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a b s t r a c t

The purpose of this paper is two-fold. First, for the estimation or inference about the
parameters of interest in semiparametric models, the commonly used plug-in estimation
for infinite-dimensional nuisance parameter creates non-negligible bias, and the least
favorable curve or under-smoothing is popularly employed for bias reduction in the
literature. To avoid such strong structure assumptions on themodels and inconvenience of
estimation implementation, for the diverging number of parameters in a varying coefficient
partially linear model, we adopt a bias-corrected empirical likelihood (BCEL) in this paper.
Thismethod results in the distribution of the empirical likelihood ratio to be asymptotically
tractable. It can then be directly applied to construct confidence region for the parameters
of interest. Second, different from all existing methods that impose strong conditions to
ensure consistency of estimation when diverging the number of the parameters goes to
infinity as the sample size goes to infinity, we provide techniques to show that, other than
the usual regularity conditions, the consistency holds under moment conditions alone on
the covariates and error with a diverging rate being even faster than those in the literature.
A simulation study is carried out to assess the performance of the proposed method and to
compare it with the profile least squaresmethod. A real dataset is analyzed for illustration.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In many important statistical applications, the number of variables or parameters depends on the sample size and grows
to infinity as sample size tends to infinity. Also, after variable selection inmany, say ‘‘large p, small n’’, problems, the number
of remaining variables still diverges with increasing sample size. On the other hand, semiparametric modeling is frequently
employed to balance between modeling bias and ‘‘curse of dimensionality’’. The relevant references are, among others,
[3,12,8,11,13,14,20,22,30]. In this paper, we consider a varying coefficient partially linear model (VCPLM) that is a special
case of the model investigated by Lam and Fan [20].

Suppose that Y is a response variable and (U,XT , ZT
n) is the associated covariates, where ‘‘T ’’ is the transpose operator.

The VCPLM takes the form:

Y = XTα(U) + ZT
nβn + ε, (1.1)
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where α(·) = (α1(·), . . . , αq(·))
T is a q-dimensional vector of unknown regression functions, βn = (β1, . . . , βpn)

T is a
pn-dimensional vector of unknown regression coefficients and ε is an independent random error with E(ε|X, Zn,U) = 0
almost surely. Here the subscript is used to make it explicitly that both the covariates and parameters may change with n.
Compared with the partially linear regression, model (1.1) permits the interaction between the covariates U and X in such
a way that a different level of covariate U is associated with a different linear model. This allows statisticians to examine
the extent to which the effects of covariate X vary over different levels of the variable U . Therefore, it is flexible because the
VCPLM retains the flexibility of the nonparametric regression model and has the explanatory power of the linear regression
model. The VCPLM is of course an extension of the partially linear model and the varying coefficient model [17].

When pn does not increase with n, model (1.1) has been considered by Li et al. [21]. They used kernel smoother
for estimation and applied this model to analyze China’s nonmetal mineral manufacturing industry data. They further
showed that the semiparametric varying coefficient model is more appropriate than either a parametric linear model or
a semiparametric partially linear model for studying the production efficiency in China’s nonmetal mineral manufacturing
industry. More relevant work on the VCPLM can be found in [36,1]. Recently, Fan and Huang [10] have proposed a profile-
kernel inference and established the asymptotic normality of the profile least-squares estimator for the VCPLM. You and
Zhou [41] studiedmodel (1.1) using the empirical likelihoodmethodwhen pn is fixed.When the number pn of the parameters
βn grows with the sample size, the generalized varying coefficient partially linear model (GVCPLM) was considered by Lam
and Fan [20]. They established the existence of the profile likelihood estimator and studied the asymptotic normality of
the arbitrary linear combination Anβ̂n of the estimator β̂n, where An is an l × pn matrix for a fixed l. Hence in their paper
the dimension l of Anβ̂n is fixed, and the quasi-likelihood condition in which the variance is a given function of mean, and
the least favorable curve (see [33]) are required to eliminate the effect arising from plug-in estimation of nonparametric
components. In this situation, their results can be used to construct confidence region for finite dimensional vector Anβn by
normal approximation.

It is worth noticing that the least favorable curve plays a very important role to eliminate non-negligible bias that is
created by plug-in estimation for infinite-dimensional nuisance parameter in themodel, otherwise, the asymptotic behavior
is difficult to investigate because the non-negligible bias makes the limiting distribution untractable. In the literature, other
than the least favorable curve, undersmoothing or higher order kernel in local smoother are also often adopted in plug-in
estimation to reduce the bias. However, the implementation of the estimation becomes inconvenient. In the present paper,
we will propose a bias reduction approach combining with the empirical likelihood (EL) proposed first by Owen [27,28] to
deal with this issue. But the bias reduction approach is generally applicable for any likelihood based on method.

It is well known that the EL for confidence region construction of βn does not require a full specification of distribution
from which data are drawn, but only an unbiased estimating function. Many other advantages of the EL over the normal
approximation-based method have been shown in the literature. In particular, it does not impose prior constraints on
the shape of the region, does not require the construction of a pivotal quantity and the region is range-preserving and
transformation respecting (see [16]). The EL has been further developed by many statisticians such as [31,5,7,41,42,37–39,
23,25], among others. Some comprehensive treatments can be found in [29,40].

Also the EL has been employed to investigatemodels with growing dimension pn of parameter of interest. Hjort et al. [18]
showed that when there is no nuisance parameter the EL ratio for βn is asymptotically normal when pn = o(n1/3), a possibly
fastest diverging rate under some conditions. Chen et al. [6] studied the asymptotic properties of the EL ratio and improved
the growth rate of pn. However, to achieve a faster rate, the required conditions are very strong, typically, it is assumed
that all the components of observations are uniformly bounded. This rules out even normal cases. More challengingly, when
there are infinite-dimensional nuisance parameters to be estimated nonparametrically, the plug-in estimation, if we use it,
is of nonparametric nature with slower convergence rate than

√
n and then asymptotic behavior becomes very different

from those in the cases without these parameters. Furthermore, the condition of bounded support does not make sense in
the case under study. We can see this in the next section. As such, there are no references in the literature for our problem
when we consider mild conditions on the covariates and errors.

Therefore, the purpose of this paper is two-fold as follows.

1. Bias reduction. We first consider adopting a method to reduce the bias in terms of defining new residual based scores
so that the limiting distribution of the EL ratio is either Chi-square when pn is fixed or normal when pn diverges. Our
strategy is to introduce a conditional orthogonality approach. For any given u, by obtaining a conditional projection of the
variable Zn of interest onto the space spannedbyX andusing the centered Zn being aweight in the estimating function, the
residuals and the centered Zn, both havingmean zero, can be asymptotically conditionally orthogonal. This orthogonality
will then help to get faster convergence rate of the bias to zero, and then to achieve a standard normal distribution for the
EL ratiowhen pn tends to infinity; for details see Section 3.1. The idea is from Zhu and Xue [42]who proposed a correction
to reduce bias for a partial linear single-indexmodel. It is worthmentioning that for themodel under study, although our
bias correction is a constructive method, it is similar to that with the profile empirical likelihood [41], which can correct
the bias automatically. As the bias correction of Zhu and Xue [42] can be applied to other semiparametric models, our
study described in this paper may also be useful for other models with large pn scenarios which are worthy of further
investigation.

2. Weaker conditions on the involved variables and faster diverging rate of pn. Other than the usual regularity conditions
on the smoothness and nonparametric smoothing for the involved nonparametric functions, we only need moment
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conditions on the covariates and errors rather than the strong conditions required when other existing methods are
applied, say bounded support of the variables involved; for details, see the remarks in Section 3.3. Unlike existingmethods
on relevant models having infinite dimensional nuisance parameter (e.g., [33,32,20]), it does not make sense in the case
under study and actually we will not assume any thing else on the distribution of the involved variables, the quasi-
likelihood framework, the higher order kernel and under-smoothing in reducing the bias, and the least favorable curve,
which also try to reduce the bias.

For the problemwith diverging number pn of parameters, the obtained rate in this paper is p3+2/(k−2)
n /n → 0, where k

is the order of moments of involved variables in themodel. It is worthmentioning that the rate p3+2/(k−2)
n /n → 0 is likely

to be the best rate for pn in the context of the empirical likelihood when infinite dimensional nuisance parameters need
to be estimated, and weaker conditions are required. Then the rate pn = o(n1/3) is still possible to reach. More details
can be found in the remarks after Theorem 2.

Furthermore, it is of interest to knowwhether our bias correction can be applied to themoment-based estimationmethod
such as profile least squares to improve estimation efficiency when plug-in estimation is needed for infinite dimensional
nuisance parameters. From the proofs in Appendix, it seems possible. That is, the bias correction could be a general approach
for many semiparametric settings. However, for confidence region construction, moment-based method involves one more
plug-in estimation for the limiting variance of the estimating equation or the estimator of the parameter vector, which
is often of complex structure. On the contrary, the EL-based method can avoid this plug-in. This is an advantage over the
moment-based methods in the literature. On the other hand, it should also be mentioned that the EL method has its own
limitation with heavier computational burden than moment-based estimation methods have.

The paper is organized as follows. In Section 2, the VCPLM with diverging number of parameters is considered.
It is proved that the classical empirical likelihood does not possess the nonparametric version of the Wilks’ theorem
when plug-in estimators of the nonparametric coefficient functions are used and the number of parameters goes to
infinity as sample size goes to infinity. Then the bias-corrected empirical log-likelihood ratio for βn is proposed and
the asymptotic normality of the BCEL ratio is provided in Section 3. In Section 4, simulation studies are carried out to
assess the performance of the proposed method and to compare it with the profile least squares method. A real data
example is used for illustration in Section 5. The technical proofs of the main results and some lemmas are relegated to
Appendix.

2. Empirical likelihood

Let {(Yni;XT
i , Z

T
ni,Ui), 1 ≤ i ≤ n} be an independent identically distributed (i.i.d.) random sample which comes from the

model in (1.1) with βn and Zn having the dimension pn → ∞ as n → ∞.
To define the EL ratio, the auxiliary random vectors are introduced as

η0
ni(βn) = Zni(Yni − XT

i α(Ui) − ZT
niβn). (2.1)

Note that {η0
ni(βn), 1 ≤ i ≤ n} are independent and E[η0

ni(βn)] = 0 when α(u) and βn are respectively the true coefficient
function and parameter vector. Given α(u), the classical empirical log-likelihood ratio function for βn, defined as

R(βn) = −2max


n

i=1

log(nωi)|ωi ≥ 0,
n

i=1

ωi = 1,
n

i=1

ωiη
0
ni(βn) = 0


. (2.2)

According to Owen [29] and Qin and Lawless [31], if α(u) is given and pn = p is fixed, under some regularity conditions,
R(βn) is asymptotically χ2 with p degrees of freedom, which is a nonparametric version of Wilks’ theorem. Recently, Hjort
et al. [18] and Chen et al. [6] have extended the standard empirical likelihood method to general multivariate models in
which the dimension pn depends on the sample size and grows to infinity as the sample size tends to infinity. They showed
that the EL ratio can be approximated well enough by a normal variable N(pn, 2pn). For model (1.1), when α(u) is given and
pn grows with the sample size n, it is also shown that R(βn) for high dimensional parameter βn can be approximated by the
normal variable N(pn, 2pn).

When α(u) is unknown, a plug-in nonparametric estimation is needed. However, it makes the plug-in empirical
likelihood no longer asymptotically chi-square/normal. It makes the construction of the confidence region difficult. Usually,
we need the Monte Carlo method to help. Clearly, it causes computational burden and accumulative errors for estimation.
Hence, a bias correction is needed. To motivate our method, we give some analyses in the following. We first estimate the
coefficient function by local polynomial smoother; see [9]. Rewrite model (1.1) as

Yni − ZT
niβn = XT

i α(Ui) + εi, i = 1, . . . , n, (2.3)

where α(u) = (α1(u), . . . , αq(u))T . We linearly approximate each αj(v) for v in a neighborhood of u by

αj(v) ≈ αj(u) + α′

j(u)(v − u) ≡ aj + bj(v − u), j = 1, . . . , q.
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Denote a = (a1, . . . , aq)T and b = (b1, . . . , bq)T . For any fixed βn, a local linear fit is defined as the following solution of the
weighted least squares problems: finding a and b to minimize

n
i=1

{Yni − XT
i (a + b(Ui − u)) − ZT

niβn}
2Kh(Ui − u), (2.4)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is the bandwidth. Let â and b̂ be the solutions to the minimization
of (2.4). Then

[âT , hb̂T
]
T

= (DT
uWuDu)

−1DT
uWu(Yn − Z∗

nβn), (2.5)

where

Du =


XT

1
U1 − u

h
XT

1

...
...

