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We summarize advances in empirical likelihood (EL) for time series data. The EL
formulation for independent data is briefly presented, which can apply for inference in
special time series problems, reproducing the Wilks phenomenon of chi-square limits for
log-ratio statistics. For more general inference with time series, versions of time domain
block-based EL, and its generalizations based on divergence measures, are described
along with their distributional properties; some approaches are intended for mixing time
processes and others are tailored to time series with a Markovian structure. We also
present frequency domain ELmethods based on the periodogram. Finally, EL for long-range
dependent processes is reviewed as well as recent advantages in EL for high dimensional
problems. Some illustrative numerical examples are given along with a summary of open
research issues for EL with dependent data.
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1. Introduction

For independent, identically distributed (iid) data, Owen (1988, 1990) introduced Empirical Likelihood (EL) as a general
nonparametric methodology for creating likelihood-type inference without specifying a joint distributional model for the
data, as typical with parametric likelihood. The main idea is to formulate a non-parametric likelihood (or EL) function
for assessing the plausibility of values of a given population parameter. The resulting EL function is built by a process of
probability profiling of data and leads to likelihood-ratio statistics for constructing tests and confidence regions, which
have some analogous properties to their fully parametric likelihood counterparts (e.g., chi-square limits), but often without
explicit assumptions about the data-generating mechanism.

Because EL is often intended to be used nonparametrically, extending the methodology to dependent data can be chal-
lenging. At issue, an EL formulation often needs to accommodate the unknown (and potentially complex) dependence struc-
ture in such data. There have various attempts to develop EL for dependent data, mostly in time series applications. This
manuscript attempts to summarize differing approaches for EL inference with time series. We briefly review EL for iid data
in Section 2 along with extensions to high-dimensional data. Section 3 presents EL versions for time series which essentially
follow the iid data EL formulation with similar distributional properties, despite data dependence. These are typically tai-
lored to a particular model structure or special inference problem, in a way that serial correlation in a time series is not an
issue. However, across many general inference problems with time series, the iid data version of EL will generally fail and
a valid EL formulation needs to nonparametrically accommodate the underlying dependence structure. Data-blocking is a
broad technique for this, and Sections 4–6 summarize and compare different block-based EL approaches (e.g., block EL, ta-
pered block EL, regenerative block EL). Further generalizations of block-based EL are described in Section 7. As an alternative
to data-blocking, Section 8 describes a frequency domain EL for time series based on a data-transformation. Section 9 then
illustrates different EL for time series with a numerical example. Section 10 outlines EL for long-range dependent processes,
and Section 11 provides some concluding remarks and open research problems with EL for dependent data.

This EL review is meant to complement some existing ones. Owen’s (2001) book provides an accessible account of many
developments of EL, including some for dependent data. Chen and Van Keilegom (2009) review EL methods for regression
problems, often for independent data butwith some connections to dependent data (Section 3.2 here). Both Kitamura (2006)
and Bravo (2007) provide summaries of important features of EL for time series inference, with connections to econometrics.
Kitamura’s (2006) review outlines generalized versions of EL (based on different discrepancy statistics) and their properties,
along with associations between EL and general methods of moments estimation (Hansen, 1982). Much of this discussion
is related to iid data, but includes a detailed description of distributional properties of a block EL method (Section 4 here).
Bravo’s (2007) review also describes important uses of EL with general estimating functions in econometric applications
(e.g., parameter andmoment condition testing) and extends generalized-discrepancy versions of ELmentioned by Kitamura
(2006) to time series (cf. Section 7 here). Because Kitamura (2006) and Bravo (2007) detail EL point estimation andmoment
testingwith general possibly over-identifying estimating functions, we do not consider these EL aspects here; these are time
series extensions of EL features available for iid data (Qin and Lawless, 1994) as briefly mentioned in Section 2. Rather, we
attempt to consolidate general formulations of EL for time series, expanding upon of Velasco’s (2009) nice sketch of EL for
dependent data.

2. Empirical likelihood under independence

As mentioned in the Introduction, EL inference about a parameter is based on a non-parametric likelihood function built
by probability profiling data. For a prototypical example, suppose X1, . . . , Xn are iid Rd-valued random vectors and consider
inference about their unknown mean EX1 = µ0. Consider a distribution F(x) =

Pn
i=1 piI(Xi  x), x 2 Rd, supported on

the data and created by assigning a probability pi to data value Xi, i = 1, . . . , n, such that
Pn

i=1 pi = 1, where I(·) denotes
the indicator function. Given the data, a likelihood function for this distribution would be L(F) ⌘

Qn
i=1[F(Xi) � F(Xi�)] =Qn

i=1 pi, which is maximized when F is the empirical distribution Fn(x) =
Pn

i=1 n
�1I(Xi  x) (i.e., pi = n�1). To judge the

plausibility of a hypothesized mean value µ 2 Rd, the EL method uses an EL function defined as

Ln(µ) ⌘ sup {L(F) : F has mean µ & is supported on X1, . . . , Xn}

= sup

(
nY

i=1

pi : 0  p1, . . . , pn  1,
nX

i=1

pi = 1,
nX

i=1

piGi(µ) = 0d

)

, (1)
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where Gi(µ) ⌘ (Xi � µ), i = 1, . . . , n and 0k is a vector of k zeros, k � 1. Above
Qn

i=1 pi represents a likelihood formed
by assigning probabilities p1, . . . , pn to X1, . . . , Xn under a ‘‘mean µ’’ constraint

Pn
i=1 piXi = µ. As L(Fn) = n�n maximizes

L(F) (without a mean constraint), an EL ratio for the population mean at µ 2 Rd is defined as

Rn(µ) ⌘ Ln(µ)/n�n
2 [0, 1]. (2)

Owen (1988, 1990) established a remarkable result that, at the true mean parameter µ0 2 Rd, the EL log-ratio statistic
satisfies a nonparametric version of Wilks (1938) theorem by having a chi-square limit distribution:

�2 log Rn(µ0)
d

! �2
d as n ! 1, (3)

assuming Var(X1) is positive definite. Consequently, (3) provides a basis for conducting large sample tests and calibrating
approximate 100(1 � ↵)% confidence regions as Cn,1�↵ ⌘ {µ 2 Rd : �2 log Rn(µ)  �2

d;1�↵}, similarly to the parametric
case.

For what follows, we also recall an extension of the iid EL method to ‘‘just-identified’’ estimating equations (i.e., same
number of estimating functions as parameters); see Qin and Lawless (1994). In this case, a target parameter ✓ 2 ⇥ ⇢ Rp is
linked to data values Xt 2 Rd by p estimating functions g = [g1, . . . , gp]0 : Rd ⇥⇥ ! Rp, which satisfy amoment condition
Eg(Xt; ✓0) = 0p at the true parameter value ✓0. The mean inference case reduces to function g(x; ✓) = x � ✓ (✓ = µ) and,
in general, an EL function Ln(✓) and ratio statistic Rn(✓) for a given value of ✓ are defined by substituting Gi(✓) ⌘ g(Xi; ✓)
for Gi(µ) in (1)–(2); see Owen (1990, 2001), Qin and Lawless (1994) and Kitamura (2006) for computational details with EL.
For this generalization of EL, a Wilks theorem (3) continues to hold: �2 log Rn(✓)

d
! �2

p as n ! 1 at the true ✓0 2 Rp (for
non-singular Var[g(X1; ✓0)]).

The basic ELmethodhas been extended tomore complex inference problems involving independent data andwemention
only a few works here. Hall and La Scala (1990) summarize geometric and accuracy properties of EL confidence regions for
parameters as smooth functions of means. Qin and Lawless (1994, 1995) expand the properties of EL based on estimating
functions g : Rd ⇥ ⇥ ! Rr (where r � p is permitted with ✓ 2 Rp), showing that the maximizer ✓n of Ln(✓) is a consistent
and asymptotically normal estimator for ✓0; that nuisance parameters in EL functions can be profiled out; and that log-ratio
statistics �2 log[Rn(✓0)/Rn(✓̂n)] and �2 log Rn(✓̂n) can be used to, respectively, test H0 : ✓ = ✓0 and ‘‘H0 : Eg(Xt; ✓0) = 0r
holds for some true ✓0’’ (i.e., data-generation satisfies the moment conditions). Such EL properties are shared by generalized
method of moments estimators (cf. Newey and Smith, 2004) and largely carry over to EL formulations with time series
(cf. Kitamura, 2006; Bravo, 2007). For EL confidence regions for mean parameters with iid data, DiCiccio et al. (1991) show
an approximation rate P(µ0 2 Cn,1�↵) = 1 � ↵ + O(n�1) and that the scaled log-EL ratio admits a Bartlett correction that
improves the coverage rate to O(n�2). Similar corrections have been established for general estimating functions by Chen
and Cui (2006, 2007).

