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a b s t r a c t

Empirical-likelihood-based inferences for the linear part in a partially linear Cox’s
proportional hazards model are investigated. It was shown in some previous studies, for
some related but different semiparametric models, that if there is no bias correction, the
limit distribution of the empirical likelihood ratio statistic is not a standard chi-square
distribution. In some previous studies, the bias correction is achieved by subtracting a
conditional expectation of a predictor from itself. In proportional hazards models, the
situation is different and it is not clear how to do so. Motivated from the form of
the asymptotic variance of the parameters, the bias-corrected empirical likelihood ratio
is proposed, with a standard χ2 limit. The demonstrated asymptotics even apply to
modelswith growing dimensions. For computational simplicity, we use polynomial splines
to approximate the nonparametric component so that the computations involved are
similar to those for the parametric model. Some simulations are carried out to study the
performance of bias-corrected empirical likelihood ratio.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider proportional hazards models with a partially linear risk score

λ(t|W , X) = λ0(t) exp{φ0(W ) + XTβ0}, (1)

where the model contains both the nonparametric component φ0(W ) and the parametric component XTβ0,W is
q-dimensional and X is p-dimensional. Although q > 1 is possible, in practice only q = 1 is popular to avoid curse of
dimensionality. Thus we will only consider q = 1 here. This model combines the flexibility of nonparametric modeling and
parsimony and easy interpretability of parametric modeling. In particular, it avoids the curse of dimensionality of a purely
nonparametric model [4,15].

Model (1) has been previously considered, for example, in [3,5,7,14,19,20], several of which are concernedwith themore
general partially linear additive models. Our investigations here can also be easily extended to relative risk with a partially
linear additive structure.

Based on asymptotic normality of the linear part, inferences can be performed using a sandwich formula, which was
advocated in [3,7], among others. In this paper, we will consider using empirical likelihood ratio for inferences on the
linear part for partially linear proportional hazards models, which has not been considered before. Empirical likelihood was
proposed first in [16,17] and has become very popular ever since. The advantages of a confidence interval/region constructed
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based on an empirical likelihood ratio include that it has a data-adaptive shape, it typically has better coverage, and it
can easily incorporate some auxiliary information [18]. Many investigations of inferences on semiparametric models exist
including Zhu and Xue [29], Xue and Zhu [24], You and Zhou [27], Xue and Zhu [25,26], Li et al. [13].

Nowadays, more and more researchers are concerned with data analysis tasks in which a large number of
predictors/features are used. This is due to the fact that, in a studywhere there are limited previous experiences, it is hard to
identify a small number of predictors such that it is believed only these variables contribute to the response of interest. Thus
a large number of predictors suspected to be related to responses need to be collected to avoid model misspecification. It
turns out that the additional efforts required to deal with partially linear models with growing dimensions areminimal, and
thuswewill accommodate growing dimension in thiswork. Empirical likelihoodwith growing dimensions has been recently
studied in [2,6,12,22], for example. Our study is directlymotivated by Li et al. [12]which considered semiparametric varying-
coefficient models with growing dimensions. In their work, the bias correction is achieved by subtracting the conditional
expectation of the predictor from itself in the estimating equation. For Coxmodels, such a simple strategy is not valid. Instead
we use the estimated estimating equations obtained from the efficient score equation which was presented in [7] for the
fixed dimensional case. Other related works include Sun et al. [21] who studied Cox models with varying coefficients and
empirical likelihood is used for inference of the nonparametric coefficients. We focus on the linear coefficients for which the
score functions are different from that used in [21]. Huang and Zhang [9,10] considered an empirical likelihood method for
single-index models which is different from Cox models. Zhu et al. [28] considered empirical likelihood for an uncensored
semiparametric problem. Although bias-correction was used in all these works, it is different to that used here due to the
fact that we consider a different model. Also, dimensions in these works are fixed.

The rest of the article is organized as follows. In the next section, we present the asymptotic properties of the maximum
partial likelihood estimator with growing dimensions. In Section 3, a bias-corrected empirical likelihood ratio for β is
proposed and it is shown that the statistic has a standard chi-square limit. In Section 4, simulation studies are carried out to
assess the performance of the proposed method in comparison with intervals constructed from the sandwich formula. We
conclude the paper in Section 5 with a short discussion. Finally, the Appendix contains all the technical proofs.