XT
n

Un − u
h

XT
n

 , Z∗

n = (Zn1, . . . , Znn)
T

=

Zn11 · · · Zn1pn
...

. . .
...

Znn1 · · · Znnpn

 ,

Yn = (Yn1, . . . , Ynn)
T , Wu = diag(Kh(U1 − u), . . . , Kh(Un − u)).

The solutions â and b̂ depend on βn implicitly. Then we can estimate α(u), when βn is given, by

α̂(u, βn) = (Iq, 0q)(DT
uWuDu)

−1DT
uWu(Yn − Z∗

nβn), (2.6)

where Iq denotes a q-dimensional identity matrix, and 0q is the q × q matrix with all the entries being zero. As is shown in
[4,26] and Lemma B.2 of the present paper in Appendix, the estimator α̂(u, βn) has the following properties:

E(α̂(u, βn)) − α(u) = O(h2), ∥α̂(u, βn) − α(u)∥ = OP(cn) (2.7)

hold uniformly in the support of u, where cn =
 log n

nh

1/2
+ h2. We plug the estimator α̂(u, βn) into η0

ni(βn) of (2.1) and then
get a plug-in estimating auxiliary random vectors as

η̂0
ni(βn) = Zni(Yni − XT

i α̂(Ui, βn) − ZT
niβn). (2.8)

However, from the proof in Appendix, we can see that this plug-in results in a nonparametric bias because the
convergence rate of the plug-in estimator α̂(u, βn) is slower than n−1/2. A simple calculation also yields

1
√
n

n
i=1

η̂0
ni(βn) =

1
√
n

n
i=1

η0
ni(βn) + ∆n, (2.9)

where ∆n =
1

√
n

n
i=1 ZniXT

i (α(Ui)− α̂(Ui, βn)). Similar to the proof of Lemma B.3 in Appendix, we can verify that, when an
optimal bandwidth h = O(n−1/5) is adopted,

∥∆n∥ = OP(n1/2p1/2n cn) = OP((pn log n)1/2n1/10). (2.10)

Obviously, such a remainder is non-negligible for the asymptotic behavior of the EL even when the undersmoothing is used.
Thus, when pn is fixed, the resulting plug-in empirical log-likelihood ratio function is asymptotically a weighted sum of

independent standard chi-squared variables, each having one degree of freedom and an unknownweight. Themore detailed
discussions can be found in [37,38] about the partially linear single indexmodel and single indexmodel.When pn growswith
the sample size, the asymptotic properties of the plug-in empirical log-likelihood ratio will becomemuchmore complicated
than the casewith fixed pn, and a bias correction to remove the effect from the bias term∆n becomes crucial for using the EL.

3. Bias-correction empirical likelihood

In this section, we construct the BCEL ratio and establish its asymptotic properties.

3.1. BCEL

We first adjust η0
ni(βn) in (2.1) and then the estimated auxiliary random vectors η̂0

ni(βn) defined in (2.8) such that the
effect of the bias ∆n can be asymptotically eliminated. Define

µ(u) = (E(XXT
|U = u))−1E(XZT

n |U = u). (3.1)
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Note that for any givenU, µT (U)X is the projection of Zn onto the space spanned byX. Thus, E[(Zn−µT (U)X)XT
|U] = 0, and

Zn − µT (U)X is orthogonal to XT . This orthogonality will play a key role for the asymptotic normality of the bias-corrected
empirical log-likelihood ratio when the following bias-corrected auxiliary random vectors are considered

ηni(βn) = (Zni − µT (Ui)Xi)(Yni − XT
i α(Ui) − ZT

niβn).

Their estimators are

η̂ni(βn) = (Zni − µ̂T (Ui)Xi)(Yni − XT
i α̂(Ui, βn) − ZT

niβn), (3.2)

where µ̂(u) = (Ê(XiXT
i |Ui = u))−1Ê(XiZT

ni|Ui = u) is the estimator of µ(u). E(XiXT
i |Ui = u) and E(XiZT

ni|Ui = u) can be
estimated easily by using the kernel smoothing method, respectively. For the convenience, we can also define the estimator
of XT

i µ(Ui) directly as follows

XT
i µ̂(Ui) =

n
k=1

SikZnk, (3.3)

where Sik is the (i, k)th element of the smoothing matrix S, which depends only on the observations {(Ui,Xi), i = 1, . . . , n},
with

S =

(XT
10

T )(DT
u1Wu1Du1)

−1DT
u1Wu1

...

(XT
n0

T )(DT
unWunDun)

−1DT
unWun

 .

By Lemma B.1 in Appendix, one can show that µ̂(u) is a consistent estimator ofµ(u). From (3.2) and (3.3), the bias-corrected
auxiliary random vectors can also defined by

η̂ni(βn) = (Zni − µ̂T (Ui)Xi)(Yni − XT
i α̂(Ui, βn) − ZT

niβn)

= Ẑni(Ŷni − βT
n Ẑni), (3.4)

where Ẑni = Zni −
n

k=1 SikZnk, Ŷni = Yni −
n

k=1 SikYnk. We now describe why the above procedure can reduce the bias
and remove the effect of the remainder. By Lemma B.3 in Appendix, under some regularity conditions, we can verify that
the remainder of 1

√
n

n
i=1 Ri =

1
√
n

n
i=1(η̂ni(βn) − ηni(βn)) satisfies 1

√
n

n
i=1

Ri

 = oP(p1/2n c2n
√
n) = oP(1) (3.5)

provided that the bandwidth h is of a convergence rate from n−1/6 to n−1/3 log n. Comparing the above result with (2.10),
the bias-corrected auxiliary random vectors η̂ni(βn) has, asymptotically, a smaller bias than η̂0

ni(βn) does. Therefore, a bias-
corrected empirical log-likelihood ratio is defined as

R̂(βn) = −2max


n

i=1

log(nωi)|ωi ≥ 0,
n

i=1

ωi = 1,
n

i=1

ωiη̂ni(βn) = 0


. (3.6)

For a given βn, a unique value for R̂(βn) exists, provided that 0 is inside the convex hull of the point (η̂n1(βn),

. . . , η̂nn(βn)) [27,28]. By the Lagrange multiplier, R̂(βn) can be represented as

R̂(βn) = 2
n

i=1

log(1 + λT η̂ni(βn)), (3.7)

where λ ∈ Rpn is the root of

1
n

n
i=1

η̂ni(βn)

1 + λT η̂ni(βn)
= 0. (3.8)

We can obtain the maximum bias-corrected empirical likelihood estimator (MBCELE) βn of βn by minimizing the bias-
corrected empirical log-likelihood ratio R̂(βn). In Section 3.3, wewill report that if βn is the true parameter vector, the BCEL
ratio R̂(βn) is asymptotically N(pn, 2pn) distributed.

It is interesting that when pn is fixed, the proposed bias-corrected empirical likelihood method has the same formula as
the profile empirical likelihood [41] for fixed p case, which can correct the bias automatically. However, the method in this
paper is a constructive approach to make a conditional orthogonality [42] which can be used for diverse types of models.
More specifically, for any given u, by obtaining a conditional projection of the variable Zn of interest onto the space spanned
by X and using the centered Zn being a weight in the estimating function, the residuals and the centered Zn, both having
mean zero, can be asymptotically conditionally orthogonal. This orthogonality then helps to get faster convergence rate of
the bias to zero, and then to achieve a standard normal distribution for the EL ratio when pn tends to infinity.
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3.2. Asymptotic properties of the BCEL ratio

In order to study the properties of R̂(βn), we need to study the convergence rate of λ first. When pn is fixed, ∥λ∥ =

OP(n−1/2) has been the prevailing order for the Lagrange multiplier of the empirical likelihood except in the nonparametric
curve estimation when n should be replaced by the ‘‘effective sample size’’ [5,39].

Theorem 1. Under regularity conditions (C1)–(C8) in Appendix, if βn is the true value of the parameter vector and
p2+4/(k−2)
n /n → 0 as n → ∞, we have

∥λ∥ = OP(

pn/n).

Remark 1. Theorem 1 implies that the magnitude of the Lagrange multiplier λ is dependent on the dimension pn of
the parametric component and the convergence rate of ∥λ∥ will slow down with growing pn. It can be regarded as a
generalization of Owen’s result on λ for a fixed pn with OP(

√
pn/n) = OP(

√
1/n).

Next we present the asymptotic behavior of the BCEL ratio.

Theorem 2. In addition to regularity conditions (C1)–(C9) in Appendix, assume that either E(ε3
|U,X, Zn) = 0 almost surely or

k ≥ 8. If βn is the true value of the parameter vector, p3+2/(k−2)
n /n → 0 as n → ∞, we have

(2pn)−1/2(R̂(βn) − pn)
d

−→ N(0, 1) as n → ∞, (3.9)

where ‘‘
d

−→’’ denotes the convergence in distribution.

Remark 2. Theorem 2 indicates that the dimension pn can be increased more rapidly if we assume the existence of higher
order moment for the covariates and error. By Theorem 2 and its proof, it is easy to see that, if all the components of Zni and
Xi remain uniformly bounded or all the order moments exist, the rate pn = o(n1/3) is achievable.

Remark 3. Chen et al. [6] evaluated effects of data dimension on the asymptotic normality of the empirical likelihood ratio
for high dimensional data under a general multivariate model and weak conditions. Although they further showed that
pn = o(

√
n) is achievable when any order of moment exists and there is not any nuisance parameter, they required that the

components of the covariable can be expressed by independent variables through a linear transformation. Algebraically,
it is almost to say that a rotation of the covariable can make this independent. However, there are few distributions
being of this property and of course normal distribution is one of them. Thus, such a condition of independence is very
restrictive.

Remark 4. Comparing the results with those of Lam and Fan [20], it is found that we significantly improve the diverging
rate to infinity for the covariable Zn under weaker conditions. They obtained the asymptotic normality of the arbitrary linear
combination of the profile kernel estimator if pn = o(n1/5), but in their paper the dimension of the linear combination is
fixed, and the quasi-likelihood condition and the least favorable curve are required to eliminate the effect arising from
plug-in estimation of nonparametric components. In the simulations, we use the normal approximation that is based
on the estimator of Anβn obtained by Lam and Fan [20] to construct the confidence regions of Anβn. The comparison
shows the advantage of the BCEL over the normal approximation although the new method is more computationally
demanded.

As a conclusion of Theorem 2, R̂(βn) can be used to construct a confidence region for βn. Let

Îα(βn) = {βn : R̂(βn) ≤ pn + Uα(2pn)1/2}, (3.10)

where Uα is the upper quantile of the standard normal distribution. Although Îα(βn) gives a confidence region for βn with
asymptotically correct coverage probability 1 − α, the confidence regions of βn are of little practical interest and the finite
sample behavior could be particular unpredictable when pn is very large. In practice, we are often confronted with the need
of constructing confidence intervals for a particular regression coefficient or a certain linear combination of βn. For this, the
profile empirical likelihood method can be used to construct confidence region for a linear combination θ = Anβn, where
An = (A1, An2) is an l × pn matrix for a fixed l (independent of the sample size n), A1 is a l × lmatrix and An2 is a l × (pn − l)
matrix. We always assume that the user-specified A−1

1 exists. For example, θ is the first l coordinates of βn if we let A1 = Il
be the l × l identity matrix and An2 = 0 be the l × (pn − l) zeros matrix.

