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a b s t r a c t

We apply empirical likelihood (EL) for high-dimensional semiparametric models and pro-
pose penalized empirical likelihood (PEL) method for parameter estimation and variable
selection. It is shown that the estimator based on EL has the asymptotic consistent property,
and that the limit distribution of the EL ratio statistic for the parameters θ is asymptotic
normal distribution. Furthermore, in a high-dimensional setting,weprove that PEL in semi-
parametric models has the oracle property, that is, with probability tending to 1, the esti-
mator based on PEL for the nonzero coefficients is efficient. Moreover, the PEL ratio statistic
for the parameters θ is a χ2

q distribution under the true null hypothesis. The performance
of the proposedmethod is illustrated via a real data application and numerical simulations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The empirical likelihood (EL) method, as a powerful nonparametric method of statistical inference, has sampling
properties similar to those of the bootstrap and has many advantages compared with the usual parametric procedures.
For example, the confidence region constructed by the EL method can be calibrated by using a nonparametric version of
Wilks’ Theorem involving a chi-squared limiting distribution, and the shape and orientation of the confidence region are
determined by the data. Therefore, since themethod of ELwas proposed by Owen (1988), this has been extended to complex
inference problems in various areas. Owen (1990) applied it to construct confidence regions for multivariate mean; Owen
(1991) extended the EL method to linear regression problem; Diciccio et al. (1991) studied the Bartlett adjustment for EL;
Qin and Lewless (1994) derived EL inference procedures for general estimating equations, Xue and Zhu (2007a,b) developed
this method for varying coefficient models and semiparametric regression analysis with longitudinal data; etc.

High-dimensional data, whose dimension p tends to infinity as the sample size n → ∞, becomesmore andmore popular
in many areas, such as financial and statistical applications, hyperspectral imagery, internet portals, high-throughput
genomic data analysis and other areas of computational biology; see, e.g., Bai and Aranadasa (1996), Ledoit and Wolf
(2002) and Hjort et al. (2009). The method of EL has been applied to some high-dimensional problems and its asymptotic
behavior under the setting where n and p both tend to infinity has also been carefully studied. Hjort et al. (2009) derived
the limit distribution of the EL ratio statistic based on p-dimensional estimating equations when p → ∞ with n at the rate
p = o


n1/3


; Chen et al. (2009) improved upon the rate restriction in Hjort et al. (2009) and established a nondegenerate

limit distribution of the EL ratio statistic, allowing p = o

n1/2


under suitable regularity conditions; Tang and Leng (2010)
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evaluated a penalized ELwhen the underlying parameter is sparse in the context of themean parameters and linearmodels;
Lahiri and Mukhopadhyay (2012) proposed a modified EL method by adding a penalty term to the original EL criterion for
estimating the high-dimensional mean parameters with p > n.

In statistical analysis, there are many situations in which researchers do not have enough knowledge to construct a
parametric likelihood function, but misspecification of the distributional or functional form may give us biased estimates
for the parametric model. On the one hand, to avoid the misspecification bias for the distribution form, it is common to use
estimating equations, which allow us to estimate unknown parameters without using parametric likelihood functions; on
the other hand, to avoid the misspecification bias for the functional form, it is common to use semiparametric models or
nonparametric models. Semiparametric models are a useful compromise between parametric and nonparametric models
to mitigate the curse of dimensionality but still allow reasonable flexibility to specify functional form; see, e.g., Engle et al.
(1986), Ichimura (1993), Härdle et al. (2000) and Du et al. (2010). Since EL was proposed, this has been extended to statistic
inference for semiparametric models, for example, Shi and Lau (2000) studied partial linear models by using the method of
EL; Xue and Zhu (2006) showed properties of EL for single-index models; Bertail (2006) gave the properties of EL for some
semiparametric models; etc. In high-dimensional setting, Li et al. (2012) considered EL for a varying coefficient partially
linear model with diverging number of parameters; Wang et al. (2013) studied EL inference for semiparametric estimating
equations; Tang et al. (2013) investigated EL for partially linear proportional hazards models with growing dimensions.

An interesting problem is variable selection in statistical analysis. Traditional procedures such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC) for variable selection were studied by Breiman (1996). To overcome
the inefficiency of traditional variable selection procedures, Fan and Li (2001) proposed approach by nonconcave penalized
likelihood to select variables and estimate the coefficients of variables. Variable selection procedures in high-dimensional
setting, where the dimension p of the observations increases with the sample size n, are given by Fan and Peng (2004),
Tang and Leng (2010) and Leng and Tang (2012), etc. Fan and Peng (2004) extended nonconcave penalized likelihood to
diverging number of parameters setting; Tang and Leng (2010), developed PEL for high-dimensional linear models, Leng
and Tang (2012) proposed PEL for growing dimensional general estimating equations.

Motivated by the EL method for high-dimensional data in Hjort et al. (2009), we aim to extend EL method for
semiparametric models that enables us to deal with the case of the data dimension p depending on the sample size n and
growing to infinity as n → ∞. The main contributions of this work are:

1. As for high-dimensional semiparametric models, we show that empirical likelihood gives consistent estimators for
parameter θ . Furthermore, we prove that the limit distribution of the EL ratio statistic is asymptotic normal distribution,
which extends the results in Leng and Tang (2012) to semiparametric models, and also extends the results in Wang
et al. (2013) to high-dimensional setting, i.e., as n → ∞, k → ∞ and p → ∞, where k and p are the dimension of
nonparametric component and parametric component of semiparametric models, respectively.

2. Wepresent variable selection, parameter estimation and inference for semiparametricmodels by PEL, asn → ∞, k → ∞

and p → ∞. For high-dimensional sparse semiparametric models, this method can select the none-zero coefficients
with probability converging to 1. Furthermore, PEL ratio statistic shows the well-knownWilks’ phenomenon, facilitating
hypothesis testing and constructing confidence regions.

The remainder of this paper is organized as follows. In Section 2, we prove the asymptotic properties of EL estimators
for high-dimensional semiparametric models under some regular conditions, and establish the limit distribution of the EL
ratio statistic. In Section 3, we show variable selection, parameter estimation and hypothesis testing for high-dimensional
semiparametric models by PEL. Computational algorithm and simulation results are reported in Section 4, and one real data
example is presented in Section 5. Finally, the technical proofs of main results are stated in the Appendix.

2. Empirical likelihood for high-dimensional semiparametric models

We consider semiparametric models by using the estimating equations which contain unknown functions framework as
the following:

E{g(X,H(T ), θ)} = 0, (1)

where X = (XT , Y , ZT )T is a random vector, T is an associated variable with a bounded support, H(T ) ∈ Rk is an unknown
smooth function with

H(t) = (H1(t),H2(t), . . . ,Hk(t))T = E(ϕ(·) | T = t),

ϕ(·) = (ϕ1(·), ϕ2(·), . . . , ϕk(·))
T are known measurable functions, g is a r dimensional vector of known functions,

θ = (θ1, θ2, . . . , θp)
T

∈ Θθ is a vector of unknown parameters and Θθ ∈ Rp. The model (1) includes various existing
semiparametric specifications, such as the partially linear model: g(X,H(T ), θ) = Y − XT θ −H(T ); the varying-coefficient
partially linearmodel: g(X,H(T ), θ) = Y−XT θ−H(T )Z; the single index regressionmodel: g(X,H(T ), θ) = Y−H(XT θ). In
addition, the linear errors-in-variablemodel, the partially linearmodel with the covariablesmissing at random, the partially
linear errors-in-variables model and the semiparametric varying-coefficient linear model all have the corresponding
semiparametric estimating equations as defined in (1).
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Assume that {(XT
i , T

T
i )T }ni=1 are independent and identically distributed random samples from the unknown distribution

of F ∈ F , whereF = Fx×Ft ⊂ Rp+1+k1 ×[a, b], where k1 denotes a positive integer, and a and b denote generic constants.
We have the semiparametric estimating equation framework as follows:

E{g(X,H(T ), θ)} = 0(r ≥ p),

where

g(X,H(T ), θ) = (g1(X,H(T ), θ), g2(X,H(T ), θ), . . . , gr(X,H(T ), θ))T .

