelihood ratio are respectively and 2p, which are known. This means that
the empirical likelihood carries out internal studentizing even when increases along with n.
However, it is apparent that the internal studentization prevents from growing faster as it brings

in those higher-order terms.

The least-squares empirical likelihood is a simplified version of the empirical likelihood. The
least-squares empirical likelihood ratio for is qn( ) = min ( ? l)2 subject to ?= ~ 1
and TCi(Xi ? ) = 0. The least-squares empirical likelihood uses ( ? l)2 to approximate
?2 log(?7t/). As shown in Brown & Chen (1998), the optimal weights n? admit closed-form
solutions so that

qn{ ) = n(X- H-\X- \ ( )
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716 Song Chen, Liang Peng and Ying-Li Qin

where Hn = Sn ? (X ? )( ? ) . Thus, qn(?) can be readily computed without solving the
nonlinear equation (5) as for the full empirical likelihood. The least-squares empirical likelihood

ratio is a first-order approximation to the full empirical likelihood ratio, and qn(?) -> Xp in
distribution when is fixed.

The least-squares empirical likelihood is less affected by higher dimension. In particular, if
k > 3 in (4), then

(2Prl'2{qM-p}^N(p9l) (12)
in distribution as ?> oc when = o{n2^), which improves the rate given by Theorem 3 for the
full empirical likelihood ratio ( ).

To appreciate (12), we note from (11) that

qn(ji) = n(X - ) '\ - ) + n(X - )\ ; - ~ ){ - ). (13)
Then, following a similar line to the proof of Lemma 6,

n(X - ) ( -1 - - )( - ) = Op(p2/n) = { '2).
As the first term on the right-hand side of (13) is asymptotically normal with mean and variance

2p as conveyed in (10), (12) is valid.
If we confine ourselves to specific distributions, taster rates for can be established. For

example, if the data are normally distributed, the least-squares empirical likelihood ratio is the

Hotelling- 2 statistic, which is shown in Bai & Saranadasa (1996) to be asymptotically normal
ifp/n c e [0, 1).

4. Numerical results

We report results from a simulation study designed to evaluate the asymptotic normality of
the empirical likelihood ratio. The 1 independent and identically distributed data vectors
{Xi}"=i were generated from a moving average model,

Xij = Zij + pZij+i (i = 1, .... n, y' = l,...,/?),

where, for each /, the innovations {Z/y}^1 were independent random variables with zero mean
and unit variance. We considered two distributions for the innovation Zy. One is the standard nor
mal distribution, and the other is a standardized version of a Pareto distribution with distribution

function (1 ? x~4'5)I(x ^ 1). We standardized the Pareto random variables so that they had zero
mean and unit variance. As the Pareto distribution has only four finite moments, we had k = 1 in

(4), whereas k = oo for the normally distributed innovations. In both distributions, X? is a mul

tivariate random vector with zero mean and covariance = ( ^) 9 where / = 1, a?\ =
and = 0 for \i ? j\ > 1. We set to be 0-5 throughout the simulation.

To make and increase simultaneously, we considered two growth rates for with respect
to n: (i) = c\n0'4 and (ii) = C2n0'24. We chose the sample size = 200, 400 and 800. By
assigning c\ =3,4 and 5 in the faster growth rate setting (i), we obtained three dimensions for

each sample size, which were = 25,33 and 43 for = 200; = 33,44 and 58 for = 400; and
= 42, 55 and 72 for = 800, respectively. For the slower growth rate setting (ii), to maintain

a certain amount of increase between successive dimensions when was increased, we assigned
larger c2 = 4, 6 and 8, which led to = 14, 17 and 20 for = 200; = 21, 25 and 30 for
= 400; and = 29, 34 and 40 for = 800, respectively.
We carried out 500 simulations for each of the (p, ^-combinations and for each of the two

innovation distributions. Figure 1 displays Q-Q plots of standardized empirical likelihood ratio
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Empirical likelihood 111

Pareto = 200 Pareto = 400 Pareto = 800

Normal quantile Normal quantile Normal quantile

Fig. 1. Normal Q-Q plots with the faster growth rate = c\n04 for the normal (upper panels) and the
Pareto (lower panels) innovations: c\ = 3 (solid line), 4 (dotted lines) and 5 (dashed lines).

statistics for the faster growth rate (i). Those for the slower growth rate (ii) are presented in
Fig. 2. As and were increased simultaneously, there was a general convergence of the
standardized empirical likelihood ratio to N(0, 1). We also observed that the convergence in
Fig. 2 for the slower growth rate setting (ii) was faster than that in Fig. 1 for the faster growth rate

setting. This is expected as the setting (i) ensured much higher dimensionality. The convergence

for the normal innovation was faster than that for the Pareto case when = c\n0'4 in Fig. 1.
This may be explained by the fact that the Pareto distribution has only finite fourth moments,

which corresponds to k = 1, whereas the normal innovation has all moments finite. According to

Theorems 2 and 3, the growth rate for depends on the value of k: the larger the k, the higher the

rate. For the lower growth rate in setting (ii), Fig. 2 shows that, there was substantial improvement

in the convergence in the Q-Q plots as was increased at the slower rate for both distributions of
innovations.