Suppose that γn = (θ T , βT
n(l))

T , where βn(l) denotes the column subvector of the last pn − l elements of βn. According
to the partition of βn, write Zni = (ZT

i1, Z
T
ni2)

T , where Zi1 and Zni2 are l × 1 and (pn − l) × 1 subvectors, respectively. LetZni = (ZT
i1,
ZT

ni2)
T

= (ZT
i1A

−1
1 , ZT

ni2 − ZT
i1A

−1
1 An2)

T . Then model (1.1) is reduced to the following model

Yni = XT
i α(Ui) +ZT

niγn + εi, i = 1, . . . , n. (3.11)
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Similar to (3.4), the bias-corrected auxiliary random vectors for θ can be defined by

ηi(θ) =
Zi1 − µ̂T

1(Ui)Xi
 

Yni − XT
i α̂(Ui; θ, β̂n(l)) −ZT

i1θ −ZT
ni2β̂n(l)


= Ẑi1


Ŷni − ẐT

i1θ − ẐT
ni2β̂n(l)


. (3.12)

In (3.12), β̂n(l) denotes the subvector of the last pn − l elements of γ̂n, which is the profile least-squares estimator (PLSE) or
MBCELE based on model (3.11). µ̂1(u) is the estimator of µ1(u) = (E(XiXT

i |Ui = u))−1E(XiZT
i1|Ui = u), and α̂(u; θ, β̂n(l)) =

(Iq, 0q)(DT
uWuDu)

−1DT
uWu(Yn −ZT

1θ −ZT
n2β̂n(l)), Ŷni = Yni −

n
k=1 SikYnk, Ẑi1 =Zi1 −

n
k=1 SikZk1, Ẑni2 =Zni2 −

n
k=1 SikZnk2.

Therefore, the bias-corrected empirical log-likelihood ratio for θ is defined by

R̂l(θ) = 2
n

i=1

log(1 + κTηi(θ)), (3.13)

where κ satisfies 1
n

n
i=1ηi(θ)/[1 + κTηi(θ)] = 0. Then R̂l(θ) has the following Chi-square limiting distribution.

Theorem 3. Under regularity conditions (C1)–(C8) in Appendix and assuming that E∥Zi1∥
k
≤ ∞ for k ≥ 4, if θ = Anβn is the

true value of the parameter vector, then as n → ∞, we have

R̂l(θ)
d

−→ χ2
l , (3.14)

where χ2
l denotes the Chi-square distribution with l degrees of freedom.

Based on Theorem 3, R̂l(θ) can be used to construct confidence regions for the linear combination θ = Anβn. For any
given 0 < α < 1, there exists cα such that P(χ2

l > cα) = α, then

Iα(θ) = {θ ∈ Rl
| R̂l(θ) ≤ cα}

is the confidence region of the linear combination θ with asymptotically correct coverage probability 1 − α.

3.3. Partially linear model

When q = 1 and X ≡ 1, model (1.1) is reduced to a partially linear model with diverging number of parameters. In this
case, µT (u) = E(Zn|U = u). Then the random vector (3.2) is defined by

ηni(βn) = (Zni − µ̂T (Ui))(Yni − α̂(Ui, βn) − ZT
niβn). (3.15)

Let R(βn) denote R̂(βn) with η̂ni(βn) being replaced byηni(βn). We state the following result.

Theorem 4. Under regularity conditions (C1)–(C8) in Appendix, if βn is the true value of the parameter vector, p3+2/(k−2)
n /n →

0, then

(2pn)−1/2(R(βn) − pn)
d

−→ N(0, 1) as n → ∞. (3.16)

When q = 1 and X ≡ 1, model (3.11) is reduced to the following partially linear model

Yni = α(Ui) +ZT
niγn + εi, i = 1, . . . , n. (3.17)

Then the bias-corrected auxiliary random vector (3.12) for θ is reduced to

ηi(θ) = (Zi1 − µ̂T
1(Ui))(Yni − α̂(Ui; θ, β̂n(l)) −ZT

i1θ −ZT
ni2β̂n(l)). (3.18)

Let Rl(θ) denote the bias-corrected empirical log-likelihood ratio with the auxiliary random vector (3.18).

Theorem 5. Under regularity conditions (C1)–(C8) in Appendix and assuming that E∥Zi1∥
k
≤ ∞ for k ≥ 4, if θ = Anβn is the

true value of the parameter vector, then, as n → ∞, we have

Rl(θ)
d

−→ χ2
l , (3.19)

where χ2
l denotes the Chi-square distribution with l degrees of freedom.

Based on Theorem 5, a confidence region for θ = Anβn is given byIα(θ) = {θ : Rl(θ) ≤ χ2
l (α)} for 0 ≤ α ≤ 1.
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Fig. 1. BCEL ratio normal QQ -plots for the sample n = 200, 400 and 600 with the growth rate pn = ⌊cn1/3
⌋, where c = 1.8, 2.8 and 3.8.

4. Numerical studies

In this section, we present the results of Monte Carlo simulations to evaluate the asymptotic normality of BCEL ratio, and
to compare BCEL with normal approximation that is based on the profile least-squares method (PLS) [20]. Throughout this
section, we use the Epanechnikov kernel K(u) = 0.75(1 − u2)+, and use the ‘‘leave-one-out’’ cross-validation method to
select the optimal handwidth hopt satisfying condition (C5).

Consider the following varying coefficient partially linear model

Yni = XT
i α(Ui) + ZT

niβn + εi, i = 1, . . . , n. (4.1)

In our simulation studies, the covariate Ui is uniformly distributed on [0,1], the nonparametric component α(u) =

(α1(u), α2(u))T with q = 2 in which Xi1 = 1 and Xi2 ∼ N(0, 1), the covariable (ZT
ni, Xi2)

T is a (pn + 1)-dimensional
normal random vector with mean zero and covariance matrix (σij) with σij = 0.5|i−j|. The noise εi is generated from
two different distributions: the standard normal and the t distribution with three degrees of freedom. Furthermore,
βn = [0.5, 0.3, −0.5, 1, 0.1, −0.25, 0, . . . , 0]T , the coefficient functions are given as

α1(u) = 4 + sin(2πu), and α2(u) = 2u(1 − u).

4.1. Simulation I

In this simulation,we evaluate the asymptotic normality of BCEL ratio throughQQ -plots, anddemonstrate the advantages
of the bias-correction technique proposed in the different growth rates of pn for each sample size. Here we only consider
the case of the noise ε ∼ N(0, 1).

We draw 1000 random samples of sizes 200, 400 or 600 from model (4.1), respectively. For the dimension pn of the
parameter vector βn, we consider the growth rate pn = ⌊cn1/3

⌋. For comparison, we obtain three dimensions for each
sample size by assigning c = 1.8, 2.8 and 3.8. The corresponding dimensions pn = 10, 16 and 22 for n = 200, pn = 13, 20
and 27 for n = 400, and pn = 15, 23 and 32 for n = 600, respectively. Fig. 1 shows the QQ -plots for the BCEL ratio for three
sample sizes with different growth rates.

Fig. 1 depicts the BCEL ratio R̂(βn) asymptotically following N(pn, 2pn) distribution, which is consistent with our
asymptotic theory. From Fig. 1, we also see that the convergence of the standardized BCEL ratio to N(0, 1) is faster for
c = 1.8 case for each sample size than that of c = 2.8 and 3.8. In addition, the convergence becomes faster as the sample
size increases, even when the growth rate of parameter dimensionality is the highest dimensionality pn = ⌊3.8n1/3

⌋. This
implies that the bias-correction technique plays an important role in the asymptotic normality of empirical log-likelihood
ratio, specially for the case ofmuch higher dimensionality. However, theQQ plots also show that for the chi-square variables,
the standardizing ones still have non-negligible bias (both the tails are above the straight lines) unless the sample size is
large enough.

4.2. Simulation II

For this simulation, we present the results of Monte Carlo simulations to compare BCEL with normal approximation that
is based on the profile least-squares method (PLS) [20].

In the simulations, we draw 1000 random samples of sizes 200, 400 or 600 from model (4.1), respectively. Because the
simulation results are similar for the three cases of c = 1.8, 2.8 and 3.8, we here take the dimensionality of the parametric
component as pn = ⌊1.8n1/3

⌋, then the corresponding dimensions of the parameter vectorβn are 10, 13 and 15, respectively.
The confidence regions and their coverage probabilities, with the nominal level 1 − α = 0.95, are computed. When the
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Table 1
The coverage probabilities (CP) and average lengths (AL) on β1 when the nominal level is 0.95.

Method n ε ∼ N(0, 1) ε ∼ t(3)
CP AL CP AL

BCEL
200 0.9420 0.2082 0.9290 0.2322
400 0.9470 0.1019 0.9340 0.1391
600 0.9490 0.0892 0.9410 0.1105

PLS
200 0.9320 0.2426 0.9200 0.2703
400 0.9430 0.1245 0.9290 0.1618
600 0.9480 0.1014 0.9360 0.1214

Table 2
The coverage probabilities (CP) on (β1, β2) and (β1, β2, β3), respectively, when the nominal level is 0.95.

Method n (β1, β2) (β1, β2, β3)

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ N(0, 1) ε ∼ t(3)

BCEL
200 0.9300 0.9230 0.9190 0.9120
400 0.9410 0.9350 0.9250 0.9240
600 0.9460 0.9410 0.9380 0.9350

PLS
200 0.9310 0.9130 0.9180 0.9040
400 0.9390 0.9230 0.9220 0.9140
600 0.9420 0.9310 0.9360 0.9270

noise ε ∼ N(0, 1), the empirical coverage probabilities of βn are 0.9020, 0.9140 and 0.9210, respectively, for the sample
sizes n = 200, 400 and 600. From the simulations we can see that, as n increases, the coverage probabilities of βn get bigger
and approach the nominal level, even when the dimension of the parameter βn grows with the sample size n.

In practice, we are often confrontedwith the need of constructing confidence intervals/regions for a particular regression
coefficient or a certain linear combination of βn. For simplicity, the 95% confidence regions for the arbitrary linear
combination θ = Anβn are computed using the BCEL based on Theorem 3 and the profile least-squares (PLS), where An is an
l×pn matrix such thatAnAT

n → G andG is an l×lnonnegative symmetricmatrix. The normal approximation based confidence
region is determined by the profile least-squares estimator (PLSE) βn : β̂n = {ZT

n(I − S)T (I − S)Zn}
−1ZT

n(I − S)T (I − S)Yn
that is obtained by minimizing

1
n

n
i=1

{Yni − XT
i α̂(Ui, βn) − ZT

niβn}
2.

Similar to the results in [20], the PLSE can be proved to have the asymptotic normality as
√
nAnBΣ−1/2(β̂n − βn)

d
−→ N(0,G),

where B = E[(Zn − µT (U)X)(Zn − µT (U)X)T ], Σ is defined in condition (C6). To construct confidence region, we also need
to estimate the asymptotic variance that is of the form:

B̂ =
1
n

n
i=1

(Zni − µ̂T (Ui)Xi)(Zni − µ̂T (Ui)Xi)
T

=
1
n

n
i=1

ẐniẐT
ni, Σ̂ =

1
n

n
i=1

ε̂2
i ẐniẐT

ni,

where ε̂i = Yni − XT
i α(Ui, β̂n) − ZT

niβ̂n.
Nowwe consider the confidence regions for Anβn, where An is any 1×pn vector, 2×pn and 3×pn matrix, respectively.We

evaluate the performance for the specific components β1, (β1, β2) and (β1, β2, β3) (the results for other components are
similar) and compare the BCEL with the PLS in terms of coverage accuracies of the confidence regions. The numerical results
are reported in Tables 1 and 2. Figs. 2–3 show confidence regions for (β1, β2), (β1, β3) and (β2, β3), respectively. By theway,
we also compute the MBCELE and PLSE, and present their bias and standard deviation for the case of (n, pn) = (400, 13)
in Table 3 (the results for other cases are similar), where ‘‘Bias’’ represents the sample average over 1000 replications
subtracting the true value of βn, ‘‘SD’’ represents the sample standard deviation over 1000 replications. We further give
the average estimation errors ∥β̂n − β∥ in L2-norm (EE) to assess the performance of estimators.

Looking at Tables 1–3, and Figs. 2–3, we have the following results.
(1) From the 95% confidence intervals/regions and their coverage probabilities that are obtained by the two approaches,

we find that BCEL consistently gives shorter lengths/smaller regions and achieves slightly higher coverage probabilities than
those of PLS.

