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SUMMARY

When a parametric likelihood functionliSIRGEISPEEIfiet for a model, estimatingtieqs pro-
vide an instrument for statistical inference. Qin & Lawless (1994) illustritatiempirical like-
lihood makes optimal use of these equations in inferences for fixed (lowhdioreal unknown
parameters. In this paper, we study empirical likelihood for general estignatjpations with
growing (high) dimensionality and propose a penalized empirical likelihogdoagh for pa-
rameter estimation and variable selection. We quantify the asymptotic propdréespaical
likelihood and its penalized version, and show that penalized empirical likelihas the oracle
property. The performance of the proposed method is illustrated viasdesmgrulated applica-
tions and a data analysis.

Some key word&mpirical likelihood; General estimating equations; High dimensional alaadysis; Penalized like-
lihood; Variable selection.

1. INTRODUCTION

Empirical likelihood is a computationally intensive nonparametric approacteoving es-
timates and confidence sets for unknown parameters. Detailed in Owel),(2@fpirical like-
lihood shares some merits of parametric likelihood approach, such as limitiregjcare dis-
tributed likelihood ratio and Bartlett correctability (DiCiccio et al., 1991; Che@&, 2006). On
the other hand, as a data driven nonparametric approach, it is attiagi®istness and flexibil-
ity in incorporating auxiliary information (Qin & Lawless, 1994). We refer twéh (2001) for a
comprehensive overview, and Chen & Van Keilegom (2009) for aeguo¥ recent development
in various areas.

Let Z1,..., Z, be independent and identically distributed random vectors from some distri-
bution, and € R? be a vector of unknown parameters. Suppose that data information is avail-
able in the form of an unbiased estimating functign; 6) = {g1(z;0),...,9,(z;0)}" (r > p)
such thatE{g(Z;;6p)} = 0. Besides the score equations derived from a likelihood, the choice
of g(z;0) is more flexible and accommodates a wider range of applications, for exatmnele,
pseudo-likelihood approach (Godambe & Heyde, 1987), the instrumeariables method in
measurement error models (Fuller, 1987) and survey sampling (Full@®),2te generalized
method of moments (Hansen, 1982; Hansen & Singleton, 1982) and thealigse estimating
equations approach in longitudinal data analysis (Liang & Zeger, 1986).

Whenr = p, § can be estimated by solving the estimating equatibasn ! >, g(Z;;0).
Allowing r > p provides a useful device to combine available information for improved effi-
ciency, but then directly solving=n"'>""_, ¢(Z;; #) may not be feasible. Hansen (1982) and
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2 C. LENG AND C. Y. TANG

Godambe & Heyde (1987) discussed optimal ways to combine these equatiired p. They
showed that the optimal estimatsatisfies,/n(0 — 6y) — N{0,V (6p)} in distribution with

vo) = ({220 ipyzsog o p [ PLOL) T g

Qin & Lawless (1994) showed that empirical likelihood optimally combines infoionaMore
specifically, the maximize# of

L(0) = sup {H nw; : w; 2 0, Zwi =1, Zwig(Zi;H) = 0} (2)
i=1 i=1 i=1

is optimal in the sense of Godambe & Heyde (1987). Define the empirical likelimatio
as/(#) = — [log{L(0)} — nlog(n)]. Qin & Lawless (1994) further showed that2{¢(d) —
2(90)}—%% in distribution as» — oo. This device is useful in testing hypotheses and obtaining
confidence regions fadt. Compared to the Wald type confidence region, this approach respects
the range of) and imposes no shape constraint (Qin & Lawless, 1994).

Our motivations for this paper are multiple-fold. Contemporary statistics oféatsdwith
datasets with diverging dimensionality. Sparse models can help interpretatamprove pre-
diction accuracy. There is a large literature on the penalized likelihoodagpipifor building such
models; for example lasso (Tibshirani, 1996), the smoothly clipped absautatidn method
(Fan & Li, 2001), adaptive lasso (Zou, 2006; Zhang & Lu, 2007)stlesguares approximation
(Wang & Leng, 2007), the folded concave penalty (Lv & Fan, 20098site these develop-
ments, it is not clear how existing methods can be applied to general estimatiatjpeg with
diverging dimensionality. When likelihood is not available, estimating equatiansbe more
flexible and information from additional estimating equations can improve the dstimef-
ficiency (Hansen, 1982). Reducing the effective dimension of the amkrparametef) may
lead to extra efficiency gain. From this perspective, sparse models irstineaéng equations
framework provide additional insights.

