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CHAPTER 1. Introduction

High-dimensional data, where the number of variables p is large compared to the
sample size n, are widely available from microarray studies, finance and many other
sources. This dissertation focuses on the effects of high dimensionality on some as-
pects of statistical inference. A two-sample test for means of high-dimensional data
proposed in this dissertation allows p to be much larger than n. We will show that
in the simulation study the proposed test statistic performed consistently better than
the other existing methods. Two distributions sharing the same mean may differ in
many other aspects. We therefore consider a two-sample test for high-dimensional
distributions. The proposed test statistic is based on empirical distribution functions
and is a natural extension to our two-sample test statistic for means. Empirical likeli-
hood has many important applications in nonparametric or semiparametric statistical
inference. In this dissertation, we further study the effects of data dimension on the
asymptotic normality of the empirical likelihood ratio for high-dimensional data under
a general multivariate model.

In the remaining of Chapter 1, we shall briefly review some issues arising from
high-dimensional data analysis and other topics relevant and important to the work

in this dissertation. More detailed literature reviews will be available in each chapter.



1.1 Hypothesis Testing in Microarray Data Analysis

Microarray technology plays a key role in molecular biology and in medicine for
discovering certain diseases and developing new drugs. It is very common that microar-
ray data contain gene expression values measured on thousands of genes from much
fewer biological objects. In order to detect a small proportion of differentially ex-
pressed genes across different treatment groups given very few biological observations,
statisticians are in urgent need to develop powerful and approriate multiple testing
procedures to maintain the level of certain type of error rate. For comparison between
numerous tests used to identify differentially expressed genes, see Jeffery et al. (2006)
and many other references. The most commonly used multiple testing procedures in-
clude the Bonferroni procedure which controls the family wise error rate (FWER) and
the false discovery rate (FDR) approach proposed in Benjamini and Hochberg (1995).
Also see the g-value method as an FDR-based measure of significance for genomewide
studies in Storey and Tibshirani (2003).

Biologically speaking, each gene does not function individually in isolation. Rather,
one gene tends to work with other genes to achieve certain biological tasks. The re-
cent development of the Gene Ontology Consortium (Ashburner et al., 2000) allows
researchers to carry out statistical inference for well defined gene sets. The Gene
Ontology Consortium provides a vocabulary of defined terms representing gene sets.
Identifying sets of genes which are differentially expressed with respect to certain treat-
ments is a recent development in genetics research; see Gene Set Enrichment Analysis
in Subramanian et al. (2005) and Significance Analysis of Function and Expression
proposed in Barry et al. (2005), Efron and Tibshirani (2007), Newton et al. (2007)
and Nettleton et al. (2008).

The original motivation of my work on high-dimensional hypothesis testing is to



develop novel statistical methods for identifying gene sets (dimension p can range from
a moderate to a very large number) whose expression levels or joint distributions of
expression values differ across two treatment groups. However, the methods proposed
in this dissertation are widely applicable to high-dimensional data from many other

sources.

1.2 High-Dimensional Data Problems

Traditional statistical data analyses are carried out for observations measured on
a fixed number of variables. Due to availability of massive data from finance, mi-
croarrays, and climatology etc., people are exposed to situations where the number of
variables increases dramatically, but, the number of observations increases much more
slowly. Especially in most microarray studies, due to budgetary constraints and other
experimental restrictions, the number of observations is relatively small compared to
thousands of variables measured on each observation. Consequently, many classical
statistical inference procedures, which require fixed data dimensions are not suitable

anymore.

1.2.1 High-dimensional hypothesis testing for means

To demonstrate some challenges arising from high-dimensional hypothesis testing,
let us consider two random samples X;1, Xjo, -+, X;,, € RP for ¢+ = 1 and 2, which
have means j; = (1, fia, - - - , fbip) and covariance matrices ;. The data, for example,
can be gene expression values measured on mRNA microarrays. We therefore have
n; observations for the i-th group; the vector X;; contains gene expression values
measured on p genes for the j-th observation in the i-th group. To identify gene

sets whose expression levels differ across two groups, we are interested in testing the



hypothesis

Ho :piy = po vs. Hy g # pia.
Traditionally, if data with fixed dimension are normally distributed, people would use
the Hotelling’s 7 test which is defined as

ning

T2 - (Xl - XQ)TSTZI(Xl - XQ),

ny + No
where X; is the i-th sample mean vector, for i = 1,2 and S, is the pooled sample

covariance matrix defined as

ng

2
1 _ _
Sp=—— D (X — X)Xy — X))
n1+n2—2i:1j21( J )( J )

Then under the null hypothesis, 2=2*172 has a central F-distribution (Anderson, 2003)

np

with p and n — p + 1 degrees of freedom where n = ny; + ny — 2. Unfortunately, if
p > n, which happens very commonly with high-dimensional data, the Hotelling’s 7
test is not well defined because the sample covariance matrix becomes singular. The
singularity is due to the fact that the dimension p of S, is larger than its degrees of
freedom.

In an important work, Bai and Saranadasa (1996) proposed a test (BS test) to

replace the Hotelling’s T test. The BS test statistic is based on the statistic
Mn = (Xl — XQ)T(Xl — XQ) — Tt’f’sn,

where 7 = % and tr(-) is the trace operator of a matrix. And the authors assumed

a general multivariate model
Xij=TZyj+p; forj=1,--- ,n; 1=1and?2, (1.1)

where I' is a p X m matrix for some m > p such that I'TY = ¥ and X is the common

covariance matrix. And {Z;;}j., are m-variate independent and identically distributed



(ii.d.) random vectors satisfying E(Z;;) = 0, Var(Z;;) = I, (the m x m identity
matrix), and E(z},) = 3+ A < co. Here A describes the difference between the
fourth moments of z;;, and N(0,1). Bai and Saranadasa (1996) further showed that
given p/n — y > 0 and some other mild conditions,
M,
VVar(M,)

4, N(0,1), as n — oo.

However, by assuming p/n — y > 0, it basically requires p and n to increase to +00
at the same rate. Consequently, the BS test is not attractive in “large p, small n”
case. In Chapter 2, we propose a new test which allows p >> n, i.e. p can be much
larger than n. The proposed test statistic also has the asymptotic normal property
and performed more powerfully than the BS test in our simulation study.

Many other important works have been published on hypothesis testing for means
when both p and n go to infinity. Srivastava (2009) proposed a test for mean vec-
tors with fewer observations than the dimension by assuming the same multivariate
model as in (1.1). The test proposed by Srivastava can be treated as a standardized
Hotelling’s T2 test without using a normality assumption. Schott (2007) considered
high-dimensional tests for a one-way MANOVA as a generalization of the BS test
statistic. Fan et al. (2007) evaluated approximation of the overall level of significance
for simultaneous testing of means. They demonstrated that the bootstrap method
can accurately approximate the overall level of significance if log p = o(n!/?) when the
marginal tests are performed based on the normal or the ¢-distributions. See also Fan
et al. (2005) and Huang et al. (2005) for high-dimensional estimation and testing in

semiparametric regression models.



1.2.2 High-dimensional hypothesis testing for distributions

Let us consider two random samples X;1, X;2,- -+, X;,, € RP for ¢ = 1 and 2 drawn
independently from multivariate continuous distributions F; and Fy, respectively. The

hypothesis we are interested in becomes
HQZFleQVS. HllFl#Fg.

In fixed dimension settings, a rank test, multivariate Kolmogrorov-Smirnov test (Pea-
cock, 1983; Fasano and Franceschini, 1987; Bickel, 1969), or a multivariate Cramér-von
Mises test (Anderson and Darling, 1952; Ahmad, 1996) may be used. For arbitrary
dimensions, Baringhaus and Franz (2004) proposed a test statistic, T},, ,,, based on

between and within sample Euclidean distances, where

ning 1 2 1 ny ny
1,12 n1+n2[n1n2;;” 1 2]” 271%;;“ 1 1]H
1 ne N9
- WZZHX%—XQJ‘H}.(LQ)
2 =1 j=1

The test rejects the null hypothesis if 75, ,, is large. As the distribution of 7,,, ,,, con-
verges to a Brownian bridge which depends on an unknown distribution, the authors
suggested a bootstrap method to simulate critical values. Alba Ferndndez et al. (2008)

constructed a test statistic similar to this 75, »,. The test statistic is defined as

ni no 2 ni na

1 1
Dn17n2 = F Z u(Xll_le)—i_m Z u(XQZ_XQJ)_

1

ij=1 ij=1 i=1 j=1
where u(t) = [ cos(2't)dG(z), which is the real part of the characteristic function of a
distribution function G on RP. The authors also suggested bootstrap and permutation
procedures to estimate its limiting distribution.

Hall and Tajvidi (2002) proposed a permutation test of equal distributions for

arbitrarily high-dimensional data. The critical values are determined by using per-



mutation conditional on the pairwise distances between pooled data, which is defined

as
£ ={Xu1, X1+, Xon, (K01, X+, Xon, )

Note that the measure of pairwise distance has to be symmetric but not necessarily
be a metric. Another nonparametric multivariate test motivated by the application
of identifying differentially expressed gene sets was investigated in Nettleton et al.
(2008). In this dissertation, we propose a test for high-dimensional distributions based
on empirical distribution functions. The limiting distribution of the test statistic will

be established.

1.3 Empirical Likelihood

Using the empirical likelihood method to construct confidence regions was first
introduced in Owen (1988, 1990) for means and some other parameters. It is a non-
parametric method of statistical inference that does not require that the data come
from a certain known family of distributions. Empirical likelihood is generally appli-
cable to many areas of statistical analysis, see Hall (1990), Hall and Owen (1993),
DiCiccio et al. (1989), Chen (1993, 1994a,b, 1996), Chen and Qin (2000), Chen and
Cui (2003, 2006), and Qin (1993, 1999), Qin and Jing (2001), Qin and Zhang (2007).

For a comprehensive reference, see Owen (2001).

Definition 1.1 Suppose X1, Xo, -+, X,, are i.i.d. random variables (univariate or
multivariate) with cumulative distribution function (cdf) F. Let m; be a probability
(such that > " m =1 and all m; > 0) assigned to the observed data value X;. The

nonparametric likelihood is

Ln(F,TF) = ﬁ?’l’i.
=1



It has been proven (Owen, 2001) that L, (F,7) is maximized by F,, (that is m; = 1/n
for i =1,2,--- n), where F, is the empirical cumulative distribution function.

We are interested in specifically the mean vector of a multivariate cdf F, say
parameter . The next two definitions introduce the empirical likelihood and empirical

likelihood ratio for the mean, respectively.

Definition 1.2 The empirical likelihood function for the mean is as

Ln(,u) = Sup { H,]rilﬂ—i 2 07 Z'/Ti = 1,Z7TiXi = /L}
=1 =1 i=1
Using Lagrange multipliers, Owen (1988) showed that L, () is maximized when
mi(p) = n {1+ M(X; — )} (1 < i <),

and A = A(p) is determined by

n

Z{l (X = )} (X =) =

i=1

Definition 1.3 The empirical likelthood ratio for u is

wn(p) = —2log{n" L, (1n)}. (1.4)

When p is fixed, the Wilks’ theorem indicates that

wa(p) = X (1.5)

in distribution as n — +o0.
In this dissertation, we consider the effects of high-dimensionality on the empirical
likelihood ratio test. Let Xy,..., X, be i.i.d. random vectors in RP with mean vector

T

w = (p1,..., )" and non-singular variance matrix ¥ € RP*P. As p — +oo for

high-dimensional data, the natural substitute for (1.5) is

(2p)~Y*{wn(n) — p} — N(0,1) (1.6)



in distribution as n — 400, since X;Q; is asymptotic normal with mean p and variance
2p. A key question is how large the dimension p can be while (1.6) is valid.

In a recent study, Hjort et al. (2009) established that it is p = o(n'/?) together with
some other assumptions to ensure (1.6) is valid. We evaluate in this dissertation the
effects of data dimension on the asymptotic normality of the empirical likelihood ratio
for high-dimensional data under a general multivariate model. Data dimension and
dependence among components of the multivariate random vector affect the empirical
likelihood directly througth the trace and the eigenvalues of the covariance matrix.
The growth rates we obtain for the data dimension improve the rates of Hjort et al.
(2009).

In an important study, Tsao (2004) found that, when p is moderately large but
fixed, the distribution of w,(x) has an atom at infinity for fixed n: the probability of
wp () = 0o is non-zero. Tsao further showed that, if p and n increase at the same rate
such that p/n > 0.5, the probability of w, (1) = 0o converges to 1 since the probability
of 1 being contained in the convex hull of the sample converges to 0. These reveal

effects of p on the empirical likelihood from another perspective.

1.4 Martingale Central Limit Theorem

Martingale theory has remarkable applications in economics, game theory, U-
statistics, survival analysis and many other areas. The martingale central limit the-
orem generalizes limit results for sums of independent random variables and plays a
key role in probability theory. In this dissertation, we apply the martingale central
limit theorem to achieve the asymptotic normality for the tests proposed in Chapter
2, Chapter 3 and Chapter 4. We therefore introduce here the general definition of a

martingale, martingale differences, martingale array, and the martingale central limit
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theorem.

Definition 1.4 Let (Q, F, P) be a probability space, where Q) is a set, F is a o-field
of subset of Q and P a probability measure defined on F. Let {F,,n > 1} be an
increasing sequence of o-fields of F sets. Suppose that {S,,n > 1} is a sequence of

random variables on € satisfying

(1) S is measurable with respect to Fy;
(i) ElSn| < oo

(iii)  E(Sn|Fm) = Sm a.s. form <n.

Then ,the sequence {S,, F,} is said to be a martingale and X,, = S, — Sp_1,n > 2

denote martingale differences.

Definition 1.5 Let {S,;, Fni, 1 <1 < k,} be a zero-mean and square-integrable mar-
tingale for each n > 1. Denote the martingale differences as X,; = Spi — Spi—1,1 <
i < ky(Sno = 0). It is assumed that k, — oo as n — o0o. Then {Sn;, Fni, 1 < i <

kn,n > 1} is called a martingale array.

We present the martingale central limit theorem (Hall and Heyde, 1980) in the fol-

lowing theorem.