(2) The two approaches have better performance for the case of ε ∼ N(0, 1) than that of ε ∼ t(3). From Fig. 3, it is
easy to see that the confidence regions of the PLS are predetermined to be symmetric when the noise ε comes from the t
distribution with three degrees of freedom. But the confidence regions of the BCEL are typically asymmetric for the case of
ε ∼ t(3), and are determined entirely by the data.
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Fig. 2. 95% confidence regions for (β1, β2), (β1, β3) and (β2, β3) based on n = 600 when the noise comes from ε ∼ N(0, 1).
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Fig. 3. 95% confidence regions for (β1, β2), (β1, β3) and (β2, β3) based on n = 600 when the noise comes from ε ∼ t(3).

Table 3
The biases and SD (in parentheses) for the parametric components based on 1000 replications for (n, pn) = (400, 13).

βn MBCELE PLSE
ε ∼ N(0, 1) ε ∼ t(3) ε ∼ N(0, 1) ε ∼ t(3)

β1 −0.0009(0.0388) −0.0049(0.0763) 0.0008(0.0406) −0.0046(0.0908)
β2 0.0005(0.0447) 0.0039(0.0911) 0.0004(0.0438) 0.0086(0.1106)
β3 0.0006(0.0449) −0.0016(0.0974) −0.0005(0.0443) 0.0014(0.1088)
β4 −0.0003(0.0451) −0.0087(0.0931) −0.0019(0.0440) −0.0085(0.1032)
β5 0.0017(0.0416) 0.0097(0.0910) 0.0002(0.0441) 0.0112(0.1177)
β6 −0.0039(0.0452) −0.0050(0.1041) 0.0041(0.0431) −0.0119(0.1184)
β7 0.0015(0.0429) 0.0027(0.1080) −0.0004(0.0436) 0.0131(0.1092)
β8 0.0008(0.0443) 0.0039(0.1126) 0.0002(0.0438) −0.0113(0.1126)
β9 0.0001(0.0442) −0.0136(0.1022) −0.0003(0.0450) −0.0159(0.1208)
β10 −0.0010(0.0453) 0.0054(0.1065) 0.0012(0.0455) 0.0035(0.1082)
β11 0.0008(0.0454) 0.0087(0.1008) 0.0010(0.0452) −0.0083(0.1122)
β12 0.0026(0.0445) −0.0073(0.0930) −0.0024(0.0444) 0.0077(0.1119)
β13 −0.0009(0.0450) −0.0030(0.0968) 0.0008(0.0439) 0.0102(0.1214)

EE 0.0056 0.0247 0.0055 0.0351

(3) From the biases, the sample standard deviations and the average estimation errors in Table 3, we observe that MBCEL
and PLS are almost the same for the case of ε ∼ N(0, 1). When the noise is generated from t(3) distribution, MBCEL has
better performance than PLS.We think that the BCELmethod can solve the optimal weightsωi, i = 1, . . . , n, in the estimate
equation

n
i=1 ωiη̂ni(βn) = 0 for some long tail distributions.

5. Application: a real data example

In this section, we illustrate the bias-corrected empirical likelihood (BCEL) method and compare it with the profile least
squares (PLS) method by using a real data set. The Fifth National Bank of Springfield faced a gender discrimination suit in
which female employees received substantially smaller salaries than male employees. This example is based on a real case
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Table 4
95% confidence intervals based on BCEL and PLS, and PLSE for Fifth National Bank data.

Method Confidence intervals PLSE
BCEL PLS

Female [−1.1459, −0.3982] [−1.1970, −0.2742] −0.7356
PCJob [2.4908, 4.9531] [2.2160, 5.6913] 3.9536
Edu1 [−3.2961, 0.1078] [−3.5835, 0.0977] −1.7429
Edu2 [−3.8672, −1.4957] [−4.5518, −1.0181] −2.7850
Edu3 [−3.3471, −1.5513] [−3.6140, −1.0002] −2.3071
Edu4 [−3.7249, 1.0115] [−4.2487, 0.9479] −1.6504
JobGrd1 [−24.0383, −21.2002] [−25.2886, −20.6452] −22.9669
JobGrd2 [−22.1956, −20.1524] [−23.5001, −18.8935] −21.1968
JobGrd3 [−18.1801, −16.4399] [−19.6963, −15.2581] −17.4772
JobGrd4 [−14.2885, −11.6168] [−15.1970, −10.7037] −12.9504
JobGrd5 [−9.8613, −6.1602] [−9.8661, −5.0652] −7.4656

with data dated 1995. Only the bank’s name is changed. See Example 11.3 of [2]. These data consist of 208 employees with
complete information on 8 recorded variables as follows.

• EduLev: educational level, a categorical variable with categories 1 (finished school), 2 (finished some college courses), 3
(obtained a bachelor’s degree), 4 (took some graduate courses), 5 (obtained a graduate degree).

• JobGrade: job grade, a categorical variable indicating the current job level, the possible levels being 1–6 (6 the highest).
• YrHired: year that an employee was hired.
• YrBorn: year that an employee was born.
• Gender: a categorical variable with values ‘‘Female’’ and ‘‘Male’’, 1 for female employee and 0 for male employee.
• YrsPrior: number of years of work experience at another bank prior to working at the Fifth National Bank.
• PCJob: a dummy variable with value 1 if the employee’s job is computer related and value 0 otherwise.
• Salary: current (1995) annual salary in thousands of dollars.

Fan and Peng [13] and Lam and Fan [20] conducted such a salary analysis using the additive model and the generalized
varying coefficient partially linear model, respectively. In this subsection, we consider the following varying coefficient
partially linear model (VCPLM)

Salary = α1(Age) + α2(Age)YrsExp + β1Female + β2PCJob +

4
i=1

β2+iEdui +

5
i=1

β6+iJobGrdi + ε,

where the variable YrsExp is total years of working experience, computed from the variables YrHired and YrsPrior.
Similar to the analysis of Fan and Peng [13], we deleted the sampleswith age over 60 orworking experience over 30. They

correspond mainly to the company executives who earned handsome salaries. As a result of this deletion, a sample of size
199 remains for our analysis. The ‘‘leave-one-out’’ cross-validationmethod is employed to select the bandwidth hGCV = 13.9.
Table 4 presents 95% confidence intervals for the parameters based on the BCEL and PLS methods, and provides the profile
least squares estimator (PLSE) of the parameters. For comparison, we obtain the 95% confidence regions for the coefficients
(β1, β2) of variables Female and PCJob that are shown in Fig. 4. We also can obtain similar results for other coefficients.
However, we omit the presentation.

It is seen from Table 4 that the bias-corrected empirical likelihood confidence intervals are comparable to those of
the profile least squares method. The profile least squares method gives larger intervals and imposes symmetry on the
confidence intervals. Fan and Peng [13] analyzed the Fifth National Bank data set by using the variable selection method,
and they found that the effect of EduLev with the Salary was insignificant, and the corresponding variables were excluded
from the final fitted model. From Table 4, we find that the confidence intervals of Edu1 and Edu4 cover the zero point. In
addition, the coefficient for Female is significantly negative and the coefficient for PCJob is significantly positive. The job
grade (JobGrd) plays an important role for the employees’ salaries. Those findings corroborate the results in [13] very well.

Fig. 4 indicates that, for this dataset, the BCEL-based confidence region is smaller than the one based on that of the PLS.
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Appendix A. Proof of the theorems

Note. We present all the details of the proofs for review convenience, which makes the paper long. It will be much shorten
afterward or will be put in a supplement if it is required.

Before we give the details of the proofs, we present some regularity conditions. Throughout the paper, we denote
γ1(A) ≤ · · · ≤ γpn(A) as the eigenvalues and tr(A) as the trace operator of a matrix A.

(C1) The random variable U has a compact supportΩ . The density function fU(u) of U has a continuous second derivative
and is uniformly bounded away from zero.

(C2) The q × q matrix E(XXT
|U) is non-singular for each U ∈ Ω . E(XXT

|U), E(XXT
|U)−1 and E(XZT

n |U) are all Lipschitz
continuous and each element of E(XXT

|U)−1 and E(XZT
n |U) is bounded.

(C3) {αi(·), i = 1, . . . , q} have continuous second derivatives in u ∈ Ω .
(C4) The kernel K(·) is a bounded symmetric density function with bounded support.
(C5) The bandwidth h satisfies that nh6

→ 0 and nh3/(log n)3 → ∞.
(C6)Σ = E[ε2(Zn −µT (U)X)(Zn −µT (U)X)T ] is a positive definite matrix with all eigenvalues being uniformly bounded

away from zero and infinity.
(C7) E(ε|U,X, Zn) = 0 almost surely. Furthermore, for some integer k ≥ 4, E(∥Xε∥k) < ∞, E∥X∥

k < ∞, E(|ε|k) < ∞.
(C8) Let ηn = ε(Zn − µT (U)X), and ηnj be the j-th component of ηn, j = 1, . . . , pn. For k of condition (C7), there is a

positive constant c such that as n → ∞,

E(∥ηn(βn)/
√
pn∥k) < c, E(∥ZnXT/

√
pn∥k) < c, E(∥µ(U)XXT/

√
pn∥k) < c,

and

1
pn

pn
l1=1

E(|ηnl1 |(∥ZnXT/
√
pn∥4

+ ∥µXXT/
√
pn∥4)) < c.

(C9) max1≤l1, l2, l3≤pn E(ηnl1ηnl2ηnl3)
2 is bounded, where ηnli are the components of ηn.

Note that the above conditions are assumed to hold uniformly in u ∈ Ω . Conditions (C1)–(C4) are also found in [10]. These
conditions are actually quite mild and can be easily satisfied. Condition (C5) gives a range, from O(n−1/3 log n) to O(n−1/6),
of bandwidth that includes the optimal bandwidth. Condition (C6) ensures that there exists an asymptotic variance for the
estimator of the growing parameters βn. Conditions (C7)–(C9) are technical conditions for the moments.

In this section, we present the proofs for the main results. Some lemmas and their proofs, that are needed for the proofs
of the main theorems, are relegated to Appendix B.

In order to prove the main results, we introduce the following notations. By (3.2), simple calculation yields that

η̂ni(βn) = ηni(βn) +

3
k=1

Mi,k =: ηni(βn) + Ri, (A.1)

where

ηni(βn) = (Zni − µT (Ui)Xi)(Yni − XT
i α(Ui) − ZT

niβn) = (Zni − µT (Ui)Xi)εi,

Mi,1 = (Zni − µT (Ui)Xi)XT
i (α(Ui) − α̂(Ui, βn)),

Mi,2 = (µ(Ui) − µ̂(Ui))
TXiεi,

Mi,3 = [(µ(Ui) − µ̂(Ui))
TXi][XT

i (α(Ui) − α̂(Ui, βn))].
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Note that when βn is true value, ηni(βn) is actually the independent copies of ηn that is free of βn, where ηn is defined in
condition (C8). However, in order to highlight the existence of this parameter, we still write it in ηni(βn).