When k and p are fixed, Wang et al. (2013) showed that EL optimally combines information, and the limit distribution of
the EL ratio statistic is the χ2

p distribution under null hypothesis.
In this paper, we first extend the fixed-dimensional results in Wang et al. (2013) to cases with diverging dimensionality,

i.e., k, p, r → ∞ as n → ∞. The traditional EL function for θ is defined as follows:

L(θ) = sup


n

i=1

(nqi) :

n
i=1

qi = 1, qi ≥ 0,
n

i=1

qig(Xi,H(Ti), θ) = 0


. (2)

Because (2) contains unknown functions H(t), it cannot be used directly to make inference on θ . To solve this problem,
a natural method is to replace H(t) by its estimator Ĥ(t). We take its kernel estimator Ĥ(t) =

n
j=1 Wnj(t)ϕ(Xj) with

Wnj(t) = K((t − Tj)/h)/
n

j=1 K((t − Tj)/h), where K(·) is a kernel function with bandwidth h → 0. Define an estimated
EL function for θ as

L̃(θ) = sup


n

i=1

(nqi) :

n
i=1

qi = 1, qi ≥ 0,
n

i=1

qig(Xi, Ĥ(Ti), θ) = 0


. (3)

The estimated EL ratio is

l̃(θ) = −2[log{L̃(θ)} − n log(n)]. (4)

By using the Lagrange multiplier method, {qi}ni=1 in (3) are

qi =
1
n

1

1 + λTg(Xi, Ĥ(Ti), θ)
,

with the restriction of λ that

1
n

n
i=1

g(Xi, Ĥ(Ti), θ)

1 + λTg(Xi, Ĥ(Ti), θ)
= 0. (5)

Therefore, the estimated EL ratio function for θ defined in (4) is given by

l̃(θ) = −2[log{L̃(θ)} − n log(n)] = 2
n

i=1

log{1 + λTg(Xi, Ĥ(Ti), θ)}. (6)

Because maximizing (3) is equivalent to minimizing (6), we can minimize l̃(θ) in (6) to obtain an estimator θ̂ of the
parameter θ , which implies that θ̂ can be obtained as

θ̂ = arg min
θ∈Θθ

max
λ∈Λ̂n(θ)

2
n

i=1

log{1 + λTg(Xi, Ĥ(Ti), θ)},

where Λ̂n(θ) = {λ ∈ Rr
|λTg(XiĤ(Ti), θ) > −1, i = 1, 2, . . . , n} for any θ ∈ Θθ . In method of EL for high-dimensional

semiparametric models, the magnitude of ∥λ∥ is no longer Op(n−1/2), as in the fixed dimensional case (Wang et al., 2013).
To develop the asymptotic distribution of l̃(θ) in (6), we need make the following assumptions.

Assumption 1. {Hj(t)}kj=1 satisfy Lipschitz condition of order 1;

Assumption 2. K(t) is a symmetric density function defined in a bounded and compact support with the bandwidth
h = Op(n−1/3);

Assumption 3. The density of T , say r(t), exists and satisfies

0 < inf
a≤t≤b

r(t) ≤ sup
a≤t≤b

r(t) < ∞;
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Assumption 4. supt E{∥ϕl(X)∥2
|T = t} < ∞, for l = 1, 2, . . . , k;

Assumption 5. There exist u(X, T ) and C1 such that

∂2g(X,H(T ), θ)

∂Hj∂Hl
≤ u(X, T ), E{u2(X, T )} ≤ C1 < ∞ (j, l = 1, 2, . . . , k),

and

sup
t

E

∂g(X,H(T ), θ)

∂Hl

2
 T = t


≤ C1 < ∞ for l = 1, 2, . . . , k;

Assumption 6. There exist v1(X, T ) and C2 such that

∂g(X,H(T ), θ)

∂θl
< v1(X, T ), E{v2

1(X, T )} ≤ C2 < ∞ (l = 1, 2, . . . , p),

and v2(X, T ) exists such that

∂2g(X,H(T ), θ)

∂θi∂θj
≤ v2(X, T ), E{v2

2(X, T )} ≤ C2 < ∞ (i, j = 1, 2, . . . , p);

Assumption 7. The support Θθ of θ is a compact set in Rp, and θ0 ∈ Θθ is the unique solution to E{g(X,H(T ), θ)} = 0;

Assumption 8. Assume E{supθ∈Θθ
|g(X,H(T ), θ)t |} = op(n1/α) for some α ≥ 12 with a large n, where g(X,H(T ), θ)t is the

tth component of g(X,H(T ), θ), and t = 1, 2, . . . , r;

Assumption 9. Let Σ(θ) = E{g(X,H(T ), θ)g(X,H(T ), θ)T }. The eigenvalues of Σ(θ) are bounded away from zero and
infinity;

Assumption 10. k → ∞, p → ∞, pn−(1/6)
→ 0, kn−(1/6)

→ 0 and p/r → c0 (0 < c0 < 1) as n → ∞.

Assumptions 1–5 ensure that the functionH(t) is estimatedwith retain precision and the nonparametric estimation does
not affect the asymptotic result of the estimated EL ratio, i.e., the estimated EL ratio l̃(θ) has the same asymptotic distribution
as the ordinary EL ratio. Assumptions 7–8 ensure the existence and consistency of the minimizer of (6) and control the tail
probability behavior of the estimating equation, and Assumption 9 ensures that there exists an asymptotic variance for the
EL estimator of the high-dimensional parameters θ . Assumptions 6 and 10, similar to those contained (Leng and Tang, 2012),
guarantee the asymptotic normal distribution property of the EL ratio l̃(θ). Because no particular structural information is
available on g(X,H(T ), θ), establishing the asymptotic theoretical results for EL approach is very challenging. Therefore, so
strong Assumptions 6–10 are needed and the bounds in the stochastic analysis are conservative. This is also the case in Leng
and Tang (2012), which studied the EL method for growing dimensional general estimating equations. When specific model
structure is available, the restriction on the sample dimension p can be relaxed.

We now present asymptotic normality of the high-dimensional EL estimator for θ and its rate of convergence.

Theorem 1. Under Assumptions 1–10, as n → ∞, the minimizer θ̂ (EL estimator) of (6) satisfies the following results:

(1) (Asymptotic consistency) with probability tending to 1, ∥θ̂ − θ0∥ = Op{(
p
n )

1
2 };

(2) (Asymptotic normality) as n → ∞,
√
nBnV−1/2(θ̂ − θ0)

L
→ N(0,G), where

L
→ represents the convergence in distribution,

Bn ∈ Rq×p such that BnBT
n → G and G is a q × q matrix with fixed q, and V is given by

V =


E


∂g(X,H(T ), θ)

∂θ

T

E{g(X,H(T ), θ)g(X,H(T ), θ)T }−1E


∂g(X,H(T ), θ)

∂θ

−1

.