Theorem 1.1 Let {S,;, Fni, 1 <i < kp,n > 1} be a zero-mean and square-integrable
martingale array with differences X,; and let n? be an a.s. finite random variable.
Suppose that the o—fields are nested: F,; € Fniy1 for 1 < 1 < k,,n > 1 and

foralle >0, 3, E[X21(| X0 > €)|Fnic] — 0, and

Vn2k _ZE |fnz 1 an



11

Then

where Z is a normally distributed random variable with zero mean and variance 0.

1.5 Dissertation Organization

This dissertation consists of three main chapters. In Chapter 2, we propose a
two-sample test for means when the data dimension is high. The test requires no
explicit conditions between sample size n and data dimension p. The proposed test
therefore provides great flexibility to carry out hypothesis testing in “large p, small
n” situations. The simulation study shows that the proposed test performs more
powerfully than other existing tests. A short version of this chapter has been accepted
for publication by The Annals of Statistics.

In Chapter 3, we evaluate the effects of data dimension on the asymptotic normality
of the empirical likelihood ratio for high-dimensional data under a general multivariate
model. An abbreviated version of this chapter (Chen et al., 2009) has been published
in Biometrika.

Chapter 4 focuses on a test of equality of two continuous high-dimensional cdfs.
It is shown that the proposed test statistic is a weighted average of distance measures
between two continuous cumulative distribution functions. The asymptotic normality

of the test statistic is established. This manuscript will be submitted to The Annals

of Applied Statistics.
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CHAPTER 2. A Two-Sample Test for High-Dimensional

Data with Applications to Gene-set Testing

2.1 Introduction

High-dimensional data are increasingly encountered in many applications of statis-
tics and most prominently in biological and financial studies. A common feature of
high-dimensional data is that, while the data dimension is high, the sample size is
relatively small. This is the so-called “large p, small n” phenomenon where p/n — oo;
here p is the data dimension and n is the sample size. The high data dimension (“large
p”) alone has created the need to renovate and rewrite some of the conventional mul-
tivariate analysis procedures; these needs only get much greater for “large p small n”
situations.

A specific “large p, small n” situation arises when simultaneously testing a large
number of hypotheses which is largely motivated by the identification of significant
genes in microarray and genetic sequence studies. A natural question is how many
hypotheses can be tested simultaneously. This chapter tries to answer this question
in the context of two-sample simultaneous tests for means. Consider two random
samples X;q, -+, X;n, € RP for i = 1 and 2 which have means py = (p11, -+ , f1p)"

and gy = (fa1,- -+ , 12p)” and covariance matrices ¥ and ¥y, respectively. We consider
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testing the following high-dimensional hypothesis:

HO D1 = U2 VS Hl it 7£ M2 (21)

The hypothesis Hy consists of the p marginal hypotheses Hy; : pi1; = pgyy forl =1,--- | p
regarding the means on each data dimension.

There have been a series of important studies on the high-dimensional problem.
Van der Laan and Bryan (2001) showed that the sample mean of p-dimensional
data can consistently estimate the population mean uniformly across p dimensions
if log(p) = o(n) for bounded random variables. In a major generalization, Kosorok
and Ma (2007) considered uniform convergence for a range of univariate statistics con-
structed for each data dimension, which included the marginal empirical distribution,
sample mean and sample median. They established the uniform convergence across p
dimensions when log(p) = o(n'/?) or log(p) = o(n'/?) depending on the nature of the
marginal statistics. Fan et al. (2007) evaluated approximation of the overall level of
significance for simultaneous testing of means. They demonstrated that the bootstrap
can accurately approximate the overall level of significance if log(p) = o(n'/3) when
the marginal tests are performed based on the normal or the ¢-distributions. See also
Fan et al. (2005) and Huang et al. (2005) for high-dimensional estimation and testing
in semiparametric regression models.

In an important work, Bai and Saranadasa (1996) proposed using || X; — X5|| to
replace (X; — X5)T S 1 (X, — X5) in Hotelling’s T?-statistic where X; and X, are the
two-sample means, S, is the pooled sample covariance by assuming ¥; = ¥y = 3, and
|| || denotes the Euclidean norm in RP. They established asymptotic normality of the
test statistic and showed that it has attractive power when p/n — ¢ < oo and the
maximum eigenvalue of ¥ is constrained in a suitable way. However, the requirement

of p and n being of the same order is too restrictive to be used in the “large p, small
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n” situation.

To allow simultaneous testing for ultra high-dimensional data, we construct a test
which allows p to be arbitrarily large and independent of the sample size as long as,
in the case of common covariance X, tr(X*) = o{tr?(3?)} where tr(-) is the trace
operator of a matrix. The above condition on » is trivially true for any p if either
all the eigenvalues of ¥ are bounded or the largest eigenvalue is of smaller order than
(p — b)Y/2b=1/4 where b is the number of unbounded eigenvalues. We establish the
asymptotic normality of a test statistic which leads to a two-sample test for high-
dimensional data.

Testing significance for gene-sets rather than a single gene is the latest development
in genetic data analysis. A critical need for gene-set testing is to have a multivariate
test that is applicable to a wide range of data dimensions (the number of genes in
a set). It requires P-values for all gene-sets to allow procedures based on either the
Bonferroni correction or the false discovery rate (Benjamini and Hochberg, 1995) to
take into account the multiplicity in the test. We demonstrate in this chapter how
to use the proposed test for testing significance for gene-sets. An advantage of the
proposed test is that it readily produces P-values for the significance for each gene-set
under study so that the multiplicity of multiple testing can be taken into consideration.

This chapter is organized as follows. We outline in Section 2.2 the framework of
the two-sample test for high-dimensional data and introduce the proposed test statis-
tic. Section 2.3 provides the theoretical properties of the test. The application of
the proposed test of significance for gene-sets is demonstrated in Section 2.4, which
includes an analysis of an Acute Lymphoblastic Leukemia data set. Results of simula-
tion studies are reported in Section 2.5. All the technical details are given in Section

2.6.
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2.2 Test Statistic

Suppose we have two independent and identically distributed random samples in

RP,

{ X1, Xig, -+, X, } “FE for i=1and 2,

where F} is a distribution in RP with mean pu; and covariance ;. A well-pursued inter-
est in high-dimensional data analysis is to test if the two high-dimensional populations

have the same mean or not; namely,

Hy:py = po vs. Hy @y # po. (2.2)

The above hypothesis consists of p marginal hypotheses regarding the means of each
data dimension. An important question from the point view of multiple testing is how
many marginal hypotheses can be tested simultaneously. Van der Laan and Bryan
(2001), Kosorok and Ma (2007) and Fan et al. (2007) addressed this question. Their
results show that p can reach the rate of e for some positive constants « and (.
In establishing a rate of the above form, both Van der Laan and Bryan (2001) and
Kosorok and Ma (2007) assumed that the marginal distributions of F and F» are all
supported on bounded intervals.

Hotelling’s T2 test is the conventional test for the above hypothesis when the
dimension p is fixed and is less than n =: ny + ny — 2 and when ¥; = Y5 = X,
say. Its performance for high-dimensional data was evaluated in Bai and Saranadasa
(1996) when p/n — ¢ € [0, 1), and they report a decreasing power as c gets larger. A
reason for the negative effect of high-dimension is the presence of the inverse of the
sample covariance matrix in the T2 statistic. While standardizing by the covariance
matrix brings benefits for data with a fixed dimension, it becomes a liability for high-

dimensional data. In particular, the sample covariance matrix .S,, may not converge
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to the population covariance when p and n are of the same order. Indeed, Yin et al.
(1988) showed that when p/n — ¢, the smallest and the largest eigenvalues of the
sample covariance S,, do not converge to the respective eigenvalues of ». The same
phenomenon, but on the weak convergence of the extreme eigenvalues of the sample
covariance, is found in Tracy and Widom (1996). When p > n, Hotelling’s T? statistic
is not defined as .S,, may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who proposed test-

ing hypothesis (2.2) under ¥; = ¥y = ¥ based on
Mn = (Xl — XQ)/(Xl - XQ) - TtT‘(Sn>, (23)

where S, = 23°7 | Zj—vzil(Xij — Xi)(Xy — X;) and 7 = mEn2. The key feature of
the Bai and Saranadasa proposal is removing S ! in Hotelling’s T since having S *
is no longer beneficial when p/n — ¢ > 0. The subtraction of ¢r(S,) in (2.3) makes

E(M,) = || — paf?. As

tr(X tr(X
ny — D)tr(X) + (ng — 1)tr(X
= Ttr(2)+u’1u1+u'2uz—2u’1u2—T{(1 Jir(%) + (2 =~ 1)ir{ )}
n1+n2—2

= |l — pa .

The asymptotic normality of M, is established and a test statistic is formulated by
standardizing M,, with an estimate of its standard deviation.

The following are the main conditions assumed in the Bai-Saranadasa test:

p/n—c<oo and ), =o(p'?); (2.4)

ni/(n+ny) — ke (0,1) and  (p — o) Bt — p2) = oftr(E?) /n}(2.5)

where )\, denotes the largest eigenvalue of X.
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A careful study of the M, statistic reveals that the restrictions on p and n, and

on ), in (2.4) are needed to control terms Y, X[ Xy;, 0 = 1 and 2, in [|X; — X,|*.

However, these two terms are not useful in the test. To appreciate this point, let us
consider

N XXy B X0, X 22?:112321)({1)(2;'

no nl(nl — 1) ng(TLQ — 1) ning
after removing 7" X[, Xj; for i = 1 and 2 from || X1 — X3||%. Elementary derivations
show that

E(Ty) = |l — po .

Hence, T, is basically all we need for testing. Bai and Saranadasa used ¢r(.S,,) to offset
the two diagonal terms. However, ¢r(S,,) itself imposes demands on the dimensionality
too.

A derivation in Section 2.6 shows that under H; and similar conditions as the

second condition in (2.5),

Var(T,) = {ﬁtr(zi) + ﬁtr(iﬁ) + ﬁtr(lez)}{l +o(1)},

where the o(1) term vanishes under H,.

2.3 Main Results

2.3.1 Model assumptions

We assume, like Bai and Saranadasa (1996), the following general multivariate
model,

Xij = FzZz] + W for ] = 17 s, Ny, 1 =1 and 2, (26)

where each T'; is a p X m matrix for some m > p such that I';I'; = 3;, and {Z;;}Z, are

m-variate independent and identically distributed (i.i.d.) random vectors satisfying
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E(Z;;) = 0, Var(Z;;) = I, the m x m identity matrix. Furthermore, if we write

Zii = (Zij1, - -+, Zijm)', We assume E(zfjk) =3+ A < o0, and
E (21,25, =) =BG E(R,)  B(5,) (27)

for a positive integer ¢ such that >/ oy < 8 and I} # Iy # -+ # l,. Here A
describes the difference between the fourth moments of z;;; and N(0,1). Model (2.6)
says that X;; can be expressed as a linear transformation of a m-variate Z;; with zero
mean and unit variance that satisfies (2.7). Model (2.6) is similar to factor models
in multivariate analysis. However, instead of having the number of factors m < p
as in the conventional multivariate analysis, we require m > p. This is to allow the
basic characteristics of the covariance ¥;, for instance its rank and eigenvalues, to
not be affected by the transformation. The rank and eigenvalues could be affected
if m < p. The fact that m is arbitrary offers much flexibility in generating a rich
collection of dependence structures. Condition (2.7) means that each Z;; has a kind
of pseudo-independence among its components {z;;;};*,. Obviously, if Z;; does have
independent components, then (2.7) is trivially true.

We do not assume ¥»; = Y, as it is a rather strong assumption, and more im-
portantly such an assumption is difficult to verify for high-dimensional data. Testing
certain special structures of the covariance matrix when p and n are of the same order
has been considered in Ledoit and Wolf (2002) and Schott (2005).

We assume

ni/(n1+n2) = ke (0,1) as n— oo (2.8)

(1 — p2)' Si(p — po) = o[n "r{(X1 + X9)?*}] fori=1or 2 (2.9)

which generalizes (2.5) to unequal covariances. Condition (2.9) is obviously satis-

fied under Hy and implies that the difference between iy and ps is small relative to
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n~1tr{(3; + X)?} so that a workable expression for the variance of T}, under Hy and
the specified local alternative can be derived. It can be viewed as a high-dimensional
version of the local alternative hypotheses. When p is fixed, if we use a standard
test for two population means, for instance Hotelling’s T2 test, the local alternative
hypotheses has the form of 11 — s = 7n~'/? for a non-zero constant vector 7 € RP.
Hotelling’s test has non-trivial power under such local alternatives (Anderson, 2003).
If we assume each component of p; — s is the same, say d, then the local alternatives
imply 0 = O(n~/2) for a fixed p. When the difference is o(n~'/2), Hotelling’s test has
no power beyond the level of significance.

To gain insight into (2.9) for high-dimensional situations, let us assume all eigen-
values of ¥J; are bounded above from infinity and below away from zero so that ; = I,
is a special case of such a regime. Let us also assume, like above, that each component
of py — po is the same as a fixed 9, namely puy; — py = 6 for [ = 1,--- . p. Then
(2.9) implies 6 = o(n~'/2) which is a smaller order than § = O(n~"/2) for the fixed p
case. This can be understood as the high-dimensional data (p — oo) containing more
information for differentiating the two mean vectors than that in the fixed p case.

To understand the performance of the test when (2.9) is not valid, we reverse the

local alternative condition (2.9) to

nHr{(S) 4 32)?} = o (p1 — p2)'Si(py — p2)}  for i =1 or 2, (2.10)
implying that the Mahanalobis distance between p; and s is a larger order than that
of n=4r{(3; + 33)?}. This condition can be viewed as a version of fixed alternatives.
We will establish asymptotic normally of 7}, under either (2.9) or (2.10) in Theorem
2.1.

The condition we impose on p to replace the first part of (2.4) is

(25, 55) = o[tr?{(X) + %)%} ford,j,l,h=1or2, (2.11)



20

as p — oo. To appreciate this condition, consider the case of ¥; = Yy = ¥. Then
(2.11) becomes
tr(X%) = o{tr*(x?)}. (2.12)

Let Ay < Ay < ... < A, be the eigenvalues of 3. If all eigenvalues are bounded, then
(2.12) is trivially true. If, otherwise, there are b unbounded eigenvalues with respect
to p, and the remaining p — b eigenvalues are bounded above by a finite constant M

such that (p — b) — oo and (p — b)A\? — oo, and sufficient conditions for (2.12) are

A =o{(p—B)2Ab 4 or A, =o{(p— b)Y A2 ) (2.13)

p—b+1

where b can be either bounded or diverging to infinity, and the smallest eigenvalue \;

can converge to zero. To appreciate this, we note that

tr(34)
tr2(32)

(p—b)M* +bA;
(0 — DN+ AL, + 20— DA

P

<
Hence, the ratio converges to 0 under either condition in (2.13).
2.3.2 Asymptotic normality of T,

The following theorem establishes the asymptotic normality of 7T;,.