Proof of Theorem 1. By (3.8), λ ∈ Rpn satisfies

0 =
1
n

n
i=1

η̂ni(βn)

1 + λT η̂ni(βn)
=: ϕ(λ). (A.2)

Let λ = ρθ , where ρ ≥ 0, θ ∈ Rpn and ∥θ∥ = 1. Introduce

¯̂η(βn) =
1
n

n
i=1

η̂ni(βn), η̂∗(βn) = max
1≤i≤n

∥η̂ni(βn)∥. (A.3)

Substituting 1/(1 + λT η̂ni(βn)) = 1 − λT η̂ni(βn)/(1 + λT η̂ni(βn)) into θ Tϕ(λ) = 0, we have

|θ T ¯̂η(βn)| ≥
ρ

1 + ρη̂∗(βn)
θ T Snθ,

where Sn =
1
n

n
i=1 η̂ni(βn)η̂

T
ni(βn). Because p̂i =

1
n

1
1+λT η̂ni(βn)

is a probability mass, we have 0 < 1 + λT η̂ni(βn) ≤

1 + ρη̂∗(βn). Therefore,

ρ[θ T Snθ − θ T ¯̂η(βn)η̂
∗(βn)] ≤ |θ T ¯̂η(βn)|. (A.4)

From (A.1), it is easy to see that

η̂∗(βn) ≤ η∗(βn) + max
1≤i≤n

∥Ri∥, (A.5)

where η∗(βn) = max1≤i≤n ∥ηni(βn)∥ and {ηni(βn), i = 1, . . . , n} is a sequence of independent random variables with
common distribution. From conditions (C7) and (C8), for any ϵ > 0, then, again recalling the definition of ηni(βn) right
below (A.1),

P

η∗(βn) ≥ (pn)1/2n1/kϵ


≤

n
i=1

P

∥ηni(βn)∥ ≥ (pn)1/2n1/kϵ


≤

1

npk/2n ϵk

n
i=1

E∥ηni(βn)∥
k

=
1
ϵk

E∥ηn1(βn)/p
1/2
n ∥

k. (A.6)

Cauchy–Schwarz inequality yields that ∥ηn1(βn)/p
1/2
n ∥

k
≤ 1/pn

pn
j=1 |ηn1j(βn)|

k, where ηn1j(βn) are the components of
ηn1(βn). By (A.6), max1≤i≤n ∥ηni(βn)∥ = oP(

√
pnn1/k). Next we consider max1≤i≤n ∥Ri∥. Note that each column vector of

µ(Ui) is pn-dimensional. By Lemma B.2 in Appendix B, and conditions (C7) and (C8), similar to (A.6) applied to the maxima
on the right hand side of the second inequality below, we have, noting that the existence of k-th moments for k ≥ 4,

max
1≤i≤n

∥Ri∥ ≤ max
1≤i≤n

∥Mi,1∥ + max
1≤i≤n

∥Mi,2∥ + max
1≤i≤n

∥Mi,3∥

≤


max
1≤i≤n

∥ZniXT
i ∥ + max

1≤i≤n
∥µT (Ui)XiXT

i ∥


OP(cn)

+OP(
√
pncn) max

1≤i≤n
∥Xiεi∥ + OP(

√
pnc2n ) max

1≤i≤n
∥XiXT

i ∥

≤ oP(n1/k√pncn) + oP(n1/k√pncn) + oP(n1/k√pnc2n )

= oP(n1/k√pncn). (A.7)

This, together with (A.5)–(A.7), gives η̂∗(βn) = oP(n1/k√pn). By the condition pn = o(n(k−2)/(2k)) in Theorem 1, it is easy to
check that

η̂∗(βn) = oP(n1/k√pn) = oP(

n/pnn(2−k)/(2k)pn) = oP(


n/pn).
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Because |θ T ¯̂η(βn)| ≤ ∥ ¯̂η(βn)∥ = OP(
√
pn/n), then

η̂∗(βn)|θ
T ¯̂η(βn)| = oP(1).

This, together with (A.4), gives

|ρ[θ T Snθ + oP(1)]| = OP(

pn/n). (A.8)

Further, noting that by Lemma B.4 in Appendix B, θ T Snθ converges to a positive constant in probability, ρ = OP(
√
pn/n),

that is, ∥λ∥ = ρ = OP(
√
pn/n). �

Proof of Theorem 2. LetWi = λT η̂ni(βn). Applying Taylor expansion to (A.2), we obtain

0 = ϕ(λ) =
1
n

n
i=1

η̂ni(βn)


1 − Wi +

W 2
i

1 − Wi


= ¯̂η(βn) − Snλ + δn, (A.9)

where

δn =
1
n

n
i=1

η̂ni(βn)W
2
i

1 − Wi
=

1
n

n
i=1

η̂ni(βn)W
2
i +

1
n

n
i=1

η̂ni(βn)W
3
i

1 − Wi

=: δn1 + δn2. (A.10)

For a preparation, we first present a bound for Ri. First, we note that max1≤i≤n ∥Ri∥ = oP(n1/k√pn), and

∥Ri∥ ≤

∥ZniXT

i ∥ + ∥µT (Ui)XiXT
i ∥

oP(cn) + oP(

√
pncn)∥Xiεi∥ + oP(

√
pnc2n )∥XiXT

i ∥

≤

∥ZniXT

i ∥ + ∥µT (Ui)XiXT
i ∥

oP(cn) + oP(

√
pncn)(∥Xiεi∥ + ∥XiXT

i ∥)

=: b1nioP(cn) + b2ioP(
√
pncn), (A.11)

where oP(cn) is the convergence rate of the maximum difference between the nonparametric estimator α̂ (or µ̂) and the
corresponding true function α (or µ). It is obtained by Lemma B.2 in Appendix B. These results can be used in the later steps
of the proof.

From (A.6) in the proof of Theorem 1, we know that η̂∗(βn) = oP(n1/k√pn). Note that the condition pn = o(n(k−2)/(3k−4))
in Theorem 2. Thus,

max
1≤i≤n

|Wi| = max
1≤i≤n

∥λT η̂ni(βn)∥ ≤ ∥λ∥η̂∗(βn) = oP(pn/n1/2−1/k).

Then we have δn2 = δn21(1 + oP(1)), where δn21 = n−1n
i=1 ∥η̂ni(βn)W

3
i ∥. Further, we note that invoking Cr inequality,

∥η̂ni(βn)∥
k
≤ 2k/2(∥ηni(βn)∥

2
+ ∥Ri∥

2)k/2 ≤ C(∥ηni(βn)∥
k
+ ∥Ri∥

k) for some C depending on k.
We now deal with δn21. When k ≥ 4, together with (A.11), Theorem 1 and the Hölder inequality, we have

∥δn21∥ ≤ η̂∗

ni(βn)
1
n

n
i=1

|Wi|
3

= η̂∗

ni(βn)
1
n

n
i=1

|Wi|
2(k−3)
k−2 |Wi|

k
k−2

≤ η̂∗

ni(βn)


1
n

n
i=1

|Wi|
2(k−3)
k−2

k−2
k−3

 k−3
k−2

1
n

n
i=1

|Wi|
k

k−2 (k−2)

 1
k−2

= η̂∗

ni(βn)


1
n

n
i=1

W 2
i

 k−3
k−2

1
n

n
i=1

|Wi|
k

 1
k−2

≤ η̂∗

ni(βn)(λ
T Snλ)

k−3
k−2


1
n

n
i=1

∥λ∥
k
∥η̂ni(βn)∥

k

 1
k−2

≤ η̂∗

ni(βn)(λ
T Snλ)

k−3
k−2


1
n

n
i=1

∥λ∥
kC(∥ηni(βn)∥

k
+ ∥Ri∥

k)

 1
k−2

= oP(p1/2n n1/k)oP((pnn−1)
k−3
k−2 )oP{(pk/2n n−k/2pk/2n )

1
k−2 }

= oP


p

5(k−2)+2
2(k−2)

n n−3/2+1/k


= oP(p3nn
−3/2). (A.12)
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The last equation is due to pn = o(n(k−2)/(3k−4)) and k ≥ 4. When k > 8, without the condition that E(ε3
|U,X, Zn) = 0,

Lemma B.4 and the proof of Theorem 1 yield that

∥δn1∥ ≤ η̂∗(βn)λ
T Snλ = oP(p3/2n n1/k−1). (A.13)

Together with the bound for ∥δn21∥, we have ∥δn∥ = oP(p
3/2
n n1/k−1). We now consider convergence rate of ∥δn1∥ in the case

with the condition that E(ε3
|U,X, Zn) = 0. From (A.1) andWi = λT η̂ni(βn), we have

δn1 =
1
n

n
i=1

ηni(βn)λ
Tηni(βn)η

T
ni(βn)λ +

2
n

n
i=1

ηni(βn)λ
Tηni(βn)R

T
i λ

+
1
n

n
i=1

ηni(βn)λ
TRiRT

i λ +
1
n

n
i=1

Riλ
Tηni(βn)η

T
ni(βn)λ

+
2
n

n
i=1

Riλ
Tηni(βn)R

T
i λ +

1
n

n
i=1

Riλ
TRiRT

i λ

=: I1 + I2 + I3 + I4 + I5 + I6. (A.14)

We now deal with all Ii, i = 1, . . . , 6. Consider ∥I1∥. By (A.1), ηni(βn) = (Zni − µT (Ui)Xi)εi =:Zniεi, then

I1 =
1
n

n
i=1

ηni(βn)[λ
Tηni(βn)]

2

=
1
n

n
i=1

ε3
i
Zni[λ

TZni]
2. (A.15)

By condition E(ε3
|U, Zn,X) = 0, we have E(I1) = 0. Invoking the independence of εi from the other variables and using the

Cauchy–Schwarz inequality, we have

∥I1∥ =

1n
n

i=1

ε3
i
Zni[λ

TZni]
2


=

 pn
l1=1


1
n

n
i=1

ε3
i
Znil1 [λTZni]

2

2
1/2

=

 pn
l1=1


1
n

n
i=1

ε3
i
Znil1


pn

l2,l3=1

λl2λl3
Znil2Znil3

2
1/2

=


pn

l1=1


λTHnl1λ

21/2

≤ ∥λ∥
2


pn

l1=1

∥Hnl1∥
2

1/2

, (A.16)

where for any l1, let Hnl1 be the pn × pn matrix whose elements are
 1
n

n
i=1 ε3

i
Znil1Znil2Znil3. Note that the mean of

each element of Hnl1 is equal to 0. To obtain its convergence rate, we can compute the mean of
pn

l1=1 ∥Hnl1∥
2

=pn
l1,l2,l3=1

 1
n

n
i=1 ε3

i
Znil1Znil2Znil32. By the independence of ε3

i
Znil1Znil2Znil3 and condition (C9), we immediately derive that

1
n

pn
l1,l2,l3=1

E

ε3
i
Znil1Znil2Znil32 ≤

p3n
n

max
l1,l2,l3

E

ε3
i
Znil1Znil2Znil32 = O(p3n/n).

In other words, combining the rate of ∥λ∥, ∥λ∥
2
pn

l1=1 ∥Hnl1∥
2
1/2

= oP(p
5/2
n n−3/2). This is the convergence rate of ∥I1∥.

For I2, by (A.11) and conditions (C7) and (C8), invoking the proof of Theorem 1 about the boundedness of eigenvalues of
Sn and the Cauchy–Schwarz inequality, we have

∥I2∥ =

2n
n

i=1

ηni(βn)λ
Tηni(βn)R

T
i λ


≤ 2


 pn

j=1

1n
n

i=1

(λTηni(βn))(ηnij(βn)R
T
i λ)


2

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≤ 2

1
n

n
i=1

(λTηni(βn))
2


pn
j=1


1
n

n
i=1

(ηnij(βn)R
T
i λ)2



≤ 2∥λ∥
2γ 1/2

pn (S̃n)


pn
j=1

1
n

n
i=1

∥ηnij(βn)Ri∥
2

1/2

≤ oP(cn)∥λ∥
2γ 1/2

pn (S̃n)


pn
j=1

1
n

n
i=1

(∥ηnij(βn)b1ni∥
2
+ pn|ηnij(βn)b2i|

2)

1/2

≤ oP(cn)oP(pnn−1)γ 1/2
pn oP(pn) = oP(p2nn

−1cn), (A.17)

where γpn(S̃n) is the largest eigenvalue of S̃n, and S̃n =
1
n

n
i=1 ηni(βn)η

T
ni(βn). For I3, similar arguments above apply to Ri to

achieve, invoking condition (C8),

∥I3∥ =

1n
n

i=1

ηni(βn)λ
TRiRT

i λ


≤ ∥λ∥

2

 pn
j=1


1
n

n
i=1

|ηnij(βn)|
2∥Ri∥

4


≤ oP(pnn−1)OP(p3/2n c2n )

= oP((p5/2n n−1)c2n ). (A.18)

For ∥I4∥, it is easy to see that it is smaller or equal to max ∥Ri∥ ∥λ∥
2γpn(S̃n) = oP(p

3/2
n n−1)cn. For ∥I5∥, we use Ri in the place

of ηn(βn) and follow the similar argument for ∥I2∥, we can derive that ∥I5∥ = oP((p2nn
−1)c2n ). Following the argument for

∥I3∥ we can get ∥I6∥ = oP((p
5/2
n n−1)c3n ).