In Theorem 1, Bn represents a projection of the diverging dimensional vector to a fixed dimension q, and the limiting
distribution of the projected vector of (θ̂ −θ0) can be described by amultivariate normal distribution. This theorem not only
provides the consistency and normality of projected vector of the EL estimator θ̂ for semiparametric models, but also states
the effective property of EL in semiparametric models.

Next, we show the asymptotic properties of EL ratio for high-dimensional semiparametric models.
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Theorem 2. Let θ0 be the true value of parameter vector θ , under assumptions in Theorem 1 and α ≥ 36 in Assumption 8, l̃(θ0)
has an asymptotic standard normal distribution, i.e.,

(2p)−
1
2 (l̃(θ0) − p)

L
→ N(0, 1). (7)

On the one hand, Theorem 2 can be used to test the hypothesis

H0 : θ = θ0 Vs H1 : θ ≠ θ0.

On the other hand, it can also be used to construct confidence regions for θ . Let

Iα(θ) = {θ : l̃(θ) ≤ p + zα/2


2p},

where zα/2 is the upper α/2-quantile of the standard normal distribution. Therefore, by Theorem 2, Iα(θ) gives an
approximate confidence region for θ with asymptotically correct coverage probability 1 − α, i.e.,

P(θ ∈ Iα(θ)) = 1 − α + op(1).

3. Penalized empirical likelihood for high-dimensional semiparametric models

In high dimensional data analysis, when the dimension of parameters is large, i.e., p → ∞, a reasonable assumption is
that only a subset of the parameters is nonzero. In order to select the subset of influential covariates and to carry out the
statistical inference on θ under the sparsity assumption, we add a penalty function term in (3) and the penalized EL ratio is
defined as

l̆(θ) =

n
i=1

log{1 + λTg(Xi, Ĥ(Ti), θ)} + n
p

j=1

pν(|θj|), (8)

where pν(|θj|) is some penalty function with a tuning parameter ν.
There are many commonly used penalties in the literature. For example, L2 penalty in Hoerl and Kennard (1970); L1

penalty in Donoho and Johnstone (1994a); LASSO penalty in Tibshirani (1997); Smoothly Clipped Absolute Deviation Penalty
(SCAD) in Fan and Li (2001); adaptive LASSO in Zhang and Lu (2007). In this section, we study PEL for semiparametricmodels
by using SCAD penalty in Fan and Li (2001), whose first derivative satisfies

p′

ν(t) = ν{I(t ≤ ν) +
(aν − t)+
(a − 1)ν

I(t > ν)},

where I(·) is the indicator function and a > 2. Similar to Fan and Li (2001), we set a = 3.7 in this paper.
Write θ0 = (θ01, θ02, . . . , θ0p)

T
∈ Rp anddefineA = {j : θ0j ≠ 0}with its cardinality s = |A|which is unknown.Without

loss of generality, we let θ = (θ (1)T , θ (2)T )T , where θ (1)∈Rs
and θ (2)∈Rp−s

correspond to the nonzero and zero components
respectively such as θ0 = (θ

(1)T
0 , 0T )T . For the penalty function pν(·), we make the following assumptions.

Assumption 11. As n → ∞, ν(p/n)
1
2 → ∞, and minj∈A θ0j/ν → ∞;

Assumption 12. Assume maxj∈A P ′
ν(|θ0j|) = o{(np)−1/2

} and maxj∈A P ′′
ν (|θ0j|) = o{(p)−1/2

}.

Assumption 11 states that the weakest signal should dominate the penalty parameter, and Assumption 12 can be used
to control the impact of the penalty on the nonzero component. They hold for many penalty functions such as that in Fan
and Li (2001). For notational purposes, we define Ip = (DT

1,D
T
2), where Ip is the p-dimensional identity matrix, D1 ∈ Rs×p

and D2 ∈ R(p−s)×p, and use the Frobenius norm of a matrix D, defined as ∥D∥ = {tr(DTD)}
1
2 . We can minimize l̆(θ) in (8) to

obtain a PEL estimator θ̆ of the parameter θ , and the PEL is defined as

θ̆ = arg min
θ∈Θθ

max
λ∈Λ̂n(θ)

n
i=1

log{1 + λTg(Xi, Ĥ(Ti), θ)} + n
p

j=1

pν(|θj|).

Write the PEL estimator θ̆ = (θ̆ (1)T , θ̆ (2)T )T , and the following theorem describes the basic properties of the PEL estimator.

Theorem 3. Under assumptions in Theorem 1 and Assumptions 11–12, as n → ∞, the PEL estimator θ̆ has the following results:

(1) (Selection consistency) limn→∞ p(θ̆ (2)
= 0) = 1;

(2) (Asymptotic normality)
√
nBnV

−1/2
p (θ̆ (1)

− θ
(1)
0 )

L
→ N(0,G), where Vp = D1V − D1VDT

2(D2VDT
2)

−1D2V and V is given by
Theorem 1, and Bn ∈ Rq×p such that BnBT

n → G for G ∈ Rq×q with fixed q.
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Theorem3 not only says that the PEL estimator θ̆ is consistent and converging to the true parameter θ0, but also states the
oracle property of PEL in semiparametric models. Furthermore, Theorem 3(2) shows that the PEL estimator θ̆ (1) of nonzero
parametric components θ (1) is

√
n-consistent and asymptotically normal.

Next, we consider the following hypothesis testing:

H0 : Lnθ0 = 0 vs H1 Lnθ0 ≠ 0,

where Ln ∈ Rq×p such that LnLTn = Iq for a fixed q, and Iq is the q-dimensional identity matrix. Based on (8), a PEL ratio test
statistic is constructed as

l̆(Ln) = −2{l̆(θ̆) − min
θ,Lnθ0=0

l̆(θ)}. (9)

We summarize the property of the PEL ratio test statistic in the following theorem.

Theorem 4. Under the null hypothesis and assumptions in Theorem 3, As n → ∞, l̆(Ln)
L

→ χ2
q .

Theorem4 extends the results in Leng and Tang (2012) to high-dimensional semiparametricmodels. By using Theorem4,
we can construct asymptotically confidence region for Lnθ0, that is,

Iα(Lnθ) = {θ : −2{l̆(θ̆) − min
θ,Lnθ=0

l̆(θ)} ≤ χ2
q,(1−α)}, (10)

where χ2
q,(1−α) is the (1 − α) quantile of χ2

q distribution. Iα(Lnθ) gives an approximate confidence region for Lnθ with
asymptotically correct coverage probability (1 − α), i.e., as n → ∞, P(Lnθ ∈ Iα(Lnθ)) → 1 − α.

Remark 1. In this paper, we investigate EL for high-dimensional semiparametric models and propose PEL method for
parameter estimation and variable selection, and the framework presented here is applicable only where the sample size
is larger than the dimension of the parameter. When that is violated, preliminary methods such as sure independence
screening (SIS) in Fan and Lv (2008) can be used to reduce the dimensionality from high to a moderate scale that is below
the sample size.