The importance of high dimensional statistical inference using empirical liladineas only
recently recognized by Hjort et al. (2009) and Chen et al. (2009)jhsiepaper explored model
selection. Tang & Leng (2010) studied variable selection using penalty iartirical likeli-
hood framework, which is limited to mean vector estimation and linear regressidelsn®vhen
dimension grows, variable selection using more general estimating equations isf threater
interest. Empirical likelihood for general estimating equations with growing dseality is
challenging, theoretically and computationally. First, the number of Lagrandpliers which
are used to characterize the solution and to derive asymptotic resultgsesneith the sample
size. It is not clear how appropriate bounds can be obtained. Seeamdrical likelihood usu-
ally involves solving nonconvex optimization and any generalization of it toessdcthe issue of
variable selection is nontrivial. The main contributions of this work are sumethgsz follows:

1. We show that empirical likelihood gives efficient estimates by combining dhigiensional
estimating equations. This generalizes the results in Qin & Lawless (1994¢déor fixed
dimension, which may be of independent interest;

2. For building sparse models, we propose an estimating equation-basaltz@e empirical
likelihood, a unified framework for variable selection in optimally combining estingatin
equations. With a proper penalty function, the resulting estimator retains trentades
of both empirical likelihood and the penalized likelihood approach. Moreigpally, this
method has the oracle property (Fan & Li, 2001; Fan & Peng, 2004) yifdieg the true
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Penalized Empirical Likelihood 3

sparse model with probability tending to one and with optimal efficiency. Mae®ilks’
theorem continues to apply and serves as a robust method for testinthésiscand con-
structing confidence regions.

The oracle property of the proposed method does not require strigbdiginal assumptions,
thus is robust against model misspecification. The proposed method is &juf#igable as long
as unbiased estimating equations can be formed, even when a likelihood &lainlav Later
we outline four such applications in which estimating equations are more ndtaredhe usual
likelihood function, and the efficiency of the estimates is improved by having restimating
equations than the parameters. To our best knowledge, variable sefectibese examples in a
high dimensional setup has not been investigated.

2. EMPIRICAL LIKELIHOOD FOR HIGH DIMENSIONAL ESTIMATING EQUATIONS

We first extend the fixed dimensional results in Qin & Lawless (1994) toscasté diverg-
ing dimensionality, i.e.r,p — co asn — oo. Via Lagrange multipliers, the weightsv; }7
in (2) are given byw; = n~ {14+ X\ g(Z;0)} ! where )y satisfiesn™1 Y7 | g(Z;;0){1 +
Nog(Zi;0)} 1 = 0. By noting that the global maximum of (2) is achievedugt=n""!, the
empirical likelihood ratio is given by

((0) = —[log{L ()} — nlog(n)] = > log{1 + Xjg(Z;0)}. 3)
=1

Thus maximizing (2) is equivalent to minimizing (3). In high dimensional empiricallilike
hood, the magnitude df)\g|| is no longerO,(n~'/2) as in the fixed dimensional case (Hjort
et al., 2009; Chen et al., 2009). To develop an asymptotic expansioB){oX,(g(Z;; ) needs
to be stochastically small uniformly, which is ensured by Lemma 1 in the Appeheix.
an = (p/n)Y?, and D,, = {0 : |0 — 6y|| < Ca,} be a neighborhood o, for some constant
C > 0. Let g;(0) = g(Z;;0) and g(0) = E(Z;;0). The following regularity conditions are as-
sumed.

A.1 The support o) denoted by is a compact set ifR?, §;, € © is the unigue solution to
E{gi(0)} = 0.

A2 E{supgeo(lgi(0)]|r~1/?)*} < oo for somea > 10/3 whenn is large.

A3 LetX(0) = E[{gi(0) — g(0)}{g:(0) — g(0)}"]. There existd and B such that the eigenval-
ues ofX(0) satisfy0 < b < v {3(0)} <--- <.{3(0)} < B < ¢ forall 8 € D,, whenn
is large.

A.4 Asn — oo, p’/n — 0 andp/r — y for somey such thatCy < y < 1 whereCy > 0.

A5 There exisC; < oo andKj;(z) suchthatforali =1,...,randj =1,...,p

J
There existC, and H;;;,(z) such that for theth estimating equation

3292-(,2; 0)

95T g 2 < _
500, = Hinle), BULL(2)} <y < oo

Conditions A.1 and A.2 are from Newey & Smith (2004) to ensure the existendecon-
sistency of the minimizer of (3) and to control the tail probability behavior ofasimating
function. Condition A.4 requires that= o(n'/®) where the rate op should not be taken as
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4 C. LENG AND C. Y. TANG

restrictive because empirical likelihood is studied in a broad frameworkdbas general esti-
mating equations. Since no particular structural information is availablg o), establishing
the theoretical result is very challenging so that strong regularity conditiom needed and the
bounds in the stochastic analysis are conservative. This is also the deae & Peng (2004)
in studying the penalized likelihood approach in high dimension. When spewifite| struc-
ture is available, the restriction on dimensionatitgan be relaxed. Here/p — y in A.4 is for
simplicity in presenting the theoretical results. There are also situations wisefixed andr
is diverging (Xie & Yang, 2003), in which our framework also applies. &ephasize that the
dimensionality- effectively can not exceedbecause the convex hull §§(Z;; 0)}7_, is at most
a subset ilR™ as seen from the definition (2).

We now show the consistency of the empirical likelihood estimate and its rateedigence.