Summarizing the above results, and noting that the convergence rates about I6 and I5 (and I4) are faster than those of I3
and I2 respectively, we then have

∥δn∥ = oP(p5/2n n−1(n−1/2
+ c2n )) + oP(p2nn

−1cn). (A.19)

We are now in the position to obtain the asymptotic representation of R̂(βn). From (A.9), we obtain that

λ = S−1
n

¯̂η(βn) + S−1
n δn. (A.20)

Taylor expansion implies

log(1 + Wi) = Wi − W 2
i /2 + W 3

i /3(1 + ξi)
4,

for some ξi such that |ξi| ≤ |Wi|. Therefore, combining (A.20) and some elementary calculations, we have

R̂(βn) = 2
n

i=1

log(1 + Wi)

= n ¯̂η
T
(βn)S

−1
n

¯̂η(βn) − nδT
n S

−1
n δn +

2
3

Rn{1 + oP(1)}

= n ¯̂η
T
(βn)Σ

−1 ¯̂η(βn) + n ¯̂η
T
(βn)(S

−1
n − Σ−1) ¯̂η(βn) − nδT

n S
−1
n δn +

2
3
ℜn{1 + oP(1)}, (A.21)

where ℜn =
n

i=1{λ
T η̂ni(βn)}

3. Together with (A.19) and Lemma B.4, we have

|nδT
n S

−1
n δn| ≤ n∥δn∥2/γ1(Sn) = oP(p5nn

−1(n−1
+ c4n )) + oP(p4nn

−1c2n ) = oP(p1/2n ). (A.22)

Furthermore, from the proof of (A.12), we can immediately derive that

|ℜn| = oP

(pnn−1)

k−3
k−2


oP

(pk/2n n−k/2pk/2n )

1
k−2


= oP(1), (A.23)

provided that k ≥ 4. The proof of Theorem2 is concluded from Lemmas B.5 and B.6 in Appendix B, togetherwith expressions
(A.21)–(A.23). �
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Proof of Theorem 3. To prove the theorem, we first show that max1≤i≤n ∥ηi(θ)∥ = oP(n1/2). Note thatZT
niγ̂n = ZT

i1θ̂ +ZT
ni2β̂n(l), where θ̂ is the subvector of the first l elements of γ̂n. By (3.12) and Lemma B.1, we can obtain that

ηi(θ) =
Zi1 − µ̂T

1(Ui)Xi
 

Yni − XT
i α̂(Ui; θ, β̂n(l)) −ZT

i1θ −ZT
ni2β̂n(l)


=
Zi1 − µT

1(Ui)Xi{1 + OP(cn)}
 

εi +ZT
ni(γn − γ̂n) +ZT

i1(θ̂ − θ) + XT
i


α(Ui) − α̂(Ui; θ, β̂n(l))


=: Ti1 + Ti2 + Ti3 + Ti4. (A.24)

By (A.24), it is easy to show that

max
1≤i≤n

∥ηi(θ)∥ ≤ max
1≤i≤n

∥Ti1∥ + max
1≤i≤n

∥Ti2∥ + max
1≤i≤n

∥Ti3∥ + max
1≤i≤n

∥Ti4∥.

By condition (C7) and E∥Zi1∥
k
≤ ∞ for k = 4, we have

max
1≤i≤n

∥Ti1∥ ≤


max
1≤i≤n

∥Zi1∥ + max
1≤i≤n

∥µT
1(Ui)Xi∥ + OP(cn) max

1≤i≤n
∥Xi∥


max
1≤i≤n

|εi| = oP(n1/2).

It is known from Theorem 1 in Lam and Fan (2008) that γ̂n is a root-(n/pn) consistent estimator of γn. Invoking the above
argument and conditions (C7) and (C8), it can be shown that

max
1≤i≤n

∥Ti2∥ = oP(n1/2), max
1≤i≤n

∥Ti3∥ = oP(n1/2).

For max1≤i≤n ∥Ti4∥. Recall the definition of α̂(Ui; θ, β̂n(l)) in Section 3.3, we have

α̂(Ui; θ, β̂n(l)) = (XT
i , 0q)(DT

Ui
WUiDUi)

−1DT
Ui
WUi

ZT
ni2(βn(l) − β̂n(l))


+ XT

i


α(Ui) − α̂(Ui, γn)


.

By Lemmas B.1 and B.2, and again using the above argument, we can obtain that max1≤i≤n ∥Ti4∥ = oP(n1/2). Therefore, we
have max1≤i≤n ∥ηi(θ)∥ = oP(n1/2).

For simplicity, we first introduce some notations. Let µ1(u) = (E(XXT
|U = u))−1E(XZT

1 |U = u) be a q × l matrix,
µ2(u) = (E(XXT

|U = u))−1E(XZT
n2|U = u) be a q × (pn − l) matrix, and µn(u) = (E(XXT

|U = u))−1E(XZT
n |U = u) be

q × pn matrix.
Next we show that, as n → ∞,

1
√
n

n
i=1

ηi(θ)
d

−→ N(0, Λ(θ)), (A.25)

1
n

n
i=1

ηi(θ)ηT
i (θ)

P
−→ Λ(θ), (A.26)

where Λ(θ) = E[ξ1ξ
T
1 ε2

] is a positive defined matrix, and

ξi =
Zi1 − µT

1(Ui)Xi

− E


(Z1 − µT

1(U)X)ZT
n

 Ψ −1 Zni − µT
n(Ui)Xi


+ E


(Z1 − µT

1(U)X)ZT
1

 
E

(Z1 − µT

1(U)X)(Z1 − µT
1(U)X)T


− KP−1K T −1

×
Zi1 − µT

1(Ui)Xi

− KP−1(Zni2 − µT

2(Ui)Xi)

, (A.27)

where Ψ = E
Zn − µT

n(U)X
 Zn − µT

n(U)X
T

. From (3.12) and (A.24), we have

1
√
n

n
i=1

ηi(θ) =
1

√
n

n
i=1

Zi1 − µT
1(Ui)Xi


εi +

1
√
n

n
i=1

Zi1 − µT
1(Ui)Xi

ZT
ni(γn − γ̂n)

+
1

√
n

n
i=1

Zi1 − µT
1(Ui)Xi

ZT
i1(θ̂ − θ) +

1
√
n

n
i=1

Zi1 − µT
1(Ui)Xi


XT

i


α(Ui) − α̂(Ui; θ, β̂n(l))


+

1
√
n

n
i=1


µT

1(Ui) − µ̂T
1(Ui)


Xiεi +

1
√
n

n
i=1


µT

1(Ui) − µ̂T
1(Ui)


XiZT

ni(γn − γ̂n)

+
1

√
n

n
i=1


µT

1(Ui) − µ̂T
1(Ui)


XiZT

i1(θ̂ − θ)



102 G. Li et al. / Journal of Multivariate Analysis 105 (2012) 85–111

+
1

√
n

n
i=1


µT

1(Ui) − µ̂T
1(Ui)


XiXT

i


α(Ui) − α̂(Ui; θ, β̂n(l))


=: T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

Note that the dimensionality ofZi1 is l, which is a fixed constant and free of n. By Lemmas B.1 and B.2, and using the
same argument similar to the proof of Lemma B.3, we can derive that

8
k=4 Tk

 = OP(n1/2c2n ), which implies that

Tk = oP(1), k = 4, . . . , 8. To prove (A.25), we consider Tk, k = 1, 2, 3, respectively. For T2, note that γ̂n = {Z∗T
n (I −

S)T (I − S)Z∗
n}

−1Z∗T
n (I − S)T (I − S)Yn is the profile least squares estimator of γn, whereZ∗

n = (Zn1, . . . ,Znn)
T . Similar to the

proof of Theorem 4.1 in [10], we have

T2 = −
1

√
n

n
i=1

Zi1 − µT
1(Ui)Xi

ZT
ni{
Z∗T

n (I − S)T (I − S)Z∗

n}
−1Z∗T

n (I − S)T (I − S)(M + ε)

= −E

(Z1 − µT

1(U)X)ZT
n

 Ψ −1 1
√
n

n
i=1

Zni − µT
n(Ui)Xi


εi + oP(1),

whereM = (XT
1α(U1), . . . ,XT

nα(Un))
T , ε = (ε1, . . . , εn)

T , and Ψ is defined in (A.27).
For T3, we first introduce some notations, let Kn =

1
n

n
i=1

Zi1 −
n

k=1 SikZk1
 Zi1 −

n
k=1 SikZk1

T
, Pn =

1
n

n
i=1Zni2 −

n
k=1 SikZnk2

 Zni2 −
n

k=1 SikZnk2
T
, and K = E

Z1 − µT
1(U)X

 Zn2 − µ2(U)X
T

, P = E
Zn2 − µT

2(U)X


Zn2 − µT
2(U)X

T
. By Lemmas B.1 and B.2, it is to show that Kn = K + oP(1) and Pn = P + oP(1). Note that θ̂ is the

subvector of the first l elements of the profile least squares estimator γ̂n, and similar to the argument of T2 and the proof of
Theorem 3.1 in [24], we have

T3 = E

(Z1 − µT

1(U)X)ZT
1

 
E

(Z1 − µT

1(U)X)(Z1 − µT
1(U)X)T


− KP−1K T −1

×
1

√
n

n
i=1

Zi1 − µT
1(Ui)Xi


− KP−1(Zni2 − µT

2(Ui)Xi)

εi + oP(1).

Therefore, we have

1
√
n

n
i=1

ηi(θ) =
1

√
n

n
i=1

ξiεi + oP(1), (A.28)

where ξi is defined by (A.27). Then, (A.25) follows directly from the proof of Theorem 3.1 in [24]. In addition, we also show
that (A.26) holds by using the similar argument.

Applying the Taylor expansion to (3.13), and note that max1≤i≤n ∥ηi(θ)∥ = oP(n1/2), we can obtain that

R̂l(θ) = 2
n

i=1


κTηi(θ) −

1
2
{κTηi(θ)}2


+ oP(1). (A.29)

Invoking the proof of Theorem 1 in [28], we have

n
i=1

[κTηi(θ)]2 =

n
i=1

κTηi(θ) + oP(1), (A.30)

κ =


n

i=1

ηi(θ)ηT
i (θ)

−1 n
i=1

ηi(θ) + oP(n−1/2). (A.31)

From (A.29)–(A.31), we have

R̂l(θ) =


1

√
n

n
i=1

ηi(θ)

T 
1
n

n
i=1

ηi(θ)ηT
i (θ)

−1 
1

√
n

n
i=1

ηi(θ)


+ oP(1).

Together with (A.25) and (A.26), it is easy show that R̂l(θ) is asymptotically chi-squared with l degrees of freedom. The
proof is completed. �

The partially linear model is a special case of the varying-coefficient partially linear model. We can prove Theorems 4
and 5 by using the same arguments in the proofs of Theorems 2 and 3. We here omit the details.
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Appendix B. Some lemmas

For the sake of convenience, let c(0 < c < ∞) denote a constant not depending on n, but taking difference value at each
appearance. The following notations will be used in the proof of lemmas. Let µi =


uiK(u)du, νi =


uiK 2(u)du, Γ (u) =

E(XXT
|U = u) and Φ(u) = E(XZT

n |U = u).

Lemma B.1. Suppose that conditions (C1)–(C5) hold. If h → 0 and nh → ∞ as n → ∞, then letting cn =
 log n

nh

1/2
+ h2 and

dn =
 log n

nh

1/2
,

sup
u∈Ω

1
n

n
i=1

Kh(Ui − u)

Ui − u

h

l

Xijεi = OP(dn),

sup
u∈Ω

1n
n

i=1

Kh(Ui − u)

Ui − u

h

l

Xij1Xij2 − f (u)µlΓj1j2(u)

 = OP(cn),

sup
u∈Ω

1n
n

i=1

Kh(Ui − u)

Ui − u

h

l

XijZnik − f (u)Φjk(u)

 = OP(cn),

where j1, j2, j = 1, . . . , q, k = 1, . . . , pn, l = 0, 1, 2, 4, Γj1j2(u) is the (j1, j2)th element of Γ (u) and Φjk(u) is the (j, k)th
element of Φ(u).