Theorem 2.1 Under the assumptions (2.6), (2.7), (2.8), (2.11) and either (2.9) or
(2.10),

T, — |l — oo
Var(T),)

as p — oo and n — 0.

The asymptotic normality is attained without imposing any explicit restriction be-
tween p and n directly. The only restriction on the dimension is (2.11) or (2.12). As

the discussion given just before Theorem 2.1 suggests, (2.12) is satisfied provided that
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the number of divergent eigenvalues of X are not too many, and the divergence is not
too fast. The reason for attaining this in the case of high data-dimension is because the
statistic 7T;, is univariate, despite the fact that the hypothesis Hj is of high-dimension.
This is different from using a high-dimensional statistic. Indeed, Portnoy (1986) con-
sidered the central limit theorem for the p-dimensional sample mean X and found that
the central limit theorem is not valid if p is not a smaller order of \/n.

As shown in Section 2.6, Var(T,) = 02{1 + o(1)} where, under (2.9),

02 =1 02 = 2o tr(S) e tr(53) + k(51 5), (2.14)

n nl nl(nlfl 2(17,27].)

4 4
‘7121 = 07212 = _(Ml — Mz)/zl(ﬂl - Mz) + (Ml - M2)/E2<M1 — ,U2)- (2~15)

ni no

2.3.3 A ratio consistent estimator for Var(T,)

In order to formulate a test procedure based on Theorem 2.1, 02, in (2.14) needs
to be estimated. Bai and Saranadasa (1996) used the following estimators for tr(3?)
under X; = 3y = 3

—

Motivated by the benefits of excluding terms like Z?Zl X;;Xij in the formulation

of T,,, we propose the following estimator of tr(X?) and tr(3%;%,):

tr(32) = {ni(n; — 1)} Hr{E75.(Xs — Xigim) Xi;(Xie — Xigiw) Xir }
and

—

tr(313s) = (nang) ~r{ B2 3202 (X — Xa) X1(Xow — Xog) Xap }
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where )_(Z-(j7k) is the 7th sample mean after excluding X;; and Xj;, and Xz-(l) is the ith
sample mean without X;;. These are similar to the idea of cross-validation, in that
when we construct the deviations of X;; and Xj;, from the sample mean, both X;; and

X are excluded from the sample mean calculation. By doing so, the above estimators

—

tr(X?) and tr(X13;) can be written as the trace of sums of products of independent

matrices. We also note that subtraction of only one sample mean per observation is

needed in order to avoid a term like || X;;|[* which is harder to control asymptotically

without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to tr(X?)

and tr(X,3,), respectively.

Theorem 2.2 Under the assumptions (2.6)-(2.9) and (2.11), for i =1 or 2,

r(32) (51 5,)
i) Py gpd 2122
=2 " (e,

(2

p
—1 asp andn — oo.

.

A ratio-consistent estimator of o2, under Hj is

— e~

a-nl — ﬁtr(gf) + ﬁtr(x%) + 4 tr(Zlgg).

nin2

This together with Theorem 2.1 leads to the test statistic,
Qn="T,/0m <, N(0,1) aspandn — oo

under Hy. The proposed test with an « level of significance rejects Hy if @, > &,

where £, is the upper a quantile of N(0,1).
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2.3.4 Power properties of the proposed test

Theorem 2.1 and Theorem 2.2 allow us to discuss the power properties of the
proposed test. The discussion is made under (2.9) and (2.10), respectively. The power

under the local alternative (2.9) is

Bua(llpn — pof|) = @ —£a+nk(1_k)||“1_“2“2 , (2.16)

2t {S(k)2}

where 3 (k) = kX; + (1 — k)X, and @ is the standard normal distribution function.
The power of the Bai-Saranadasa test has the same form if ¥; = ¥, and if p and n

are of the same order.

The power under (2.10) is

— 2 i 2
Bua(llin = pll) = @ <_?§a ; M) _p (M)

n2 Oni Onl
as 0,1/0n2 — 0. Substitute the expression for ¢,;, and we have

nk(1 = k)|lp — pol?
21 {S(k)2}

Bra([lpn — pa|[) = @

(2.17)

Both (2.16) and (2.17) indicate that the proposed test has non-trivial power under

the two types of the alternative hypothesis as long as

nllp = pal 2/ tr{S(k)?}

does not vanish to 0 as n and p — oo. The flavor of the proposed test is different from
tests formulated by combining p marginal tests on Hy, (defined after (2.1)) for [ =
1,...,p. Such tests are usually constructed via maxi<;<,T,; where T}, is a marginal
test statistic for Hy,. This is the case of Kosorok and Ma (2007) and Fan, Hall and Yao

(2007). A condition on p and n is needed to ensure (i) convergence of maxi<j<, Ty,
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and (ii) p can reach an order of exp(an?) for positive constants o and 3. Usually some
additional assumptions are needed; for instance, Kosorok and Ma (2007) assumed each
component of the random vector has compact support for testing means.

Naturally, if the number of significant univariate hypotheses (u1; # o) is a lot
less than p, which is the so-called sparsity scenario, a simultaneous test like the one
we propose may encounter a loss of power. This is actually quantified by the power
expression (2.16). Without loss of generality, suppose that each p; can be partitioned

as (ul(-l)/,,u?)l)/ so that under H; : ugl) = ugl) and pf) + ug), where ugl

(2)

%

) is of P1
dimensional and y;~ is of py dimensional and p; + ps = p. Then ||p; — pe|| = p26? for
some positive constant §2. Suppose that \,,, be the smallest non-zero eigenvalue of

(k). Then under the local alternative (2.9), the asymptotic power is bounded above

and below by

LI g+ Lo
<1>< ot = T, < B(Ilm mll)éq)( &Y*\/MAW))'

If p is very large relative to n and p, under both high-dimensionality and sparsity, so

that nk(1 — k)pan®//2(p — mo) — 0, the test could endure low power. With this in
mind, we check on the performance of the test under sparsity in simulation studies
in Section 2.5. The simulations show that the proposed test has a robust power
and is in fact more powerful than tests based on multiple comparisons with either
the Bonferroni and false discovery rate (FDR) procedures. We note here that, due
to the multivariate nature of the test and the hypothesis, the proposed test cannot
identify which components are significant after the null multivariate hypothesis is
rejected. Additional follow-up procedures have to be employed for that purpose. The
proposed test becomes very useful when the purpose is to identify significant groups
of components like sets of genes, as illustrated in Section 2.4. The above discussion

can be readily extended to the case of (2.10) due to the similarity in the two power
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functions.

The proposed two-sample test can be modified for paired observations {(Y;1, Yio) }1;
where Y;; and Y, are two measurements of p-dimensions on a subject ¢ before and
after a treatment. Let X; = Yo — Yy, p = E(X;) and ¥ = Var(X;). This is effectively

a one-sample problem with high-dimensional data. The hypothesis of interest is
Hy:p=0 vs Hy:u#0.

We can use F,, = X7, X;X;/{n(n — 1)} as the test statistic. It is readily shown that
E(F,) = p'p and Var(F,) = ﬁtr(ﬂ%){l + o(1)} under both Hy and H; if we
assume a condition similar to (2.9) so that u' S = o{n~'#r(%?)}, and the asymptotic
normality of F}, by adding tr(X%) = o{tr?(3?)}, a variation of (2.11), can be established
by utilizing part of the proof on the asymptotic normality of T;,. The tr(3?) can be
ratio-consistently estimated with n; replaced by n in tr/(\E%) which leads to a ratio-
consistent variance estimation for Fj,. Then the test and its power can be expressed
in similar ways as those for the two-sample test.

When p = O(1), which may be viewed as having finite dimension, the asymptotic
normality as conveyed in Theorem 2.1 may not be valid anymore. It may be shown
under conditions (2.6)-(2.9) without (2.11), as condition (2.11) is no longer relevant
when p is bounded, that the test statistic (ny + ny)7,, converges to 25221 mxil where
{x3,}i", are independent x? distributed random variables, and {n};*, is a set of
constants. The conclusion of Theorem 2.2 remains valid when p is bounded. The
proposed test can still be used for testing in this situation of bounded dimension with

estimated critical values via estimation of {nl}?ﬁ - However, people may like to use a

test specially catered for such a case, for instance, Hotelling’s test.



26
2.4 Gene-set Testing

Identifying sets of genes which are significant with respect to certain treatments is
the latest development in genetics research (Barry et al., 2005; Nettleton et al., 2008;
Efron and Tibshirani, 2007; Newton et al., 2007). Biologically speaking, each gene
does not function individually in isolation. Rather, one gene tends to work with other
genes to achieve certain biological tasks.

Suppose that S;,---, S, are ¢ sets of genes, where the gene-set S, consists of p,
genes. Let Fs, and Fys, be the distribution functions corresponding to S, under the
treatment and control, and p;s, and pas, be their respective means. The hypothesis

of interest is
Hog : us, = pos, for g=1,---.q.

The gene sets {gS'g}g:1 can overlap as a gene can belong to several functional groups,
and p,, the number of genes in a set, can range from a moderate to a very large
number. So, there are issues of both multiplicity and high-dimensionality in gene-set
testing.

We propose applying the proposed test for the significance of each gene-set S,
when p, is large. When p, is of low-dimension, Hotelling’s test may be used. Let
pvg, g = 1,---,q be the P-values obtained from these tests. To control the overall
family-wise error rate, we can employ the Bonferroni procedure; to control FDR, we
can use Benjamini and Hochberg (1995) method or its variations as in Benjamini and
Yekutieli (2001) and Storey et al. (2004). These lead to control of the family-wise error
rate or FDR in the context of gene-sets testing. In contrast, tests based on univariate
testing have difficulties in producing P-values for gene-sets.

Acute Lymphoblastic Leukemia (ALL) is a form of leukemia, a cancer of white
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blood cells. The ALL data (Chiaretti et al., 2004) contains microarray expressions
for 128 patients with either T-cell or B-cell type Leukemia. Within the B-cell type
leukemia, there are two sub-classes representing two molecular classes: the BCR/ABL
class and NEG class. The data set has been analyzed by Dudoit et al. (2008) using a
different methodology.

Gene-sets are technically defined in the Gene Ontology (GO) system that provides
structured and controlled vocabularies producing names of gene-sets (also called GO
terms). There are three groups of Gene ontologies of interest: Biological Processes
(BP), Cellular Components (CC) and Molecular Functions (MF). We carried out pre-
liminary screening for gene-filtering using the approach in Gentleman et al. (2005),
which left 2391 genes for analysis. There are 575 unique GO terms which have more
than 10 genes in BP category, 221 in MF and 154 in CC for the ALL data. The largest
gene-set contains 2059 genes in BP, 2112 genes in MF and 2078 genes in CC; and the
GO terms of the three categories share 1861 common genes. We are interested in
detecting differences in the expression levels of gene-sets within a subset of B-cell ALL
data between the BCR/ABL molecular sub-class (n; = 37) and the NEG molecular
sub-class (ny = 42) for each of the three categories.

We applied the proposed two-sample test with a 5% significance level to test each of
the gene-sets in conjunction with the Bonferroni correction to control the family-wise
error rate at 0.05 level. It was found that there are 259 gene-sets declared significant
in the BP group, 110 in the MF group and 53 in the CC group. Figure 2.1 displays
the histograms of the P-values and the values of test statistic (),, for the three gene-
categories. It shows a strong non-uniform distribution of the P-values with a large
number of P-values cluster near 0. At the same time, the @Q,-value plots indicate

the average (),-values are much larger than zero. These explain the large number of
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significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high. This is
mainly due to overlapping gene-sets. To appreciate this point, we computed for each
(say ith) significant gene-set, the number of other significant gene-sets which overlap
with it, say b;; and obtained the average of {b;} and their standard deviation. The
average number of overlaps (standard deviation) for BP group was 198.9(51.3), 55.6
(25.2) for MF and 41.6 (9.5) for CC. These numbers are indeed very high and reveal
the gene-sets and their P-values are highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly splitting
the 42 NEG class into two sub-classes of equal sample size and testing for mean
differences. This set-up led to the situation of Hy. Figures 2.2 reports the P-values
and @),,-values for the three Gene Ontology groups. We note that the distributions of
the P-values are much closer to the uniform distribution than Figure 2.1. It is observed
that the histograms of (),,-values are centered close to zero and are much closer to the

normal distribution than their counterparts in Figure 2.1 which is reassuring.

2.5 Simulation Studies

In this section, we report results from simulation studies which were designed
to evaluate the performance of the proposed two-sample test for high-dimensional
data. For comparison, we also conducted the test proposed by Bai and Saranadasa
(1996)(BS test), and two tests based on multiple comparison procedures by employing
the Bonferroni and the FDR control (Benjamini and Hochberg, 1995). The Bonferroni
procedure controls the family-wise error rate at a level of significance o which coincides
with the significance for the FDR control, the proposed test and the BS test. In the

two multiple comparison procedures, we conducted univariate two-sample t-tests for
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the univariate hypotheses Hy; : p1; = poy vs.  Hy :pyg # pgy for 1 =1,2,--- ' p. We
reject the null Hy : 1 = po if there exists an [ € {1,---p} such that Hy, is rejected.
Two simulation models for X;; are considered. One has a moving average structure
that allows a general dependent structure; the other could allocate the the alternative
hypotheses sparsely which enables us to evaluate the performance of the tests under

sparsity.

2.5.1 Moving average model

The first simulation model has the following moving average structure:
Xijk = p1Zijk + p2Zijir + -+ + PpZijhip—1 + Hij

fori=1and2,j=1,2,--- ,n;,and k=1,2,---,p where {Z,,} are respectively i.i.d.
random variables. We consider two distributions for the innovations {Z;;,}. One is a
centralized Gamma(4, 1) so that it has zero mean, and the other is N(0,1).