It is observed that the most of the lack-of-fit in the N(0, 1) Q-Q plots in Figs. 1 and 2 appeared
at the lower and upper quantiles. This could be attributed to the lack-of-fit between 2 and

iV(0, 1), as 2 may be viewed as the intermediate convergence of the empirical likelihood ratio.
To verify this, we carried out further simulations by inverting settings (i) and (ii) so that for

a given dimension p, three sample sizes were generated according to (iii) = (p/c\)1^0'4 and
(iv) = (p/c2)1/0'24, with c\ =3,4 and 5 and C2 = 4, 5 and 6, respectively. We chose = 35, 45
and 55 for the setting (iii) and = 17, 20 and 25 for the setting (iv). Two figures of 2-based
Q-Q plots for (iii) and (iv), given in the Iowa State University technical report, show that there
was a substantial improvement in the overall fit of the Q-Q plots, and that the lack-of-fit in the
N(0, l)-based Q-Q plots largely disappeared.
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Appendix

Technical details

We first establish some lemmas.

Lemma 1. Ifm ^ < oo for some k ^ 1, then

E(\\Xi - ||2*) = 0{tr*(E)} and var(||Xz- - ||2*) = 0{ ^- ( ) }.

Proof. We only show the case of k = 1 since other cases are similar. It is easy to check that

E(\\ > - /x||2) = KIEW - pfiXi - )} = ( ) (Al)
and

E(\\Xi - \\4) = ?(|| ;||4) = E( ] ZtZJT Z?) = { E( ] ])}.
Write = (vsl)^Km. Then ^ ^] = (?"=l ?= Z^Z^jZ^Z^h^,^ When kx =
k2 =s,

^{ ;= /Li ZihZiiVijZijZih} = vssE(Zis)4 + * vu
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Empirical likelihood 719

When *, * k2, ?( 7= = z<*.ZiivijZijZih) = 2vt,fe. Hence,

?(||*? - ||4) = {W4 - 3} vi + tr^S) + 2tr(E2). (A2)
s=l

Note that ? = v2s ^ ?J=, = = ( )2} = tr(S2). This together with (Al) and (A2) implies
that var(|\Xt - \|2) = {m4 - 3} = ^ + 2*( 2) = 0{tr(E2)}.

Lemma 2. If m^ < oo for some k ^ 1, w?Y/? probability one,

max II* - || = 4{tr(E)r<2*~W<4V/(4V^l + 0{tr'/2(S)}.i=l,...,n ^

Proof. We note that

max - ! max \\\Xt - p\\2k - E(\\Xt - p\\2k)\ + ?(11** - p\\2k)}l/{2k)1 = 1,...,71 1 = 1,...,M

and

max - ?\\2k - ?(||X? - ^{varOI*, - / ||2*) 1/2] = o(?1/2)
= 1,...,

with probability one as -> oo. The lemma is proved by applying Lemma A3 of Owen (1990) and
Lemma 1.

From now on, we let Y? = ~1/2( / - ), Vn = \ ??=1 YJJ, = i ?= ^ and D? = Vn - Ip =
Ws/)/,j = 1,...,/>?

Lemma 3. Under the conditions of Theorem 1, tr(D2) = Op(p2/n).

Proof. We only need to show that ?{tr(D2)} = 0(p2/n). Note that Vn = - /2 ? "-1/2 , where

& = ?-1 /= ZiZ? and = _1 = MjJ = ?_m, say Then

tr(?>2) = tr(^E5zE) - 2tr(S2?) + (A3)

and

(m \ m mn~x ? = = ?Jj= (A4>
since tr(?) = tr(/p) = p. By utilizing information of Z? in (4),

E[tr{(Szt)2}] = El J2 n~2 2? ? / 2 2/ /2/2*/ /*/27
\7?,/=1/ ,/2=1 I*1,?2=1 /

m

= m^-1 4+w~1 (24++(i - ?_1) *

= *?+^ - ? ' 4+ _1 (??+j,l=? j=\ j+l

?

It is easy to check that EJ,,=1 2 = tr(E2) = p, ?J=1 ajj < EJ,/=, &j, = P, ;+, ^ ^ /=. ^
/? and \Y^j*i&jj&it\^(Y^=i?jj)2 = P2> These together with (A3) and (A4) imp
E{tr(D2)} = 0(p2/n).

Lemma 4. Under condition (4), max \yi(S?) ? ( )| = Op(yppn~?/2).
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Proof. Note that

Song Xi Chen, Liang Peng and Ying-Li Qin

\Yi(S?) - /,?( )|2 < ?|y,1/2(S?2)-y,l/2(E2)|2

= tr(S2) + tr(Z2) - 2 ? (5?) ( ).

By Von Neumann's inequality, X)f=i / ^/ ) ^ (^ ). Hence

max | ,?(^)- /( ) { (^- )2}1/2.