The proof of Lemma B.1 is similar to that of Lemma A.2 in [35], we then omit the details here.
For any given parametric component βn, the following lemma provides the consistency rate of the estimators of nonparametric

functions. Let αj(u) denote the jth component of α(u), j = 1, . . . , q.

Lemma B.2. Under the conditions of Lemma B.1, we have,

∥α̂(u, βn) − α(u)∥ = OP(cn) (B.1)

and

max
1≤j≤q

sup
u∈Ω

|α̂j(u, βn) − αj(u)| = OP(cn) (B.2)

holds uniformly in u ∈ Ω , the support of U.

Proof. We first present the proof of Eq. (B.1). Let

Sn,l =

n
i=1

Kh(Ui − u)XiXT
i


Ui − u

h

l

, l = 0, 1, 2.

Note that

DT
uWuDu =


Sn,0 Sn,1
Sn,1 Sn,2


.

Each element of the above matrix is in the form of a kernel regression. By Lemma B.1 and some elementary calculations, we
have

Sn,l = nf (u)µlΓ (u)(1 + OP(cn)) (B.3)

holds uniformly in u ∈ Ω . By (2.6), we have

α̂(u, βn) = [nf (u)Γ (u)]−1
n

i=1

Kh(Ui − u)Xi(Yni − ZT
niβn) + OP(cn)

= [nf (u)Γ (u)]−1
n

i=1

Kh(Ui − u)Xi

XT

i α(Ui) + εi


+ OP(cn). (B.4)

Applying Lemma B.1, similar to the calculation of (B.3), we can easily show that

1
n

n
i=1

Kh(Ui − u)XiXT
i α(Ui) = f (u)Γ (u)α(u){1 + OP(cn)} (B.5)
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and

1
n

n
i=1

Kh(Ui − u)Xiεi = oP(1) (B.6)

holds uniformly in u ∈ Ω . From (B.4)–(B.6), α̂(u, βn) = α(u) + OP(cn) holds uniformly in u ∈ Ω . This completes the proof
of Eq. (B.1).

To prove (B.2), similar to Xia and Li [35], we further decompose α̂j(u, βn), j = 1, . . . , q. Here we only consider α̂1(u, βn)
without loss of generality. For convenience, let Kih(u) = Kh(Ui − u), Si = (Xi2, . . . , Xiq), Ti = (Xi1, . . . , Xiq). Without
confusion, we let Vi = (Si, (Ui − u)Ti) although it relates to u. Following Lemma 3 of [19], we have

α̂1(u, βn) = α1(u) +

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )XT
i (α(Ui) − α(u) − α′(u)(Ui − u))

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2

+

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )εi

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2

=: α1(u) + I1 + I2, (B.7)

where

Hn =

n
i=1

Kih(u)V T
i Vi =


n

i=1

Kih(u)STi Si h
n

i=1

Kih(u)

Ui − u

h


STi Ti

h
n

i=1

Kih(u)

Ui − u

h


T T
i Si h2

n
i=1

Kih(u)

Ui − u

h

2

T T
i Ti


=:


Pn hRn

hRT
n h2Qn


,

Jn =

n
i=1

Kih(u)Xi1Vi =


n

i=1

Kih(u)Xi1Si, h
n

i=1

Kih(u)

Ui − u

h


Xi1Ti


=: (An, hBn).

Let A(u) = (Γ12(u), Γ13(u), . . . , Γ1q(u)), P(u) = (Γij(u))i,j=2,...,q and Q (u) = (Γij(u))i,j=1,...,q. From Lemma B.1 and
condition (C4), we can easily show that

1
n
An = f (u)A(u) + OP(cn),

1
n
Bn = OP(cn)1T

q ,
1
n
Rn = OP(cn)1q−11T

q ,

1
n
Qn = f (u)µ2Q (u) + OP(cn),

1
n
Pn = f (u)P(u) + OP(cn).

(B.8)

Here 1q is the q× 1 vector with 1 as all the elements. It can be seen that Pn is a symmetric matrix and its inverse exists, then

H−1
n =


P−1
n + h2P−1

n RnK
−1
n RT

nP
−1
n −hP−1

n RnK
−1
n

−hK−1
n RT

nP
−1
n K−1

n


,

where Kn = h2(Qn − RT
nP

−1
n Rn), and

JnH−1
n = (AnP−1

n + h2AnP−1
n RnK

−1
n RT

nP
−1
n − h2BnK

−1
n RT

nP
−1
n , −hAnP−1

n RnK
−1
n + hBnK

−1
n ),

JnH−1
n V T

i = AnP−1
n STi + h2AnP−1

n RnK
−1
n RT

nP
−1
n STi − h2BnK

−1
n RT

nP
−1
n STi

− h(Ui − u)(AnP−1
n RnK

−1
n T T

i − hBnK
−1
n T T

i ).

From (B.8), we have

JnH−1
n = (A(u)(P(u))−1

+ OP(cn), OP(cn)1T
q ), (B.9)

JnH−1
n JTn = nA(u)(P(u))−1AT (u)f (u) + OP(cn). (B.10)
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To deal with Ii for i = 1, 2, we consider their denominator first. Note that

1
n

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2 =
1
n

n
i=1

Kih(u)X2
i1 −

1
n
JnH−1

n JTn

= Γ11(u)f (u) − A(u)(P(u))−1AT (u)f (u) + OP(cn)
= f (u) det(Q (u))/ det(P(u)) + OP(cn) (B.11)

holds uniformly inu ∈ Ω . Nowweare in the position to handle I1. Using the Taylor expansion,αj(Ui)−αj(u)−α′

j(u)(Ui−u) =

1
2α

′′

j (u
∗)(Ui − u)2, j = 1, . . . , q, where u∗ is a point between Ui and u. By Cauchy–Schwarz inequality, Lemma B.1 and

condition (C3), uniformly over 1 ≤ j ≤ q, we have1n
n

i=1

Kih(u)(Xi1 − JnH−1
n V T

i )XT
ij (αj(Ui) − αj(u))


≤


1
n

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2
1
n

n
i=1

Kih(u)X2
ij (αj(Ui) − αj(u))2

1/2

=


1
n

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )2
1
4n

n
i=1

Kih(u)X2
ijα

′′2
j (u∗)(Ui − u)4

1/2

= c{[f (u) det(Q (u))/ det(P(u)) + OP(cn)] · h4
[µ4f (u)Γ11(u) + OP(cn)]}1/2

= OP(h2). (B.12)

From (B.11) and (B.12), we have |I1| = OP(h2). For I2, we again apply Lemma B.1 to obtain

1
n

n
i=1

Kih(u)T T
i εi = OP(dn),

1
n

n
i=1

Kih(u)

Ui − u

h


T T
i εi = OP(dn),

where dn is defined in Lemma B.1. Therefore,

1
n

n
i=1

Kih(u)(Xi1 − JnH−1
n V T

i )εi = (1, −JnH−1
n )


1
n

n
i=1

Kih(u)Tiεi,
1
n

n
i=1

Kih(u)(Ui − u)Tiεi

T

= (1, −A(u)(P(u))−1)
1
n

n
i=1

Kih(u)T T
i εi + OP(hcndn). (B.13)

Combining (B.11) with (B.13) and invoking Lemma B.1 again, we have |I2| = OP(dn). Thus, this completes the proof of
(B.2). �

The following lemma plays an important role in the proof of the other lemmas and theorems.

Lemma B.3. Under the conditions of Lemma B.2, we have 1
√
n

n
i=1

Ri

 = OP(n1/2p1/2n c2n ), (B.14)

where Ri =
3

k=1 Mi,k can be found in (A.1).

Proof. Note that 1
√
n

n
i=1

Ri

 ≤

 1
√
n

n
i=1

Mi,1

+

 1
√
n

n
i=1

Mi,2

+

 1
√
n

n
i=1

Mi,3

 . (B.15)

Thus, to prove Lemma B.3, we only need to deal with the three sums about Mi,ll = 1, 2, 3, which are the pn-dimensional

column vectors, respectively. We first consider
 1

√
n

n
i=1 Mi,1

. For k = 1, . . . , pn and r = 1, . . . , q, we let

Akr(U,X, Zn) = (Znk − µT
k (U)X)Xr ,
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where µk(U) denotes the k-th column vector of µ(U). Note that E[(Zn − µT (U)X)XT
|U] = 0. Thus, we can easily see that

E(Akr(U,X, Zn)) = 0 for each k = 1, . . . , pn and r = 1, . . . , q. Then 1
√
n

n
i=1

Mi,1

 =

 pn
k=1


1

√
n

n
i=1

M(k)
i,1

2
1/2

=


pn
k=1

1
n

n
i,j=1

M(k)
i,1 M

(k)
j,1

1/2

(B.16)

where

M(k)
i,1 =

q
r=1

Akr(Ui,Xi, Zni)(α̂r(Ui, βn) − αr(Ui)). (B.17)

Since q is a fixed constant, we then without loss of generality consider the sum over the term Akr(Ui,Xi, Zni)(α̂r(Ui, βn) −

αr(Ui)) ofM
(k)
i,1 for r = 1, . . . , q. If such sums are of the desired rate, we can then arrive the desired result. For r = 1, consider

α̂1(u, βn). From (B.7) and (B.9), we have

α̂1(Ui, βn) − α1(Ui) = D̂−1
n,l1

(Ui)
1
n

n
l1=1

Kl1h(Ui)(Xl11 − JnH−1
n Vl1)g(Xl1 ,Ul1 ,Ui, εl1)

= D−1(Ui)Lnl1(Ui) + D−1(Ui)
1
n

n
l1=1

Kl1h(Ui)ζl1(Xi)εl1

+ (D̂−1
n,l1

(Ui) − D−1(Ui))
1
n

n
l1=1

Kl1h(Ui)(Xl11 − JnH−1
n Vl1)g(Xl1 ,Ul1 ,Ui, εl1), (B.18)

where

g(Xl1 ,Ul1 ,Ui, εl1) = XT
l1


α(Ul1) − α(Ui) − α′(Ui)(Ul1 − Ui)


+ εl1 ,

D̂−1
n,l1

(Ui) =
1
n

n
l1=1

Kl1h(Ui)(Xl11 − JnH−1
n Vl1)

2,

ζl1(Xi) = Xl11 − A(Ui)(P(Ui))
−1STl1 ,

Lnl1(Ui) =
1
n

n
l1=1

Kl1h(Ui)ζl1(Xi)XT
l1(α(Ul1) − α(Ui) − α′(Ui)(Ul1 − Ui)),

and D(Ui) = f (Ui) det(Q (Ui))/det(P(Ui)). From (B.11)–(B.13) and the proof of Theorem 4.1 in [35], we have

1
n

n
l1=1

Kl1h(Ui)(Xl11 − JnH−1
n Vl1)g(Xl1 ,Ul1 ,Ui, εl1) = OP(cn), (B.19)

D̂−1
n,l1

(Ui) − D−1(Ui) = OP(cn). (B.20)

Furthermore, by Lemma B.1 and the Taylor expansion, following the expression of (4.1) in [35], together with (B.18)–(B.20),
we further have

α̂1(Ui, βn) − α1(Ui) = D−1(Ui)Lnl1(Ui) + D−1(Ui)
1
n

n
l1=1

Kl1h(Ui)ζl1(Xi)εl1

= B1(Ui)h2
+ C1(Ui)

1
n

n
l1=1

Kl1h(Ui)T T
l1εl1 + OP(c2n ),

where B1(Ui) is a function of Ui, C1(Ui) is a 1 × q vector function of Ui. Similarly, we have,

α̂r(Ui, βn) − αr(Ui) = Br(Ui)h2
+ Cr(Ui)

1
n

n
l1=1

Kl1h(Ui)T T
l1εl1 + OP(c2n ). (B.21)
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Thus,M(k)
i,1 can have the following asymptotic expression:

M(k)
i,1 =

q
r=1

Akr(Ui,Xi, Zni)(α̂r(Ui, βn) − αr(Ui))

=

q
r=1

Akr(Ui,Xi, Zni)


Br(Ui)h2

+ Cr(Ui)
1
n

n
l1=1

Kl1h(Ui)T T
l1εl1


+

q
r=1

Akr(Ui,Xi, Zni)OP(c2n ).