2. Maximum partial likelihood estimator

Let T e and T c be the event time and the censoring time respectively, where the hazard function of T e is given by (1).
Assume that T e and T c are independent given the covariates. The true nonparametric functions and parameters will be
denoted using a subscript 0. The observable random variables are (T , ∆,W , X)where T = min{T e, T c

} and ∆ = I{T e
≤ T c

}

(I{·} is the indicator function), W ∈ R and X = (X1, . . . , Xp)
T

∈ Rp are the covariates in the nonparametric part and the
parametric part respectively. Note that φ0 is identifiable only up to a constant and thus we assume E1φ0(W ) = 0.Wemake
n i.i.d. observations (Ti, ∆i,Wi, Xi).

We use polynomial splines to approximate the nonparametric component. Let τ0 = 0 < τ1 < · · · < τK ′ < 1 =

τK ′+1 be a partition of [0, 1] into subintervals [τk, τk+1), k = 0, . . . , K ′ with K ′ internal knots. A polynomial spline of
order r is a function whose restriction to each subinterval is a polynomial of degree r − 1 and globally r − 2 times
continuously differentiable on [0, 1]. The collection of splines with a fixed sequence of knots has a normalized B-spline basis
{B̃1(x), . . . , B̃K̃ (x)} with K̃ = K ′

+ r . Because of the centering constraint E1φ0(W ) = 0, we instead focus on the subspace of

spline functions S0 := {s : s =
K̃

k=1 akB̃k(x),
n

i=1 ∆is(Wi) = 0} with basis {Bk(x) =
√
K(B̃k(x) −

n
i=1 ∆iB̃k(Wi)/n), k =

1, . . . , K = K̃−1} (the subspace is K = K̃−1 dimensional due to the empirical version of the constraint). Themultiplicative
constant

√
K is incorporated in the basis definition to simplify some expressions later in the proofs, as done in [23]. Using

spline expansions, we can approximate the nonparametric component by φ0(x) ≈


k akBk(x).
Using spline expansion introduced above, the problem of estimating φ0 is then transformed to the problem of estimating

the coefficients a = (a1, . . . , aK )T . Let Yi(t) = 1{Ti ≥ t}. We can estimate (φ, β) as the maximizer of the (log-)partial
likelihood

l(φ, β) =

n
i=1

∆i


φ(Wi) + XT

i β − log
n

k=1

Yk(Ti) exp[φ(Wk) + XT
k β]


.

Using the notation

Zi = (B1(Wi), . . . , BK (Wi))
T ,

the partial likelihood is written equivalently as

l(a, β) =

n
i=1

∆i


ZT
i a + XT

i β − log
n

k=1

Yk(Ti) exp[ZT
k a + XT

k β]


. (2)

We have chosen to use B-splines to estimate the nonparametric components, although other estimation approaches can
be applied such as with smoothing splines as in [3]. Using B-splines has the distinct advantage that it can be implemented as
in the parametric case after spline approximation. If inferences on β and φ are desired, one can use the sandwich estimator
involving the observed information matrix.
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Even though our main interest is in empirical likelihood, we first study the maximum partial likelihood estimator for
Cox models with growing dimensions. The results, in particular the score functions used in the proof, will motivate our
bias-corrected estimating equation later. The efforts we make in the proof will also shorten our later proofs for empirical
likelihood, since the proofs have many common features. Finally, the theoretical study of the maximum partial likelihood
estimator is of independent interest in the case of growing dimensions.

It is sometimes more convenient to consider the counting process representation of the partial likelihood. Let Ni(t) =

1{Ti ≤ t, δ = 1} be the right continuous counting process and Yi(t) = 1{Ti ≥ t} be the left-continuous at-risk process for
the ith individual. Denote the true risk score by m0(W , X) = φ0(W ) + XTβ0. Let R = (W , X) be all the covariates. Denote
by g, h any functions of R (h can be vector-valued). Define

S(0)
n (g, t) = n−1

n
i=1

Yi(t) exp[g(Ri)],

S(1)
n (g, t)[h] = n−1

n
i=1

Yi(t)h(Ri) exp[g(Ri)],

S(2)
n (g, t)[h] = n−1

n
i=1

Yi(t)h(Ri)
⊗2 exp[g(Ri)],

Gn(g, t)[h] = S(1)
n (g, t)[h]/S(0)

n (g, t),

Vn(g, t)[h] = S(2)
n (g, t)[h]/S(0)

n (g, t) − Gn(g, t)[h]GT
n(g, t)[h],

where for any vector ξ, ξ⊗2 simply means ξξ T .
Let S(j)(g, t) = E(S(j)

n (g, t)), j = 0, 1, 2,G(g, t)[h] = S(1)(g, t)[h]/S(0)(g, t), V (g, t)[h] = S(2)(g, t)[h]/S(0)(g, t) −