For each distribution of {Z;;;}, we consider two configurations of dependence
among components of X;;. One has weaker dependence with p; = 0 for [ > 3. This
prescribes a “two dependence” moving average structure where X;;,, and X, are
dependent only if |k; — ko| < 2. The {p;}}_, are generated independently from U (2, 3)
which are p; = 2.883, po = 2.794 and p3; = 2.849 and are kept fixed throughout the
simulation. The second configuration has all p;s generated from U(2,3), and again
remain fixed throughout the simulation. We call this the “full dependence case”. The
above dependence structures assign equal covariance matrices Y, = Xy = ¥ which
allows a meaningful comparison with the BS test.

Without loss of generality, we fix ©; = 0 and choose ps in the same fashion as
Benjamini and Hochberg (1995). Specifically, the percentage of true null hypotheses
py = pg for [ = 1,--+ p are chosen to be 0%, 25%, 50%, 75%, 95% and 99% and
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100% , respectively. By experimenting with 95% and 99% we gain information on
the performance of the test when puq; # uo are sparse. It provides empirical checks
on the potential concerns of the power of the simultaneous high-dimensional tests as
made at the end of Section 2.3. At each percentage level of true null, three patterns
of allocation are considered for the non-zero g in pig = (fo1,- -+ , pop)": (i) the equal
allocation where all the non-zero ug are equal; (ii) linearly increasing and (iii) linearly
decreasing allocations as specified in Benjamini and Hochberg (1995). To make the
power comparable among the configurations of Hy, we set 1 =: ||u1 — po|[>//tr(2%) =
0.1 throughout the simulation. We choose p = 500 and 1000 and n = [20log(p)] = 124
and 138, respectively.

Tables 2.1 and Table 2.2 report the empirical power and size of the four tests
with Gamma innovations at a 5% nominal significance level or family-wise error rate
or FDR based on 5000 simulations. The results for the Normal innovations have a
similar pattern and are shown in Table 2.3 and Table 2.4. The simulation results
in Tables 2.1, 2.2, 2.3 and 2.4 can be summarized as follows. The proposed test
is much more powerful than the BS test for all cases considered in the simulation
while maintaining a reasonably-sized approximation to the nominal 5% level. Both
the proposed test and the BS test are more powerful than the two tests based on the
multiple univariate testing using the Bonferroni and FDR procedures. This is a little
expected as both the proposed and the BS test are designed to test for the entire
p-dimensional hypotheses while the multiple testing procedures are targeted at the
individual univariate hypothesis. What is surprising is that when the percentage of
true null is high at 95% and 99%, the proposed test still is much more powerful than
the two multiple testing procedures for all three allocations of the non-zero components

in po. It is observed that the sparsity (95% and 99% true null) does reduce the power
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of the proposed test a little. However, the proposed test still enjoys good power,
especially when compared with the other three tests.

We also observe that when there is more dependence among multivariate compo-
nents of the data vectors in the full dependence model, there is a drop in the power for
each of the tests. The power of the tests based on the Bonferroni and FDR procedures
is alarmingly low and is only slightly larger than the nominal significance level.

We also collected information on the quality of ¢r(3?) estimation. Table (2.5)
reports empirical averages and standard deviation of 157’(/2\2) /tr(3?%). Tt shows that the
proposed estimator for ¢r(3?) has a much smaller bias and standard deviation than
those proposed in Bai and Saranadasa (1996) in all cases, and provides an empirical

verification for Theorem 2.2.

2.5.2 Sparse model

An examination of the previous simulation setting reveals that the strength of the
“signals” p9; — p1; corresponding to the alternative hypotheses are low relative to the
level of noise (variance) which may not be a favorable situation for the two tests based
on multiple univariate testing. To gain more information on the performance of the

tests under sparsity, we consider the following simulation model such that
X =Zw and  Xoy =+ Zyy forl=1,....p

where {Z1;1, Zoy }7_, are mutually independent N (0, 1) random variables, and the “sig-

nals”,
w =ey/2log(p) forl=1,...,q=[pand ;=0 forl>gq,

for some ¢ € (0,1). Here ¢ is the number of significant alternative hypotheses. The

sparsity of the hypotheses is determined by c¢: the smaller the c is, the more sparse
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the alternative hypotheses with p; # 0. This simulation model is similar to the one
used in Abramovich et al. (2006).

According to (2.16), the power of the proposed test has asymptotic power

np'“~ 2 e2log(p) >

2v2

which indicates that the test has a much reduced power if ¢ < 1/2 with respect to p.

B(llul)) = @ (—m

We, therefore, chose p = 1000 and ¢ = 0.25,0.35,0.45 and 0.55, respectively, which
leads to ¢ = 6, 11,22, and 44, respectively. We call ¢ = 0.25,0.35 and 0.45 the sparse
cases.

In order to prevent trivial powers of a or 1 in the simulation, we set ¢ = 0.25
for ¢ = 0.25 and 0.45; and € = 0.15 for ¢ = 0.35 and 0.55. Table 2.6 summarizes the
simulations results based on 500 simulations. It shows that in the extreme sparse cases
of ¢ = 0.25, the FDR and Bonferroni tests did have higher power than the proposed
test. The power were largely similar among the three tests for ¢ = 0.35. However,
when the sparsity is moderated to ¢ = 0.45, the proposed test starts to surpass the
FDR and Bonferroni procedures. The gap in power performance is further increased
when ¢ = 0.55. Table 2.7 reports the quality of the variance estimation in Table 2.6
which shows the proposed variance estimators incur very little bias and variance for

even very small sample sizes of n; = ny = 10.

2.6 Technical Proofs

Derivations for E(7,) and Var(T,): As

i#j i#£]
nl(nl — 1) TLQ(?”LQ — 1) ANy

. an X{lej En2 XélXQJ Z?;1E?i1XizX2J

n —

it is straightforward to show that FE(T},) = ujp + phpte — 21 pe = [|pn — pa2l]?.
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n1 oy . n2 xr. . n1 "2 ’ .
Let P, = %, P, = % and P; = —2%. It can be shown
that
1 n
Var(Py) = W2(ny — 1) [22<55>¢m>”{(21 + ) (B + mu’l)}
FASEL g B+ G} S| —
2 4y 3
e ——— it St T}
nl(nl . 1) T’( 1) + n )
2 441530112
Var(Py) = ————tr(%? e
CLT( 2) ng(’l’l,g _ 1) T( 2) + Ng )
4uh% 4, %
Var(P;) = tr(,5) + 2k A
nin9 n1 %)
and
4u) ¥ 41,5
Cov(Py, Ps) = sl and Cov(Py, Ps) = _Hasaka
n N2

Because the two samples are independent, Cov(P;, P;) = 0. In summary,

2 2 4
_ tr(32 —tr(3 2
nl(nl — 1) 7“( 2) + 7”( 1 2)

Var(T,) = -
ar( ) ng(ng — 1) ninog

tr(X3) +
4 / 4 )
(1 — p2) B (p1 — pr2) + — (1 — p2)' Ba(p1 — pi2).
nq na
Thus, under H

2
Var(T,) = 02, =1 —————tr(33) +
( ) 1 nl(nl . 1) ( 1)

2
tr(X2) +

_— tr(2129).
na(ng — 1) nins r(¥i2)

Under Hi : pg # pa, with (2.9),
Var(T,) = op {1+ o(1)};

and with (2.10),
Var(T,) = o,{1+o(1)},

where 07, = (11 — 1) S1 (1 — p2) + (1 — p2) Sa (g — poa)-



34

Asymptotic Normality of T,,: We note that T,, = T},; + T,,2 where

T Y (Xui — ) (X5 — i) N 22 (Xoi — p2)'(Xoj — o)
" ni(ny —1) na(ng — 1)
¥yt (Xy — p)'(Xoy —
o Tim P2 (X — ) (X2 — p2) (2.18)
nin2
and
2% (X — ) (e — 272 ( Xy — t1) (11 —
T, = Zm X m) i =) | 282 (Xei — ) (2 =) e

ny na

It is easy to show that E(T,;) = 0 and E(Tys) = ||p1 — p2||?, and

Var(Thy) = Apn — p2) 21 (1 — pa) | 4o — 1) Ba(po — )

+ 3
nq U
Var(Ton) S tr(ED) + o tr(S) + ——tr(BiT)
ar(dp1) = ———<tr T " '
1 ’I’L1<nl N 1) 1 n2(n2 . 1) 2 n1Mo 1442
Under (2.9), as
Ty — ?
( 2 ||N1 2|| ) _ O(l),
— [ — qu T
= — +0,(1). 2.19
\/Var Onl 1) | )
Under (2.10),
To =l M2|’2_Tn2—‘|ﬂl_ ||2+0(1) (2.20)
P\ )

Vv Var(T, B On2

As T}, are independent sample averages, its asymptotic normality is readily attain-
able as showed later. The main task of the following proof is for the case under (2.9)
when 7},; is the contributor of the asymptotic distribution. From (2.18), in the deriva-
tion for the asymptotic normality of T},;, we can assume without loss of generality

that gy = pe = 0.
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Let V; = Xy; fori =1,--- ,ny and Yy, = Xy; for j = 1,--- ,ng, and for ¢ # j,

define ¢;; as follows,

nn = 1)WY, g € {12, ni,
Gij =1 —ni'ny Y'Y, ifie{l,2,--- ,m}andje{n +1,--- ,ny+no}
ny't(ne —1)7W/Y;,  ifd i€ {n+1,- g +ngt.
Define V,,; = 25;11 ¢ij for j = 2,3,--- ,n = ny 4+ ng, Spm = 27:2 Voj and Fp =
o{¥1,Ys, -+ Y, } which is the o-algebra generated by {Y1,Ys, -+ ,Y,,}. Now T, can

be rewritten as 7, = 2 Z;:QF"Q Vi

Lemma 2.1 For each n, {Snm, Fam}—; is the sequence of zero mean and a square

integrable martingale.

Proof:

It’s obvious that F,,;_; C F,;, for any 1 < j <n and S,,, is of zero mean and square
integrable. We only need to show E(S,q|Fnm) = Spm for any ¢ > m. We note that
if j < m < n, then E(Vy;|Fpm) = S E(bij| Fm) = Y- ¢i; = Vis. If j > m, then
E(¢ij| Fam) = E(Y Y| Fm)-

If ¢ > m, as Y; and Y are both independent of F,,,,
E(¢ij| Fum) = E(dij) = 0.
If i <m, E(¢ij|Fnm) = EVY/Y;|Fom) =Y/ E(Y;) = 0. Hence,
E(V,i|Fnm) =0.

In summary, for ¢ > m, E(Su|Fnum) = Z?ZIE(an\fnm) = X" Vi = Spm. This

completes the proof of the lemma.



36

Lemma 2.2 Under Condition (2.9),

S BV Faal P

1
0731 S
Proof:
Note that
j—1
BV i) {(ZYY) mj—l} —5( X n’lwmfmﬂ)
i1,i0=1
= Z }/le YY/|F7’LJ 1 Z 2
i1,i2=1 i1,ip=1
= Z T e

i1,i2=1
where f]j =3, and n; = ny, for j € [1,ny] and f]j =Y, Ny =ng, if j € [0y +1,n1 +

712].

Define 7, = Zn1+”2 E(V2|Fuj-1). Then

E(p) = tr(%?) tr(X%3) tr(X139)
i n 2n1(n1 — 1) 2712(712 — 1) (n1 — ].)(TLQ — ].)
= iail{l +o(1)}. (2.21)
Now consider
ni+nz J—1 2
B = B iy, }
]2; “%:1 7, nj—l) ’

nitnz -1 jo—1 i
_ T vy Ty (222
2ED> X, 2 N, e 4

n;, \n
2<j1<ja i1,i2= 1z3 ig=1 J2( J2
ni+nz J—1 - ~
j / Zj
" (= 1) e s 1)
J=2 i1,i9=1143,i4=1 VANRY)

= 2E(A)+ E(B), say,
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where

ni+nz Ji—1 ja—1
>

4= 2, 2 D Vg n 1)1421@;—”]2(%;_1)&4,

2<]1<]2’L1 190= 113 i4=1
nit+ng j—1 - S

3
B = > > Z (7 _UKQYzQﬁijJ_ 1)Y¢4. (2.23)

J=2 1i1,i2=1143,i4=1

The term B can be further partitioned as B = B; + By and
nt J—1 7—1 Z 21
E(B)) = FE v/ — =L vy — =Ly, b
( 1) {Z . Z zlnl(nl_l) 2 13n1(n1_1) 4}

ni+ng  j—1  j—1 22 EQ
E(B,) = E Y/ Y, Y, Yi, ¢
B = B 5 5 Vi )

j:n1+1 i17i2:1 i3,i4:1

We only prove here that F(B;) = o(col,) as E(By) = o(c2,) can be proved by following
the same procedure.

Consider different combinations of iy, i, i3, 74 such that

E(By) = {ii{ m - 1)Y“Y/2 (nzll— 1)”2}

J=2 i1#£iz
ni ] 1 E
+2 { }/;2}/;/ 1 }/;1}
]z;z; n1 - 1) 2nl(nl - 1)
ni ] 1 2
; ; "y — 1) ni(ny —1)
= : E(Bu) +2E(Bw) + E(Bua),
where
ny J—1
2 )y
B, = {Yzll—Y;lY;;—lYm},
=2 i1 i ni(n —1) 1(ng —1)
ny J—1
X )y
D 35 T e
=2 i1 is ni(ng —1) ni(ng —1)
ny j—1

Bu = {v Y,
e — < ‘ni(ny—1) " (g — 1)
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and
m It tr
B(Bu) = 33 i~y = Ol )i (58) = ol
Jj= 221#@2 L
ny J—1 4
tr(X7) -5 4 4
E(Byw) = Z Z iy — 1)t = O(ny”)tr (%)) = o(oy),
J=2 i1#02
ny j—1 2
E(Bi) = E {Y’ YL vy - Yi}
=2 el sl nl—l) nl(nl—l)
ny j—1
j=2 i=1
ni j 1
— (g —1) 4ZZ{AZ5}; + 2t (S + tr (22)}
7j=2 =1
= {AZ&llll + 2tr(2]) + tr* (3] )} =o(o2)). (2.24)
Note that:

TS = (657 ) s
S (E) <SG U2 = (D5 04T 54 T) = tr(Sh).