4. Computational algorithm and simulation

Firstly, we describe how to approach the optimization problems posed by EL. Due to the nonconvexity, computing EL is
nontrivial. Furthermore, PEL computation involving a nondifferentiable penalty is obviously more difficult. We use iterated
least squares algorithm of Owen (2001) to obtain the minimizer of EL ratio defined by (6), and use the local quadratic
approximation (LQA) algorithm of Fan and Li (2001) to obtain the minimizer of PEL ratio defined by (8). For EL estimator
and PEL estimator, we use nested algorithm of Owen (2001) to obtain the minimizer of (6) and (8) through nonlinear
optimization, respectively. For the minimizer of (8), assume that θ0 is an initial value that is close to the minimizer of (8),
θ

(l)
j is the lth step estimator of θj, if θ

(l)
j is very close to 0, we setθ (l)

j = 0. When θ
(l)
j ≠ 0, pν(|θj|) can be locally approximated

by pν(|θ
(l)
j |) +

1
2 {p

′
ν(|θ

(l)
j |)/|θ

(l)
j |}{θ2

j − (θ
(l)
j )2}. The procedure is repeated until convergence. Simulation in the next section

suggests that this algorithm usually converges given a good initial value.
To choose the penalty parameter ν, we use the following Bayesian information criterion (BIC)motivated by Variyath et al.

(2010),

BIC(ν) = −2l̆(θν) + dfν log(n),

where dfν is the number of nonzero coefficients.
Next, we conduct simulation studies to illustrate the properties of the EL and PEL inferences for the high-dimensional

semiparametric models by using estimating equation framework, and illustrate the usefulness of the EL and PEL by several
examples of semiparametric models as follows.

Example 1. We consider the varying coefficient partially linear model:

Yi = XT
i θ + ZT

i u(Ti) + εi, i = 1, 2, . . . , n, (11)

where Yi is a response variable, Xi = (Xi, Zi, Ti) is the associated covariate, u(·) = (u1(·), u2(·), . . . , uk1(·))
T is a

k1-dimensional vector of unknown smoothing regression functions, θ = (θ1, θ2, . . . , θp)
T is a p-dimensional vector of

unknown regression coefficients and εi is an independent random error withmean zero and finite variance, E(ϵi|Xi, Zi, Ti) =

0 almost surely. The estimating function in (1) can be taken by

g(X,H(T ), θ) = (X − (M−1
3 MT

1 )TZ){(Y − M2M−1
3 Z) − (X − (M−1

3 MT
1 )TZ)T θ},

where X = (X, Y , Z), H(t) = (E(XZT
|T = t), E(YZT

|T = t), E(ZZT
|T = t)), M1 = E(XZT

|T ), M2 = E(YZT
|T ) and

M3 = E(ZZT
|T ).
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Table 1
Comparison of coverage probability between EL method and GLS method.

p n 1 − α = 0.90 1 − α = 0.95
GLS EL GLS EL

10 200 0.864 0.879 0.921 0.927
300 0.872 0.884 0.926 0.934
400 0.883 0.896 0.931 0.945

20 300 0.859 0.868 0.917 0.922
400 0.867 0.873 0.924 0.931
500 0.879 0.882 0.928 0.937

30 300 0.842 0.865 0.891 0.913
400 0.856 0.871 0.895 0.923
500 0.861 0.889 0.903 0.932

Table 2
Mean (standard deviations) of estimators for parameters of EL and PEL.

p n Method θ̂1 θ̂2 θ̂3 θ̂5

10 200 EL 1.09(0.153) 1.92(0.261) −1.42(0.248) 2.08(0.156)
Bridge 0.93(0.186) 1.78(0.246) −1.35(0.203) 1.87(0.195)
Lasso 0.97(0.174) 1.80(0.248) −1.47(0.182) 2.06(0.162)
SCAD 0.99(0.128) 1.82(0.213) −1.53(0.176) 2.03(0.173)

20 300 EL 1.08(0.210) 1.86(0.234) −1.38(0.225) 2.11(0.231)
Bridge 1.12(0.247) 1.72(0.289) −1.42(0.254) 1.92(0.186)
Lasso 1.10(0.236) 1.66(0.315) −1.39(0.247) 1.93(0.193)
SCAD 0.96(0.179) 1.79(0.232) −1.43(0.218) 2.02(0.074)

30 400 EL 0.89(0.234) 1.83(0.257) −1.33(0.273) 2.13(0.241)
Bridge 0.87(0.287) 1.70(0.248) −1.26(0.267) 1.75(0.258)
Lasso 0.83(0.269) 1.74(0.251) −1.31(0.271) 1.81(0.212)
SCAD 0.86(0.245) 1.95(0.089) −1.31(0.263) 1.87(0.187)

Assumptions 6–10 are quite strong and conservative in Section 2. Similar to Li et al. (2012), there are weaker versions of
these assumptions for example 1 as follows:

Assumption 6′. E(ε|X, Z, T ) = 0 almost surely. For some integer d ≥ 4, E(∥Zε∥d) < ∞, E(∥Z∥
d) < ∞, E(∥ε∥d) < ∞;

Assumption 7′. Let Υ (θ) = ε(X − M−1
3 MT

1 Z), and Υ (θ)t be the tth component of Υ (θ), t = 1, . . . , r . For some
integer d ≥ 4, there exists positive constant C0 such that as n → ∞, E(∥Υ (θ)/

√
p∥d) < C0, E(∥XZT/

√
p∥d) < C0,

E(∥M−1
3 MT

1 ZZ
T/

√
p∥d) < C0, and

1
r

r
t=1

E(|Υ (θ)t |(∥XZT/
√
p∥4

+ ∥M−1
3 MT

1 ZZ
T/

√
p∥4)) < C0;

Assumption 8′. Positive constant C0 exists such that as n → ∞,

max
1≤t1,t2,t3≤r

E(Υ (θ)t1Υ (θ)t2Υ (θ)t3)
2 < C0;

Assumption 9′. Let Σ1 = E(ε(X − M−1
3 MT

1 Z)(X − M−1
3 MT

1 Z)T ). The eigenvalues of Σ1 are bounded away from zero and
infinity;

Assumption 10′. Assume that E(ε3
|X, Z, T ) = 0 almost surely. Furthermore, for some integer d ≥ 8, p → ∞,

p3+2/(d−2)/n → 0 and p/r → c0 (0 < c0 < 1) as n → ∞.

In this simulation, the covariate Ti is uniformly distributed on [0, 1], the covariate Xi is a p-dimensional normal
distribution random vector with mean zero and covariance matrix (σij) with σij = 0.2|i−j|, the nonparametric component
u(t) = (u1(t), u2(t))T with k1 = 2 in which Zi1 = 1 and Zi2 ∼ N(0, 1). The model errors εi are generated from N(0, 1)
and the coefficient functions are given as u1(t) = sinπ t , and u1(t) = 2t(1 − t). Furthermore, we use the Epanechnikov
kernel function K(t) =

3
4 (1 − t2)+, and use the cross-validation method to select the optimal bandwidth h satisfying

Assumption 2. Let θ = (1, 2, −1.5, 0, 2, 0, . . . , 0)T in the model (11). We consider p = 10, 20 or 30, and n = 200, 300, 400
or 500, respectively. Such simulation is repeated 1000 times, and the results are summarized in Tables 1–4.