THEOREM1. Under Conditions A.1-A.5, as — oo and with probability tending to 1, the
minimizerd g of (3) satisfies ajz — 6 in probability, and b)||0r — 6y|| = Op(an).

We now present the theoretical property of the high dimensional empiriedihidod.

THEOREM2. Under Conditions A.1-A.5/n.A,V~/2(00)(0r — 6y) — N(0,G) in distribu-

tion where4,, € R?*P such that4,, A}, — G andG is aq x ¢ matrix with fixedg and V' (6y) is
given by (1).

BRI, p<n

From Theorem 2, the asymptotic variaricéd) of 6 remains optimal as in fixed dimengional
cases (Hansen, 1982; Godambe & Heyde, 1987). Theorem 2 implidsrttieg high dimengional
estimating equation, empirical likelihood based estimate achieves the optimahefficie

We remark that the framework presented in this paper is applicable only t@a$eewhere
the sample size is larger than the dimension of the parameter. When that is viptatedinary
methods such as sure independence screening (Fan & Lv, 2008) masefieo reduce the
dimensionality. This condition cannot be improved because empirical likelidoed not have a
solution due to the fact that there are more constraints than the observations

3. PENALIZED EMPIRICAL LIKELIHOOD

In high dimensional data analysis, it is reasonable to expect that onlysatsitine covariates
are relevant. To identify the subset of influential covariates, we peofmogse the penalized em-
pirical likelihood by complementing (2) with a penalty functional. Using Lageanwiltipliers,
we consider equivalently minimizing the penalized empirical likelihood ratio defrse

n p
p(0) = " log{1+A"g(Zi;0)} +n > p-(16;]), 4)
i=1

Jj=1

wherep-(|0;]) is some penalty function with tuning parametecontrolling the trade-off be-
tween bias and model complexity (Fan & Li, 2001).

Write A = {j : 6y; # 0} and its cardinality agl = |.A|. Without loss of generality, lefi =
(6T,03)T whered; € R? and§, € RP~¢ correspond to the nonzero and zero components re-
spectively. This impliegy = (67,,0)". We correspondingly decompog&#y) in (1) as

Vi1 Via
V(b)) = :
(6) <V21 V22>
The following regularity conditions on the penalty function are assumed.

A6 Asn — oo, 7(n/p)'/? — oo andmin;e 4 fo;/7 — 0.
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Penalized Empirical Likelihood 5

A7 Assumemax;e 4, (100;]) = of (np) 1/} andmasje 4 p([dog1) = o(p~/2).

Condition A.6 states that the nonzero parameters can not converge toaéast. This is reason-
able because otherwise the noise is too strong. Condition A.7 holds by maalgypkinctions
such as the penalty in Fan & Li (2001) and the minimax concave penalty ¢ZI2810). The
penalized empirical likelihood has the following oracle property.

THEOREM3. Letf = (A7, 63)" be the minimizer of (4). Under Conditions A.1-A.7 as»
oo, we have the following results.

1. With probability tending to ondy, = 0.

2. LetVy(0p) = Vi1 — ViaViy' Var. Thenyn B,V 1 (00) (61 — 610) — N (0, G) in distribution,
whereB,, € R7*9, ¢ is fixed andB, B — G asn — oo.

Theorem 3 implies that the zero componentéjiiare estimated as zero with probability tend-
ing to one. Comparing Theorem 3 to Theorem 2, penalized empirical likelipived more effi-
cient estimates of the nonzero components. As shown in the proof of @edrthe efficiency
gain is due to the reduction of the effective dimensiord afia penalization. It can be shown
further that the penalized empirical likelihood estiméeis optimal in the sense of Heyde &
Morton (1993) as if empirical likelihood were applied to the true model. We shatlve later
simulations that the improvement can be very large, sometimes substantial.

Next we consider testing statistical hypotheses and constructing cordicegions fof. Con-
sider the null hypothesis of fixed dimensionality in the following form

Hy:Ly0y=0, Hy : L,0y # 0,

whereL,, € R?*¢ such that.,, LT = I, for a fixedg, andl, is theg-dimensional identity matrix.
Such hypotheses include testing for individual and multiple componeris & special cases,
and can be easily extended to linear function®pfA similar type of hypothesis testing was
considered in Fan & Peng (2004) under a parametric likelihood framewased on the em-
pirical likelihood formulation, a penalized empirical likelihood ratio test statistioisstructed
as

U(Ly) = —2 {ep@) —,Join ep(e)} . (5)

We show the asymptotic property of this ratio in the following theorem.
THEOREM4. Under the null hypothesis and Conditions A.1-A.7nas 0o, {(L,) — Xg-

As a consequence,(a — «)-level confidence set fak,,0 can be constructed as

Vo = |:U i =2 {fp(é) - efiienzv Ep(e)} < Xg,l—a] ©

wherexg,l_a is thel — « level quantile ofxg distribution.

Theorem 4 extends the results in Qin & Lawless (1994) to growing dimerigiorizor the
full parametric likelihood approach, Fan & Peng (2004) showed that teBHidod ratio statistic
has similar properties given in Theorem 4.