Now

tr{(5? - )2} = ^A, A, ) ^ 2( ) (?2) = { '( ) 2/ }
by applying Lemma 3.

This lemma implies that all the eigenvalues of Sn converge to those of uniformly at the rate of

OpiYppn-1'2).

Proof of Theorem 1. By (5), e Rp satisfies

1 n -?
+ \ - ) = *( ). (A5)

Write = , where > 0 and ||0|| = 1. Hence,

0 = )\\ > \ ?( )\

= 1 = 1

( , - )0 ( , - )
1+ ( ,- )

>PeTSne{l+p max \\ , - \\} ' - ?_1
/=1

Hence,

pl eTSne - max \\Xi - |
/=1

^ -
/ = 1

Since n'x | .= 0 ( / - )| = O^tr^/w}1/2], it follows from Lemma 2 that

max \\Xi ? \\
-1

= ^{{triE)}1-'/^^^?-1^1^ + CV{tr(E)?-'/2} = 0,(1).

(A6)

By Lemma 4, for a positive constant Cu ? ^ s-C])-* 1 as -> co. Hence || || = =
Op[{tr(E)/?}'/2]. "

By repeating (A6) in the proof of the above theorem and Lemma 2, we have

max || ( ; - ) || || max \\X? - \\ = op{\). (A7)i = \,...,n i?\,...,n
We need the following lemmas to prove Theorem 2.

Lemma 5. If p/n -> c ^ 0, iAe? (2/?)~1/2{?(Jf - ) "^(X - ) - p}-^N(0, 1) /? distribution as
?? oo.
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Proof. The proof entails applying the martingale central limit theorem (Hall & Hyde, 1980).
Bai & Saranadasa (1996) used this approach to establish asymptotic normality of a two sample test
statistic for high-dimensional data.

Lemma 6. Under the conditions of Theorem 2,

n(X - pY(S;1 - ~ )( - ) = op(p2n~1'2).

Proof. Recall that Dn = Vn ? Ip = (dsi)\<^s<^p,i^i^p. It follows from Lemma 3 that

P{ max \dklk2\ > e) ^ *-2E{4^) = -2E{tr{D2n)} = 0(p2/n).*"*>=1--' *,=lfe=l
Hence, dj? = Op{pn~111) = op{\) uniformly in 1 ^ j, I < p. It is easy to check that

K~l ~Ip = -Dn + D\ + D2n{V~x - Ip)
and

n(X - pY(S;1 - ~ )( -p) = nfT(V~x - ) .
From Lemma 1, ?(||?||2) = n~l E(\\ \\2) = p/n. Since \ A \ ^ \\?\\2{tr(A2)}^2 for any symmetric
matrix A, it follows from Lemma 4 and the condition = o(nl/3) that

\nfTDnf\ n\\f\\2{tr(D2n)}l/2 = Op(p2n-l/2) = op(p1'2).

Similarly, \nfTD2J\ ^ n\\Y\\2tv(D2n) = Op(p3/n) = op{px'2).
Furthermore, we note the following facts:

|?TZ)rt3?K max {\yi(Dn)\}YTD2nf = op(fTD2nY)i=\,...,p

since max {\yi(Dn)\} < {tr(D2)}1/2 0 and PD\Y ^ ( 2 ) D2J = op(YTD2J). In general, if*'=i.
= o(n]/2), for any positive integer /,

fJD2n+lY = op(fJD2nf).

The lemma follows from summarizing the above results.

Proof of Theorem 2. Put W? = ( , ? ). Then (A7) implies that max \Wj \ = op{\). Expand?=1.n
equation (A5),

0 = g{k) = X-V-Sn\ + ?n (A8)

where ?n = n~l "= ( " and |&| ^ | ( ; - )|. As max \W?\ = op(\\ max |?| =
v 5iy i = l,...,n i' = l,...,n

op(l) as well. Hence ?n = ?nX{\ + 0^(1)}, where ?ni = n~l "= ( - ) 2. Apply Theorem 1 and
Lemma 2 with k = 1, we have, if tr(E) = 0(yj/3?1/3),

||Ai||= max \\X? - \\\\ \\2 ( ( )) = (\\ \\). (A9)
i = l,...,n

It follows from (A8) that

? = 5?-'(l-M) + 5?-'? (AIO)

and log(l + W?) = W? - W2 ? + Wf /(l + ?,?)4 for some & such that |f, | ^ \ W?\. Therefore,

w?(p) = n(X - ) ; ( - )- n?nS~l ?n + ? ZU ~ ) (1 + */ 4
= ( - ) - ( - ) + ( - ) ( ; - ~ )( - )

2
-n?nS;x?n + \Rn{\+op(\)},
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722 Song Chen, Liang Peng and Ying-Li Qin

where R? = ?-=iUT(X/ - )}3. By (A9), (AIO) and Lemma 4,

\n?nS;l?n\^n\\?n\\2/yi(Sn)

= { \ ) - }+ { ^
We also note that Rn = ( ) /2( !=\ I Wl4||^ - ||4)1/2 = op(p^2). Hence the theorem follows
from Lemmas 5 and 6.
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