G(g, t)[h]GT (g, t)[h]. We also let P1n be the empirical measure of (Ti, ∆i = 1, Ri), that is for any function f of
(T , ∆, R), P1nf = n−1

i ∆if (Ti, ∆i, Ri), and let P∆ be the measure of (T , ∆ = 1, R).
The partial likelihood can be rewritten as

l(a, β) =

n
i=1

 τ

0
{Q T

i b − log(S(0)
n (g, t))}dNi(t),

where b = (aT , βT )T ,Qi = (ZT
i , XT

i )T , and g is the function of R defined by (a, β): g(R) = aTB(W ) + XTβ, B(W ) =

(B1(W ), . . . , BK (W ))T . Note that as usual we only consider events over a finite interval [0, τ ]. The score function is given by

U(a, β) =

n
i=1

 τ

0
{Qi − Gn(g, t)[Q ]}dNi(t).

Define Hd as the collection of all functions on support [0, 1] whosemth order derivative satisfies the Hölder condition of
order r with d ≡ m+r . That is, for each h ∈ Hd, there exists a constantM0 ∈ (0, ∞) such that |h(m)(s)−h(m)(t)| ≤ M0|s−t|r ,
for any s, t ∈ [0, 1].

The following technical conditions are used in the study of asymptotics.
(C1) The covariate vector R has a bounded support (without loss of generality the support is assumed to be [0, 1](p+1)), with

the marginal density of each covariate being continuous and bounded away from zero and infinity.
(C2) Only observations with censored event times in a finite interval [0, τ ] are used in the partial likelihood. P(∆ = 1|R)

and P(T c > τ |R) are both bounded away from zero with probability one.
(C3) φ0(x) ∈ Hd, for some d > 1/2. The order of the spline satisfies r > d + 1/2.
(C4) Let Σ =

 τ

0 V (m0, t)[Q ]S(0)(m0, t)λ0(t)dt . The eigenvalues of Σ are bounded away from zero and infinity.

Assumptions (C1)–(C4) are similar to those contained in [7] or [1]. Boundedness of covariates is assumed for simplicity and
might be relaxed to somemoment conditions. The term QQ T appears in the definition ofΣ . Undermild assumptions, Huang
et al. [8] showed that eigenvalues of EZZT are bounded and bounded away from zero. Thus it is expected that eigenvalues
of EQQ T are bounded and bounded away from zero if eigenvalues of EXXT are so and Z and X are not linear dependent. This
can in turn be guaranteed with assumptions on the density of (T ,W , X) as in assumptions (B5) and (B6) of Huang [7]. Note
that Σ is the population information matrix of the model and thus its positive-definiteness is a reasonable assumption.

Theorem 1 (Convergence Rates). Under conditions (C1)–(C4), assume that K → ∞, (K + p)2/n → 0, and let (â, β̂) be the
maximizer of l(a, β) in (2) and φ̂ =


k âkBk. We have

∥φ̂ − φ0∥ + ∥β̂ − β0∥ = Op


K + p

n
+

1
K d


.

From the rates, it is seen that the optimal choice of K is of order O(n1/(2d+1)) as usual. The following theorem shows that
in fact the linear coefficients are asymptotically normal and thus converge at the

√
n rate. For this further notations and

assumptions are necessary.
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Let a∗ and h∗ be Rp-valued L2 functions thatminimize E∆∥X−a(T )−h(W )∥2. Denote Σ̃ = E∆(X−a∗(T )−h∗(W ))⊗2. By
direct calculations, it can be easily verified that Σ̃ can also bewritten as

 τ

0 V (m0, t)[X−h∗(W )]S(0)(m0, t)λ0(t)dt and is thus
the information matrix for the linear part after taking into account the effect of the nonparametric part. The p components
of h∗ are denoted by h∗

j , 1 ≤ j ≤ p.

(C5) All h∗

j , a
∗

j , 1 ≤ j ≤ p, are in Hd. The eigenvalues of Σ̃ are bounded and bounded away from zero.

Theorem 2 (Asymptotic Normality). Under the same conditions as assumed in Theorem 1 and in addition (C5) holds and
p = o(n1/3), then for any unit p-vector νn, we have

√
nνT

n Σ̃1/2(β̂ − β0) → N(0, 1).

Thus, informally, we can say β̂ is asymptotically normal with asymptotic variance Σ̃−1/n.