Recently, the EL methodology has been studied in high dimensional problems by several authors. Hjort et al. (2009)
consider the performance of the standard EL method based on p-dimensional estimating equations with a sample of size
n, when p ! 1 with n. They allow the rate p = o(n1/3) to establish a non-degenerate limit distribution of the EL ratio
statistic in high dimensions. Chen et al. (2009) improved upon the rate restriction in Hjort et al. (2009), allowing p = o(n1/2)
under some regularity conditions. An important result of Tsao (2004) shows that the definition of EL for a p-dimensional
population mean based on a sample size n breaks down on a set of positive probability whenever p > n/2. As a result,
extension of EL to high dimensional problems is itself a challenging task. A variant of the EL in such situations, called the
Adjusted Empirical Likelihood (AEL), is given by Chen et al. (2008), which has been further modified by Emerson and Owen
(2009). The AEL method adds additional pseudo-observations – one in the case of Chen et al. (2008)’s formulation and two
in the case of Emerson and Owen (2009)’s – so that a hypothesized value of the mean parameter is contained in the convex
hull of the augmented data set. Bartolucci (2007) advocated a version of the Penalized Empirical Likelihood (PEL) approach
that is based on the Mahalanobis distance between the convex hull of the n data values and the hypothesized value of
the p-dimensional mean vector. The PEL of Bartolucci (2007) is well defined for all values of p  n, as long as the sample
covariance matrix is nonsingular. Properties of Bartolucci (2007)’s method have been studied by Lahiri and Mukhopadhyay
(2012a). Other important papers on the PEL in the high dimensional set up are Otsu (2007) and Tang and Leng (2010), who
add a penalty function to the standard EL, and thus, are subject to Tsao (2004)’s bound, p  n/2, for their validity. A further
extension of the PEL to p > n problems has been recently studied by Lahiri and Mukhopadhyay (2012b).

3. Non-adjusted empirical likelihood for time series

A general feature of EL for iid data is the property of so-called ‘‘self-studentization’’ (cf. Hall and La Scala, 1990), meaning
that the EL log-ratio does not require any direct steps of variance estimation to obtain chi-square limits (3) and correct
studentization occurs automatically within the EL method for iid data. Recall that the iid version of EL is characterized
by probability profiling individual observations. However, in a time series context, the iid EL formulation may generally fail
without suitablemodifications to adjust the ELmethod to accommodate process serial correlation (cf. Kitamura, 1997). That
is, iid EL version uses a type of ‘‘self-studentization’’ which is generally invalid for dependent data, particularly when the
asymptotic properties of EL involve the infinite dimensional distribution of a time process (e.g., non-zero autocovariances
at all lags).

—
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However, the iid formulation of EL and its associatedWilks theorem as in (3) are valid for certain inference problemswith
time series and appropriate estimating functions where large-sample estimation depends only on some finite dimensional
aspect of the process distribution. For simplicity, we refer to such EL methods for time series as ‘‘non-adjusted’’ for serial
correlation and describe two general applications in Sections 3.1–3.2.

3.1. Model-based EL

A model-based version of EL assumes a structural model for the time series {Xt} 2 Rd (e.g., autoregressive (AR)), which
may involve unknown parameters ✓ 2 ⇥ ⇢ Rp of interest as well as time innovations with unknown distributional form.
Commonly, by assuming a process model, an estimating function g : Rd(q+1) ⇥ ⇥ ! Rp can be specified based on an
observation Xt 2 Rd and its last q neighbors Xt�1, . . . , Xt�q (for some q � 1) so that

g(Xt , Xt�1, . . . , Xt�q; ✓0) = "t 2 Rp (4)

holds at the true parameter ✓0 2 Rp for a mean-zero process {"t} which is iid (or, more generally, constitutes a martingale
difference array (MDA), cf. Athreya and Lahiri (2006, ch. 16.1). Note that themoment condition Eg(Xt , Xt�1, . . . , Xt�q; ✓0) =

0p is implied by (4) and E"t = 0p. Because the large-sample properties of EL here often depend only on the marginal
distribution of "t , the iid EL formulation (i.e., individual probability profiling) is typically valid for estimating the model
parameters ✓ , where EL function Ln(✓) is built by profiling the n�q�1 quantities g(Xt , Xt�1, . . . , Xt�q; ✓), t = q+1, . . . , n.

For example, consider a causal, real-valued AR(p) process Xt = ✓1Xt�1 + · · · + ✓pXt�p + et , where the errors {et} are iid
mean-zero with Ee21 < 1. Then, for inference on the AR parameters ✓ = (✓1, . . . , ✓p)

0 2 Rp, the estimating functions

g(Xt , Xt�1, . . . , Xt�p; ✓) =

(

Xt �

pX

i=1

✓iXt�i

)

· (Xt�1, . . . , Xt�p)
0
2 Rp, t = p + 1, . . . , n,

satisfy (4) with the martingale difference "t = et(Xt�1, . . . , Xt�p)
0 at the true parameter ✓0 (et being independent of

{Xj : j < t}). In this problem, Chuang and Chan (2002) proved the validity of iid version of EL with a chi-square limit
(allowing AR innovations {et} to be a martingale difference). For the same inference problem, Bravo (2010) established a
similar ‘‘non-adjusted’’ result with a generalized version of EL (Section 7). Examples of other model-based EL works falling
into the ‘‘non-adjusted’’ category include EL for
1. Infinite variance AR models (Li et al., 2010), resembling the above AR(p) model but with Ee2t = +1 so that estimating

functions change.
2. AR models with explanatory variables (Zhao andWang, 2011), where Xt =

Pp
i=1 �iXt�i +

Pq
j=1 ↵iZj,t + et such that {et} is

a MDA, independently (Z1,t , . . . , Zq,t) are random explanatory variables, and the parameters of interest are the �i, ↵j’s.
3. Self-citing threshold AR models (Chen et al., 2012a) with iid innovations, where particular estimating functions lead to a

MDA as in (4).
4. Partially time varying coefficientmodels (Fan et al., 2012) given as Xt =

Pp
i=1 �iWi,t+

Pq
j=1 ↵i(t)Zj,t+et , t = 1/n, . . . , n/n,

where Wi,t ’s are fixed (or random) design points, Zi,t ’s are random regressors, each ↵i(·) is a smooth function, and the
�j’s are the parameters of interest.

5. Generalized random coefficient models (Zhao and Wang, 2012) given by Xt =
Pp

i=1 �iXt�i +
Pp

j=1 Zj,tXt�i + et , where
Wt = (et , Z1,t , . . . , Zp,t)0 are iid (mean-zero and independent of the past Xt ’s), and the goal is to estimate the fixed �i’s
and the covariance of Wt .

6. Partially linear regression models Xi =
Pp

j=1 �jzj,i + g(ti) + ei, 1  i  n, where the ti’s are fixed design points, the zj,i’s
are fixed regressors, g(·) is an unknown smooth function, and target parameters as �i’s. Chen and Cui (2008) treated the
case where errors {et} are a MDA and the design points ti are general, while Fan and Liang (2010) considered {et} to have
a moving average representation and equally spaced points ti.

7. Semiparametric varying coefficient linear modelswith error-prone linear covariates (Huang et al., 2010).
8. Regular generalized autoregressive conditional heteroskedasticity (GARCH) models (Chan and Ling, 2006) stated as Xt =

et
p
Zt , Zt = ! +

Pp
i=1 ↵iX2

t�i +
Pq

j=1 �jZt�j for iid et ’s with Eet = 0, Ee2t = 1 and target parameters !, ↵i’s and �j’s.
9. AR-ARCH models (Li et al., 2012a) given by Xt = ↵0 +

Pp
i=1 ↵iXt�i + et

p
Zt , Zt = ! +

Pq
j=1 �jZt�j for iid et ’s with

Eet = 0, Ee2t = 1; estimation again concerns the parameters !, ↵i’s and �j’s.

As several references above involve martingale assumptions, see also Mykland (1995) dual likelihood with martingales and
Bravo (2007, ch. 6.1). For completeness, there are two exceptions in the works above where �2 log Rn(✓0) does not have a
chi-square limit: unstable (unit root) AR(p)models (Chuang and Chan, 2002; Chan and Ling, 2006; Bravo, 2010) and partially
time varying coefficient models with randomWi,t ’s (Fan et al., 2012).

3.2. EL formulations with kernel-smoothers

For inference on probability density functions or certain regression functions from time series, nonparametric kernel-
based estimators are often natural and have large-sample properties determined solely by a marginal distribution of
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the process (cf. Velasco, 2009; Chen and Wong, 2009, p. 73). Using kernel smoothers to define estimating functions, the
implication is that iid version of EL can be applied to these inference problems even in the presence of data dependence,
without adjustments for serial correlation.

As a concrete example, suppose a real-valued strictly stationary process {Xt} has a probability density function f (·) and
consider EL inference of the parameter ✓ = f (x) (for some given x 2 R) based on a sampleX1, . . . , Xn. Using a kernel function
K(·) and a sequence of bandwidths h = hn ! 0 as n ! 1, define an estimating function g(Xi; ✓) = h�1K([x�Xi]/h)�✓ for
each i = 1, . . . , n. These estimating functions satisfy E

Pn
i=1 g(Xi; ✓)/n = Efn(x) � f (x) ⇡ 0 for a kernel density estimator

fn(x) = n�1h�1Pn
i=1 K([x � Xi]/h). Using these kernel-based estimating functions in the iid EL construction, Xiong and Lin

(2012) have shown that usual a Wilks result holds, �2 log Rn(✓0)
d

! �2
1 , for weakly dependent time processes exhibiting

either positive association (PA) or negative association (NA). (For the definitions of PA or NA, which cover processes that
may not be mixing, see Joag-Dev and Proschan (1983).)

Similar time series applications of the iid EL framework with kernel-smoothing include the nonparametric regression-
type tests such as from Chen et al. (2003) where, from stationary pairs (Yt , Xt) 2 R ⇥ Rd, the goal is to assess whether
the conditional mean E(Yt |Xt = x) = m(x), x 2 [0, 1]d, belongs to a parametric family m✓ (x), ✓ 2 ⇥ . Using a kernel-
smoothed parametric estimate m̃✓ (x), estimating functions g(Yt , Xt; x) = K([x � Xt ]/h)[Yt � m̃✓ (x)] are used in the iid
EL formulation to provide a statistic �2 log Rn(x) as in (2) for a given x 2 [0, 1]d. This construction is valid because the
asymptotic properties of EL depend on the marginal distribution of (Yt , Xt), not the infinite dimensional distribution of
the process (cf. Velasco, 2009). Chen and Gao (2007) developed a bandwidth adapted version of this EL test, which has
also been extended for testing a conditional variance Var(Yt |Xt = x) = � 2(x) (Chen et al., 2012b). Lian (2009) considered
inference aboutm(x) using estimating functions with kernel smoothers, producing chi-square limits as in (3); Bravo (2007,
ch. 5.2) established a similar EL result. Other instances of kernel smoothing within an iid EL construction involve tests about
conditional probability densities (cf. Tripathi and Kitamura, 2003; Su and White, 2012).