Then we have proven that E(B;) = o(cl,) and E(By) = o(c?,) can be proved similarly.
To show Var(n,)/ok, = o(1), we proceed with E(A).

ni+nz  Ji—1 j2—1
b))

-2 2 Y e W

n;, (n
2<j1<g2 91,i2=113,i4=1 2( J2

As py = ps = 0, we only need to consider iy,is,43 and i4 in these four cases: (a)
(i1 = i2) # (i3 = da); (b) (i1 = d3) # (2 = ia);(c) (ix = da) # (i2 = i3); (d)
iy = iy = i3 = i4. For j; and j,, we can have three possible combinations: (1)j; <

Jo <5 (2)1 < ny < a2y (3)n < ji < j2. Then

B r?(3%) tr2(%2) tr(X)tr(X,3,) tr(X2)tr(X,3,)
2B(4) = {4n%(n1 —1)2 4dn2(ny—1)2 ni(np—1)(ne—1) n3(ny—1)(ny—1)
r2(313,) tr(X2)tr(X2)

}{1 +o(1)}.

nlng(nl — ].)(TLQ — ].) 2711(711 — 1)712(712 — 1)
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Hence, from (2.22) and (2.23),

9 tr2(x2) tr2(2) tr(SH)tr(X,3,) tr(X2)tr(X13,)
E ) {4n%(n1 —1)2  4dn3(ny—1)2  n3(ny—1D(na—1) n3(ng—1)(ney —1)
7“2(2122) tT’(E%)tT(E%)

) } +o(ad). (2.25)

nlng(nl — 1)(712 — 1) 2n1(n1 — 1)%2(712 —1

Based on (2.21) and (2.25),
Var(n) = E(n,) — E*(n.) = o(oy,)- (2.26)
Combine (2.21) and (2.26), and we have
—2E{Z"1+"2E(V2 | Foie 1)} =iand o 4var{2“1+"2E(v2 | Fie 1)} =o(1).
This completes the proof of Lemma 2.2.

Lemma 2.3 Under condition (2.9),

n1+na

Z o I(|Vij| > €01)|Fnjr} == 0.

Proof:
We note that Y73 0, P E{VZI(|Voy| > €0)| Frjor} < o, €130 E(V,L|Fjoa)

for some ¢ > 2. By choosing ¢ = 4, the conclusion of the lemma is true if we can show

n1+n2

B{ Y BO4Fy)} = olohy). (2.27)

=2
We notice that

E{iE |Fn]1}=n§2E< nfqu(Z%)

nit+ng j—1

= Z Z gbzlj ¢22] ¢13J ¢z4]>

J=2 41,i2,i3,i4
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The last term can be decomposed as 3¢) + P where

ni+ng j—1

Q= Z ZE ¢t1

j=2 s#t
and P = E?;ZF”ZZQ}E(QSS]) Now (2.27) is true if 3Q + P = o(c?,). We consider the

term () and P separately. Note that

ni+ng j—1
Q=00 > 3 B{tr (VYY) b = olohy).

J=2 s#t

The last equation follows the similar procedure in (2.24) in Lemma 2.2. It remains to

show P = Z?;;”QZf;:E(gbsj)‘l = o(cl,). Note that

ny j—1 ni+ng j—1
Po= 2 D B+ >, ) E(6y)'
j=2 s=1 j=ni+1 s=1
ny j—1 ni+nz ni ni+ng  Jj—1
= 22 B DL D E@y) D, > Eloy)
j=2 s=1 j=ni+1 s=1 j=ni1+1s=n1+1
= P+ P+ P,

where P, = 27;2 Zi;} E(¢s)", P = Z;L;:?j—l PR E(¢s;)* and
ni+ng

=Y ey

j=ni1+1s=n1+1
Define [Ty =: (03j)mxms D180t =1 (02 ) s and (D)2a01)? = (05 )xm. Note

U

that the following facts which will be used repeatedly in the rest of this section:

v < (3 02)? = tr? (r’lrgr;n) — 125, 5,),

IMS

w—l i,5=1
m
21\2 2
Z Z Yijy wz ) < Zvij) = tr°(X:3,),
i=1 Jﬁﬁjz ij=1
m
e
Z Z Vi1 1 Viyja Vig gy Vigjo < Z 1112 Uiio < Z 1112 11127
11#2 J1#72 i1749 =1
m
2 2 4
Z Ul(ll')2vlg1l')2 = Zvi(u')l =tr <F322F1F322 ) { Z EQ }

i1,40=1 i1=1
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Let us consider P, first. Note that

ni+n2 n1 ni+n2 ni
= > D B0y =00 Y Y B(X1X m) .
j=ni+1 s=1 j=n1+1 s=1

For P, term, let us focus on X|;Xs; only (i.i.d.). Then, from (2.6),

m 4
E(X{1X21)4 = E(Zi1F,1F2Z21)4 = E( Z lez’%‘jzmj)

ij*l
m m
S Y B+ Ay +Z B+a)Y 2,
i=1 j=1 J17é]2
m
T Z 3 ™ A Z Uu] zzj +9 Z Z Uiy j1 Via gz Vigja Vizja
ji= 11712 11742 J17£]2

=0

——

tr2(2122)} +O [tr{(ElEz)QH.

Then we conclude

ni+nz ni

Py =0(n™®) 42 3 <O{tr2(2122)} v o[tr{(zle)Z}D
— O(n~°) (O{trQ(ElZg)} + O[tr{(ElEg)QH) = o(0t)).

We can also prove that P, = o(c?,) and P3 = o(o};) by going through the similar

procedure. This completes the proof of the lemma.

Proof of Theorem 2.1:

We note equations (2.19) and (2.20) under conditions (2.9) and (2.10), respectively.
Based on Corollary 3.1 of Hall and Heyde (1980), Lemma 2.1, Lemma 2.2 and Lemma
2.3, it can be concluded that T,1/0.1 4N (0,1). This implies the desired asymp-
totic normality of 7,, under (2.9). Under (2.10), as T2 is the sum of two independent
averages, its asymptotic normality can be attained by following the standard means.

Hence the theorem is proved.



42

Proof of Theorem 2.2:

—

We only present the proof for the ratio consistency of tr(3?) as the proofs of the other

two follow the same route. We want to show

— —

E{tr()} = tr(E2){1 +o(1)} and Var{tr(X3)} = o{tr*(23)}. (2.28)

For notation simplicity, we denote X;; as X;, n; as n and ¥; as X, since we are
effectively in a one-sample situation.

Note that

—_—

(%) = {nln = D} r{ (X = p+ o= X)X — o+ p)

(Xi = s+ = X)) (X — o + M)/}
= {n(n—1)}""tr {Z {(Xj — (X — ) (Xi — ) (X — )’
jk
— 2(X(i — (X = ) (X = ) (X — )+ 2(X; — g (X — p)(Xy — )’

— 22X — ' (X = 1) (Xi = 1)’ + (X gy — ) (X — 1) (X — 1) (X — 1)’
— {20 — i (X — ) (Xe = 1) = 2(X gy — ' (X iy — 1)(Xie — 1)’

+ (X = ) (Xy — i’ = 2(X iy — ) (X — )/
10
+ (Xgw — ' (Xgw — M)M/}} =) tr(A),say.
=1
where A; for [ =1,2,--- 10 are defined as:

A = ﬁ D (X5 = i) (X = ) (X — ) (X — o'

ik
Ay = —ﬁ D (K — (X5 = 1) (X — ) (X — 1)’
ik
Ay = —— SO — ) (X — 1) (X — ).
n(n —1) =
A= _n(nQ— 1) > (X = ' (Xp = ) (X — o),



Ay = s (K = 10 = ) (s = ) (X = ).
J#k
A = == S = ) (K — 1)(Xe — 1),
n(n —1) =
A7 = 2_ Z(X(j,k) — )i (X gy — ) ( Xy — ),
n(n —1) =

J#k
2 S
Ag = — Xy — X, — !
Oy E (Xiwy — ' (X — ppt',
J#k
1 o .
Apg=—— § Xiiw — "(Xijm — !
10 n(n—1) #k( Gk — R (Xey — pp

It can be shown that E{tr(A;)} = tr(¥?), E{tr(A;)} = 0 for i = 2,---,9 and
E{tr(Ay)} = w'Su/(n —2) = o{tr(X?)}. The last equation is based on (2.9). This
leads to the first part of (2.28). The second part is true given the sufficient conditions

that

Var{tr(Al)} = 0{757‘2(22)} and Z((gg = 0p(1), for 1 =2,3,---,10.

Note that ¢r(Ajg) is non-negative and F{tr(Ay0)} = o{tr(X?)}. Then tr(Ay) =

op{tr(3?)} since
t’f‘(Al()) E{tT(Alo)} .
P{ tr(32) ~ 6} < etr(¥?) o(1)-
We shall only show Var{tr(A;)} = o{tr(3?)} here. Derivations for other Var{tr(A4;)}

are quite similar. Note that

mE [tr{ jg;l(Xj — ) (X, — ) (X — ) (X, — M)'}
X tr{ i (X, = 1) (Xjy — 1) ( Xy — ) (X, — M)'H — tr?(X?).
JaFka

Var{tr(A;)} =
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It can be shown, by considering the possible combinations of the subscripts 71, k1, 72

and ko, that
Var{tr(A)} = QE{(Xln—O/;L)_(iQ _ ’u)} + iiz:?)E{()ﬁ —u)'S(X, — ﬂ)}Q
(n—=2)(n—=3), 5 o 2§12
+ i —1) tre (%) — tre(X9)
_. 2 4(n —2) 22
= Bt Pt o{tr (= )}, (2.29)

where (( ))B12 = o{tr?(¥?)} which can be shown based on (2.24). Note that

/
By = E(ZiT' FZz = E leVstZ2t
s,t=1
m
= E( E Vsit1VsotoVsstsVsyty Z1s1 215921537154 2214 Z2t222t322t4)

$1,52,83,84,t1,t2,t3,64=1
16
_§ : (4)
—_— Bll .
Jj=1

Define tr(I'T") = (Vst)mxm- The following combinations of the subscripts s1,52,53,54

and tq,t9,t3,t4 lead to none zero Bg):

(1) if(sl:52:53:84),(t1=t2=t3=t4>:Bﬁ)z vy (3 + A)°

(2) 1f (81 = S9 # S3 = 84), (tl = t2 = t3 = t4) : BS) = Z slty32t<3 + A),
s1#£sa,t=1

(3)if (s1 =83 # s2=354), (L =ta =13 =14) : Bﬁ) = Z vive (3 + A);
s1#£s9,t=1

(4) if (51 =54 # 59 = 53), (1 =to =3 =t4) : B}} = > B+ D)
s17#82,t=1

(5) if (51 = 83 = 83 = s4), (1 = ta # ty = ta) : B = Z Vi Ve, (3 4+ A);
t1#ta,s=1

(6) if (51 =89 = 83 = 54), (t1 = t3 # ta = t4) : ng) = Z Vi Ve, (3 4+ A);

tl#tQ,S—l
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(7) lf (81282283284) (tl—t47ét2—t3 Z st1 stg 3+A)
t1#t2,s=1

(8)if (s1= 82 # 83 = s4), (1 = ta # 1y = ta) : B = Z Vot Vonta
t1#£t2,517#52=1

(9) 1f (Sl = S2 7é S3 = 84)7 (tl - t3 7é t? - t4) : Bfi) - Z V81t1ysltzysgt1V82t2;
t1#t2,817#s2=1
m

(10) if (51 = S2 7é 53 = 54)7 (tl = t4 7é t? = t3) : BSO) = Z Vsit1VsitoVsotoVsoty 3

t1#t2,517#52=1
m

(11) if (51 = S3 7£ SS9 = 84), (tl = tQ # t3 = t4) : Bﬁl) = Z Vgit1Vsot1 VsitaVsatas
t1#£t2,517#s52=1

(12) if (31 = 53 7& S2 = 34)7 (tl =13 7é lo = t4) : BSQ) = Z V§1t1ys22t2;
t1#£t2,517#s2=1
m

(13) if (51 = 53 7& So = 54)’ (tl = Z54 7& tQ = t3) : Bﬁg) = Z Vsit1VsotaVsitaVsaty s

t1#£t2,517#52=1
m

(].4) if (51 = S4 ?é So = 83), (tl = t2 7& t3 = t4) : 384) = Z Vgit1Vsoti1 VsataVsitys
t1#£t2,517#s2=1

(15) if (51 = 84 # 89 = 53), (t1 = t3 £ tp = 14) : Bﬁgj) = Z Ve Vit
t1#£t2,817#52=1
m

(16) if (s1 =sa A2 =53), (h =ta A ta=1t3) : BL" = > 12,02,

t1#t2,517#52=1

Note that ¢r?(3?) = tr*(TT'TT’) = (Zthl Vi)t = 22’52%@:1 V2, vi,, and

tr(2Y) = tr(DTITITIT) = ) Ve, VertaVsats Vet

t1,t2,51,52=1

It can be shown that By < ctr?(3?) for a finite positive number ¢ and hence Q{n(n —
1)}_1311 = 0{tr2(22)}. Therefore, from (2.29), Var{tr(Al)} = o{trz(ZQ)}. By
following the similar procedure, we can also prove that Var{tr(4;)} = o{tr?*(X?)}, for
j =2,---,9. In conclusion, Var(tr(/2\2)) = o(tr?(X?)). Therefore, tr(/E\Q) is a ratio

consistent estimator of ¢r(¥?). This completes the proof.
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Table 2.1 Empirical power and size for the 2-dependence model with gamma innovation