3. Empirical likelihood

If the nonparametric part φ is known, we can use the following random vector τ

0
Xi −

S(1)
n (φ(W ) + Xβ, t)[X]

S(0)
n (φ(W ) + Xβ, t)

dNi(t), i = 1, . . . , n,

which is almost the same as the parametric case, to define the empirical likelihood. When φ is unknown, the most obvious
strategy is to plug in some estimator φ̂ ofφ. In particularwewill use the estimator φ̂(w)which is obtained from (2). However,
as noted in [12], the estimating equation with the nonparametric part plugged in is not longer unbiased, which in turn will
lead to the fact that the limit distribution of the empirical likelihood ratio is non-standard.Motivated from the score function
contained in the proof of Theorem 2 (see Eq. (11) there), we define the bias-corrected random vector

ηi(β) =

 τ

0
Xi − h∗(W ) −

S(1)
n (φ(W ) + Xβ, t)[X − h∗

]

S(0)
n (φ(W ) + Xβ, t)

dNi(t), i = 1, . . . , n,

and its estimated version

η̂i(β) =

 τ

0
Xi − ĥ∗(W ) −

S(1)
n (φ̂(W ) + Xβ, t)[X − ĥ∗

]

S(0)
n (φ̂(W ) + Xβ, t)

dNi(t), i = 1, . . . , n.

By the definition of h∗ we can estimate it based on the minimization of
n

i=1

∆i∥Xi − h(Wi) − a(Ti)∥2

over h and a simultaneously and both are approximated using splines. Under the smoothness assumption of h∗ and a∗ in
(C5), it is easy to show that ∥ĥ∗

− h∗
∥ = Op(

√
K/n+ K−d). To see this, note that this is just a weighted additive model with

weights given by ∆i. The loss function is weighted least squares loss and no partial likelihood is used and thus the proof of
convergence is quite standard.

Summarizing the above, a bias-corrected empirical likelihood ratio is defined as

R(β) = max


n

i=1

(nwi) : wi ≥ 0,
n

i=1

wi = 1,
n

i=1

wiη̂i(β) = 0


.

By the Lagrange multiplier, −2 log R(β) can be represented in the dual form

−2 log R(β) = 2
n

i=1

log(1 + λT η̂i(β)),

where λ ∈ Rp is the solution of

1
n

n
i=1

η̂i(β)

1 + λη̂i(β)
= 0.

The subtraction of h∗ (or its estimator) introduces (approximate) conditional orthogonality into the estimating equation
and helps to get a faster rate of the bias to zero (see Eq. (14) in the Appendix, for example). It is worth noting that even in
the fixed p case, our results below are of interest and not found in the existing literature. Our main result is the following
Wilk’s theorem.
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Theorem 3. Under the assumptions (C1)–(C5), and that p → ∞, (K + p)2/n → 0, p3/n → 0. Let β0 be the true value of the
parameter vector, we have

−2 log R(β0) − p
√
2p

d
→ N(0, 1).

Remark 1. This theorem indicates that the distribution of −2 log R(β0) is asymptotically close to N(p, 2p). Also, an
asymptotically valid confidence region of β is {β : −2 log R(β) ≤ p + zα

√
2p} where zα is the upper α-quantile of the

standard normal distribution.

In practice, it is rarely the case that confidence regions for the entire parameter vectorwill be sought, since as soon as p >
3, it is hard to visualize or represent the region. Typically one will only be interested in a one- or two-dimensional subvector
of β . Suppose β = (β(1)T , β(2)T )T where β(1) is l-dimensional (l is fixed and does not diverge with n) for which confidence
interval/region is to be constructed. Similarly, the true parameter vector can be partitioned as β0 = (β

(1)T
0 , β

(2)T
0 )T . Other

vectors such as Xi and h∗ can be similarly partitioned.
With fixed β(1) we can obtain estimators for the rest of the parameters and the nonparametric function from (2), denoted

by β̂(2) and φ̂ respectively.
Define

ˆ̃ηi(β) =

 τ

0
X (1)
i − ĥ∗(1)(W ) −

S(1)
n (φ̂(W ) + X (1)β(1)

+ X (2)β̂(2), t)[X (1)
− ĥ∗(1)

]

S(0)
n (φ̂(W ) + Xβ, t)

dNi(t).

The bias-corrected empirical likelihood for β(1) is

R(β(1)) = max


n

i=1

(nwi) : wi ≥ 0,
n

i=1

wi = 1,
n

i=1

wi ˆ̃ηi(β) = 0


.

Theorem 4. Under the same assumptions as in Theorem 3, we have

−2 log R(β(1)
0 )

d
→ χ2

l ,

where χ2
l denotes the chi-square distribution with l degrees of freedom.