The attractiveness of empirical likelihood and its penalized version comte axpense
of computation. Due to the nonconvexity, computing empirical likelihood is ndatrf@wen,
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6 C. LENG AND C. Y. TANG

2001). Penalized empirical likelihood computation involving a non-differefgiaenalty is ob-
viously more involved. We propose a nested optimization procedure in minimizjn@(e to
the non-quadratic nature of the loss function, we iterate between solvingdiodd. When\ is
fixed, we use the local quadratic approximation in Fan & Li (2001) by exdpratingp-(|6;|)
aSpT(\9§k)\) - %{p;(|9§k)|)/|0§k)|}{9j2 - (0§.k))2}, whereej(.k) is thekth step estimate dof;. We
then make use of the algorithm discussed in Owen (2001) Chapter 12 to tigaimnimizer of
(4) through nonlinear optimization. The procedure is repeated until cgpernee by using the re-
sulting minimizer as the next initial value. Our experience suggests that thrstlalg@onverges
quickly, usually in fewer than ten iterations given a good initial value.

To choose the penalty parametemwe use the followingic type function proposed by Wang
et al. (2009)

BIC(T) = —2((0;) + C), - log(n) - df;

wheref. is the estimate of with 7 being the tuning parameter;.dis the number of nonzero
coefficient inf; C,, is a scaling factor diverging to infinity at a slow ratejas+ co. Whenp

is fixed, we can simply také’,, = 1 as for the usuasic. Otherwise C,, = max{loglogp, 1}
seems to be a good choice. The growirigis used to offset the effect of a growing dimension.
However, a rigorous justification is nontrivial and will be studied in futuoeky

4. SIMULATION AND DATA ANALYSIS

We present extensive simulation studies to illustrate the usefulness of pehatipirical like-
lihood. We choose examples from cases wherep such that the number of estimating equa-
tions is greater than the number of parameters. The proposed method ig@isatde forr = p
when likelihood score functions or the first derivatives of a loss funaiie used. We compare
the penalized empirical likelihood estimates with competing methods whenevepaippe in
terms of estimation accuracy. We also give variable selection results fointliaton studies,
as well as hypothesis testing results in terms of the size and power. In oumeigtion, we
use the penalty in Fan & Li (2001) although other penalties can also be 8pedifically, the
first derivative of the penalty function is defined as

(a7 — 9”1(9 > 7)),

for & > 0, wherea = 3.7, and(s); = s for s > 0 and O otherwise.

Example 1. Longitudinal data arise commonly in biomedical research with repeated reeasu
ments from the same subject or within the same clusterYl,ednd X;; be the response and
covariate of theth subject measured at timeHere,; € {1,...,n} andt € {1,...,m;} index
the subject and measurement respectively. The estimating equations utilzartiieal moment
conditions without resorting to the likelihood, which is complicated especiall\cdbegorical
responses. LeE (Yj;) = u(X}}3) = pie Wwhere € RP is the parameter of interest. Incorporat-
ing the dependence among the repeated measurements is essentialiémt @ffierence. Liang

& Zeger (1986) proposed to estimafieby solving0 = > | /lZTWZ.‘l(Sfi — p;). Here for the
ith subject,Yi = (}/;'1, ceey }/mi)T, i = (Mil, e ,umi)T, Mz = 8/@/66 and W; = Uil/QR’UZ-I/Q
where v; is a diagonal matrix of the conditional variances of subje@nd R = R(«) is

a working correlation matrix indexed by. This is the estimating equations method with
9(Zi; B) = pf W (Vs — i) whereZ; = (Z3,..., Z3 )", Ziy = (Yir, X})™ andr = p. Liang

& Zeger (1986) proposed to estimateand the dispersion parameter by the method of moments.
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Penalized Empirical Likelihood 7

More recently, Qu et al. (2000) proposed to moftel! by > | a;M; whereMy, ..., M,
are known matrices and, ..., a,, are unknown constants. Theghcan be estimated by the
quadratic inference functions approach (Qu et al., 2000) that uses

ﬂ;rvfl/levfl/Q(Yi — i)

g(Zﬁﬁ): ) (i:1,...,n). (7)

v, P Mo P (Y — )

This falls into our framework withr > p whenm > 1, and withr = p if m = 1.
In this simulation study, we consider the model

yljzx;l;ﬁ+5lj’ (Zzl’anvj:]"2’3)’