Type of % of p=500,n =124 p =1000,n = 138
Allocation True Null NEW BS Bonf FDR ‘ NEW BS Bonf FDR
Equal 0% 511 .399 13 16 | 521 413 11 .16
25% 521 387 .14 .16 518 410 12 .16
50% 513 .401 .13 A7 D31 422 12 A7
75% 022 389 .13 18 .30 416 11 17
95% .01 .399 .14 .16 .00  .398 .13 A7
99% 499  .388 13 A5 507 408 15 A8
100% (size) 043 .043 .040 .041 043 .042 .042 .042
Increasing 0% 520 .425 11 13 ] .522 409 12 15
25% 515 431 12 15 D23 412 .14 .16
50% D012 412 .13 15 D28 421 15 A7
75% 522 .409 .15 17 031 431 .16 .19
95% 488 401 .14 .15 .500 410 .15 A7
99% 501 .409 15 A7 511 412 15 .16
100% (size) 042 .041 .040 .041 042 .040 .039 .041
Decreasing 0% 522395 .11 A5 533 406 .09 15
25% 530 .389 A1 A5 ] 530 422 11 A7
50% 528 .401 12 A7 D22 432 12 A7
75% .33 .399 .13 18 019 421 12 A7
95% 511 410 12 .15 008 411 .15 18
99% 508 .407 14 A5 507 418 .16 A7
100% (size) 041 .042 .041 .042 042 .040 .040 .042
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Table 2.2 Empirical power and size for the full-dependence model with gamma innova-

tion
Type of % of p =500,n = 124 p = 1000,n = 138
Allocation True Null NEW BS Bonf FDR ‘ NEW BS Bonf FDR
Equal 0% 322120 .08 10 | 402 216 .09 A1
25% 318 117 .08 10 | 400 218 .08 A1
50% 316 115 .09 A1 409 221 .09 10
75% 307 113 10 A2 ) 410 213 .09 13
95% 233 128 A1 A4 1 308 215 10 13
99% 225 138 A2 A5 1 316 .207 A1 12
100%(size) 041 .041 .043 .043 | .042 .042 .040 .041
Increasing 0% 331 121 .09 A2 ] 430 225 10 A1
25% 336 119 10 A2 ) 423 231 12 12
50% 329 123 12 A4 | 422226 13 14
5% 330 .115 A2 A5 ] 431 222 14 15
95% 219 120 A2 A3 ] 311 218 14 15
99% 228 117 13 A5 1 315 217 15 A7
100%(size) 041 .040 .042 .043 | .042 .042 .040 .042
Decreasing 0% 320 117 .08 A1 411213 .08 10
25% 323 119 .09 A1 408 .210 .08 A1
50% 327 120 A1 A2 1 403 .208 .09 10
75% 322 122 12 A2 400 211 12 13
95% 217 .109 A2 A5 1 319 207 A2 15
99% 224 111 13 A6 | 327 205 A1 13
100%(size) 042 .043 .039 .041 042 211 .040 .041
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Table 2.3 Empirical power and size for the 2-dependence model with normal innovation

Type of % of p=500,n =124 p =1000,n = 138
Allocation True Null NEW BS Bonf FDR ‘ NEW BS Bonf FDR
Equal 0% b33 411 11 .16 533 .405 13 .16
25% 526 .409 .14 18 524 399 12 .16
50% D22 421 .13 .19 031 411 15 18
75% .29 416 .15 18 029 413 .15 18
95% .01 395 .14 .16 .b11 410 .15 .16
99% 500 401 15 .16 509 411 .16 A7
100%(3126) 044 .042 .042 .043 044 .043 .042 .043
Increasing 0% 524 388 12 .16 531 413 11 A7
25% .30 .390 11 A7 530 .420 12 .16
50% 531 .402 .10 18 022 421 .14 A7
75% 028  .406 12 18 529 409 .13 18
95% D11 411 11 .13 013 416 .14 .15
99% 510 412 12 13 509 413 13 15
100%(3126) 043 .041 .041 .042 044 .043 .041 .042
Decreasing 0% 529 417 13 A7 529 420 A1 15
25% D27 413 13 .16 535 .409 12 A7
50% 531 .420 12 18 520 422 .13 18
75% 032 421 .15 A7 031 418 .13 18
75% 008 412 .13 .15 012 .400 .14 .16
99% 500 .399 13 .16 503 410 15 .16
100%(3126) 042 .042 .041 .043 042 .041 .042 .042




49

Table 2.4 Empirical power and size for the full-dependence model with normal innova-

tion
Type of % of p =500,n = 124 p = 1000,n = 138
Allocation True Null NEW BS Bonf FDR ‘ NEW BS Bonf FDR
Equal 0% 303 111 .06 08 | 410 .220 .08 A1
25% 301 .109 .07 08 | 421 225 .07 10
50% 302 .109 .07 10 | 418 231 .09 A1
75% 289 111 .08 A1 326 .233 10 12
95% 277 104 .09 A0 ] 321 162 A1 15
99% 279 .100 .08 A1 318 171 A2 .16
100%(size) 041 .039 .041 .041 042 .040 .041 .042
Increasing 0% 318 108 .09 10 401 210 .07 .09
25% 321 110 .08 .09 | 403 .215 .08 10
50% 320 112 .09 A0 ] 399 213 .08 10
5% 315 115 10 A2 .339  .209 .10 12
95% 234 101 10 A1 322 155 A1 14
99% 219 102 .09 A1 308 .169 13 14
100%(size) 042 .041 .040 .041 041 .043 .039 .040
Decreasing 0% 226 .107 .07 09 379 218 .08 .09
25% 229 116 .07 .09 | .385 .209 .08 10
50% 232 119 .08 10| 380 .216 .09 A1
75% 230 111 .08 A0 ] 2391 .220 10 12
95% 217 124 .09 A2 324 204 .09 13
99% 221 120 10 A1 322 .208 10 14
100%(size) 042 .042  .041 .041 041 .040 .039 .040
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CHAPTER 3. Effects of Data Dimension on Empirical

Likelihood

3.1 Introduction

Since Owen (1988, 1990) introduced the empirical likelihood method, it has been
extended to many settings as a tool for nonparametric and semiparametric statistical
inference. Its most attractive property is its permitting likelihood-like inference in a
nonparametric or semiparametric setting. This is largely due to its sharing two key
features with the conventional likelihood: Wilks theorem and Bartlett correction (Hall
and La Scala, 1990; DiCiccio et al., 1991; Chen and Cui, 2006). See Owen (2001) for
an overview.

High-dimensional data are increasingly common; for instance, in genetic and mRNA
microarray analysis, marketing research and financial applications. There is a rapidly
expanding literature on multivariate analysis where the data dimension p depends on
the sample size n and grows to infinity as n — oo; see, for example, Portnoy (1984,
1985) in the context of M-estimation, Bai and Saranadasa (1996) for a two-sample test
for means, Ledoit and Wolf (2002) and Schott (2005) for testing a specific covariance
structure, and Schott (2007) for tests with more than two samples.

Given the interest in both high-dimensional data and empirical likelihood, there is a

need to evaluate the behavior of the latter when the data dimension and the sample size
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increase simultaneously. In this chapter, we evaluate the effects of the data dimension
and dependence on the asymptotic normality of the empirical likelihood ratio statistic
for the mean.

Let Xi,..., X, be independent and identically distributed (i.i.d.) random vectors

in RP with mean vector = (u, ..., )" and non-singular covariance matrix 3. Let

L,(p) = sup {H?lm s >0, Zm =1, Zﬂ'iXi = ,u} (3.1)
i=1 i=1

be the empirical likelihood for p and w,(n) = —2log{n"L,(n)} be the empirical
likelihood ratio statistic. When p is fixed, Owen (1988, 1990) showed that

wn () = X (3.2)

in distribution as n — oo, which mimics Wilks’ theorem for parametric likelihood
ratios. An extension of the above result for parameters defined by general estimating
equations is given in Qin and Lawless (1994).

As p — oo for high-dimensional data, the natural substitute for (3.2) is

(2p)"*{wn () — p} — N(0,1) (3.3)

in distribution as n — o0, since Xf, is asymptotic normal with mean p and variance 2p.
A key question is how large the dimension p can be while (3.3) is valid. In a recent
study, Hjort et al. (2009) have established that it is p = o(n'/?) under the assumptions:
(A1). The eigen-values of ¥ are uniformly bounded away from zero and infinity, and
(A2). Each component of X; is a uniformly bounded random variable.
When (A2) is relaxed, we have:

(A2’). E||X;/\/p||" and p~' 370, E|Xi(j) — ;]9 are bounded for some g > 4, where ||-
|| is the Euclidean norm. Hjort et al. (2009) showed that (3.3) is valid if p*+%/(@=2) /p —

0.
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When g = 4in (A2’), it means p = o(n'/%). Hence, there is a significant decrease in
the rate at which p — oo when (A2) is weakened. Tsao (2004) found that, when p is
moderately large but fixed, the distribution of w, () has an atom at infinity for fixed
n: the probability of w, (1) = 0o is non-zero. Tsao showed that, if p and n increase at
the same rate such that p/n > 0.5, the probability of w, (u) = oo converges to 1 since
the probability of 1 being contained in the convex hull of the sample converges to 0.
These reveal the effects of p on the empirical likelihood from another perspective.

In this chapter, we analyze the empirical likelihood for high-dimensional data under
a general multivariate model, which facilitates a more detailed analysis than Hjort
et al. (2009) and allows less restrictive conditions. The analysis requires neither the
largest eigenvalue of ¥ nor E||X;/,/p||? to be bounded, and hence accommodates a
wider range of dependencies among components of X;.

Our main finding is that the effect of the dimensionality and the dependence among
components of X; on the empirical likelihood are leveraged through tr(X), the trace
of the covariance matrix ¥ and its largest eigenvalue )\,. We provide a general rate
for the dimension p, which is shown to be dependent on tr(X) and A,. In particular,
under assumptions (A1) and (A42), p = o(n'/?), which improves p = o(n'/?) of Hjort
et al. (2009). This is likely to be the best rate for p in the context of the empirical
likelihood as p = o(n'/?) is the sufficient and necessary condition for the convergence
of the sample covariance matrix to X under the trace-norm when all the eigenvalues
of 3 are bounded.

Empirical likelihood is known for manifesting its higher order terms in an elegant
fashion so that it has attractive higher order properties, for instance the Bartlett
correction, as recently shown in Chen and Cui (2006) for general estimating equations.

While the involvement of the higher order terms is attractive for a fixed p, we find
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for high-dimensional data these “so-called” higher order terms may not be of higher-
order anymore as they can emerge as terms of the same magnitude or larger than the
previous leading term in the fixed p case. This is the reason for imposing a restriction
on the rate of increasing of p so that those higher order terms for the fixed p case stay
as the higher order terms when p is allowed to increase as the sample size increases.

The above remark is well supported by our analysis on the performance of the least
square empirical likelihood (Owen, 1991; Brown and Chen, 1998) for high-dimensional
data. Least square empirical likelihood is a simplified version of the empirical likeli-
hood. For fixed p, it is equivalent to the empirical likelihood in the leading order and
easily computable. However, it is not Bartlett correctable due to an incomplete higher
order structure. The latter (a lighter higher order term) turns out to be an advantage
when the data dimension is high. Indeed, we find the least square empirical likelihood
allows p = o(n*?) under (A1) to ensure a least square version of (3.3) is valid. This
improves the rate given by Theorem 3.3 for the empirical likelihood ratio under the
corresponding condition.

This chapter is organized as follows. The outline of some preliminary formulation
is provided in Section 3.2. Section 3.3 contains the main results which quantify the
effects of dimension on the empirical likelihood. Section 3.4 reports some numerical
results. An application to Dow Johns Industrial Average data is presented in Section

3.5. Some technical details are given in Section 3.6.

3.2 Preliminaries

Suppose that each of the i.i.d. observations X; € RP is specified by X; =T'Z; + p,

where I" is a p x m matrix, m > p and Z; = (Z;, ..., Ziy,)? is a random vector such
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that

E(Z) = 0,var(Z;) = Ln, E(Z) = ma, € (0, 00), (3.4)

E (Z‘“Z‘”‘? S Zf{;) — B(Z0))B(Z°2) - B(Z°7)

ily Zilg ily iy ilq
whenever > oy <4k and [ # 1y # - -+ # ;. Here k is some positive integer and I,
is the m-dimensional identity matrix.

The above multivariate model, employed in Bai and Saranadasa (1996), means
that each X, is a linear transformation of some m-variate random vector Z;. An
important feature is that m, the dimension of Z;, is left arbitrary provided m > p
and I'T?T = ¥ which can generate a rich collection of X; from Z; with the given
covariance Y. It also requires that power transformations of different components
of Z; are uncorrelated, which is weaker than assuming that they are independent.
The model (3.4) encompasses a rich collection of multivariate models. It includes the
elliptically contoured distributions with Z; = RU™ where R is a non-negative random
variable and U™ is the uniform random vector on the unit sphere (Fang and Zhang,
1990). The multivariate normal and t-distribution are elliptically contoured and so
is a mixture of normal distributions whose density is defined by [ n(z|u,v=?X)dw(v)
where n(z|u,X) is the density of N(u,Y) and w(v) is the distribution function of a
non-negative univariate random variable (Anderson, 2003). Both the moment and the
correlation conditions are imposed on Z; rather than X;. This model structure allows
the moments of || X; — u||?** to be derived and allows us to conduct a more detailed
analysis than possible in Hjort et al. (2009).

The integer k determines the number of finite moments for Z;. As k > 1, each Z;
has at least finite fourth moment. This is the minimal moment condition to ensure the
convergence of the largest eigenvalue of the sample covariance matrix to the largest

eigenvalue of 3 (Yin et al., 1988; Bai et al., 1988), and hence the convergence of the
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sample covariance matrix to > under the matrix norm based on the largest eigenvalue.
By inspecting the proofs given in Section 3.6, we see that a divergent sample covariance
matrix would dramatically alter the asymptotic mean and variance of the empirical
likelihood ratio. Hence, it is unclear if (3.3) would remain true.

From the standard empirical likelihood solutions (Owen, 1988, 1990) which are
valid for any p, fixed or growing, the optimal weights 7; for the optimization problem

(3.1) are
1 1
Ty = — )
1+ N(X, — )

where A\ € RP is a Lagrange multiplier satisfying

n

9N =17 fT (;(i“_ 5 =0 (3.5)

=1
Hence, the empirical likelihood L, () equals n=™ [ {1 + AT(X; — p)}~!. As the
maximum empirical likelihood is attained at m; = n™' (i = 1,...,n), the empirical

likelihood ratio for u is

wn (i) = —=2log{n" Lu(u)} = 23 log{1+\"(X; = w)}. (3.6)

Throughout the chapter we let 73 (A) < --- < v,(A) denote the eigenvalues and
tr(A) denote the trace operator of a matrix A. When A = X, we write v;(X) as ~;,
(j =1,...,p). It is assumed throughout the chapter that 7, > C for some positive

constant C1.