Based on the above theorem, the confidence interval or region for β(1) can be easily constructed.
To implement the procedures, we also need to choose the number of spline basis K . To ease the computational burden,

we use cubic splines with K = 6 following Huang et al. [8]. This choice of K is small enough to avoid overfitting in typical
problems with sample size not too small, and big enough to flexibly approximate many smooth functions. We also find the
results are very similar for K ranging from 5 to 8 in our simulations, and thus we only report the results obtainedwith K = 6
later.

4. Simulations

In this section, we conduct some Monte Carlo studies to demonstrate the finite sample properties of the empirical
likelihood inferences. We generate our data from the Cox model with hazard function given by

λ(t|W , X) = exp


φ0(W ) +

p
j=1

Xjβ0j − 5


,

where the nonparametric component is φ0(t) = sin(2π t), and the coefficients in the linear part are β = (5, 4.5, 4,
. . . , 5.5−p/2). The covariates R = (W , X)were generated as follows. We first generate a multivariate (p+1)-dimensional
Gaussian vector (V1, . . . , Vp+1)with covariance given by Cov(Vj, Vj′) = (0.2)|j−j′|. Then the cumulative distribution function
of the standard normal distribution is applied to each component to map the components to the range (0, 1), to obtain
W , X1, . . . , Xp. The censoring times are independently generated from an exponential distribution with mean 200. Under
our simulation setup, about 25% observations are censored in the generated datasets. We use n = 200, 400, 600 and
p = 10, 20, 30. We use cubic splines with K = 6.

We consider an empirical-likelihood-based 95% confidence interval for β1 and results for other parameters are similar
and not presented here. In each case we repeat the simulation 1000 times. For comparison, we also construct confidence
intervals using the sandwich formula. The results are presented in Table 1.We find that empirical-likelihood-based intervals
(EL) consistently have better coverage probability (CP) with slightly longer average length (AL) than the sandwich-formula-
based intervals (SF).

In Table 2, we further consider confidence regions for (β1, β2) constructed by empirical likelihood and the sandwich
formula where we show the coverage of the constructed regions. The message is similar as before and we see that empirical
likelihood performs much better.
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Table 1
The coverage probability (CP) and average length (AL) on β1 . We compare empirical-likelihood-based
intervals (EL) with the sandwich-formula-based intervals (SF).

Method n p = 10 p = 20 p = 30
CP AL CP AL CP AL

EL 200 0.937 2.02 0.934 2.40 0.924 2.38
400 0.945 1.31 0.941 1.45 0.935 1.49
600 0.947 1.04 0.947 1.12 0.937 1.13

SF 200 0.906 1.93 0.861 2.16 0.803 1.99
400 0.921 1.21 0.904 1.40 0.852 1.47
600 0.930 0.99 0.927 1.09 0.861 1.12

Table 2
The coverage probability (CP) of confidence regions for (β1, β2). We compare empirical-likelihood-based
intervals (EL) with the sandwich-formula-based intervals (SF).

Method n p = 10 p = 20 p = 30

EL 200 0.925 0.920 0.920
400 0.928 0.926 0.925
600 0.939 0.934 0.935

SF 200 0.884 0.848 0.772
400 0.882 0.857 0.804
600 0.887 0.852 0.811

5. Concluding remarks

In this article, we studied the empirical likelihood ratio for inferences on the parametric part of partially linear Cox
models. A simple bias correction method is proposed so that the asymptotic distribution of the statistic is a standard chi-
square distribution.

When p is large, it is also interesting to perform variable selection to identify a small number of significant predictors.
Recently, Tang and Leng [22], [11] have considered combining penalized variable selection with empirical likelihood. It
would be interesting to consider a similar strategy for partially linear Cox models.

One could also consider the case where W is high-dimensional. However, using a partially linear model with high-
dimensional W leads to the worry of the curse of dimensionality. To address this problem, one might consider a partially
linear additive model as in [7]. A detailed study of this is outside the scope of the current paper.