where = (3,1.5,0,0,2,0,--- ,0)" € RP, z;; are generated from multivariate normal distri-
bution N (0, ) with 3;; = 0.5/*~!I. The random errog; = (g1, :2,i3)" is generated from a
three-dimensional normal distribution with mean zero, marginal variancael correlation we
simulate for the random error is either compound symmetrgryl) with parameter 0.7. We
use two sets of basis matrices in fitting the model. We take= I3 as the identity matrix. The
second basis matriX/ is either a matrix with O on the diagonal and 1 elsewhere, or a matrix
with two main off-diagonals being 1 and O elsewhere. Note that these twofdeisie matrices
are referred to as the working structures and are called compound symameiR (1) working
assumptions respectively (Qu et al., 2000). In our setup, there argp estimating equations
to estimatep parameters. For each simulation, we repeat the experiment 1000 times. dfife try
ferent sample sizes = 50, 100, 200, 400 and we take as the integer part afd(3n)'/>1 — 20,
which enables us to study the asymptotic properties of empirical likelihood.OMpare the
usual least-squares estimate, the Oracle least-squares estimator, etilgétibabd estimator,
the oracle empirical likelihood estimator and the proposed penalized empireaidikd estima-
tor, in terms of the mean squared erxese = E{(5 — )" (8 — 3)}. For the oracle estimates,
only the covariates corresponding to the nonzero coefficients aremusstimation. We report
the Monte Carlo estimate ofse and its sample standard error in 1000 simulations.

The results are summarized in Table 1. Empirical likelihood is more efficientélaatrsquares
because more estimating equations are used. Similar phenomenon happkes fwracle ver-
sions. These agree with the general conclusion in Qu et al. (2000)prDpesed method has
smallermse than empirical likelihood and oracle least squares, indicating the gain incaydoy
having more estimating equations and using the penalized method for variielkeose Further-
more, theMsE of the proposed method is close to that of oracle empirical likelihood, edlgecia
so for larger sample sizes and larger models. This confirms the efficienalts in Theorem 3
empirically. Finally, using the correct working structure gives more efiicestimates, which
can be seen by the smallese's when the true correlation is used in Table 1. This agrees with
Qu et al. (2000).

In addition, we record the average correctly estimated zero coefficiedtdha average num-
bers of incorrectly estimated zero coefficients for penalized empirical ld@tihThe results
are summarized in Table 1. The model selection result is satisfactory. iAsreases, the av-
erage correctly estimated zero coefficients is approaghing, while the average numbers of
incorrectly estimated zero coefficients is 0 throughout. This confirms thetiesleeonsistency
in Theorem 3.

To verify the penalized empirical likelihood ratio result in Theorem 4, wetteshull hypoth-
esisHy : f1 = a for a = 2.8,2.9,3.0, 3.1, 3.2 respectively, wherg, is the first component of
(. Using a nominal levelr = 0.05, we document the empirical size and power results in Table
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8 C. LENG AND C. Y. TANG

Table 1.Mean square errorsx 10~2) for estimating equations in longitu-
dinal data analysis. The largest standard error over the miegh35
n p True Working LS O-LS EL O-EL PEL C

I
50 6 CS CS 6.66 247 552 1.71 198 275 0
- - 538 1.86 237 270 0
0
0

Cs AR(1)
AR(1) CS 6.55 244 534 170 238 272
AR(1)  AR(1) - - 535 1.80 2.38 274
100 10 Cs CS 554 125 421 063 113 659 0
Cs AR(1) - - 422 076 144 652 0
AR(1) CS 544 125 4.07 075 138 6.59 0
AR(1)  AR(1) - - 392 076 128 661 O
200 15 CS CS 416 061 285 028 053 1169 O
(O] AR(1) - - 3.03 041 067 1163 O
AR(1) CS 414 063 295 035 064 1168 O
AR(1)  AR(1) - - 296 034 061 1167 O
400 20 CS CS 274 031 195 019 019 1691 O
cSs AR(1) - - 2.08 021 025 16586 0
AR(1) cs 274 031 205 016 025 16.85 0
AR(1)  AR(1) - - 2.02 0.18 023 16.86 0

LS, least-squares; O-LS, oracle least-squares; EL, empirical lilii®-EL, oracle empir-
ical likelihood; PEL, penalized empirical likelihood; C, the average ofexily estimated
zeros; IC, the average of incorrectly estimated zeros; CS, comsyumuahetry

2. We can see clearly that the size of the test is close to 0.05 as the sampleasas and
the power goes to 1 as either the sample size increasedeviates more from the tryg = 3.
These results show that the proposed test statistic performs satisfactorily.

Example 2. Consider a multivariate extension of Example 1 in Qin & Lawless (1994)tHeet
jth variable be

X~ N(0;,07+0.1), (j=1,...,p)

where § = (64,...,6,)" =(1,-1,0,0,1,0,...,0)". We consider the following estimating
equations (Qin & Lawless, 1994)

X1 — 6, X2 —207 -0.1
gl(Xve)): ) g?(X79):
X, — 0, X2 —202—-0.1
We generater; € RP (i = 1,...,n) from p-dimensional normal distribution with meahand

the AR(1) correlation matrix with parameter 0.5. The marginal variance matrix is a diagonal
matrix with entries@? + 0.1. To consider the scenario of a diverging dimensionality, weplet

be the integer part dfon!/5! — 36 and consider several sample sizes. To make a comparison,
we compute mean square errors of the usual sample mean, the oracle saplassieming
that the zero entries il were known, empirical likelihood estimate without penalization, the
oracle empirical likelihood estimator by using the estimating equations only fordheeno
entries, and finally the proposed penalized empirical likelihood. The samle estimator can

be seen as using, only in the estimating equation. Note that the oracle empirical likelihood
estimate is suboptimal because the estimating equations for the zero entriesecgoidited to
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Table 2.Size and power for testing, : 51 = 3. The nomi-
nal level is 0.05
n D True  Working 2.8 29 3.0 3.1 3.2
50 6 CSs (oS} 0.87 043 012 043 0.87
(o] AR(1) 0.83 0.38 0.11 039 0.84
AR(1) CSs 0.83 0.38 012 0.33 0.79
AR(1) AR(1) 085 041 011 035 0.83