3.3 Effects of High-Dimension

The Lagrange multiplier A defined in (3.5) is a key element in any empirical like-

lihood formulation, and reflects the implicit nature of the methodology. When p is
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fixed, Owen (1990) showed that
Al = Op(n~172). (3.7)

This has been the prevailing order for A except in nonparametric curve estimation
where n is replaced by the “effective sample size” (Chen, 1996). When p grows with

n, (3.7) is no longer valid.
Theorem 3.1 If {tr(X)}* 'y, = O(n**"') and ~2p* = o(n), then
Il = O [{tr(X)/n}'?).

Theorem 3.1 implies that the effect of the dimension and dependence among com-
ponents of X; on the Lagrange multiplier is directly determined through tr(3) and -,.
The rate for ||A|| can be regarded as a generalization of (3.7) for a fixed p since O,[{
tr(X)/n}'/?] degenerates to O,(n~'/2) in that case.

We first study the effects of dimension on the asymptotic normality of w,(u),
assuming existence of the minimal fourth moment for each Z;;. Later, we will increase
the number of moments. We assume for the time being that £k = 1 in (3.4) and
tr®(X)v) = o(np). Since py; < tr(X) < py,, this implies the conditions of Theorem 3.1.

We wish to establish an expansion for w,(u). Put W; = A (X; — ). From (3.22)
of Section 3.6, max |W;| = 0,(1), which allows

log{1+ A"(X; — )} = W; = W2/2+ W2 /(1+ &) (3.8)
where |&;1] < [AT(X; — p)|. Expand (3.5) so that
0=g\) =X —p— S A+ 5,

where 3, = n= 'S (X; — p)W2/(1 + &) for some |&| < [AT(X; — )| and S, =
n~t YT (Xi — p)(X; — )" Hence,

A= S, (X = )+ 5, B (3.9)
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From (3.8) and (3.26), we obtain an expansion for w,,(u):

wn(ﬂ) = n(X - M)TS;1<X - :U) - nﬁnsrzlﬁn + % Z?zl{)\T(Xi - ﬂ)}3/<1 + 51)4

= (X —p)" X = p) + (X = p)" (S =2 (X — p)

—nB,5;, B + 2R, {1+ 0,(1)} (3.10)

where R, = > {\T(X; — p)}®. This expansion looks similar to that given in Owen
(1990) for a fixed p, but the stochastic order of each term requires careful evaluation
as p grows with n.

From Lemma 3.5 in Section 3.6, we have
(2p)"H{n(X = )= (X — p) — p} — N(0,1) (3.11)

in distribution as n — oo, which is true under much weaker conditions, for instance
p/n — ¢ > 0 by applying the martingale central limit theorem. Derivations given in
Section 3.6 show that the other two terms on the right hand side of (3.10) are both

0,(p'/?). These lead us to establish (3.3) as summarized in the following theorem.
Theorem 3.2 If k=1 in (3.4) and tr*(X)y, = o(np), then (3.3) is valid.

Theorem 3.2 indicates that, when 7, is bounded, (3.3) is true if p = o(n'/*), which
improves the order p = o(n'/%) obtained by Hjort et al. (2009) under the finite fourth
moment condition of X; which we do not need in our study. The conditions assumed
under Theorem 3.2 are liberal compared to (Al) and (A2), and there is no explicit
restriction on 7,, which may diverge to oo as n — oo.

Next we show that the dimension p can increase more rapidly if Z;; possesses more
than fourth moment. Assuming higher order moments allows us to evaluate those

terms in (3.10) more accurately. Specifically, we will assume Z; has at least finite
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12th moment, namely £ > 3 in model (3.4). The case & > 2 can be considered as
part of the case k > 1 whose analysis is covered by Theorem 3.2. The following

theoremshows that p = o(n'/?) is approachable.

Theorem 3.3 Ifk > 3 in (5.4), {tr(X)}* v, = O(n*71) and p*y5 = ofn*h—1/(k)}
then (8.3) is valid.

When 7, is bounded, Theorem 3.3 implies that w,(p) is asymptotically normally
distributed if p = o(n'/271/(®*)) which is close to o(n'/?) for k > 3 and improves the
earlier rate o(n'/?) attained in Hjort et al. (2009). By reviewing the proof of Theorem
3.3, we can see that, if Z;; are all bounded random variables, the dimensionality p can
reach o(n'/?). We believe that p = o(n'/?) is the best rate for the asymptotic normality
of the empirical likelihood ratio with the normalizing constants p and (2p)/2. This is
based on the following considerations. Lemma 3.4 in Section 3.6 implies that, when
the largest eigenvalue of ¥ is bounded, ||S, — X||;x — 0 in probability if and only
if p = o(n'/?). Here ||A|l; = {tr(A’A)}/? is the trace norm. Bai and Yin (1993)
established the convergence of S,, to ¥ with probability one if p = o(n) under the
matrix norm based on the largest eigenvalue by assuming each Z,, is independent and
identically distributed. However, it can be seen from our proofs in Section 3.6 that the
convergence of S, to Y under the trace norm is the one used in establishing various
results for the empirical likelihood.

As shown by Theorems 3.2 and 3.3, when (3.3) is valid, the asymptotic mean and
variance of the empirical likelihood ratio are respectively p and 2p which are known.
This means that the empirical likelihood carries out internal studentising even when
p increases along with n. However, it is apparent that the internal studentisation

prevents p from growing faster as it brings in those higher-order terms.
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The least-square empirical likelihood is a simplified version of the empirical likeli-

hood. The least-square empirical likelihood ratio for pu is

¢n(p) = min Z(nm —1)?

subject to i, m; = 1 and Y m(X; — p) = 0. The least square empirical likelihood
uses Y _(nm;—1)? to approximate —2 > log(nm;). As shown in Brown and Chen (1998),
the optimal weights 7; admit close-form solutions so that

(1) = n(X — )" H ' (X — p) (3.12)

where H, = S, — (X — p)(X — ). Hence, ¢,(it) can be readily computed without
solving the non-linear equation (3.5) as for the full empirical likelihood. The least
square empirical likelihood ratio is a first order approximation to the full empirical
likelihood ratio, and g, (pu) — X;% in distribution when p is fixed.

The least square empirical likelihood is less affected by higher dimension. In par-

ticular, if £ > 3 in (3.4), then

(2p)""*{an(pr) — P} — N(0,1) (3.13)

in distribution as n — oo when p = o(n?3), which improves the rate given by Theorem
3.3 for the full empirical likelihood ratio w,(u).

To appreciate (3.13), we note from (3.12)

Gli) = n(X =) S (X =)+ n(X — @) (B, S (X - p). (3.14)

Then, following a similar line to the proof of Lemma 3.6,

n(X — @) (2, = 57X — p) = 0p(p?/n) = 0,(p'?).

n

As the first term on the right hand side of (3.14) is asymptotically normal with mean

p and variance 2p as conveyed in (3.11), (3.13) is valid.
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If we confine ourselves to specific distributions, faster rates for p can be established.
For example if the data are normally distributed, the least square empirical likelihood
ratio is the Hotelling’s T2 statistic, which is shown in Bai and Saranadasa (1996) to

be asymptotically normal if p/n — ¢ € [0, 1).

3.4 Numerical Results

We report results from a simulation study designed to evaluate the asymptotic
normality of the empirical likelihood ratio. The p x 1 independent and identically

distributed data vectors { X;}"_; were generated from a moving average model:

Xij=Zi;+pZigy (i=1,...,n,j=1,...,p)

. . . 1 . . .
where, for each ¢, the innovations {sz}?il were independent random variables with

zero mean and unit variance. We considered two distributions for the innovation Z;;.
One is the standard normal distribution, and the other is a standardized version of a
Pareto distribution with distribution function (1 — z=*%)I(x > 1). We standardized
the Pareto random variables so that they had mean zero and unit variance. As the
Pareto distribution has only the first four moments finite, we had k£ = 1 in (3.4),
whereas k = oo for the normally distributed innovations. In both distributions, X,
is a multivariate random vector with zero mean and covariance ¥ = (0;;),x, Where
05 =14 p* 0441 = pand ;5 = 0 for |i — j| > 1. We set p to be 0.5 throughout the
simulation.

To make p and n increase simultaneously, we considered two growth rates for p

0.4 0.24

with respect to n: (i) p = ¢;n’* and (ii) p = cn We chose the sample size
n = 200,400 and 800. By assigning ¢; = 3,4 and 5 in the faster growth rate setting

(i), we obtained three dimensions for each sample size, which were p = 25, 33 and
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43 for n = 200, p = 33, 44 and 58 for n = 400, and p = 42, 55 and 72 for n = 800,
respectively. For the slower growth rate setting (ii), to maintain a certain amount
of increase between successive dimensions when n was increased, we assigned larger
co = 4,6 and 8, which led to p = 14,17 and 20 for n = 200; p = 21, 25 and 30 for
n = 400; and p = 29, 34 and 40 for n = 800, respectively.

We carried out 500 simulations for each of the (p, n)-combinations and for each of
the two innovation distributions. Fig 3.1 displays the Q-Q plots between the stan-
dardized empirical likelihood ratio and N (0, 1) for the faster growth rate (i), and those
for the slower growth rate (ii) are presented in Fig. 3.2. As n and p were increased
simultaneously, there was a general convergence of the standardized empirical likeli-
hood ratio to N (0, 1). We also observed that the convergence in Fig. 3.2 for the slower
growth rate setting (ii) was faster than that in Fig. 3.1 for the faster growth rate
setting. This is expected as the setting (i) ensured much higher-dimensionality. The
convergence for the normal innovation was faster than that for the Pareto case when
p = cin®* in Fig. 3.1. This may be explained by the fact that the Pareto distribution
has only four finite moments, which corresponds to k = 1, whereas the normal inno-
vation has all moments finite. According to Theorems 3.2 and 3.3, the growth rate
for p depends on the value of k, the larger the k, the higher the rate. For the lower
growth rate in setting (ii), Fig. 3.2 shows that, there was substantial improvement
in the convergence in the Q-Q plots as p was increased at the slower rate for both
distributions of innovations,

It is observed that the most of the lack-of-fit in the Gaussian Q-Q plots in Fig. 3.1
and Fig. 3.2 appeared at the lower and upper quantiles. This could be attributed
to the lack-of-fit between Xz% and N(0,1), as Xfy may be viewed as the intermediate

convergence of the empirical likelihood ratio.
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To verify this point, we carried out further simulations by inverting settings (i)
and (ii) so that for a given dimension p, three sample sizes were generated according
to (iii) n = (p/c1)/%* and (iv) n = (p/cz)"/%?**, with ¢; = 3,4 and 5 and ¢, = 4,5 and
6, respectively. We chose p = 35,45 and 55 for the setting (iii) and p = 17, 20 and
25 for the setting (iv). Figure 3.3 and Figure 3.4 are the corresponding X; Q-Q plots
for (iii) and (iv). These two figures show that there was a substantial improvement
in the overall fit of the Q-Q plots, and the lack-of-fit appeared in the Gaussian Q-Q

plots was substantially reduced.

3.5 Case Study

We give in this section a financial application of the empirical likelihood ratio in
analyzing stock returns for public companies included in the Dow Jones Industrial
Average. We have daily closing prices for the thirty stocks in the Dow Jones from
July 1st, 1986 to September 2nd, 2008. These prices had been adjusted for stock split,
buy-back, dividend payouts and other distributions. Although stock prices typically
exhibit dependence over time, their price changes are less so over time. To further
reduce the time dependence, we consider monthly (four-weekly) returns which leads
to 265 observations. Here the data-dimension p is 30 which is high relative to n = 265,
the number of observations.

Let Vi = (Yi1,Yio, - ,3@730)7’ be the vector of closing prices of the Dow Jones

stocks at the beginning of ¢tth month, let

Ri=(Yis —Yi11)/Yi1a, -+, (Yizo — Yic130)/ Yio1.30)"

be the relative return for the tth month and let

X; = (log(Ye1/Yio11), -+ ,log(Yizo/Yio1.30))"
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be the log-returns for ¢t = 1,2,--- ,265. It is assumed that X, X5, -+, X,, are inde-
pendent and identically distributed random vectors. Let r = E(R;) = (11,72, ,7,)7
be the vector of the average relative return and p = E(X;) = (p1,--+ , )" be the

average log-return and ¥ = Var(X;). We wish to test
Hy:p=0vs. H:pu#0
using the empirical likelihood method. The empirical likelihood test statistic is

T, = (2p)*{w, (0) — p}.

The hypothesis is rejected at a significant level « if |T,,| > z,where z, is the upper
a-quantile of N(0, 1). We also carried out similar tests for sectors of stocks included
in the Dow Jones. The sectors are basic materials, consumer goods, finance, health
care, industrial goods, services and technology, respectively. Let ) denote the mean
for components of X, that correspond to a specific sector. We test for Hy : pl9) = 0
vs Hy : u¥) # 0. Table 3.1 reports values of T, and the p-values for testing the mean
log-return for the entire 30 stocks and sectors of the Dow Jones. It was found that
the p-value for the average log-return of the 30 stocks is 0.059, and hence the null
hypothesis cannot be rejected at o = 0.05. Some sectors were found to have average
log-return significantly different from zero, for instance basic material, consumer goods
and service sectors.

We would like to add that, if a hypothesis y; = 0 is not rejected, it does not nec-
essarily imply that the average relative return r; is zero. To appreciate this point, we
assume the Black-Scholes (Black and Scholes, 1973) continuous-time diffusion model

for stock price Y;;, I =1, -- ,p, such that

dY;J/Y;J = Tldt + O'ldBt’l
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where r; and o; are respectively the instantaneous mean and standard deviation of the
relative return of the /th stock, and B, is the standard Brownian motion. This model
implies, via Ito formula, that log(Y;,;/Y;_1,) is distributed as N((r, — 07/2)d;, 076;)
where §; is the length of sampling. Hence, for our analysis, p; = (r; — 07/2)d; with
d; = 1/12 as the returns are calculated monthly. If 1; = 0, the average relative return

r, = o?/2 implying a positive return due to holding a risky stock.

3.6 Technical Proofs

We present the proofs of Theorem 3.1, some lemmas used in the proof of Theorem

3.2, and Theorem 3.3.

We first establish some lemmas.

Lemma 3.1 If my, < oo for some k > 1, then

E|IX; =yl = O{tr* (D)} and  Var(||X; — pll**) = O{tr* 7} (2)y, }.