Appendix

Proof of Theorem 1. The strategy of proof is similar to Bradic et al. [1] with the main difference being that the
nonparametric components need to be appropriately dealt with in spline approximation. Let a0 be a K dimensional vector
that satisfies ∥φ0 − aT0B∥∞ = O(K−d) (such approximation rates are possible due to our smoothness assumption (C2) and
well-known approximation properties of B-splines). Denote b = (a, β) and b0 = (a0, β0). Let γn = C(

√
(K + p)/n + K−d)

and u ∈ RK+p with ∥u∥ = 1.
It is sufficient to show that for any ϵ > 0, there exists a large enough C (in the definition of γn) such that

P{ sup
∥u∥=1

l((a0, β0) + γnu) < l(a0, β0)} ≥ 1 − ϵ, (3)

when n is big enough.
We have

l(b0 + γnu) − l(b0) = γnU(b0)Tu +
1
2
γ 2
n u

T∂U(b0)u + rn, (4)

where rn is equal to

1
6


j,k,l

(bj − b0j)(bk − b0k)(bl − b0l)
∂2Ul(b̃)
∂bj∂bk

where Ul is the l-th component of U , and b̃ is a value between b0 and b = b0 + γnu.
We first consider

U(b0) =


i

 τ

0
Qi −

S(1)
n (m0n, t)[Q ]

S(0)
n (m0n, t)

dNi(t),

where m0n(R) = Za0 + XTβ0.
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Similar to Lemma 5.3 of Huang [7], we have

P1n
S(1)
n (m0n, t)[Q ]

S(0)
n (m0n, t)

−
S(1)
n (m0, t)[Q ]

S(0)
n (m0, t)

= P∆

S(1)(m0n, t)[Q ]

S(0)(m0n, t)
−

S(1)(m0, t)[Q ]

S(0)(m0, t)
+ op(n−1/2) (5)

where m0(R) = φ0(W ) + XTβ0. Using Lemma A.4 of Huang [7] and that ∥m0n − m0∥ = O(K−d), we have

P∆

S(1)(m0n, t)[Q ]

S(0)(m0n, t)
−

S(1)(m0, t)[Q ]

S(0)(m0, t)
= O(K−d). (6)

Thus

U(b0) =


i

 τ

0
Qi −

S(1)
n (m0, t)[Q ]

S(0)
n (m0, t)

dNi(t) + Op(
√
n + nK−d).

Let ξn denote the first term on the right hand side above, direct algebraic calculations show that

E(ξ T
n ξn) = tr(E[ξnξ

T
n ])

= ntr

E
 τ

0
Vn(m0, t)[Q ]S(0)

n (m0, t)λ0(t)dt


.

Since

tr(E[Vn(m0, t)[Q ]S(0)
n (m0, t)]) = tr


E


i

(Qi − Gn(m0, t)[Q ])⊗2Yi(t) exp{m0(Ri)}


≤ E[tr(Q⊗2

i Yi exp{m0(Ri)})] = O(K + p),

we have ∥ξn∥2 = Op(
√
n(K + p)) and thus

∥U(b0)∥ = Op(

n(K + p) + nK−d). (7)

Next, we have

− ∂U(b0) =


i

 τ

0

S(2)
n (m0n, t)[Q ]S(0)

n (m0n, t) − (S(1)
n (m0n, t)[Q ])⊗2

(S(0)
n (m0n, t))2

dNi(t)

=


i

 τ

0

S(2)
n (m0, t)[Q ]S(0)

n (m0, t) − (S(1)
n (m0, t)[Q ])⊗2

(S(0)
n (m0, t))2

dNi(t) + O(nK−d) (8)

where again we used Lemma A.4 of Huang [7]. Similar to Lemmas A.2 and A.4 of Bradic et al. [1], we can show that
i

 τ

0

S(2)
n (m0, t)[Q ]S(0)

n (m0, t) − (S(1)
n (m0, t)[Q ])⊗2

(S(0)
n (m0, t))2

dNi(t)

= n
 τ

0
V (m0, t)[Q ]S(0)(m0, t)λ0(t)dt + op(n), (9)

and thus the minimum eigenvalue of −∂U(b0)/n is bounded away from zero.
Then, as in the proof of Theorem 4.2 in [1],

rn = Op(nγ 3
n ). (10)

Combining (4)–(10), we get ∥b̂ − b0∥ = Op(γn), which implies the statement of the theorem. �

Proof of Theorem 2. Let h∗
n = (h∗

n1, . . . , h
∗
np)

T be the spline functions that approximate h∗
= (h∗

1, . . . , h
∗
p)

T with ∥h∗

nj −

h∗

j ∥∞ = O(K−d). Since b̂ = (â, β̂) maximizes the partial likelihood (2), it is easy to see that v = 0 maximizes

n
i=1

 τ

0
m̂(Ri) + (Xi − h∗

n(Wi))
Tv − log


k

Yk(t) exp{m̂(Ri) + (Xi − h∗

n(Wi))
Tv}


dNi(t),

where m̂(R) = ZT â + XT β̂ . The first order condition gives
i

 τ

0
(Xi − h∗

n(Wi)) −
S(1)
n (m̂, t)[X − h∗

n(W )]