Then, it is easy to see that

1
√
n

n
i=1

M(k)
i,1 =

1
√
n

n
i=1


q

r=1

Akr(Ui,Xi, Zni)


Br(Ui)h2

+ Cr(Ui)
1
n

n
l1=1

Kl1h(Ui)T T
l1εl1


+ OP(

√
nc2n )

=

q
r=1

1
√
n

n
i=1

Akr(Ui,Xi, Zni)


Br(Ui)h2

+ Cr(Ui)
1
n

n
l1=1

Kl1h(Ui)T T
l1εl1


+ OP(

√
nc2n )

=:

q
r=1

Ir + OP(
√
nc2n ). (B.22)

To deal with the sum over Ir , we note that Akr(Ui,Xi, Zni)Br(Ui) are i.i.d. with mean zero because the conditional
expectation of Akr(Ui,Xi, Zni)Br(Ui) given Ui is zero. Thus, the related sum is of the rate h2. The sum of
Akr(Ui,Xi, Zni)Cr(Ui)

1
n

n
l1=1 Kl1h(Ui)T T

l1
εl1 over i can be re-arranged to be, for any r with 1 ≤ r ≤ q,

1
√
n

n
l1=1

Kl1h(Ui)T T
l1εl1

1
n

n
i=1

Akr(Ui,Xi, Zni)Cr(Ui). (B.23)

We now compute its variance to get its convergence rate in probability. Invoking the independence among εl1 and the
independence from the other variables, and the independence amongAkr(Ui,Xi, Zni)Cr(Ui), we can easily see that its variance
equals

1
n

n
l1=1

E

[Kl1h(Ui)T T
l1εl1 ]

2


1
n

n
i=1

Akr(Ui,Xi, Zni)Cr(Ui)

2


=
1
n

n
l1=1

1
n2

n
i=1

E

[Kl1h(Ui)T T

l1εl1 ]
2
[Akr(Ui,Xi, Zni)Cr(Ui)]

2
= O


1
n


.

Altogether, Ir = OP


h2

+
1

√
n


. From this, together with (B.22), we have 1

√
n

n
i=1 M

(k)
i,1 = OP(

√
nc2n ), and then 1

√
n

n
i=1 Mi,1

 = OP(n1/2p1/2n c2n ).
Looking at the structure of Mi,2, we can see that it is very similar to that of Mi,1 and is even easier to handle because of

the independence of εi from the other variables. Thus similar arguments forMi,1 can obtain that 1
√
n

n
i=1

Mi,2

 = OP(n1/2p1/2n c2n ).

Further, Lemma B.2 yields that any component of Mi,3 is of the order c2n , thus,
 1

√
n

n
i=1 Mi,3

 = OP(n1/2p1/2n c2n ). Thus, the
proof of Lemma B.3 is completed. �

Lemma B.4. Under regularity conditions (C1)–(C8), when βn is the true value of the parameter, we have

tr[(Sn − Σ)2] = OP(p2n(c
4
n + 1/n)), (B.24)

where Sn =
1
n

n
i=1 η̂ni(βn)η̂

T
ni(βn), Σ is defined in condition (C6). Furthermore,

max
1≤k≤pn

|γk(Sn) − γk(Σ)| = OP(pn(c2n + n−1/2)). (B.25)
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Proof. Note that, recalling the definition of ηni(βn) right below (A.1), which is the independent copy of ηn in condition (C8),

Sn − Σ =
1
n

n
i=1

ηni(βn)η
T
ni(βn) − Σ

+
1
n

n
i=1

ηni(βn)R
T
i +

1
n

n
i=1

Riη
T
ni(βn) +

1
n

n
i=1

RiRT
i .

Note every element of RiRT
i and then 1

n

n
i=1 RiRT

i is of the rate c2n . We now deal with 1
n

n
i=1 Riη

T
ni(βn). Note that Ri =

Mi,1 + Mi,2 + Mi,3. We can then separately deal with 1
n

n
i=1 Mi,jη

T
ni(βn), j = 1, 2, 3. We note that Mi,1η

T
ni(βn) contains εi,

andMi,2η
T
ni(βn) contains (Zni−µT (Ui)Xi)XT

i , both are of zeromeans. Similar to the arguments used in proving the sums over
Mi,1 andMi,2 in Lemma B.3, we can obtain the rate c2n for each element of these sums overMi,1η

T
ni(βn) andMi,2η

T
ni(βn). Also

for i = 3, the sum overMi,3η
T
ni(βn) can be of the same rate. It is easy to see that

tr[(Sn − Σ)2] ≤ 2tr


1
n

n
i=1

ηni(βn)η
T
ni(βn) − Σ

2

+ 2tr


1
n

n
i=1

ηni(βn)R
T
i + Riη

T
ni(βn) + RiRT

i

2

.

Thus, 2tr
 1
n

n
i=1 ηni(βn)R

T
i + Riη

T
ni(βn) + RiRT

i

2
is of the rate OP(p2nc

4
n ). Consider the convergence rate of the first term. By

the basic algebraic calculation, we have

tr


1
n

n
i=1

ηni(βn)η
T
ni(βn) − Σ

2

= tr

Σ2


Σ−1/2


1
n

n
i=1

ηni(βn)η
T
ni(βn)


Σ−1/2

− Ipn

2


≤ γ 2
pn(Σ)tr(D2

n),

where Dn = Σ−1/2
 1
n

n
i=1 ηni(βn)η

T
ni(βn)


Σ−1/2

− Ipn . Since γpn(Σ) is bounded, then we only need to prove that
tr(D2

n) = OP(p2n/n). From conditions (C7) and (C8), and noting the definition of ηn and k ≥ 4 there, the Cauchy–Schwarz
inequality yields

E(∥ηn1(βn)∥
4) = p2nE

1/pn pn
j=1

|ηn1j|
2

2


≤ p2nE

1/pn pn
j=1

|ηn1j|
k

4/k


≤ p2n


E


1/pn

pn
j=1

|ηn1j|
k

4/k

= O(p2n).

Then

tr(D2
n) = tr

Σ−2


1
n

n
i=1

ηni(βn)η
T
ni(βn)

2
− 2tr


Σ−1


1
n

n
i=1

ηni(βn)η
T
ni(βn)


+ pn

=: V1 − 2V2 + pn, (B.26)

E(V2) = tr


E


Σ−1


1
n

n
i=1

ηni(βn)η
T
ni(βn)


= tr(Ipn) = pn, (B.27)

and

E(V1) =
1
n2

tr


E


Σ−2


n

i=1

ηni(βn)η
T
ni(βn)∥ηni(βn)∥

2



+
1
n2

tr


i≠j

E{Σ−1ηni(βn)η
T
ni(βn)}E{Σ−1ηnj(βn)η

T
nj(βn)}



=
1
n2

tr


E


Σ−2


n

i=1

ηni(βn)η
T
ni(βn)∥ηni(βn)∥

2


+

1
n2


i≠j

tr(Ipn)
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≤
1
n2

1
γ 2
1 (Σ)

E


n

i=1

∥ηni(βn)∥
4


+

n(n − 1)
n2

pn

= O(p2n/n) + pn. (B.28)

Thus E{tr(D2
n)} = O(p2n/n) follows from (B.26)–(B.28), and then tr(D2

n) = OP(p2n/n). Together with this, we then obtain that
tr[(Sn − Σ)2] = O(p2n(c

4
n + 1/n)).

Prove (B.25). Note that

∥γk(Sn) − γk(Σ)∥2
= ∥γ

1/2
k (S2n) − γ

1/2
k (Σ2)∥2

≤

pn
k=1

∥γ
1/2
k (S2n) − γ

1/2
k (Σ2)∥2

=

pn
k=1

γk(S2n) +

pn
k=1

γk(Σ
2) − 2

pn
k=1

γ
1/2
k (S2n)γ

1/2
k (Σ2)

= tr(S2n) + tr(Σ2) − 2
pn
k=1

γk(Sn)γk(Σ). (B.29)

By Von Neumann’s inequality [34],
pn

k=1 γk(Sn)γk(Σ) ≥ tr(SnΣ). Hence

max
1≤k≤pn

∥γk(Sn) − γk(Σ)∥ ≤


tr((Sn − Σ)2). (B.30)

By (B.24) and (B.30), (B.25) is proved. �

This lemma implies that all the eigenvalues of Sn converge to those of Σ uniformly at the rate of OP(pn(c2n + 1/
√
n)).

To prove Theorem 2, we need another two lemmas stated below.

Lemma B.5. Under regularity conditions (C1)–(C8), and when p2+4/(k−2)
n /n → 0, then

n


1
n

n
i=1

η̂T
ni(βn)


Σ−1


1
n

n
i=1

η̂ni(βn)


− pn

√
2pn

d
−→ N(0, 1).

Proof. By (A.1), a simple calculation yields that

n


1
n

n
i=1

η̂T
ni(βn)


Σ−1


1
n

n
i=1

η̂ni(βn)


=: K1 + K2 + 2K3,

where

K1 = n


1
n

n
i=1

ηT
ni(βn)


Σ−1


1
n

n
i=1

ηni(βn)


,

K2 = n


1
n

n
i=1

RT
i


Σ−1


1
n

n
i=1

Ri


,

K3 = n


1
n

n
i=1

ηT
ni(βn)


Σ−1


1
n

n
i=1

Ri


.

From (B.14) and ∥ ¯̂η(βn)∥ = OP(
√
pn/n), we have K1 = OP(pn). By Lemma B.3, K2 ≤

n
γ1(Σ)

 1
n

n
i=1 Ri

2 = OP(pnnc4n ) =

oP(
√
pn). Since K3 ≤ K 1/2

1 K 1/2
2 , we have K3 = oP(

√
pn). Thus, Lemma B.5 can be proved by applying the martingale central

limit theorem as given in [15] to (K1 − pn)/
√
2pn. �

Lemma B.6. Under regularity conditions (C1)–(C8), and when p3+2/(k−2)
n /n → 0, we have

n


1
n

n
i=1

η̂T
ni(βn)


(S−1

n − Σ−1)


1
n

n
i=1

η̂ni(βn)


= oP(

√
pn).
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Proof. Let D̂n = Σ−1/2SnΣ−1/2
− Ipn , similar arguments used in the proof of Lemma 6 in [6] yield

S−1
n − Σ−1

= Σ−1/2(Σ1/2S−1
n Σ1/2

− Ipn)Σ
−1/2

= Σ−1/2
[−D̂n + D̂2

n + D̂2
n{Σ

1/2S−1
n Σ1/2

− Ipn}]Σ
−1/2. (B.31)

Note that

tr((Sn − Σ)2) = tr((Σ1/2(Σ−1/2SnΣ−1/2
− Ipn)Σ

1/2)2)

= tr(D̂nΣD̂nΣ) ≥ γ 2
1 (Σ)tr(D̂2

n).

By Lemma B.4, we have

tr(D̂2
n) ≤

1
γ 2
1 (Σ)

tr((Sn − Σ)2) = OP(p2n(c
4
n + 1/n)). (B.32)

Again employing Lemma B.4 and the similar arguments used in the proof of Lemma 6 in [6], we have

tr(S−1
n − Σ−1)2 ≤ 2tr{Σ−2(−D̂n + D̂2

n)
2
} + 2tr{D̂4

n(S
−1
n − Σ−1)2}

≤ 2tr{Σ−2(−D̂n + D̂2
n)

2
} + 2[tr(D̂2

n)]
2tr{(S−1

n − Σ−1)2}

= 2tr{Σ−2(−D̂n + D̂2
n)

2
} + oP(tr{(S−1

n − Σ−1)2})

= oP(p2n(c
4
n + 1/n)). (B.33)

From the proof of Lemma B.5, we have that
 1

n

n
i=1 η̂T

ni(βn)
 = OP(

√
pn/n). Together with (B.33), p3+2/(k−2)

n /n → 0, and
c2n = o(1/

√
n) by condition (C5), we can obtain

n


1
n

n
i=1

η̂T
ni(βn)


(S−1

n − Σ−1)


1
n

n
i=1

η̂ni(βn)



≤ n

1n
n

i=1

η̂ni(βn)


2

tr(S−1
n − Σ−1)2

= oP(p2n(c
2
n + 1/

√
n)) = oP(

√
pn).

The proof is finished. �
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