4. Block empirical likelihood

Asmentioned in Section 3, formany general inference problemswith time series, the iid formulation of EL (i.e., individual
observation-based) typically fails because the automatic EL ‘‘self-studentization’’ occurring under independence is incorrect
for capturing the correlation structure in dependent data. As a remedy, Kitatura (1997) introduced a blockwise version
of EL for weakly dependent time processes, in which individual observations are replaced by blocks of consecutive data
points in time. Such data blocking is a general strategy for preserving the underlying dependence among neighboring time
observations, and similar blocking approaches apply for extending resamplingmethods to time series (e.g., block bootstraps;
Lahiri, 2003).We describe a common version of the block empirical likelihood (BEL)method of Kitamura (1997) for inference
with estimating equations.

Let X1, . . . , Xn represent a realization from a stationary process {Xt} of Rd-valued random vectors and g : Rd ⇥ ⇥ ! Rp

be a function satisfying the moment condition

Eg(Xt; ✓0) = 0p, (5)

where ✓0 is the true value of a parameter of interest ✓ 2 ⇥ ⇢ Rp; here p denotes the dimension of ✓ and the number
of estimation functions g . For example, g(x; ✓) = x � ✓ gives an estimating function for the process mean ✓ = EXt . To
define the BEL method, we require a collection of data blocks. Let `n = ` be an integer sequence of block lengths satisfying
`�1+`/n ! 0 as n ! 1, ensuring blocks are small relative to n but increase in size for larger samples. Let (Xi, . . . , Xi+`�1),
for i = 1, . . . ,N ⌘ n�`+1, denote a collection of length ` blockswhich aremaximally overlapping; BEL can be alternatively
defined with other block collections (e.g., non-overlapping blocks). To create a BEL function to assess a given parameter
value ✓ , each block contributes an average Gi(✓) = `�1Pi+`�1

j=i g(Xj; ✓) of variables computed from the ith data block,
i = 1, . . . ,N . By probability profiling these block averages, we obtain the BEL function Ln(✓) = N�NRn(✓) and ratio

Rn(✓) = sup

(
NY

i=1

Npi : 0  p1, . . . , pN  1,
NX

i=1

pi = 1,
NX

i=1

piGi(✓) = 0p

)

, (6)

analogously to the iid case (1)–(2) but using the N blocks here. The following result of Kitamura (1997) establishes a Wilks
theorem for the BEL log-ratio statistic at the true parameter ✓0, under general conditions entailing weak time dependence.
Define the strong mixing coefficient of stationary {Xt} as ↵(k) = sup{P(A \ B) � P(A)P(B)|A 2 F 0

�1
, B 2 F 1

k }, where
F 0

�1
, F 1

k respectively denote � -algebras generated by {Xj : j  0} and {Xj : j � k} (cf. Athreya and Lahiri, 2006, ch. 16.2).

Theorem 1. Suppose ✓0 satisfies (5); that Ekg(Xt; ✓0)k
2+� < 1 and

P
1

k=1 ↵(k)�/(2+�) < 1 hold for some � > 0; and that the
p ⇥ p matrix

P
1

k=�1
Cov

⇥
g(X0; ✓0), g(Xk; ✓0)

⇤
is positive definite. If, in addition, `�1 + `2/n ! 0 as n ! 1, then

�2`�1 log Rn(✓0)
d

! �2
p . (7)

.
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Unlike EL with iid data, the block averages involved in BEL are usually locally correlated under time dependence, which
necessitates a block adjustment `�1 for the BEL log-ratio to have a proper limit distribution. A block length ` = 1 in
Theorem 1 reproduces the EL distributional result (3) for iid data. Similarly to the iid case, Theorem 1 allows tests and
confidence regions for time series parameters ✓ from the BEL ratio statistic and a chi-square calibration. However, the
coverage performance of BEL depends on the block length choice ` for a given sample size n and the underlying process.
Some strategies for block selection are illustrated with a numerical example in Section 9.

Remark 1. Kitamura (1997) showed that BELmethodwith general estimating functions exhibits same important properties
described in Section 2 for the iid EL case, e.g., asymptotically normal point estimators ✓̂n as themaximizer of Rn(✓) alongwith
parameter and moment tests based on �2`�1 log[Rn(✓0)/Rn(✓̂n)] and �2`�1 log Rn(✓̂n), respectively; see Kitamura (1997,
2006) or Bravo (2007) for more details.

Remark 2. For inference about a stationary meanµ = EXt , Zhang (2006, 2007) proved that Theorem 1 holds for time series
under NA or PA, respectively (see Section 3.2). For quantile estimation ✓q ⌘ {x : F(x) � q} 2 R (given q 2 (0, 1)) with
a stationary, mixing process {Xt}, Chen and Wong (2009) showed that the estimating function g(Xt; ✓q) = I(Xt  ✓q) � q
fulfilling (5) can be replaced by a kernel smoothed version in BEL for improved effects; Lei and Qin (2011) considered the
same approach forNA series. Qin et al. (2011) and Li et al. (2012a) established aBELmethod for estimating probability density
functions under NA and PA, respectively; as pointed out by Xiong and Lin (2012), however, data-blocking is unnecessary in
this particular problem and the unadjusted EL approach is valid (Section 3.2). The data-blocking in Lei and Qin (2011), Qin
and Li (2011), Qin et al. (2011)and Li et al. (2012b) is a bit complex (i.e., Bernstein’s big-blocks–little-blocks), and Kitamura’s
blocking schemes should also be valid.

Remark 3. While the BEL method here is intended for weakly dependent processes, assumptions of stationarity can be
relaxed for BEL inference within an estimating function framework. Bravo (2009) established the validity of BEL and other
block nonparametric likelihoods for a class of non-stationary series {Xt}. BEL applies aswell to linear regressionsXt = z 0

t✓+"t
involving a stationary error process {"t} and fixed regressors zt under very mild conditions (Nordman, 2008a,b). In a similar
regression problem with NA errors {"t}, Qin and Li (2011) also established a BEL method and Bravo (2005) also considered
BEL-related tests for time series regressions. Wu and Cao (2011) extended BEL to count data with generalized linear
estimating functions in a non-stationary setting (their BEL statistics, though, may be missing block adjustments). Zhang
et al. (2012) proposed a jackknife-blockwise EL approach to reduce the computational burden in profiling out nuisance
parameters in the BEL method, which applies to mixing, non-stationary processes.

5. Tapered block empirical likelihood

We introduce data tapers here to define a modified version of BEL for inference about ‘‘smooth function model’’
parameters (Hall, 1992, Section 2.4) of an Rd-valued stationary process {Xt}. Suppose that the target parameter is given by

✓0 = H(µ0) 2 Rp (8)

where H : Rd ! Rp, p  d, is a function of the true process mean EXt = µ0 2 Rd. This formulation allows a wide range
of parameters given that Xt and its mean are Rd-valued; see Künsch (1989) or Lahiri (2003, Ch. 4) for examples as well
as Section 9. Hall and La Scala (1990) and Kitamura (1997) considered EL inference for smooth function parameters with
independent and time series data, respectively. Our goal here is to describe a Tapered Block Empirical Likelihood (TBEL) for ✓ .

We first define TBEL for the mean parameter µ 2 Rd. For mean inference, recall that the BEL approach from Section 4
involves block averages Gi(µ) =

Pi+`�1
j=i (Xj � µ)/` from the collection (Xi, . . . , Xi+`�1), i = 1, . . . ,N = n � ` + 1 of

overlapping length ` data blocks. For a sequence w`(1), . . . , w`(`) 2 [0, 1] of weights with kw`k1 ⌘
P`

j=1 w`(j) > 0, the
TBEL method substitutes the tapered average Ti(µ) =

Pi+`�1
j=i w`(j)(Xj � µ)/kw`k1 for Gi(µ) with each block. With this

change, the TBEL ratio statistic Rn(µ) for µ is defined like the BEL version, replacing Gi(µ) with Ti(µ) in (6). Using a set-up
familiar in spectral estimation with time series (Brillinger, 1981, Ch. 3), define the weights as

w`(i) ⌘ w([i � 0.5]/`), i = 1, . . . , `, (9)

using a tapering window w : R ! [0, 1] that is zero for t 62 [0, 1], symmetric about t = 1/2, non-decreasing for
t 2 (0, 1/2], and positive in a neighborhood of t = 1/2. Note that for w(t) = I(t 2 [0, 1]), where I(·) denotes the
indicator function, all block observations receive the same weight, and the TBEL reduces to BEL. However, for tapers w(t)
decreasing to zero at t = 0 or 1, such as a trapezoidal taper wtrap(t) = 2tI(t 2 [0, 1/2]) + 2(1 � t)I(t 2 [1/2, 1]) or
cosine-bell taper wcos(t) = I(t 2 [0, 1])[1 � cos(2⇡ t)]/2, both edges of a data block are down-weighted in the tapered
average Ti(µ), which generally leads to better ‘‘self-studentization’’ steps in TBEL under dependence (cf. Paparoditis and
Politis, 2001). From the TBEL ratio for µ 2 Rd, the TBEL ratio statistic for the parameter ✓ under (8) is given by profiling

Rn(✓) ⌘ sup{Rn(µ) : µ 2 Rd,H(µ) = ✓}.