100 10 CS CS 098 058 009 058 0.98
CS ar(1) 096 055 0.10 053 096
AR(1) CS 096 052 009 050 0.96
AR(1) AR(1) 096 055 0.09 054 0.96

200 15 Cs Cs 1.00 0.83 0.09 0.83 1.00
CS AR(1) 1.00 0.78 0.08 0.77 1.00
AR(1) CS 1.00 0.76 0.07 0.75 1.00
AR(1) AR(1) 1.00 0.80 0.08 0.77 1.00

400 20 CS CS 100 099 0.07 099 1.00
CS  AR(l) 1.00 097 007 097 1.00
AR(I) CS 100 097 007 096 1.00
AR(1)  AR(1) 1.00 0.98 008 0.97 1.00

LS, least-squares; O-LS, oracle least-squares; EL, empirical likealiho
O-EL, oracle empirical likelihood; PEL, penalized empirical likelihood;
C, the average of correctly estimated zeros; IC, the average of éutigrr
estimated zeros; CS, compound symmetry

improve the efficiency of nonzero entries. This phenomenon was alsd mofeang & Leng

(2010). The results from 1000 replications for each sample size are sigathan Table 3. We
see that empirical likelihood is more accurate than sample mean, begdssecorporated. The
penalized empirical likelihood has the smallestE’'s, becauseX; — 6; from the zero entries
can be exploited to improve the efficiency of the estimates for the nonzeiesthe model
selection results are provided in Table 4. We see that variable selectiotistadary as the
average number of correctly estimated zeros is cloge-{@.

To verify the result in Theorem 4, we test the null hypothesig: 6, =a for a =
0.8,0.9,1.0,1.1, 1.2 respectively. Using a nominal level = 0.05, we document the empirical
size and power results in Table 5. We can see clearly that the size of tieedlese to 0.05 as the
sample size increases and the power goes to 1 as either the sample sizesorealeviates
more from the true&); = 3, especially when the hypothesized value is less than the true value.
These results show that the proposed empirical likelihood test statistigipergatisfactorily.
Example 3. The instrumental variable method is widely used in measurement error models
(Fuller, 1987), survey sampling (Fuller, 2009) and econometrics @fa8sSingleton, 1982).
Briefly speaking, this approach starts from conditional moment condHiph(X;; 0)|F} = 0
whereh(X;;0) € R? and F is information generated by data. Hence, for afymeasurable
variableU; € R"*4, so-called the instrument variables{U;h(Z;;0)} = 0. Thenf can be es-
timated usingy(Z;; 6) = U;h(X;; 0) as estimating equations. Since the dimensionality/of
not restricted, this approach is an estimating equations methoad-wtp.

We consider the mode); = z; 3 + ¢;, where two noisy copies of; denoted byu; andv;
instead ofr;, andy; are observed. We follow the classical measurement error model assomptio
Fuller (1987) by assuming; = x; + ey; andv; = x; + e9;, Whereey; andes; arep-dimensional
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n
50
100
200
400
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Table 3.Mean squares errors10~2)

n
50
100
200
400

50
100
200
400

n
50
100
200
400

Heterogeneity in Variance Example

p SM O-SM EL O-EL
7 585 507 497 3.63
13 3.53 2.54 296 1.30
20 2.17 1.33 1.78 0.58
28 1.29 0.66 1.11  0.27
Instrumental Variable Example
D LS O-LS EL O-EL
8 444 154 41.8 897
16 43.2 9.66 41.5  3.96
25 34.1 6.96 30.1 1.81
35 247 553 204 0.83
Two-sample Example
p SM O-SM EL O-EL
8 16.1 6.14 12.5  3.51
16 16.0 2.95 12.9 1.55
25 12,5 1.51 9.87 0.75
35 876 0.75 6.97 0.39

PEL
3.12
1.23
0.50
0.23

PEL
21.9
11.6
5.01
1.90

PEL
6.25
3.98
1.61
0.61

EL, empirical likelihood; O-EL, oracle empirical likeli-
hood; PEL, penalized empirical likelihood; SM, sample
mean; O-SM, oracle sample mean; LS, least squares; O-
LS, oracle least squares