S(0)
n (m̂, t)

dNi(t) = 0. (11)
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Consider the difference

n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m̂, t)[X − h∗(W )]

S(0)
n (m̂, t)

dNi(t)

− n−1


i

 τ

0
(Xi − h∗

n(Wi)) −
S(1)
n (m̂, t)[X − h∗

n(W )]

S(0)
n (m̂, t)

dNi(t)

= n−1


i

 τ

0
(h∗

n(Wi) − h∗(Wi)) −
S(1)
n (m̂, t)[h∗

n(W ) − h∗(W )]

S(0)
n (m̂, t)

dNi(t)

≡ A1n + A2n + A3n + A4n

where

A1n = (P1n − P∆)


h∗

n(Wi) − h∗(Wi) −
S(1)(m̂, t)[h∗

n(W ) − h∗(W )]

S(0)(m̂, t)


,

A2n = P1n


S(1)(m̂, t)[h∗

n(W ) − h∗(W )]

S(0)(m̂, t)
−

S(1)
n (m̂, t)[h∗

n(W ) − h∗(W )]

S(0)
n (m̂, t)


,

A3n = P∆


S(1)(m0, t)[h∗

n(W ) − h∗(W )]

S(0)(m0, t)
−

S(1)(m̂, t)[h∗
n(W ) − h∗(W )]

S(0)(m̂, t)


,

A4n = P∆


h∗

n(Wi) − h∗(Wi) −
S(1)(m0, t)[h∗

n(W ) − h∗(W )]

S(0)(m0, t)


.

By the maximal inequality and the entropy calculations in Lemma A.1 and Corollary A.1 of Huang [7], we have A1n =

op(n−1/2). Similar to Lemma A.3 of Huang [7], A2n = op(n−1/2). Similar to (6) and using that ∥h∗

nj − h∗

j ∥ = O(K−d),
A3n = op(n−1/2) and finally, we note that since for any function h, S(1)(m0, t)[h]/S(0)(m0, t) = E[h(R)|T = t, ∆ = 1]
[20, Lemma 2], A4n = 0.

Thus we have that

n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m̂, t)[X − h∗(W )]

S(0)
n (m̂, t)

dNi(t) = op(n−1/2). (12)

Similar to (5),

n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m̂, t)[X − h∗(W )]

S(0)
n (m̂, t)

dNi(t)

= n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m0, t)[X − h∗(W )]

S(0)
n (m0, t)

dNi(t)

− P∆


S(1)(m̂, t)[X − h∗(W )]

S(0)(m̂, t)
−

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)


+ op(n−1/2). (13)

Direct Taylor expansion shows that

P∆


S(1)(m̂, t)[X − h∗(W )]

S(0)(m̂, t)
−

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)


= P∆


X − h∗(W ) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)


X −

S(1)(m0, t)[X]

S(0)(m0, t)


(β̂ − β0)

+ P∆


X − h∗(W ) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)


φ̂(W ) − φ0(W ) −

S(1)(m0, t)[φ̂ − φ0]

S(0)(m0, t)


+ Op(∥m̂ − m0∥

2)

= P∆


X − h∗(W ) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)

⊗2

(β̂ − β0) + op(n−1/2), (14)
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where the last step used that

P∆


X − h∗(W ) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)


φ̂(W ) − φ0(W ) −

S(1)(m0, t)[φ̂ − φ0]

S(0)(m0, t)


= 0,

by the definition of h∗.
Furthermore, similar to A2n above,

n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m0, t)[X − h∗(W )]

S(0)
n (m0, t)

dNi(t)

= n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)
n (m0, t)[X − h∗(W )]

S(0)
n (m0, t)

dMi(t)

= n−1


i

 τ

0
(Xi − h∗(Wi)) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)
dMi(t) + op(n−1/2) (15)

and can be seen to be asymptotically normal, whereMi(t) = Ni(t) −
 t
0 Yi(t) exp[m0(Ri)]λ0(t)dt . Combining (12)–(15), the

asymptotic normality of β̂ follows. We also note that

P∆


X − h∗(W ) −

S(1)(m0, t)[X − h∗(W )]

S(0)(m0, t)

⊗2

= P∆(X − h∗(W ) − E[X − h∗(W )]|T = t, ∆ = 1)⊗2

= P∆(X − h∗(W ) − a∗(T ))⊗2. �

Proof of Theorems 3 and 4. Using the results similar to those proved in the previous theorems, the asymptotic study for
empirical likelihood ratio becomes relatively simple.

We write λ = ∥λ∥θ where θ is a unit vector. We have

1
n

n
i=1

θ T η̂i

1 + λT η̂i
= 0.