J. Fang et al. / Journal of Statistical Planning and Inference 186 (2017) 42–57 49

Table 3
Variable selection results for various methods of PEL.

p n Method Average number of zeros coefficients
Correct Incorrect

10 200 Bridge 4.13[69%] 1.86
Lasso 4.08[68%] 1.91
SCAD 4.97[83%] 1.12

20 300 Bridge 12.89[81%] 3.24
Lasso 13.93[87%] 2.08
SCAD 14.87[93%] 1.35

30 400 Bridge 22.75[88%] 3.37
Lasso 22.81[88%] 3.28
SCAD 24.65[95%] 1.13

Table 4
The empirical frequency (%) that a given value of θ1 does not fall in the 95% confidence interval constructed
by (10). The truth is θ1 = 1.

p n 0.8 0.9 1 1.1 1.2

10 200 76.1 36.9 6.7 38.2 79.6
300 92.4 43.6 5.8 41.5 93.1

20 300 78.6 47.1 7.2 48.3 76.4
400 94.3 54.5 5.6 55.7 93.9

30 400 82.5 41.8 6.1 43.8 83.5
500 96.2 58.4 5.4 56.4 95.3

Table 1, when the nominal level is 0.90 or 0.95, shows the coverage probability of confidence regions for θ based on the
method of EL and the general least-squares (GLS), respectively. The GLS estimator is

θ̂GLS =


n

i=1

X̂iX̂T
i

−1  n
i=1

X̂iŶi


,

where X̂i = Xi − (M−1
3i MT

1i)
TZi, Ŷi = Yi − M2iM−1

3i Zi,M1i = Ê(XiZT
i |Ti),M2i = Ê(YiZT

i |Ti) andM3i = Ê(ZiZT
i |Ti). Similar to Lam

and Fan (2008), the GLS estimator has the asymptotic normality as
√
nBnBΣ−1/2(θ̂GLS − θ)

L
→ N(0,G)

with the estimators B̂ =
1
n

n
i=1 X̂iX̂T

i and Σ̂ =
1
n

n
i=1 ε2

i X̂iX̂T
i , where εi = Ŷi −XT

i θ̂ . Therefore, the confidence region based
on the GLS method is

Iα(GLS) = {θ : n(θ − θ̂GLS)
T Σ̂−1/2B̂TBT

nG
TBnB̂Σ̂−1/2(θ̂GLS − θ) ≤ χ2

p,(1−α)}.

From Table 1, at each nominal level and each p, the coverage probability for the method of EL increases as the sample
size n increases, and the coverage probability appears to be close to the nominal levels especially with moderate sample
size. Furthermore, we find that the confidence regions based on EL consistently have better coverage probability than those
based on GLS.

The mean and standard deviations of the EL estimators and the PEL estimators of non-zero parameters (θ̂1, θ̂2, θ̂3, θ̂5) are
summarized in Table 2. From Table 2, we can see that all estimators are close to the true values of the parameters, and the
standard deviations of estimators of SCAD-PEL are slightly smaller than Bridge-PEL and Lasso-PEL. Table 3 summaries results
of variable selection by PEL. It can be found that the PEL with SCAD penalty gives smaller number of average false estimated
zeros than Lasso and Bridge, and the average number of zero components is closer to p − 4 than Lasso and Bridge. This
demonstrates the good performance of the proposed PEL with SCAD penalty approach in variable selection. From Table 4,
we can see that the coverage probability for θ1 based the PEL method increases as the sample size n increases, and the
coverage probability appears to be close to the nominal levels especially with moderate sample size. This shows that the
proposed test based on PEL has a good power for testing the null hypothesis.

Example 2. Consider the partially linear errors-in-variable model:
Yi = XT

i θ + u(Ti) + εi,
Zi = Xi + ϑi, i = 1, 2, . . . , n, (12)

where Yi is a response variable, Ti are the associated covariates, Xi ∈ Rp are the unobserved latent covariates which are
measured in an error-prone way, Zi is the observed surrogate of Xi, θ is an unknown parameter in Rp, u(·) is an unknown
function, εi and ϑi are random error and p-variate measurement error, respectively, satisfying E{(εi, ϑ

T
i )T } = 0 and
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Table 5
Comparison of coverage probability between EL method and ANS method.

p n 1 − α = 0.90 1 − α = 0.95
ANS EL ANS EL

20 500 0.848 0.854 0.895 0.903
700 0.875 0.872 0.904 0.917
900 0.881 0.885 0.932 0.936

30 800 0.845 0.849 0.871 0.873
900 0.862 0.867 0.896 0.908

1000 0.879 0.882 0.918 0.929

Table 6
Mean (standard deviations) of estimators for parameters of EL and SCAD-PEL.

p n Method θ̂1 θ̂2 θ̂4 θ̂5

20 500 EL 2.15(0.272) −1.67(0.241) 1.34(0.256) 2.06(0.132)
SCAD 1.76(0.236) −1.58(0.164) 0.93(0.225) 1.98(0.123)

30 1000 EL 2.18(0.253) −1.75(0.279) 1.22(0.293) 2.15(0.298)
SCAD 1.87(0.214) −1.72(0.262) 1.26(0.281) 1.83(0.274)

Table 7
Variable selection results for various methods of PEL.

p n Method Average number of zeros coefficients
Correct Incorrect

20 500 Bridge 13.72[85%] 2.34
Lasso 12.41[78%] 3.65
SCAD 14.16[89%] 1.27

30 800 Bridge 23.24[89%] 2.58
Lasso 21.69[83%] 4.31
SCAD 24.73[95%] 1.46

Cov(εi, ϑi) = diag(σ 2, Σp) with unknown σ 2 and known Σp > 0. In this section, it is assumed that ϑi is independent
of Xi, where Xi = (Xi, Yi, Ti). The estimating function in (1) of partially linear errors-in-variable model can be taken by

g(X,H(T ), θ) = (Z − E(Z |T )){(Y − E(Y |T )) − (Z − E(Z |T ))T θ} + Σpθ,

where X = (X, Y , Z), H(t) = (E(Z |T = t), E(Y |T = t)). E{g(X, h(T ), θ)} = 0 when θ is the true value of parameter.

Assumptions 6–8 in Section 2 can be relaxed for Example 2.

Assumption 6′. There exist v1(X, T ) and C2 such that

∂g(X,H(T ), θ)

∂θl
< v1(X, T ), E{v2

1(X, T )} ≤ C2 < ∞ (l = 1, 2, . . . , p);

Assumption 7′. E(|ε|4) < ∞, E(∥Z∥
4) < ∞, E(∥ϑ∥

4) < ∞;

Assumption 8′. Let ϑij be the jth component of ϑi, i = 1, . . . , n, j = 1, . . . , p. Positive integer d exists such that as
|j1 − j2| > d, cov(ϑij1 , ϑij2) = 0, 1 ≤ j1, j2 ≤ p.

In this simulation, kernel function and bandwidth are similar to Example 1. The covariate Ti is uniformly distributed on
[0, 1],Xi is a p-dimensional normal distribution randomvectorwithmean zero and covariancematrix (σij)withσij = 0.5|i−j|,
measurement error ϑi is from p-dimensional normal distribution random vector with mean zero and {Σp}ij = 0.3|i−j|,
and u(t) = sin(2π t). Let θ = (2, −1.5, 0, 1, 2, 0, . . . , 0)T in the model (12), and consider p = 20 or 30, and n =

500, 700, . . . , 1000, respectively. Such simulation is repeated 1000 times, and the results of simulation are summarized
in Tables 5–8.

In order to compare the confidence region constructed by EL method with the confidence region formed by asymptotic
normality of the parameter, similar to Chen et al. (2009), we can give the moment estimator of θ as

θ̂M =


n

i=1

(Zi − Ê(Zi|Ti))(Zi − Ê(Zi|Ti))T − nΣp

−1 n
i=1

(Zi − Ê(Zi|Ti))(Yi − Ê(Yi|Ti)),
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Table 8
The empirical frequency (%) that a given value of θ1 does not fall in the 95% confidence interval constructed
by (10). The truth is θ1 = 2.

p n 1.8 1.9 2 2.1 2.2

20 500 76.2 43.5 8.4 46.3 79.9
800 92.5 57.6 6.1 58.9 93.4

30 800 78.9 52.8 9.3 54.7 81.2
1000 94.7 61.2 5.9 59.5 93.8

Table 9
Affymetrix probe IDs and the SCAD-PEL estimators of 6 nonzero coefficients.