The following TBEL result for smooth function parameters is an extension of Nordman (2009).

—
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Fig. 1. As a function of block length `, observed coverages of 90% CIs for the process mean of Xt = Zt + ✓1Zt�1 + ✓2Zt�2 (iid standard normal {Zt }) using
TBEL (�) and BEL (�) methods with a sample size n = 100 (based on 4000 simulations).

Theorem 2. Suppose EkXtk
6+� < 1 and

P
1

k=1 k
2↵(k)�/(6+�) < 1 hold for some � > 0, and that H(·) from (8) is

continuously differentiable in a neighborhood of µ0 2 Rd and that r[
P

1

k=�1
Cov(X0, Xk)]r

0 has rank p  d, where
r ⌘ [@Hi(µ0)/@µj]i=1,...,p;j=1,...,d denotes the p ⇥ d matrix of first-order partial derivatives of H at µ0. If the taper weights
satisfy (9) and `�1 + `2/n ! 0 as n ! 1, then

�2an log Rn(µ0)
d

! �2
p , (10)

where an =
P`

i=1 w2
`(j)/(

P`
j=1 w`(j))2.

The TBEL log-ratio statistic requires an adjustment a` to account for both overlapping blocks and the taper. For a constant
taper w(t) = I(t 2 [0, 1]), the TBEL and BEL methods match and the adjustment becomes an = `�1 as in Theorem 1.
However, for non-constant tapers, the TBEL method with an appropriate block length can lead to better coverage accuracy
than BEL; a small numerical example of this is presented in Fig. 1.

Remark 4. We have presented the TBEL method for smooth function parameters (8), which provide an alternative
parameter formulation to estimation functions. While not formally established in the literature, a TBEL result with general
estimating functions should hold analogously to the BEL result in Theorem 1 (e.g., replacing `�1 with an there).

6. Regenerative block empirical likelihood

Harari-Kermadec (2011) introduced a novel version of block-based EL, called the Regenerative Block Empirical Likelihood
(RBEL), intended for time series which are Markov chains (e.g., ARMA, ARCH, GARCH, bilinear processes). The main idea of
RBEL is that observations X1, . . . , Xn from certain Markov chains can be partitioned into data blocks which are iid, though
random in length. RBEL then leads to a block-based EL formulation which resembles the EL version for iid data.

To provide a basic framework for Markov chains on a general state space (cf. Athreya and Lahiri, 2006, Ch. 14), let {Xt}t�0
be a sequence of random variables assuming values in some space S (e.g., a subset of Rd) and let S denote a corresponding
� -algebra for S. Then {Xt}t�0 is a Markov chain (MC) if

P(Xt+1 2 A|Xt , . . . , X0) = P(Xt+1 2 A|Xt) ⌘ p(Xt; A) w.p.1
holds for any A 2 S, any n � 0, and any initial distribution ⌫ of X0. The function p(x; A) = P(X1 2 A|X0 = x) 2 [0, 1]
of x 2 S, A 2 S is call the transition probability function (TPF). Hence, conditioned on X0, . . . , Xt , the distribution of Xt+1
depends only on Xt through P(·; ·). As an example, let {"t}t�1 be iid with distribution µ on R and, independently, let X0 be a
random variable with distribution ⌫; then, a ‘‘waiting time chain’’ {Xt}t�0, defined by Xt = max{Xt�1 + "t , 0} for t � 1, is a
S = [0, 1)-valued MC with TPF p(x; A) = P(max{x+ "1, 0} 2 A) and initial distribution ⌫. In the following, let Px ⌘ p(x; ·)
denote the TPF given X0 = x 2 S.

The main MC features underlying the RBEL method are chains which are regenerative sequences and have a stationary
distribution. In general, a sequence of random variables {Xt}t�0 is called ‘‘regenerative’’ if there exist a sequence of random
times 0 < T1 < T2 < T3 < · · · such that the ‘‘excursion blocks’’ {⌘j}j�1 are iid, where ⌘j ⌘ (XTj+1, . . . , XTj+1 , Tj+1 � Tj)
represents both the number Tj+1 � Tj of variables and their values Xt , Tj < t  Tj+1, between two times Tj and Tj+1. Hence,
the regenerative times Tj cut the series {Xt}t�T1 into iid pieces (excluding the initial variables X0, . . . , XT1 ). For certain MCs
{Xt}t�0, regenerative times {Tj}j�1 are definable as

T1 = min{t > 0 : Xt 2 1}, Ti+1 = min{t > Ti : Xt 2 1}, i � 1; (11)
representing the consecutive ‘‘hitting times’’ of a special set1 2 S. For now, we assume that a singleton set1 can be chosen
to which the MC is recurrent in the sense that Px(T1 < 1) = 1 for any x 2 S, where T1 denotes the first entrance time to
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1 (with T1 = +1 if Xt 62 1 for all t � 1). That is, if the MC is guaranteed to return to 1 in finite time from any starting
point x 2 S, then the successive times at which the chain returns to 1 define a set of iid block excursions. As an example,
the waiting time chain with E"1 < 0 is recurrent to 0 and is regenerative with Tj’s defined by successive returns of {Xt}t�0 to
1 = {0} (Athreya and Lahiri, 2006, ch. 14). Supposing that the chain possess a recurrent singleton set1, we also assume that
the chain is aperiodic and E1T1 = E[T1|X0 2 1] < 1, implying a unique stationary distribution ⇡ on S exists (by definition,
satisfying ⇡(A) =

R
S p(x; A)⇡(dx) for any A 2 S) prescribed by the occupation measure ⇡(A) = E1[

PT1
t=1 I(Xt 2 A)]/E1T1,

A 2 S (cf. Meyn and Tweedie, 2009, Theorem 10.2.2). For example, thewaiting time chainwith E"1 < 0 has a such recurrent
hitting set 1 = {0} and a stationary distribution ⇡ matching that of supj�1

Pj
t=1 "t .

We may now state the RBEL construction in terms of general estimating functions, supposing the MC possesses a
recurrent singleton set 1 with properties as above and a stationary distribution ⇡ . Let G : S ⇥ Rp ! Rp be estimating
functions where a target parameter ✓0 2 ⇥ ⇢ Rp satisfies

EG(X; ✓0) = 0p for X ⇠ ⇡; (12)

that is, under the MC stationary distribution, the estimating function fulfills a moment condition at the true parameter ✓0.
If the MC {Xt}t�0 is itself stationary, then the moment condition based on ⇡ in (12) would essentially match that for the
BEL version (5) so that BEL and RBEL could apply to the same parameters in this case. In general though, the parameters
treatable in the BEL and RBEL frameworks may not have a direct correspondence, as the MC {Xt}t�0 could generally be
non-stationary (if ⌫ 6= ⇡ .) In the RBEL implementation based on observations X1, . . . , Xn from the chain, suppose there are
l + 1 =

Pn
t=1 I(Xt 2 1) hitting times of 1 among {1, . . . , n}, denoted as 1  T1 < T2 < · · · Tl+1  n (l ⌘ ln). Make l data

blocks from the excursions (XTi+1, . . . , XTi+1) for i = 1, . . . , l, throwing out a first block X1, . . . , XT1 and last XTl+1+1, . . . , Xn

if necessary. To assess a potential parameter value ✓ , each block contributes a block sum Gi(✓) =
PTi+1

t=Ti+1 G(Xt; ✓),
i = 1, . . . , l, which are then probability profiled to give a RBEL ratio statistic

Rn(✓) = sup

(
lY

i=1

lpi : 0  p1, . . . , pl  1,
lX

i=1

pi = 1,
lX

i=1

piGi(✓) = 0p

)

. (13)

Note that the linear expectation constraint in (13) on the iid quantities Gi(✓) mimics the moment condition (12), which is
equivalent to E1

PT1
t=1 G(Xt; ✓0) = 0p using the occupation measure representation of the stationary distribution ⇡ .

The next result, due to Harari-Kermadec (2011), gives the distribution of the RBEL log-ratio statistic; assumptions about
the first entrance time T1 to 1 in (11) involve E1 and E⌫ denoting a conditional expectation given X0 2 1 or an expectation
given X0 ⇠ ⌫.

Theorem 3. Suppose that theMarkov chain {Xt}t�0 on (S, S), with initial distribution ⌫ for X0 and probability transition function
p(·; ·), has a stationary distribution satisfying (12) with EkG(X; ✓0)k

2 < 1 and non-singular EG(X; ✓0)G(X; ✓0)
0 for X ⇠ ⇡ .

Suppose also that a singleton recurrent set 1 2 S exists with p(x; 1) = 1 for all x 2 S with E1[T 2
1 ] < 1 and E⌫[T1] < 1.

Then, at the true parameter ✓0,

�2 log Rn(✓0)
d

! �2
p as n ! 1. (14)

Unlike the BEL version (7), the distributional result (14) for the RBEL log-ratio statistic involves no block correction and
resembles the iid EL case (3) due to the independence of the regenerative block excursions.

The above RBEL result assumes that a special (i.e., singleton, recurrent) hitting set 1 is known for the MC, which may be
unfeasible in many cases. Harari-Kermadec (2011) also extended the RBEL method to Harris recurrent MCs with stationary
distributions. Harris recurrent MCs are characterized by a so-called ‘‘small’’ set 1 2 S (i.e., a hitting set) which can be used
to construct regeneration times by a split chain technique (cf. Athreya and Lahiri, 2006, ch. 14). Using this technique, it
is possible to estimate regeneration times for a sample X1, . . . , Xn from a Harris recurrent MC, using a small set 1 and a
kernel estimate of a density for the TPF p(·; ·); the RBEL construction (13) then proceeds as before, dividing the sample into
(estimated) generative blocks. Under some additional assumptions, the REBEL result (14) continues to hold alongwith other
inference through estimating functions (Harari-Kermadec, 2011).