Table 4.Model selection results for examples

Example 2
D C IC
7 357 O
13 963 O
20 169 O
28 250 O

Example 3 Example 4

D C IC D C IC
8 399 O 8 404 O
16 114 O 16 115 O
25 208 O 25 211 O
35 314 O 35 316 O

C, the average of correctly estimated zeros; IC, the average of @utiyrr

estimated zeros

Table 5.Size and power for testing : 61 =
1 in Example 2. The nominal level is 0.05

n
50
100
200
400

p
7

13
20
28

0.8

0.70
0.82
0.92
0.97

0.9

0.30
0.33
0.52
0.63

1.0

0.12
0.11
0.09
0.08

11

0.32
0.29
0.34
0.36

12

0.62
0.54
0.51
0.53

mean zero random vector independent of each other and indepefdgnivia instrumental
variables, we formulate two sets of estimating equations as

gl(Ua V7Y76) - UT(Y - VTﬁ)a 92(U7 V7 Yaﬁ) - VT(Y - UT/8>

It is known that the ordinary least squares estimates are usually biadést (E987). We gener-
ate( andx according to Example 1, whereasande, are generated from a multivariate normal
with mean zero and exchangeable correlation matrix with parameter 0.5. Bagioeent of
e1 andes has marginal variance 0.04. Furthermore, we generdétem N (0,0.25). To make
comparisons, we compute the mean square errors for the ordinarydaasts estimate usirig
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as X, the oracle least squares estimate using the sub-vectorcofresponding to the nonzero
component ofX, the empirical likelihood estimator, the oracle empirical likelihood estimator
and the penalized empirical likelihood. Note that least squaresj&e¥’, 5) = U™ (Y — U™ (3)

as the estimating equation and that both least squares and oracle leass gfinmbiased esti-
mates due to the measurement error. The resulissmare summarized in Table 3. We see that
penalized empirical likelihood is much more accurate than empirical likelihoadaFgen, the
MsEs of empirical likelihood is closer to those of oracle empirical likelihood, indicgtiivat the
proposed method is closer to the oracle for large sample sizes. In addittamgthod performs
satisfactorily in variable selection, as can be seen from Table 4. We atslucied hypothesis
testing using the null hypothesis in Example 1. The results are similar to that mpd and
are omitted to save space.

Example4. We consider the two sample problem with common means in Qin & Lawless (1994).
In particular, we have a pair of random variables;, Y;) such thatt)(X;) = E(Y;) = 0; (j =
1,...,p). Wesetd = (61,...,6,)" =(1,—1,0,0,0.5,0,...,0)". We generate; andy, inde-
pendently fromp-dimensional multivariate normal distribution with me@rand anAr(1) co-
variance matrix with parameter 0.5. We takas the integer part &5n!/>1 — 45. We compare
the following estimators: the sample mean, the oracle sample mean, the empiricabtikelih
estimate, the oracle empirical likelihood estimate and the penalized empirical likeliDowe
again, we see from Table 3 that the proposed method giges close to the oracle estimator, es-
pecially when the sample size becomes large. In addition, penalized empirmti&ldibdd is much
more accurate than the usual empirical likelihood. This indicates that vasalaetion can en-
hance estimation accuracy if the underlying model is sparse. The penatigadcal likelihood
performs well in variable selection, as can be seen from Table 4.

Higher dimensionality. Since the proposed method is based on empirical likelihood, it is not
possible to allowp or » greater tham. Otherwise, empirical likelihood can not be applied. To
explore higher dimensionality problems, we fix the sample size to be 100 arstigate the
performance of the method for Example 2 to 4 wittanging from 10 to 25/(ranging from 20

to 50). The results are presented in Figure 1. Clearly, with higher dimensimperformance
of the proposed method deteriorates especially when15. However, the proposed method
always outperform the empirical likelihood method with no penalization. We add&ionally
that with » = 2p estimating equations whem> 30, the optimization of empirical likelihood
can be unstable and sometimes may fail, a phenomenon observed by T84pda6 Grenar

& Judge (2009). Therefore penalized empirical likelihood still performezsonably well with
largerp while caution needs to be taken when the number of estimating equations is t®o larg
comparing to the sample size.

Example 5. To illustrate the usefulness of penalized empirical likelihood, we consideZ e
data (Diggle et al., 2002) where there are 2,376 observations for 3§6ctsi ranging from

3 years to 6 years after seroconversion. The major objective is toatedra the population
average time course of CD4 decay while accounting for the following piedvariables: age
(in years), smoking (packs per day), recreational drug use (y&s)pnumber of sexual partners,
and depression symptom score (larger values indicate more seveessleprsymptoms). As in
Diggle et al. (2002), we consider the square-root-transformed Cb¥ars whose distribution
is more near Gaussian. We parametrize the variable time by using a piecelyisenpial

F(t) = art + agt® + ag(t — t1)3 + -+ + as(t — t6)7

where to = min(t;;) < t; <--- < tg < ty = maxt;;) are equally spaced points ard—
tj)% = (t—t;)%if t > t; and(t — t;)2 = 0 otherwise. This spline representation is motivated
by the data analysis in Fan & Peng (2004). We normalize all the covariathdfsat their sam-
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Heterogeneity Example Measurement Error Example Two-Sample Example
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Fig. 1. Comparison of the mean squared errors using the empirical blkelimethod (solid), the oracle
empirical likelihood method (dashed) and the penalized empirical likelinoettiod (dotted).

ple means are zero and sample variance is one, which is routinely dondadhleagelection
(Tibshirani, 1996).