Probe IDs SCAD-PEL estimators

31536_at −0.0935
36131_at −0.0506
37761_at 0.1104
39837_s_at −0.1191
40718_at −0.0669
754_s_at 0.0916

and
√
n

−1/2
(θ − θ̂M)

L
→ N(0, Σ−1

X ΩΣ−1
X )

with the estimators

Ω̂ = n−1
n

i=1

{(Zi − Ê(Zi|Ti))((Yi − Ê(Yi|Ti)) − (Zi − Ê(Zi|Ti))T θ̂M) + Σpθ̂M}
⊗2

and

Σ̂X =
1
n

n
i=1

{(Zi − Ê(Zi|Ti))(Zi − Ê(Zi|Ti))T − nΣp},

where A⊗2
= AAT . In this case we can give the confidence region formed from asymptotic normality, that is,

Iα(ASN) = {θ : {n(θ − θ̂M)T Σ̂XΩ̂−1Σ̂X (θ − θ̂M)} ≤ χ2
p,(1−α)}.

Table 5 reports empirical coverage of two types of confidence regions. We choose nominal levels 90% and 95%
respectively. From the results, we can see that the EL confidence region has slightly higher coverage probability than the
asymptotic normal confidence region, and the coverage probability tends to the nominal level as the sample size increases.
From Table 6, we can see that the standard deviations of the estimators of SCAD-PEL are slightly smaller than others, and
themean of the estimators is more accurate. Results of variable selection by PEL are shown in Table 7. It can be seen that the
PEL with the SCAD, Lasso and Bridge penalties effectively reduces model complexity, and that the SCAD can do significantly
better than the Lasso and Bridge in terms of estimation accuracy and model complexity. Similar to Table 4, Table 8 also
shows that the proposed test based on PEL has a good power for testing the null hypothesis.

5. Real data application

We further illustrate our proposed method by applying the partially linear logistic regression model to cancer classi-
fication. The acute lymphoblastic leukemia (ALL) data, available from http://www.bioconductor.org/, contains microarray
expressions for 128 patients with either T-cell or B-cell type leukemia. It has been analyzed by Dudoit et al. (2008) and Chen
and Qin (2010). We consider a subset of the ALL data representing 79 samples from patients with B-cell acute lymphoblas-
tic leukemia. Of particular interest is the classification of 37 samples with the BCR/ABL and 42 samples with NEG. Because
many of the genes represented by the 12,625 probesets on the array are not expressed, we perform preliminary screening
for gene-filtering, and retain only those genes for which: (1) at least 75% of the subjects have ameasured intensity of at least
100, and (2) the coefficient of variation of the intensities across samples is between 0.7 and 10. The filtered data set contains
expression measures on 2396 genes, for 79 patients. We are interested in a general model where age can interact with gene
expression levels. This is the partially linear logistic regression model coming in, with age acting as the index variable. In
the 79 samples, 3 samples have missing age information and are removed, so the final sample size is 76.

Since our current implementation dealing with p = 2396 is computationally infeasible, similar to Fan and Lv (2008), we
use a sure independence screening (SIS) as a preprocessing step. By using SIS, we retain only the top 15 probesets that show
the largest marginal effect on responses. By using our PEL approach with BIC for tuning parameter selection, we identify 6
probesets with nonzero coefficients. Table 9 shows the results of variable selection by SCAD-PEL and provides Affymetrix
probe IDs and the SCAD-PEL estimators of 6 nonzero coefficients.

http://www.bioconductor.org/
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Appendix

Throughout the Appendix, C will denote a generic positive constant that may be different in different uses. Let γn =

Op((p/n)1/2), Dn = {θ | ∥θ − θ0∥ ≤ Cγn}, g(θ) = g(X,H(T ), θ), gi(θ) = g(Xi,H(Ti), θ) and ĝi(θ) = g(Xi, Ĥ(Ti), θ).

Lemma 1 (See Wann and Zheng, 1997). Under Assumptions 2–3, we have

(1) E{Wni(Tl)}2 ≤ C(n2h), for i ≠ l;
(2) E{Wni(Tl)}4 ≤ C(n4h), for i ≠ l;
(3) E{Wni(t)}2 ≤ C(n2h), for i = 1, 2, . . . , n.

Lemma 2. If in Assumptions 1–4, then we have

∥Ĥl(Ti) − Hl(Ti)∥ = Op(n−1/3), i = 1, 2, . . . , n; l = 1, 2, . . . , k.

Proof of Lemma 2. Because of Ĥ(t) =
n

j=1 Wnj(Ti)ϕ(Xj), for i = 1, 2, . . . , n, we have

Ĥl(Ti) − Hl(Ti) =

n
j=1

Wnj(Ti)ϕl(Xj) − Hl(Ti)

=

n
j=1

Wnj(Ti)ϕl(Xj) − Hl(Tj) + Hl(Tj) − Hl(Ti) = R1i + R2i,

where R1i =
n

j=1 Wnj(Ti)(ϕl(Xj)−Hl(Tj)), R2i =
n

j=1 Wnj(Ti)(Hl(Tj)−Hl(Ti)). By Assumption 4, Lemma 1 and the property
of the kernel estimator, we have

E∥R1i∥
2

= E

 n
j=1

Wnj(Ti)(ϕl(Xj) − Hl(Tj))


2

≤ C
n

j=1

W2
nj(Ti)E{(ϕl(Xj) − E(ϕl(Xj)|Tj))2|Ti, Xj} = Op((nh)−1),

and by Assumptions 1, 3 and Lemma 1(1), we have

E∥R2i∥
2

= E

 n
j=1

Wnj(Ti)(Hl(Tj) − Hl(Ti))


2

≤ E


n

j=1

Wnj(Ti)|Tj − Ti|

2

≤ h2
n

j=1

E


W2

nj(Ti)
Tj − Ti

h

2


= h2
n

j=1

E


W2

nj(Ti)
Tj − Ti

h

2 I Tj − Ti
h

 ≤ ρ



+ h2
n

j=1

E


W2

nj(Ti)
Tj − Ti

h

2 I Tj − Ti
h

 > ρ


≤ nh2ρ2E{W2

nj(Ti)} = Op(n−4/3).

It implies that

∥Ĥl(Ti) − Hl(Ti)∥2
= Op((nh)−1) + Op(n−4/3) = Op(n−2/3).

Thus, Lemma 2 hold, and the proof of Lemma 2 is completed. �
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Lemma 3. Suppose E{
∂gi(θ)

∂H |T = t} = 0, and under Assumptions 1–5 and 9, we have

(1) 1
√
n

n
i=1 ĝi(θ) =

1
√
n

n
i=1 gi(θ) + op(1);

(2) 1
n

n
i=1 ĝi(θ)ĝT

i (θ) =
1
n

n
i=1 gi(θ)gT

i (θ) + op(1).