Remark 5. While not involving block length choices as in BEL approaches, the general RBELmethod is not tuning parameter
free in that small set 1 selection and kernel density estimation are required; the order of the MCmay require estimation as
well.

7. Further generalizations of block empirical likelihood

Here we mention two generalizations of the BEL method with general estimating functions from Section 4. The first is
that the choice of likelihood distance, or divergence measure, may be varied in defining the nonparametric likelihood ratio
Rn(·). The second is observational data blocks may be replaced by kernel-smoothed windows of observations.
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An EL log-ratio statistic is one particular criterion, among a variety, for assessing the distances between empirical
distributions (Section 2). For example, if X1, . . . , Xn 2 Rd are iid, instead of using EL log-ratio statistic

�2 log Rn(µ) = inf

(

�2
nX

i=1

log(pin) : 0  p1, . . . , pn  1,
nX

i=1

pi = 1,
nX

i=1

pi(Xi � µ) = 0d

)

from (2) for mean parameter µ 2 Rd inference, one could use Kullback–Leibler (Efron, 1981) or Euclidean (Owen, 1991)
criteria by replacing �2

Pn
i=1 log(pin) above with discrepancies:

2n�1
nX

i=1

pi log(pin) or
nX

i=1

(pin � 1)2,

respectively. More generally, substituting the Cressie–Read divergence 2
Pn

i=1[(pin)
���1]/[�(1+�)] for�2

Pn
i=1 log(pin)

produces a discrepancy statistic Dn,�(µ) for a given � 2 R that includes log-EL, log-Kullback–Leibler and log-Euclidean
likelihood statistics as special cases (� = 0,�1 or�2, defined by taking limits for � = 0, �1) and for which Dn,�(µ0)

d
! �2

d
as n ! 1 at the true mean µ0 under mild conditions in the iid data case (Baggerly, 1998). As in Section 2, one may also
replace the mean estimating function Xt � µ with a more general one g(x; ✓) : Rd ⇥ Rp ! Rp satisfying Eg(Xt; ✓0) = 0p
at a true ✓0 2 Rp and form analogous test statistics Dn,�(✓) for hypothesized parameter values ✓ . Additionally, such
Cressie–Read statistics with estimating functions can then be embedded into a larger class of nonparametric likelihood-
based discrepancies called generalized EL statistics (Smith, 1997; Newey and Smith, 2004). See Kitamura (2006) and Bravo
(2007) for reviews of these alternative nonparametric likelihoods (e.g., generalized EL statisticswith possibly overidentifying
estimating functions) for independent data, where Kitamura (2006) provides several justifications that favor EL among
this list based on accuracy considerations in estimation and testing. Our goal here is to briefly mention some important
references for extending these alternative nonparametric likelihood statistics to time series where, as with EL, data blocking
has often played an important role. For inference on the mean of a mixing, stationary series {Xt} 2 Rd, Bravo (2002)
established a chi-square limit for the above Cressie–Read statistics using Kitamura’s (1997) blocking method; that is, if
the data block averages Gi(µ) =

Pi+`�1
j=i (Xj � µ)/` from Section 4 are substituted and probability profiled to define the

discrepancy statistic Dn,�(µ0), then a Wilks theorem `�1Wn(µ0)
d

! �2
d as n ! 1 holds using the same block adjustment

as BEL; Kitamura and Stutzer (1997) earlier considered the case � = �1. For stationary, mixing processes, Lin and Zhang
(2001) proved the BEL results with general estimating functions also hold for block-based Euclidean likelihood (e.g., chi-
square limits for `�1Wn,�2(✓0)); Chen and Zhang (2010) extended these results to include stationary {Xt} exhibiting NA.
Bravo (2009) developed a block-based generalized EL for potentially non-stationary and non-linear time series, extending
Kitamura (1997)’s BEL to other block-based nonparametric likelihoods.

Data-blocks may also be replaced with kernel-smoothed data windows within an estimating function-based framework
of generalized EL for time series (cf. Smith, 1997). Instead of using block averages of estimating functions (cf. Section 4) from
a time series X1, . . . , Xn, one uses a window smoothed average of estimating functions Gi(✓) = h�1Pi�1

j=i�n K(j/h)g(Xi�j; ✓)

for each observation i = 1, . . . , n, where K(·) is a real-valued kernel and h = hn is a bandwidth parameter. For the
commonly used truncation-kernel K(x) = I(|x|  1), x 2 R, and a bandwidth h = (2` + 1)/2 ⇡ ` ! 1 as n ! 1,
the window smoothed averages Gi(✓) = h�1Pmin{i�1,`}

j=max{i�n,�`} g(Xi�j; ✓) resemble previous BEL block averages except at the
edges of the observed time stretch i = 1, . . . , n. With such window smoothing, Guggenberger and Smith (2008) developed
generalized EL inference for possibly non-stationary time series with tests statistics having chi-square limits, extending
results of Kitamura and Stutzer (1997); see also Otsu (2006) for generalized EL developments for time series based on
window smoothing in place of data blocking.

8. Empirical likelihood in the frequency domain

To handle serial correlation in an alternative manner, another version of EL for time series can be formulated in the
frequency domain. Instead of attempting to capture the time dependence through data blocking, a frequency domain
version of EL applies a data transformation, via the discrete Fourier transform (DFT), intended to weaken the dependence.
Because DFTs at distinct Fourier frequencies are known to be asymptotically independent (cf. Brillinger, 1981; Yajima,
1989), transforming the data allows one to exploit the approximate independence structure of the DFTs and formulate
a Frequency Domain Empirical Likelihood (FDEL) method by mimicking the EL version for independent data. Unlike BEL
with block lengths, FDEL has the advantage of no tuning parameter selection, but at a price. Due to its frequency domain
formulation, FDEL is effective for a restricted class of process parameters that can be expressed as functionals of the process
spectral density (e.g., autocorrelations). That is, BEL can apply for inference about the general mean structure of a process,
while FDEL does not. Additionally, the FDEL method assumes that the time series {Xt} has a linear representation

Xt = µ +

1X

j=1

bj"t�j 2 R (15)
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in terms of an iid sequence of mean-zero innovations {"t} and a linear filter sequence {bj},
P

1

j=�1
b2j < 1 with b0 = 1.

Monti (1997) first introduced a FDEL version for Whittle inference. In the following, we present a FDEL formulation based
on a general framework from Nordman and Lahiri (2006), which includes results of Monti (1997).

Let {Xt} be a stationary process as in (15) having mean µ 2 R, autocovariance function r(k) = Cov(X0, Xk), k � 0, and
spectral density f (�) = (2⇡)�1P1

k=�1
r(k)e�ı�k, � 2 ⇧ ⌘ [�⇡ , ⇡] where ı =

p
�1. Let dn(�) =

Pn
t=1 Xte�ı�t , � 2 ⇧ ,

denote the DFT of a data sample X1, . . . , Xn and let In(�) = (2⇡n)�1dn(�)dn(��), � 2 ⇧ , denote the periodogram. Suppose
that we are interested in inference about a parameter ✓ 2 ⇥ ⇢ Rp defined by a spectral estimating equation

Z ⇡

0
G(�; ✓0)f (�) = a0 2 Rp (16)

for some known a0 2 Rp, where ✓0 2 Rp denotes the true value of the parameter and G : ⇧ ⇥ ⇥ ! Rp denotes a vector
of even estimating functions. Typically, the vector of constants a0 must be the zero vector 0p, but other choices of a0 may
be allowable in special cases. Common parameters that fit into the framework (16) with a0 = 0p include ratios of spectral
means (cf. Lahiri, 2003, ch. 8); for example, if ✓0 = (r(k1), . . . , r(kp))0/r(0) is a vector of autocorrelations at given lags
k1, . . . , kp 2 Z, then (16) holdswith a0 = 0p andG(�; ✓) =

�
cos(k1), . . . , cos(kp)

�0
�✓ 2 Rp. Another example is given next.

Example 8.1 (Whittle Estimation). Consider a parametric family of spectral densities F ⌘ {f✓ : ✓ 2 ⇥} such that f✓ is
positive on ⇧ and, for any ✓1 6= ✓2, the set {� 2 ⇧ : f✓1(�) 6= f✓2(�)} has positive Lebesgue measure. Whittle estimation
aims to find a ✓0 2 ⇥ which minimizes a theoretical distance W (✓) =

R ⇡

0 log f✓ (�) + [f (�)/f✓ (�)]d�, where f is the true
spectral density (whichmay not belong toF ). Considering a common formulation (cf. Hannan, 1973; Fox and Taqqu, 1986),
suppose spectral densities in F can be written as

f✓ (�) =
� 2

2⇡
k�(�), � 2 ⇧, (17)

where ✓ = (� 2, � 0)0 2 (0, 1) ⇥ Rp�1 and k� is a density kernel on ⇧ involving parameters � = (�1, . . . ,�p�1)
0 2 Rp�1

such that Kolmogorov’s formula holds:
R ⇡

0 log k�(�)d� = 0. Then, under mild conditions, the minimizer ✓0 of W (✓) solves
the equations

Z ⇡

0
k(�; �)f (�) = 0p�1,

Z ⇡

0

f (�)

f✓ (�)
= ⇡ , (18)

where f �1
✓ = 1/f✓ and k(�; �) ⌘ @k�1

� (�)/@� is an Rp�1-vector of first-order partial derivatives of k�1
� = 1/k� . Here (16)

holds with non-zero a0 = (⇡ , 0, . . . , 0)0 2 Rp and Gwhit(�; ✓) = (f �1
✓ (�), k(�; �)0)0 2 Rp. Note that, to target inference on

parameters � in the kernel k� , G̃whit(�; �) = k(�; �) 2 Rp�1 may be used satisfying (16) with a0 = 0p�1.
Next we define the FBEL ratio statistic for a parameter ✓ defined by the estimating equation (16). Let �i,n = 2⇡ i/n,

i = 1, . . . , n0 denote the discrete Fourier frequencies with n0 = b(n � 1)/2c. The FDEL function for ✓ is Ln(✓) = n�n0
0 Rn(✓)

and the FDEL ratio is

Rn(✓) =

(
n0Y

i=1

n0pi : 0  p1, . . . , pn0  1,
n0X

i=1

pi = 1, ⇡
n0X

i=1

piG(�i,n; ✓)In(�i,n) = a0

)

; (19)

here values pi are assigned to each periodogram value G(�i,n; ✓)In(�i,n) under a constraint that is a discretized version of the
moment condition (16). The following result gives the limit distribution of the FDEL log-ratio statistic (19); see Nordman
and Lahiri (2006).