We use the quadratic inference function method by using the compound synamefr (1)
matrices, respectively. In total there are 14 variables in the model anstiB8ating equations.
The intercept is not penalized. We also combine the estimating equations vg@dhaicom-
pound symmetry andr(1) working structure. This gives a model with an additional 14 esti-
mating equation. In total, there are 42 estimating equations for this estimatoreTdiead the
quadratic inference function modeling approach can be found in Exanguid Qu et al. (2000).
The fitted time curves of the square root of CD4 trajectory against time via tee genalized
empirical likelihood, together with the unpenalized fits using independent, @antpsymme-
try and AR(1) working correlation structures, are plotted in Figure 2. These cureeplatted
when all the other covariates are fixed at zero. These curves shegvagpeement with the data
points and with each other. The only exception is that if the working correl&iassumed to be
independent, the fitted trajectory differs from other fitted curves foeltirge.

Table 6 gives the generalized estimating equation estimates using variousgvakrelation
matrices and the three penalized empirical likelihood estimates for the five lesri#lis noted
that all the estimates identify smoking as the important variable.
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596 Fig. 2. The fits and the CD4 data: independent (gray solid), gendialaggg equations using compound symmetry correla-
597 tions (gray long dash), general estimating equations usi{(g) correlations(gray short dash), penalized empirical likelihood
508 using compound symmetry correlations (long dash), penalized empikielthood usingar(1) correlations (dash), penalized
599 empirical likelihood using compound symmetry asrl(1) correlations (dot-dash).
600 . - .
601 Table 6.The fitted coefficients and their standard errors
602 Variable Independence Cs AR(1) PEL-CS PEL-AR1 PEL-CM
603 age 0.014(()‘035) 0.002(0_032) 0.014(()‘033) 0 0 0

smoking 0.981(¢.184 0.6080.136 0.281(¢.190 0.806 0.641 0.756
604 ( ) ( ) ( )

dl’Ug 1.064(0'52% 0.463(0.361) 0-414(0.356) 0 0 0
605 partner —0.065(0.059) 0.0590.042) 0.052(0.041) 0 0 0
606 depression —0.032¢p.021y —0.048(0.015) —0.047(0.015) 0 0 0
607 CS, compound symmetry; PEL-CS, penalized empirical likelihood usimgpound symmetry correla-
608 tions; PEL-AR1, penalized empirical likelihood using(1) correlations; PEL-CM, penalized empirical
609 likelihood using compound symmetry ane(1) correlations

9 p Yy Yy (1)

610
611
612 SUPPLEMENTARY MATERIAL
613 Supplementary Material availableBibmetrikaonline includes the proofs of Lemmas 1-4 and
614 Theorems 1-4, as well as quantile-quantile plots for demonstrating the erhgisitéutions of
615 the estimated parameters in simulations.
616
617
618 APPENDIX
619 The Appendix sketches the main idea in the proofs of Theorems 1-4, aimdgbgant lemmas
620 for the proofs.
621 Let£(0,\) =n~t 30 log{l+ A%g;(0)}, g(0) = n~t > 1, g:(0). We present Lemmas 1-3
622 following the approach in Newey & Smith (2004), which is used in provingdfam 1. The
623 proofs of the lemmas are given in the Supplementary Material.

624
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LEMMA 1. Under Conditions A.1, A.2 and A.4, for agwith (1/a + 1/10) < ¢ < 2/5 and
as n — oo, thenmaxi <;<y, suppeg |ATg(Zi; 0)| = o,(1) for all X € A, = {X: |\ < n=¢},
andA,, C A, (0) forall § € © whereA,,(0) = {\: ATg;(0) > —1,i=1,...,n}.

LEMMA 2. Under Conditions A.1-A.4, with probability tending to 1)y, =
arg max ;) ¢(A, o) exists | Agy || = Op(an), andsup, g, €A, 0o) < Op(ag).

LEMMA 3. Under Conditions A.1-A.4,5(05)|> = O,(n=3/%).

The proof of part a) of Theorem 1 follows the arguments in Newey & Smiih42 by applying
Lemmas 1-3, generalizing the results in Newey & Smith (2004) to allow divergarglp. Upon
establishing the consistent result in part a), the proof given in the Supplary Material for part
b) of Theorem 1 for the rate of convergence follows the arguments im¢datal. (2008). The
following Lemma 4 is used in proving Theorem 2:

LEMMA 4. Under Conditions A.1-A.8\; || = Op(an).

Given Theorem 1 and Lemma 4, stochastic expansiondfoand the empirical likelihood
ratio (3) can be developed, which facilitates the proof of Theorems 2 pfoofs of Theorems
2-4 are available in the Supplementary Material.
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