Proof of Lemma 3. By Taylor’s expansion, we have

ĝi(θ) = gi(θ) +

k
l=1

∂gi(θ)

∂Hl
(Ĥl(Ti) − Hl(Ti)) + ξi

= gi(θ) +

k
l=1

∂gi(θ)

∂Hl


n

j=1

Wnj(Ti)ϕl(Xj) − Hl(Ti)


+ ξi

= gi(θ) +

k
l=1

∂gi(θ)

∂Hl


n

j=1

Wnj(Ti)(ϕl(Xj) − Hl(Tj))



+

k
l=1

∂gi(θ)

∂Hl


n

j=1

Wnj(Ti)(Hl(Tj) − Hl(Ti))


+ ξi,

where ξi = Op(∥Ĥ(Ti) − H(Ti)∥2). So,

1
√
n

n
i=1

ĝi(θ) =
1

√
n

n
i=1

gi(θ) +
1

√
n

n
i=1

ξi + An1 + An2, (13)

where

An1 =

k
l=1

An1,l =

k
l=1

1
√
n

n
i=1

∂gi(θ)

∂Hl

n
j=1

Wnj(Ti)(Hl(Tj) − Hl(Ti)),

An2 =

k
l=1

An2,l =

k
l=1

1
√
n

n
i=1

∂gi(θ)

∂Hl

n
j=1

Wnj(Ti)(ϕl(Xj) − Hl(Tj)).

From Lemma 2, we know that, as n → ∞,

1
√
n

n
i=1

ξi =
√
n × (Op(n−1/3))2 = Op(n−1/6) = op(1). (14)

By Assumptions 1–2, Assumption 5 and Lemma 1(1), we have

E∥An1∥
2

≤

k
l=1

E∥An1,l∥
2

=
1
n

k
l=1

E

 n
i=1

∂gi(θ)

∂Hl

n
j=1

Wnj(Ti)(Hl(Tj) − Hl(Ti))


2

=
1
n

k
l=1

n
i=1

E


E

∂gi(θ)

∂Hl

2
 Ti


n
j=1

Wnj(Ti)(Hl(Tj) − Hl(Ti))

2


≤ Ch2r
k

l=1

n
i=1

n
j=1

E


W2

nj(Ti)
Tj − Ti

h

2


= Op(krh).

Similar to the proof of Lemma 3 in Wang et al. (2013), we can show that

E(An2,lAT
n2,l) =

1
n

n
i=1

n
j=1

E


∂gi(θ)

∂Hl


∂gi(θ)

∂Hl

T

W2
nj(ϕl(Xj) − hl(Tj))2


= Op


r2

nh


.

So it means that E∥An2∥
2

= Op(
kr2
nh ). By Assumptions 2 and 9, we have E∥An1∥

2
= op(1) and E∥An2∥

2
= op(1), therefore,

An1 = op(1); An2 = op(1). (15)

By (13)–(15), we have

1
√
n

n
i=1

ĝi(θ) =
1

√
n

n
i=1

gi(θ) + op(1),
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and the first part of Lemma 3 is proved. Next, we begin to proof the second part of Lemma 3. According to (13), we have
n

i=1

ĝi(θ)ĝT
i (θ) =

n
i=1

ri1rTi1 + 2
n

i=1

ri1rTi2 + 2
n

i=1

ri1rTi3 +

n
i=1

ri2rTi2 + 2
n

i=1

ri2rTi3

+

n
i=1

ri3rTi3 + 2
n

i=1

ri1ξ T
i + 2

n
i=1

ri2ξ T
i + 2

n
i=1

ri3ξ T
i +

n
i=1

ξiξ
T
i

= R1 + 2R2 + 2R3 + R4 + 2R5 + R6 + 2R7 + 2R8 + 2R9 + R10,

where ξi = Op(∥Ĥ(Ti) − H(Ti)∥2), ri1 = gi, ri2 =
k

l=1
∂gi(θ)

∂Hl

n
j=1 Wnj(Ti)(ϕl(Xj) − Hl(Tj)), ri3 =

k
l=1

∂gi(θ)

∂Hln
j=1 Wnj(Ti)(Hl(Tj) − Hl(Ti)). Let R2,st be the (s, t) element in R2, and rij,s be the sth component of rij, j = 1, 2. By the

Cauchy–Schwarz inequality, it implies that |R2,st | ≤ (
n

i=1 r
2
i1,s)

1/2(
n

i=1 r
2
i2,t)

1/2. According to Assumption 2, Assumption 5
and the proof of Lemma 2, we know that ri1,s = op(n1/α), and

r2i2,t ≤

k
l=1

∂gi(θ)t

∂Hl

2
 n

j=1

Wnj(Ti)(ϕl(Xj) − Hl(Tj))


2

= Op


k
nh


,

where gi(θ)t is the tth component of gi(θ), t = 1, 2 . . . , r . Therefore,

|R2,st | ≤ n × op(n1/α) × Op


k
nh


= op(n5/6),

and ∥
1
nR2∥ =

r
n × op(n5/6) = op(1). Similarly, ∥ 1

nRi∥ = op(1), for i = 3, . . . , 10. This implies

1
n

n
i=1

ĝi(θ)ĝT
i (θ) =

1
n

n
i=1

gi(θ)gT
i (θ) + op(1).

Thus, the second part of Lemma 3 holds, and the proof is completed. �

Proof of Theorem 1. By Lemma 3, we can show that the nonparametric estimation does not affect the asymptotic result of
the EL ratio, and the proof is similar to that of Theorem 1 and Theorem 2 of Leng and Tang (2012), hence is omitted. �

Lemma 4. Under Assumptions 1–10, we have, with probability tending to 1, λθ0 = argmaxλ∈Λ̂n(θ0)
l̃(λ, θ0) exists, ∥λθ0∥ =

Op(γn), and ∥λθ̂∥ = Op(γn).

Proof of Lemma 4. By Lemma3, the proof is similar to Lemma2 and Lemma4of Leng and Tang (2012), hence is omitted. �

Proof of Theorem 2. Assumption 8 implies that

max
1≤i≤n

sup
θ∈Θθ

∥gi(θ)∥ = op(n1/αr1/2), (16)

then, by Lemmas 3 and 4, we have

max
1≤i≤n

|λT ĝi(θ0)| = max
1≤i≤n

|λTgi(θ)| + op(1) ≤ ∥λ∥ max
1≤i≤n

∥gi(θ)∥ + op(1)

= op(γnn1/αr1/2) = op(1).

We expand the equation of (5),

0 =
1
n

n
i=1

ĝi(θ0) −
1
n

n
i=1

ĝi(θ0)ĝT
i (θ0)λ + Rn1

=
1
n

n
i=1

gi(θ0) −
1
n

n
i=1

gi(θ0)gT
i (θ0)λ + Rn2, (17)

where Rn1 =
1
n

n
i=1 ĝi(θ0)

(λT ĝi(θ0))2

(1+ξi)3
, Rn2 =

1
n

n
i=1 gi(θ0)

(λT gi(θ0))2

(1+ξi)3
+ op(1), and |ξi| ≤ max1≤i≤n |λT ĝi(θ0)|. As

max1≤i≤n |λT ĝi(θ0)| = op(1), max1≤i≤n |ξi| = op(1) as well. According to (16), (17) and Lemma 4,

∥Rnl∥ ≤ ∥λ∥
2 max
1≤i≤n

∥gi(θ)∥3
+ op(1) = op(γ 2

n n
3/αr3/2) = op(1), l = 1, 2. (18)

Let ḡn =
1
n

n
i=1 gi(θ0), Sn =

1
n

n
i=1 gi(θ0)g

T
i (θ0), it follows from (18) that

λ = S−1
n ḡn + S−1

n Rn2. (19)
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By Taylor’s expansion and Lemma 3, we have

l̃(θ0) = 2
n

i=1

λTgi(θ0) −

n
i=1

(λTgi(θ0))2 +
2
3

n
i=1

(λTgi(θ0))3(1 + ηi)
−4

+ op(1)

= nḡT
n S

−1
n ḡn − nRT

n2S
−1
n Rn2 +

2
3

n
i=1

(λTgi(θ0))3

(1 + ηi)4
+ op(1),

where |ηi| ≤ max1≤i≤n |λTgi(θ0)|. By Assumptions 8–10, as n → ∞, Sn → Σ(θ0) in probability, so, by (19), ∥nRT
n2S

−1
n Rn2∥ =

op(
√
p), and23

n
i=1

(λTgi(θ0))3

(1 + ηi)4

 ≤
2
3
∥λ∥

3
n

i=1

∥(gi(θ0))∥3
{1 + op(1)}

= Op(p3n3/α−1/2) = op(
√
p).