Theorem 4. Suppose {Xt} is a linear process as in (15) with E("2
1) > 0, E("8

1) < 1 and
P

1

j=�1
|bj| < 1. Assume also

that (16) holds; that each component of G(·; ✓0) is Lipschitz of order greater than 1/2 on [0, ⇡]; and that the p ⇥ p matrix
W✓0 ⌘

R ⇡

0 f 2(�)G(�; ✓0)G(�; ✓0)
0 is non-singular. If a0 = 0p, then

� 4 log Rn(✓0)
d

! �2
p as n ! 1. (20)

The FDEL result is similar to the EL case with iid data, except that a scalar �4 appears rather than �2; this is because
n0 ⇡ n/2 values are probability profiled in (19) rather than n. Several important spectral estimating functions, including
the Whittle-type function G̃whit in Example 8.1, satisfy (16) with a zero-valued a0. Assumptions on the innovations in (15)
and the estimating functions can be weakened in Theorem 4, and it is possible to use a tapered periodogram Itapn (�) =

|
Pn

t=1 wn(t)Xte�ıt�|2/[2⇡
Pn

t=1 w2
n(t)], � 2 ⇧ , in place of In for defining (19), where the taper weights are of the form (9).

Then, �4tn log Rn(✓0) has a �2
p -limit where tn = n�1[

Pn
t=1 w2

n(t)]
2/
Pn

t=1 w4
n(t) is a scaling correction for the taper, where

tn = 1 holds as in (20) in the untapered case wn(·) = 1; see Nordman (2009).
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Fig. 2. Boxplots of observed coverages of 90% CIs for the lag-1 autocorrelation ✓ over 35 ARMA(1, 1) processes with sample size n = 250 as well as a plot
of coverages for tapered-FDEL/TFDEL (•), FDEL (�) and TBEL (+) methods for each process/✓ value.

As a small illustration, we considered 90% CIs for the lag-1 autocorrelation ✓ = r(1)/r(0) from 35 different, real-valued
ARMA(1, 1) processes Xt = �Xt�1 + Zt + 'Zt�1 with iid N(0, 1){Zt} and parameter combinations |�| 2 {0, 0.3, 0.6, 0.9},
|'| 2 {0, 0.4, 0.8}. For size n = 300 samples, Fig. 2 shows coverage results using tapered-FDEL, FDEL and TBEL (with
` = 2n1/3) with a taper window wtrap (Section 5) to define tapered-FDEL/TBEL. While both FDEL and TBEL methods apply to
the autocorrelation parameter, the coverage results for FDEL are generally better due to the method’s data transformation.

An alternative model-based version of FDEL exists for inference on the parameter ✓ when the true spectral density f is
assumed to lie in a parametric family F ⌘ {f✓ : ✓ 2 ⇥}, but the joint probability distribution of X1, . . . , Xn is otherwise
unspecified. Define the model-based version of the FDEL ratio statistic as

Rn,F (✓) =

(
n0Y

i=1

n0pi : 0  pi,
n0X

i=1

pi = 1, ⇡
n0X

i=1

piG(�i,n; ✓)[In(�i,n) � f✓ (�i,n)] = 0p

)

.

The key difference between Rn(✓) and Rn,F (✓) is that the model-based version makes use of the fact that EIn(�) is
approximately equal to f✓ (�) under ✓ , while Rn(✓) in (19) characterizes the true value ✓0 purely by the moment condition
(16). The following gives the limit distribution of the model-based FDEL statistic Rn,F (✓) (cf. Nordman and Lahiri, 2006).

Theorem 5. In addition to the assumptions of Theorem 4, suppose that f = f✓0 2 F ; and that each component of f✓0G(·; ✓0) is
Lipschitz of order greater than 1/2 on [0, ⇡]. Then, if a0 = 0p in (16),

�2 log Rn,F (✓0)
d

! �2
p as n ! 1. (21)

Further, (21) holds even for a0 6= 0p if 4," ⌘ E("4
1) � 3[E("2

1)]
2 = 0.

There are important differences in the distributional results for �4 log Rn(✓0) and �2 log Rn,F (✓0) from Theorems 4–5. One
is that �2 log Rn,F (✓0) requires the true spectral density f to belong to a model class F (i.e, f = f✓0 ) in addition to the
spectral moment condition (16), involving a0 2 Rp. Additionally, the chi-square limit for the model-based �2 log Rn,F (✓0)
holds for non-zero a0 in (16) only if the iid innovations {"t} in (15) have a fourth order cumulant 4," which equals zero
(i.e., Gaussian processes {Xt}). The condition a0 = 0p is generally required in FDEL to avoid invalid self-studentization
steps, which arise by treating the complete collection {In(�j,n)}

n0
j=1 of periodogram ordinates as independent when they

are generally not (cf. Dahlhaus and Janas, 1996, p. 1939). Differences between the two FDEL formulations are particularly
important in Whittle estimation.

Remark 6 (Whittle Estimation, continued). Monti (1997) proposed a FDEL version for Whittle estimation with linear
processes as in (15), using the previously mentioned parametric model class F ⌘ {f✓ = (2⇡)�1� 2k� : ✓ = (� 2, � 0)0 2

(0, 1)⇥Rp�1} from (17). In our presentation,Monti (1997)’s FDEL corresponds to themodel-based�2 log Rn,F (✓) using the
estimating functions Gwhit from Example 8.1. These estimating functions involve a non-zero spectral moment a0 in (16) due
to the innovation � 2 parameter in (18). Hence, Monti’s (1997) chi-square distributional result generally requires 4," = 0
(i.e., Gaussian processes) in addition to the model class F being correctly specified. In contrast, inference about the model
parameters � 2 Rp�1 is more broadly valid with the FDEL version �4 log Rn(�) using the estimating functions G̃whit(·; �)
for which (16) holds with a0 = 0p�1 and �4 log Rn(�0) has a �2

p�1 limit. This approach does not directly consider � 2, but
an estimate �̂ 2 = 2

R ⇡

0 � 2In(�)k�̂(�)d� follows from estimated values of � . Applying �4 log Rn(�) also does not require
the model class to be correctly specified, only that the spectral moment condition (16) hold for G̃whit(·; �) with a0 = 0p�1.
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Independently, Ogata (2005) also suggested the FDEL version based estimating functions G̃whit(·; �) for Whittle estimation
and established a distributional result as in Theorem 4. Chan and Liu (2012) proved that Monti’s version of FDEL for Whittle
estimation is Bartlett correctable (i.e., improving the chi-square calibration with a mean adjustment, cf. Hall and La Scala,
1990), assuming that the process is Gaussian. Ogata and Taniguchi (2010) have extended FDEL-basedWhittle estimation to
multivariate linear processes.

Remark 7. The FDEL framework also allows point estimation as well as tests of parameter values and moment conditions
with possibly over-identifying estimating functions; see Nordman and Lahiri (2006). Ogata (2012) further extended a FDEL
framework with general estimating functions to locally stationary, multivariate linear processes.

9. Data example

Our goal here is to illustrate and compare some of the EL methods described in previous sections. Fig. 3 displays a time
series X1, . . . , X67 of annual U.S. unemployment rates over the years 1947–2013 (given as a percentage of the civilian work
force of age 16 years or older), which we consider to be a realization of a stationary process; data are available from the U.S.
Bureau of Labor Statistics.

We first consider estimating the mean µ = EXt unemployment rate with a 90% confidence interval (CI) based on BEL or
TBEL methods from Sections 4–5, respectively. This requires selecting an appropriate block length ` for each method. As a
compounding issue, little is currently known about theoretically optimal block lengths for coverage accuracy. However, we
describe some general approaches for block selection in the following.