Let Yi = λT η̂i. Substituting 1/(1 + Yi) = 1 − Yi/(1 + Yi) into the above displayed equation, we have

θ T ¯̂η = ∥λ∥θ T Ŝθ,

where

¯̂η =
1
n

n
i=1

η̂i, Ŝ =
1
n

n
i=1

η̂iη̂
T
i

1 + λT η̂i
.

Define S =
1
n

n
i=1 η̂iη̂

T
i . Then we have

∥λ∥θ T Sθ ≤ ∥λ∥θ T Ŝθ(1 + ∥λ∥max
i

∥η̂i∥)

= θ T ¯̂η(1 + ∥λ∥max
i

∥η̂i∥). (16)

We now use that maxi ∥η̂i∥ ≤ maxi ∥ηi∥ +maxi ∥η̂i − ηi∥ = Op(
√
p) +maxi ∥η̂i − ηi∥ (maxi ∥ηi∥ = Op(

√
p) since we used

the simplifying assumption X is bounded and the score function for the definition of ηi is basically a projection) and that

η̂i − ηi =

 τ

0
h∗(Wi) − ĥ∗(Wi) −

S(1)(φ0(W ) + XTβ0, t)[h∗
− ĥ∗

]

S(0)(φ0(W ) + XTβ0, t)
dNi(t)

+

 τ

0

S(1)
n (φ0(W ) + XTβ0, t)[X − h∗

]

S(0)
n (φ0(W ) + XTβ0, t)

−
S(1)
n (φ̂(W ; β0) + XTβ0, t)[X − h∗

]

S(0)
n (φ̂(W ; β0) + XTβ0, t)

dNi(t)

+

 τ

0

S(1)
n (φ0(W ) + XTβ0, t)[h∗

− ĥ∗
]

S(0)
n (φ0(W ) + XTβ0, t)

−
S(1)
n (φ̂(W ; β0) + XTβ0, t)[h∗

− ĥ∗
]

S(0)
n (φ̂(W ; β0) + XTβ0, t)

dNi(t)

+

 τ

0

S(1)(φ0(W ) + XTβ0, t)[h∗
− ĥ∗

]

S(0)(φ0(W ) + XTβ0, t)
−

S(1)
n (φ0(W ) + XTβ0, t)[h∗

− ĥ∗
]

S(0)
n (φ0(W ) + XTβ0, t)

dNi(t)

=: A1 + A2 + A3 + A4. (17)
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From the results of Theorem 1, ∥φ̂ −φ0∥ = Op(δn) where δn =
√

(K + p)/n+K−d. The first term in (17) has mean zero and
by calculating its second moment, it is straightforward to show A1 = Op(

√
pδn). Using Lemmas A.3 and A.6 in [7], we can

similarly show A2 = Op(
√
pδn) (note this convergence is uniform in i due to these lemmas). Again using the same lemmas

in that paper, A3 = Op(
√
pδ2

n), A4 = Op(
√
pδ2

n). These taken together imply that maxi ∥η̂i∥ = Op(
√
p).

Using that θ T ¯̂η = Op(
√
p/n), (16) implies

∥λ∥(θ T Sθ − op(1)) = Op(

p/n).

Using (17), it can be shown that the eigenvalues of S is bounded away from zero by assumption (C5), which then gives
∥λ∥ =

√
p/n.

Now, we have

0 =
1
n

n
i=1

η̂i


1 − Yi +

Y 2
i

1 − Yi


= ¯̂η − Sλ +

1
n

n
i=1

η̂iY 2
i

1 − Yi
.

The last term above is of order Op(maxi ∥η̂i∥λ
T Sλ) = Op(p3/2/n).

Now we may write

−2 log R(β0) = 2 log(1 + Yi)

= 2
n

i=1

Yi −

n
i=1

Y 2
i + op(1)

= 2nλT ¯̂η − nλT Sλ + op(1)

= n ˆ̄η
T
S−1 ¯̂η + op(1).

Using (17), it can be shown exactly as in Lemma B.5 of Li et al. [12] that

−2 log R(β0) − p
√
2p

d
→ N(0, 1).

Note the proof of Theorem3 is based on profiling out the nonparametric part (the score function is only for the parametric
part). To show Theorem 4 for inferences on β(1), we need to actually profile out β(2) together with the nonparametric part.
Conceptually we just combine the nonparametric part φ together with β(2) which is the part that needs to be profiled out.
Then the proof follows line by line as for Theorem 3without change (with the slight simplification due to that the dimension
is fixed now for the score function of β(1)). �
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