Similar to Lemma 5 and Lemma 6 of Chen et al. (2009), we can show that (2p)−
1
2 {nḡT

n Σ(θ0)
−1ḡn − p}

L
→ N(0, 1), and

nḡT
n (Σ(θ0)

−1
− S−1

n )ḡn = op(
√
p). Hence, (2p)−

1
2 (l̃(θ0) − p)

L
→ N(0, 1), and the proof of Theorem 2 is completed. �

Proof of Theorem 3. According to Newey and Smith (2004), l̆(θ) given by (8) has a minimizer in Dn. Considering θ ∈ Dn, by
(16) and Lemma 2, max1≤i≤n ∥λTg(θ)∥ = op(1). By using Lemma 3 and Taylor’s expansion, we have

1
n

∂ l̆(θ)

∂θj
=

1
n

n
i=1

λT∂ ĝi(θ)/∂θj

1 + λT ĝi(θ)
+ P ′

ν(|θj|)sign(θj)

=
1
n

n
i=1

λT∂gi(θ)/∂θj

1 + λTgi(θ)
+ op(1) + P ′

ν(|θj|)sign(θj)

=
1
n

n
i=1

λT


∂gi(θ0)
∂θj

+
∂2gi(θ0)
∂θj∂θ T

(θ − θ0)


+ op(1) + P ′

ν(|θj|)sign(θj)

= A1 + A2 + P ′

ν(|θj|)sign(θj) + op(1).

By Assumption 6, we can show that

max
j∉A

(|A1|) = max
j∉A

1
n

 n
i=1

λT

E


∂g(θ0)
∂θj


+


∂gi(θ0)

∂θj
− E

∂g(θ0)
∂θj


≤ max

j∉A

λTE


∂g(θ0)
∂θj

+ 1
n

 n
i=1

λT


∂gi(θ0)
∂θj

− E
∂g(θ0)

∂θj

 = op(1),

and

max
j∉A

(|A2|) = max
j∉A

1
n

 n
i=1

λT


E


∂2g(θ0)
∂θj∂θ T


+


∂2gi(θ0)
∂θj∂θ T

− E
∂2g(θ0)
∂θj∂θ T


(θ − θ0)


= op(1).

According to |θj|{j∉A} ≤ γn and Assumption 11, we have that P ′
ν(|θj|){j∉A} = ν and P ′

ν(|θj|)sign(θj){j∉A} = νsign(θj){j∉A}.
Therefore, as n → ∞, the sign of θj dominates ∂ l̆(θ)

∂θj
for j ∉ A, with probability tending to 1. It implies that θ̆ (2)

= 0 with
probability tending to 1, and the first part of Theorem 3 is proved.

Next we show the second part of Theorem 3.We consider constrainedminimization of (8) subject to D2θ = 0. For k = 0,
this type of estimator is studied in Leng and Tang (2012). By the Lagrangemultipliermethod, this is equivalent tominimizing
a new objective function

l̆(θ, λ, µ) =
1
n

n
i=1

log(1 + λT ĝi(θ)) +

p
j=1

pν(|θj|) + µTD2θ, (20)

where µ ∈ R(p−s) is another Lagrange multiplier. By Lemma 3, minimizing (20) is equivalent to minimizing the following
function
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l̆(θ, λ, µ) =
1
n

n
i=1

log(1 + λTgi(θ)) +

p
j=1

pν(|θj|) + µTD2θ. (21)

The rest of the proof of this theorem is similar to that of Theorem 3 in Leng and Tang (2012), hence is omitted. �

Proof of Theorem 4. Firstly, we present the asymptotic expansion of l̆(θ̆) where θ̆ is the minimizer of (8). Let ŷi = λ̂T ĝi(θ̆)

and yi = λ̂Tgi(θ̆), for i = 1, 2, . . . , n. It implies that max1≤i≤n |yi| = op(1) by Lemma 4 and (16). By Taylor’s expansion and
Lemma 3, we have

l̆(θ̆) =

n
i=1

ŷi −
n

i=1

ŷ2i
2

+

n
i=1

ŷ3i
3(1 + ζi)4 + op(1)

=

n
i=1

yi −
n

i=1

y2i
2

+

n
i=1

y3i
3(1 + ζi)4 + op(1)

+ op(1), (22)

where |ζi| ≤ |yi|. LetQ1n(θ, λ) = n−1n
i=1

gi(θ)

1+λT gi(θ)
andΣ = Σ(θ0). According to (19)–(21),we can show that an expansion

for λ̂ is given by

λ̂ = {Σ−1
+ Σ−1G(V − VDT

2(D2VDT
2)

−1D2V )GTΣ−1
}(Q1n(θ0, 0) + op(1)).

Let ḡn(θ) =
1
n

n
i=1 gi(θ), from (22), we can gain the expansion of the PEL ratio as follows

2l̆(θ̆) = nḡn(θ0)TDT
2(D2ΣDT

2)
−1D2ḡn(θ0) + op(1). (23)

Under the null hypothesis, since LnLTn = Iq, there existsD2 such thatD2θ = 0 andD2DT
2 = Ip−d+q. By Lemma 3, we establish

that under the null hypothesis, the estimator of θ can be obtained by minimizing

l̆(θ, λ, µ) =
1
n

n
i=1

log(1 + λTgi(θ)) +

p
j=1

pν(|θj|) + µT D̃2θ. (24)

Denote the minimizer of (24) by (θ̆ , λ̆, µ̆). By the proof of the first part in Theorem 1, we have, with probability tending to
1, θ̆ (2)

= 0. Therefore, by Assumption 12, with probability tending to 1, n{
p

j=1 pν(|θ̂p,j|)−
p

j=1 pν(|θ̆j|)} = 0. By replacing
D2 in (22) byD2 and (23), we establish that

2l̆(θ̆)Lnθ=0 = 2l̆(θ̆) = nḡn(θ0)T D̃T
2(D̃2ΣD̃T

2)
−1D̃2ḡn(θ0) + op(1). (25)

Combining Eqs. (23)–(25), we have

l̆(Ln) = nḡn(θ0)TΣ−1/2(A1 − A2)Σ
−1/2ḡn(θ0) + op(1),

where

P1 = Σ−1/2GVDT
2(
D2VDT

2)
−1D2VGTΣ−1/2,

P2 = Σ−1/2GVDT
2(D2VDT

2)
−1D2VGTΣ−1/2.

As A1 − A2 is an idempotent matrix of rank q, A1 − A2 can be written as AT
nAn, An is a q × p matrix such that AnAT

n = Iq.

By Lindeberg and Feller central limit theorem, we have that
√
nAnΣ

−1/2ḡn(θ0)
L

→ N(0, Iq). Then nḡn(θ0)TΣ−1/2(A1 −

A2)Σ
−1/2ḡn(θ0)

L
→ χ2

q and the proof of Theorem 4 is completed. �
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