One strategy for choosing a block length for BEL borrows from spectral density estimation. In its asymptotic mechanics,
BEL uses data blocks to form a block-based variance estimator for purposes of studentization which is asymptotically
equivalent to a spectral density estimator (at the origin) based on Bartlett’s lag-window kernel (Kitamura, 1997, p. 2093);
the TBEL analogously involves a block-based variance estimator related to a tapered block bootstrap estimator of Paparoditis
and Politis (2001). In either case, data-driven rules exists for selecting block sizes (e.g., bandwidths) which are MSE-optimal
for spectral density/variance estimation, and these block selections can then be applied to BEL/TBEL. For example, applying
a procedure of Andrews (1991, pp. 834–835), we fit an approximating AR(1) model to the unemployment data and use this
to estimate an optimal Bartlett kernel bandwidth as ` = 11, which then produces a BEL 90% CI for the mean unemployment
rate as (5.16, 6.49); estimating the same Bartlett kernel bandwidth with a different method by Politis and White (2004)
gives a block length b = 3 and then a 90% BEL interval as (5.31, 6.35). The block selection rule of Paparoditis and Politis
(2001) (with a pilot bandwidth n1/5, n = 67) yields a block b = 5 for TBEL and 90% CI as (5.25, 6.39). While the motivation
by spectral estimation is reasonable, there are no theoretical guarantees that such block choices are indeed ‘‘optimal’’ for
block-based EL methods, and different rules for block selection may lead to different CIs. Another approach for choosing
EL block lengths is the ‘‘minimum volatility’’ method of Politis et al. (1999, Section 9.3.2). While purely heuristic, its basic
principle is that approximately correct block lengths for inference might be characterized by confidence regions with stable
behavior as a function of `. Hence, in creating EL intervals/regions over a range of `, an adequate block length might then
be chosen by visual inspection. To illustrate, Fig. 3 shows the widths of 90% BEL CIs as a function of ` which become stable
around ` = 11, suggesting this as an appropriate block choice and CI for µ as (5.16, 6.49) by minimum volatility; for TBEL,
the minimum volatility suggests a block ` = 14 and 90% CI (5.16, 6.52) in agreement with the BEL method. While also
having no theoretical guarantees, an advantage of minimum volatility is that the block selection approach applies generally,
whereas spectral bandwidth estimators often require tailoring to each inference problem.

We next demonstrate EL inference with smooth function model parameters and general estimating functions. Fig. 3
shows the sample partial autocovariance function (PACF) for the unemployment data, which appears large at the first lag
and, to a lesser extent, at the second lag. An AR(2) model approximation may be appropriate if a test of the process PACF at
lag 2, given by ✓ = [� (2)� (0)� � (1)2]/[� (0)2 � � (1)2] for � (k) = Cov(X1, X1+|k|), k 2 Z, indicates a difference from zero.
Defining observations

Yt =

 
2X

i=0

Xt�i/3,
2X

i=0

X2
t�i/3,

1X

i=0

Xt�iXt�i+1/2, XtXt+2

!0

, t = 3, . . . , 67,

the parameter ✓ fits into the smooth function framework (8) as ✓ = H(EYt) for H(x1, x2, x3, x4) = [(x4 � x21)(x2 � x21) �

(x3 � x21)
2]/[(x2 � x21)

2 � (x3 � x21)
2]. To test H0 : ✓ = 0, we use a chi-square (df = 1) distribution from Theorem 2 to

compute p-values from log-BEL ratio statistics �2`�1 log Rn(✓) at ✓ = 0 over a series of `, as shown in Fig. 3. By minimum
volatility, we select a block ` = 4 with a resulting BEL p-value of 5e � 06, indicating a significant PACF at lag 2.

We next consider fitting an AR(2) model Xt = µ + �1(Xt�1 � µ) + �2(Xt�2 � µ) + ✏t , with white noise errors "t . To
estimate the AR coefficients (�1, �2), we apply BEL to the sample-mean centered data Zt = Xt � X̄67, t = 1, . . . , 67 with
estimating functions

g(Zt , Zt�1, Zt�2; �1, �2) = [Zt�1, Zt�2]0 (Zt � �1Zt�1 + �2Zt�2) , t = 3, . . . , 67,

which have mean (approximately) zero under an AR(2) assumption. (Technically, an additional estimating function can
be included to account for the unknown mean µ but we ignore this for simplicity; additionally, one could apply the
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Fig. 3. (1st row, left) Plot of U.S. Annual Unemployment Rates from 1947–2013; (1st row, right) Sample partial ACF; (2nd row, left) Plot of widths of
90% BEL CIs for µ as a function of block length `; (2nd row, right) Plot of p-values of BEL tests for a zero (lag 2) partial ACF as a function of `; (Bottom)
90% confidence regions for AR(2) parameters (�1, �2) based on BEL (��), TBEL (· · ·) and FDEL (�) methods; corresponding maximum EL point estimates
denoted as •, · and �, respectively.

‘‘unadjusted’’ EL version of Section 3.1 for AR models, but BEL applies under more general innovation assumptions.) By
minimal volatility on the volumes of the confidence regions, we select a BEL block size of ` = 6 and set a 90% confidence
region for (�1, �2) as shown in Fig. 3; analogously, using TBEL, we select a block ` = 5 producing a smaller confidence

?
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region in Fig. 3. To estimate the AR coefficients (�1, �2), we can also apply the FDEL method described in Example 8.1 of
Section 8 along with two Whittle-based spectral estimating functions

G̃whit(�; �1, �2) = [�1 + (�2 � 1) cos x, �2 � cos(2x) + �1 cos x]0 , � 2 [�⇡ , ⇡];

these are the partial derivatives @[1/k�1,�2(�)]/@�i where k�1,�2(�) = |1 � �1eı� � �2eı2�|2 is proportional to the spectral
density of an AR(2) model. Using the FDEL log-ratio �4 log Rn(�1, �2) and Theorem 4, we calibrate a 90% confidence region
shown in Fig. 3. Due to the data transformation, we might expect the FDEL region to be the most precise here, as evidenced
in the figure.

We conclude with EL tests to assess the quality of an AR(2) model fit. Using FDEL with estimated residuals "̂t =

Zt � �̂1Zt�1 � �̂2Zt�2, t = 3, . . . , 67 and estimating functions g(�) = [cos(�), cos(2�)]0, we test whether the innovation
autocorrelations appear to be zero at lags 1 and 2 (i.e., assessing if the moment condition (16) holds with a0 = (0, 0)0);
the resulting FDEL p-value is 0.83 using a �2

2 calibration, supporting a white noise assumption of the residuals. Similarly,
using BEL to test whether the residual covariances appear to be zero at lags 1 and 2 with two estimating functions
g("̂t , "̂t�1, "̂t�2) = ["̂t "̂t�1 + "̂t�1"̂t�2, "̂t "̂t�2], t = 3, . . . , 67, we select a block ` = 7 by minimal volatility and a similar
p-value of 0.87. Changing the estimating functions in the BEL method to g("̂t , "̂t�1, "̂t�2) = ["̂t "̂

2
t�1 + "̂t�1"̂

2
t�2, "̂t "̂

2
t�2],

t = 3, . . . , 67, and testing if these have approximately mean zero gives an assessment of independence in the innovations;
a BEL p-value of 0.0013 (` = 7) suggests the innovations are not independent.

10. Empirical likelihood under long-range dependence

Suppose {Xt} is a real-valued, stationary process having an integrable spectral density function f (�), � 2 ⇧ = [�⇡ , ⇡]

that satisfies

f (�) ⇠ D↵|�|
�↵ as � ! 0 (22)

for some ↵ 2 [0, 1) and positive constant D↵ > 0 (where ⇠ denotes that ratio of terms equals one in the limit). When
↵ = 0, we refer to the process {Xt} as weakly or short-range dependent (SRD) and mixing assumptions typically imply
↵ = 0. When ↵ > 0, we say {Xt} is strongly or long-range dependent (LRD). This classification of {Xt} as SRD or LRD is
common, in which long-range dependence (LRD) entails a pole of f at the origin (Hosking, 1981; Beran, 1994). Time series
exhibiting LRD have a characteristically slow decay of process autocovariances r(k) = Cov(X0, Xk) given by

r(k) ⇠ C↵|k|�(1�↵) as |k| ! 1, (23)

for some non-zero real constantC↵ . (The behavior (22) of the spectral density f and the autocovariance decay (23) are closely
related under LRD; see Robinson (1995a, p. 1634).) Hence, while the sum of autocovariances

P
1

k=0 r(k) diverges under LRD
(23), short-range dependence (SRD) is typically associated with rapidly decaying covariances such that

P
1

k=0 |r(k)| < 1.
Until now, we have focused on EL methods for weakly dependent or SRD time series, and Sections 10.1–10.2 summarize
some EL extensions to LRD.

10.1. EL in the time domain

Suppose X1, . . . , Xn 2 R arise from a stationary process {Xt} having true mean EXt = µ0 2 R, which could be either
SRD or LRD under (22). Consider inference on the process mean parameter using the BEL ratio Rn(µ), as given in (6), based
on length ` blocks. The main distributional result �2`�1Rn(µ0)

d
! �2

1 for BEL under SRD (cf. Section 4) fails to hold under
LRD. This is because BEL again involves a type of self-studentization intended for SRD, but variances of samples averages
Var(n�1Pn

t=1 Xt) exhibit a much slower decay O(n�↵), ↵ 2 (0, 1), under LRD compared to O(n�1) under SRD. However,
BEL may be modified for LRD as described next; see Nordman et al. (2007) for generalizations.

Define a scaling factor cn = `�1(`/n)↵ based on the memory exponent ↵ 2 [0, 1) in (22)–(23) and a version ĉn =

`�1(`/n)↵̂n based on an estimator ↵̂n of ↵ from X1, . . . , Xn.

Theorem 6. Suppose the process {Xt} has a spectral density f satisfying (22)with ↵ 2 [0, 1) and has a linear form as in (15)with
iid mean-zero innovations {"t} such that E("q) < 1 holds for an even integer q � 4/(1 � ↵). When ↵ > 0, assume (23) holds;
when ↵ = 0, suppose f is bounded on any compact subinterval of (0, ⇡]. Additionally, if `�1 + `2/n ! 0 as n ! 1, then at
the true process mean EXt = µ0,

�2cn log Rn(µ0)
d

! �2
1 as n ! 1. (24)

Additionally, if |↵̂n � ↵| log n
p

! 0, then (24) holds upon replacing cn with ĉn.

The scaling cn corrects for the effect of the strong dependence among the data blocks. Under SRD (↵ = 0), this becomes
cn = `�1 and the distributional result (24) reduces to the previous Wilks theorem (7) for BEL. The several estimators ↵̂ of
the memory exponent ↵ exist (cf. Robinson, 1995a,b) with convergence rates exceeding the condition in Theorem 6.

→

与 strong dependent 关系 ?

a 、 光谱的

⼀
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10.2. EL in the frequency domain

For a real-valued process {Xt} as in (15), a FDEL method under LRD can be formulated in the exact samemanner as in the
SRD case (Section 8) based on a vector of spectral estimating functionsG(�; ✓) : ⇧ ⇥⇥ ! Rp which target a true parameter
value ✓0 2 ⇥ ⇢ Rp satisfying a spectral moment condition (16). The main difference is that, under LRD, the process spectral
density f is unbounded at the origin (22) and some care is needed in selecting estimating functions for valid FDEL inference.
In particular, if process spectral density f is continuous on (0, ⇡] with f (�)  C1|�|�↵ , � 2 ⇧ , for some ↵ 2 [0, 1) and
C1 > 0, we require kG(�; ✓0)k  C2|�|� , � 2 ⇧ , to hold at the true ✓0 for some � 2 [0, 1), C2 > 0 where ↵ � � < 1/2
to ensure

R ⇡

0 f 2(�)kG(�; ✓0)k
2d� < 1. Whittle estimation (Example 8.1, Section 8) is an important application of FDEL, for

which these conditions are often satisfied.
Recall that two FDEL versions are possible. One involves the FDEL ratio statistic Rn(✓) in (19) based on the spectral

estimating functions and the moment condition (16); the other FDEL version is based on a parametric spectral density
class F = {f✓ : ✓ 2 ⇥} (assumed to contain the true spectral density as f = f✓0 ) and uses a model-based ratio statistic
Rn,F (✓). The following provides distributional results for FDEL log-ratio statistics under LRD (and SRD for ↵ = 0), which are
extensions of Section 8 results; see Nordman and Lahiri (2006) for precise regularity conditions.

Theorem 7. Suppose that {Xt} is a linear process as in (15) with E("2
1) > 0, E("8

1) < 1; that f (�)  C1|�|�↵ and
kG(�; ✓0)k  C2|�|� , � 2 ⇧ for some ↵, � 2 [0, 1) with ↵ � � < 1/2; that

R ⇡

0 f 2(�)G(�; ✓0)G(�; ✓0)
0 is non-singular;

and that G(�; ✓0) satisfies some regularity conditions. Then, if (16) holds a0 = 0p,

�4 log Rn(✓0)
d

! �2
p as n ! 1.

Assuming additionally for the model-based FDEL that f = f✓0 2 F , then

�2 log Rn,F (✓0)
d

! �2
p as n ! 1. (25)

Further, (25) holds even for a0 6= 0p if 4," ⌘ E("4
1) � 3[E("2

1)]
2 = 0.

The same FDEL framework for Whittle estimation in Example 8.1 [involving spectral densities f✓ = (2⇡)�1� 2k� of the
form (17) (i.e., ✓ = (� 2, � 0)0, � 2 2 (0, 1), � 2 Rp�1) and estimating functions Gwhit(·; ✓) or Gwhit(·; �) satisfying (18)]
applies to important classes of LRD time processes, such as fractional Gaussian processes (Mandelbrot and Van Ness, 1968)
and the fractional autoregressive integratedmoving average (FARIMA) processes (Granger and Joyeux, 1980;Hosking, 1981).
Recently, Yau (2012) extendedMonti (1997)’smodel-based FDEL result forWhittle estimation in FARIMA densities, showing
�2 log Rn,F (✓) based on the estimating functions Gwhit(·; ✓) to have a chi-square limit. As in Remark 6 (Section 8), these
estimating functions have a non-zero spectral moment a0 in (16) due to the innovation � 2 parameter, so that a chi-square
limit for �2 log Rn,F (✓0) is generally valid only when 4," = 0 (i.e., Gaussian FARIMA processes). However, as in Remark 6,
the FDEL version �4 log Rn(�0) can be generally applied using the estimating functions G̃whit(·; �) for the (non-� 2) FARIMA
parameters, which satisfy (16) with zero-valued a0.

11. Concluding remarks and open research questions

A main challenge in extending EL to dependent data is creating a likelihood function by probability profiling suitable
functions of data in a way accommodates the dependence structure for a given inference situation. At issue, an EL method
needs to be correctly self-studentize, or intrinsically estimate variances in its mechanics, to produce non-degenerate
distributional limits for log-ratio statistics (e.g., chi-square limits). The iid version of EL (Section 2) probability profiles
individual observations and a similar approach can apply to specialized inference problems with time series (cf. Section 3).
More broadly, we have reviewed two general strategies for extending EL to a variety of time series inference in the presence
of autocorrelation: data blocking to locally capture time dependence (Sections 4–7) and data transformations (Section 8) to
modify the dependence. We conclude by mentioning several open research questions regarding EL for dependent data.

1. Block length selection. A significant open problem is determining a large-sample form, or asymptotic expansion, of the
theoretically optimal block length ` for the coverage accuracy of BEL regions. At an optimal block size, it is of interest to
understand and compare the coverage accuracy rate for BEL against other interval methods. A larger issue is developing
well-founded data-driven rules for selecting block lengths, and theoretical guidancemay help this effort. Compared to EL,
the literature on optimal block size and block selection is far more developed for block bootstraps (cf. Lahiri, 2003, ch. 5;
Politis and White, 2004).

2. Effects of data smoothing windows. Data blocks in the BEL method can be replaced with smoothed windows of data
(cf. Smith, 1997; Kitamura and Stutzer, 1997) or tapered block versions (Sections 5, 7). One important topic, which
has received little attention, is investigating and characterizing properties of the smoothing windows/tapers to improve
the performance of BEL. This is akin to studies of the effect of different kernels in spectral estimation and bootstrap
methodology (cf. Künsch, 1989; Andrews, 1991; Paparoditis and Politis, 2001).
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3. Higher order accuracy. For iid data, the coverage accuracy of EL regions can be improved with Bartlett
corrections (cf. Section 2) and the extent of the improvement has been well-studied. Much less is known about similar
adjustments for time series. Can the higher order accuracy of BEL/TBEL regions be improved by Bartlett corrections or
other resampling-based calibrations? If so, can the extent of this be quantified? Bartlett corrections should be possible,
quite generally, for frequency domain versions of EL (cf. Section 8) due to approximate independent of periodogram
ordinates; a general and formal treatment is potentially useful but currently lacking.

4. Fixed-bandwidth versions of EL. In asymptotic expansions of BEL log-ratio statistics, data blocks provide a type of block-
based variance estimator for purposes of normalizing scale and obtaining chi-square limits. Such variance estimators
have equivalences to lag window estimators involving sample covariances, kernel functions, and bandwidths ` with
similar behavior to block lengths `�1 + n/` ! 0 as n ! 1. That is, BEL intervals share connections to normal theory
intervals based on studentization with consistent lag window estimates. However, some numerical and theoretical
evidence exists that normalizing scale with inconsistent lag window estimates (i.e., based on a fixed bandwidth ratio
`/n = C 2 (0, 1]) may provide more accurate interval estimators (cf. Kiefer and Vogelsang, 2005; Shao, 2010). This
suggests that development of EL methods with non-standard block formulations, based fixed bandwidth ratios, may
lead to improved coverage properties.

5. Data transformations in EL. The frequency domain EL (FDEL) of Section 8 is based one type of data transformation involving
the discrete Fourier transform. However, this approach is generally limited to inference about spectral parameters in
ratio form (e.g., auto-correlations not auto-covariances) based on spectral estimating functions with mean zero (16);
see Lahiri (2003, ch. 8) for more details. It may be possible to extend FDEL to non-zero-mean estimating functions and
include a larger variety of spectral parameters; Kreiss and Paparoditis (2003) have developed analogous generalizations
for the frequency domain bootstrap. FDEL for multivariate data has not been generally considered. Finally, other data
transformations may be possible for EL (cf. Kitamura, 2006). One approach is to fit an appropriate time series model,
such as an AR(p) model with AR order p ! 1 as n ! 1, to approximate the original series and apply EL methods to
the approximation; a similar principle underlies the sieve bootstrap (cf. Kreiss et al., 2011).

6. EL generalizations to other dependent data. Many versions of EL have been developed with a focus on stationary time
series, and less is known about EL for non-stationary data (though some treatments exist, cf. Remark 3, Section 4).
Non-stationarity may be difficult to characterize generally, but EL methods developed to handle local (rather than
global) stationarity may be potentially very useful, applying to time series with a slowly evolving stochastic structure. A
framework for such processes is given by Dahlhaus (1996, 1997).

Some EL extensions have ventured into spatial data. Nordman (2008a) developed a spatial BEL version for stationary,
mixing spatial processes observed on a partial grid in Rd, extending Kitamura’s (1997) time series results (d = 1).
Nordman (2008b) considered BEL spatial regression problems with general non-stochastic regressors, and Nordman and
Caragea (2008)introduced a spatial BEL for estimating variogram model parameters. Recently, Kostov (2013) proposed
a smoothed EL method for inference in spatial quantile regressions, and Kaiser and Nordman (2012) developed BEL
goodness-of-fit tests for spatial Markovmodels. All of these works are limited to spatial data collected on a grid or lattice.
However, far more diverse sampling structures exist for spatial data (e.g., stochastic spatial locations, infill sampling), for
which extensions of the EL methodology could be quite useful; see Bandyopadhyay et al. (2012) for one EL example with
irregularly located spatial data.
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