Proof:
We only show the case of k£ = 1 since other cases can be done similarly. It is easy to
check that

E|X; — pl? = tr{E(X; — )" (X; — p)} = tr(%) (3.15)
and
E|X; — pu||* = E||ILZ||* = E(ZiTFTFZiZZ.TFTFZZ-) - tr{FTFE(ZiZiTFTFZZ-ZiT)}.
Write I''T' = (vg)1<s1<m- Then

7,7ITTr 2,27 = ( SN Zu, Zz‘lVlsz‘jZik2>

m m
=1 1=1

1<ki,ka<m
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When ki = ky = s,

EQTI Y0 Zika Zavii Zii Ziks) = D2y E{(Zis)(Za)* Yvu = vss E(Zis)* + 32120 Vit

When k’l # /{ZQ, E(Egnzl 2;11 Zik1 ZilVlsz’jZikz) = 2Vk1k2- Hence

EHXl_/JJH4 = ZVSS{VSS zs +ZVZI}+QZZV31VIS

l#s s=1 l#s

- Z V2A{E(Z;)" — 3} + trX(TTT) 4 2tr(CTTTTT)
s=1

= (my—23) Zu + tr3(%) 4 2tr(X?). (3.16)

Note that » 0", v2, < >0, 370 vi, = tr{(I'"T)?} = tr(¥?). This together with

Ss

(3.15) and (3.16) implies that Var(||X; — u||*) = (mg — 3) >, V2 + 2tr(¥?) =

s=1 "ss

O{tr(X%)}. This completes the proof of Lemma 3.1.

Lemma 3.2 If my, < oo for some k > 1, then, with probability one

1

max ||X; — | = of{tr(2)} T AF (D)nd] + O(v/ir(D)).

1<i<n

Proof:
We note that
maxi <i<n || X; — pl|
= {maxicicy || Xi — pf[F}HER

< {lmamciza 11X — [ = B(1X — l)] + E(1X — [ #)}/C9

X 2k E X 2k:
= {VVar([[X; — pl[?*) max; <<, | \/ﬂar(HX(HMPZLH |+ E(||X; — p][?*) /@0

and
X, — 2k_E X. — 2k
max 11X — p| (11X — p] %)
S V(X — Al

= on'’?)
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with probability one as n — oo. This lemma is proved by applying Lemma 3 of Owen

(1990) and Lemma 3.1.
From now on, we let ¥; = S7V2(X; — p), V, = 230" VY7 YV = 15" |V and

D, =V, —1,= (ds)is=1,-

Lemma 3.3 . Under the conditions of Theorem 3.1, tr(D2) = O,(p*/n).

Proof:
We only need to show E{tr(D?)} = O(p?/n). Note that V,, = X~1/2T'S.TT¥~1/2 where
S.=n"tY0 Z:Z . Let & =TTS7'T = (61),; <> say- Then

tr(D?) = tr(S.28.,%) — 2tr(S.%) +p (3.17)

and

E{tr(S.X)} = E (Z n! ZZijZﬂ&lj) = Z 0j101 = 253‘]‘ =p (3.18)
j=1

=1 i=1 jl=1

since tr(X) = tr(I,) = p. By utilizing information of Z; given in (3.4),

Eltr{(S2)*}] = (Z Z - Z manlZulZmbUlllew)

Jl=111,l2=1 11,22=1
m
— -1 ~9
= myn~ E Z+nT E (263 + 6j50u) + (1 —n"") E i
J#l Jil=1
m m
_ ~9 ~2
= §: it my — 1)n 2: jj E:(Jl+UJJ0”)
=1 i=1 i

It is easy to check that > 7, 6% = tr(¥?) = Py Y G <Y G =D, 0 <
Sy oy =pand [y 550u < (307, 55;)* = p?. Thesis together with (3.17) to

(3.18) imply E{tr(D?)} = O(p?/n). This completes the proof of the lemma.
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Lemma 3.4 Under condition (3.4), maxi<i<p |7i(Sn) — % ()| = O, (1pp/v/1).

Proof:

Note that

7:(Sn) = (D)2 = |577(S2) — 4P (EY))? (3.19)
p
< N 82 = PP
=1
P p p
= Y S+ () =2 (8272
=1 =1 =1

— (52 + (%) — 23 () (D).

i=1

By Von Neumann’s inequality, Y 5, 7i(Sn)7:(2) > tr(S,X). Hence

max [7i(S,) — 7(E)| < Vir{(S, - £)*}.

1<i<p

Now
tr{(S, = %)’} =tr[{ZV2(V, — [,)£"/?}?]

=tr(D,XD,X)
< ytr(D}) = Op(v;p?/n)
by applying Lemma 3.3.
This lemma implies that all the eigenvalues of .S,, converge to those of ¥ uniformly

at the rate of O,{v,p/v/n}.

Proof of Theorem 3.1:
By (3.5), A € RP satisfies

(S o P el V) (3.20)
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Write A = pd where p > 0 and ||0|| = 1. Hence
= Ilg(p0)[| = 10" g(p0)]
= O {S (X — ) — p SO, )|

> p0" Sn0{1 + pmaxicicy || X — pf [} =07 D00 07 (Xi — ).

Hence,
T -1 T -1 T
o{#75,0 — s 1, =l pICE? i} <a DI
Since n 7! Y0 0T(X; — p)| = O,(y/tr(X)/n), it follows from Lemma 3.2 that

-1 Ty _
max || X; = pl|n IZQ (X

ot T E ()03 T R 4 O, (S — o (1). (3.21)

By Lemma 3.4, for a positive constant Cy, P(07S,0 > 5C) — 1 as n — co. Hence
Al = p = O,(y/tr(X)/n). This completes the proof of Theorem 3.1.

By repeating (3.21) in the proof of the above theorem and Lemma 3.2, we have

ma | |XT(X; — )| < (|| max [1; — pl] = 0,(1) (3.22)

1<i<n

We need the following lemmas for proving Theorem 3.2.

Lemma 3.5 Ifp/n — ¢ >0, then

v ANTSY-1(Y )
n(X —p) 5 (X =p)—p <, N(0,1) as n — oc.
V2p

Proof:

The proof entails applying the martingale central limit theorem as given in Hall and
Hyde (1980). Bai and Saranadasa (1996) used this approach to establish the asymp-
totic normality for a two-sample test statistic for high-dimensional data. What we

have here is easier due to the one sample nature.
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Lemma 3.6 Under the conditions of Theorem 3.2,

n(X — )" (8,1 = 27X — p) = 0,(p*/V/).

Proof:
Recall that D,, =V,, — I, = (dg)1<s<p1<i<p- 1t follows from Lemma 3.3 that
P(maxich, ky<p |draks| > €) <D0 2 D0,y € 2E(d}y,) = € 2E{tr(D})} = O(p*/n).
Hence, d;; = O,(1/p?/n) = 0,(1) uniformly in 1 < j,1 < p. It is easy to check that
Vo' —I,=—D,+D; + DV, ' — I,

and

n(X =) (S, =S (X —p) =n¥Y (V! — L)Y

From Lemma 3.1, E(||Y|]?) = LE(||Y4]*) = p/n. Since |[YTAY| < [|V][?\/tr(A?) for
any symmetric matrix A, it follows from Lemma 3.4 and the condition p = o(n'/?)

that
YT D,Y| < nl|Y|/ir(D2) = 0,(p%/v/R) = 0,(V/P).
Similarly, [nY7 D2V | < nl[¥|[*#r(D2) = 0,(p*n) = 0,(/B).

Furthermore, we note the following facts
VTDIY| < g {(D,) [}V DAY = 0,(V7 D2Y) (3.23)
since max,<;<,{|7i(Dy)|} < /tr(D2) — 0, and
YIDYY <~ (D2)YTD2Y = 0,(YTD2Y).

In general, if p = o(y/n), for any positive integer I, YT D?*Y = 0,(YTD2Y) The

lemma follows from summarizing the above results.
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Proof of Theorem 3.2:
Put W; = M'(X; — p). Then (3.22) implies that maxj<;<, |W;| = 0,(1). Expand
equation (3.20),
0=g\) =X —pu—S\+ 05, (3.24)
where
=0Tt ) (X )
= L e

i=1
and |&| < [MN(X; — p)|. As maxi<i<n |Wi| = 0,(1), maxi<i<, |&] = 0,(1) as well.

Hence 3, = Bu{l + 0,(1)} where 5,1 = n~'> " (X; — p)W2. Apply Theorem 3.1
and Lemma 3.2 with k = 1, we have, if tr(X) = O{y2/*(Z)n!/3},

1Bl < 07" Y 11X = pl| W7
i=1

< max [|X; — palln SN (G — @)X — p)"A

1<i<n

= max [|Xi — pll[[AFOp(7,(%))

1<i<

1+4

= oI I (D) 1) + O, (NIt (S)n~2) = op(|A])- (3.25)

It follows from (3.24) that
A= 871X = )+ 5716, (3.26)

and log(1 + W;) = W, — W2/2 + W3/(1 + &)* for some & such that |&] < |[W;|.

Therefore
wap) = (X = )8 (X — ) — S, 0, + 23y, DrL
= (X —p)"STHX = p) + (X — )" (S =X —p)

—n8,S; " B 4+ 2R {1+ 0,(1)} (3.27)
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where R, = > {\(X; — p)}3. By (3.25) and Lemma 3.4,

7805, Bal - < nlIBalI*/71(S0)

= Op(y(E)tr*(2)n ") + 0, (332t (Z)n %) = 0,(v/p). (3.28)
We also note that
< Z Wil® < {i sznjwf}l/z
i=1 i=1 i=1
% ”/\TSnA{Zj: IAIXG = w32
= 0 <\/t7”7 (Vtr2(Z)n2ntr2(¥))

= O, (D) *n ) = 0,( /D). (3.29)

IN

Hence the theorem follows from Lemmas 3.5 and 3.6.

The proof of Theorem 3.3 requires the following lemmas.

Lemma 3.7 Under the conditions of Theorem 3.3, tr{(V,”' — I,)*} = O,(p*/n).

Proof:

We note that

p

tr{(V,' =L)"Y =) (0 (V) = 1) <272 (Va) D (il =7 (Va)tr(Dy).

i=1 i=1
Thus, the lemma follows from that v;(V;,) — 1 in probability from Lemma 3.4 and
tr(D2) = O,(p*/n) from Lemma 3.3.

Let

n n

En=n"") (YY) and Bo=n")> (Xi—p)('Y;)% (3.30)

i=1 =1



7

Lemma 3.8 Under the conditions of Theorem 3.3, E (&) = O(p?*/n?) and &, =
Op(p?/n?).

Proof:
Note that
E(&n) = n_5ZE YY) +n 52{ EYTY) + 4E{YVTY,(Y[TY;)%} (3.31)
i#]

+6E{<3@Tm2m%>2}] L300 S B{YVIVRAYIY)Y. (332
i#£j1752

Put T' = £712T" and write [T = I'"S'T = (#;;)1<ji<m. Using a similar deriva-

tion of Lemma 3.1, we have

E(Y'Y,)* = E(ZI'T'TZz)*
= Z E(Zijy Ziky Ziky Zity Zity Zity Zits Zity ) Vky iy Vkeo o Vkis s Va4

Bt ksl la

= O{tr*(®)}. (3.33)
When i # 7,

EY'Y,) = E(Z'T"Tz,)"

= E E(Ziky Ziky Ziks Zika) E(Zjty Zj1y Zjis Zita ) Uk 1y Vs 1y Vs 15 Vka
kv hadt s da

_ 2 E ~4 E ~2 ~2 § ~2  ~2
— m4 Vsl +12m4 Vkllyk2l+36 VklllkaZQ
s, kisks,l k1ka,l1 £l

Since D7, Ui D psthod VeutPigt A0 D20 L1 Ui Py, are all bounded by
(Do) = tr*{(I"D)°} = tr*(I7S7'T) = tr*(L,) = 17,

we have

EY Y)*=0@®*) for i4#j. (3.34)

)
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When ¢ # j,
E{Y;Y,(Y'Y;)%
= Z E<Zik1ZikQZil2Zi82Zit2)E(Zjl1Z]Slz t1)Dk1,k2511,12581,8251517152
k1,k2,l1,l2,51,82,t1,t2
= mams YUY+ mg Y {Tsi + Waini}. (3.35)
s,l s#l,r

Since |vg|* < Dy and 7y < 4,(TTS7IT) < tr(TTS7IT) = p for any 1 <1 < m,
‘ZVssVsﬂ < pZV oy < ptr{(TTSD)*r(T787'T) =

Using the same argument, we have the other terms on the right hand side of (3.35)

are O(p?) as well. This leads to

BYTYAYIY} = OF) for i) (3.36)
When i # 7,
B{(Y;"Y)*(Y]"Y;)%}
= Z E(Zik, Ziky Zity Zis Zisy ity ) Vs ks Vit Vs 52 Vit

k1,k2,l1,l2,51,82,l2,t2

= mg E D20 +mj E {1 s Dhales Vit Dty + J2Di oy Dt Dty + J30k ks Vg Vi, }
k1#£ka,l

9 9 .9 o
+ § {40k s Vhoha iy, + 503k Vs + J6Vh 1k Pk Vit Py }- (3.37)
l,k1#ka#ks

Here and from now on we use J;, j > 1 to denote positive integers representing the
number of combinations of the subscripts and whose values have no effect on the order
of magnitude of E{(Y;"Y;)*(Y;'Y;)*}.

Write (I'7T)2 = (77[(52)>1§l,s§m- Then

Z~s25~s2l - Z Vss ss < tT’Q{(FE 11‘\) } p )
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and
~ ~ ~ o~ . ~ ~ ~(2)
Vk‘1k)1 I/k:gk‘zylkll/lkz - Uk:1k’1 szkQVkle
k1#£k2,l k1#ko
_ § : ~ = ~(2) § :~2 _
- Virk1 Vioko Vi ey — VgV k1k2 O( ) (338)
k1,ko s
since

§ : T 1 § : § :
Vklklykzkzyk1k2’ < pr{ F 2 F Vklklykzkz < p VSS -
kl,kQ k17k2

It can be shown that the other terms on the RHS of (3.37) are at most of order p.

Hence
E{(YY,)’(Y]"Y;)’} = 0(p*) for i# . (3.39)
When j; # jo # 1,
E{(YfY) (YTY = My Z E, 4 Z {702 D+ JsDis, Dpsy Pis, Visy }y
tl,s t,l,s1#£s2

ytsyls Vts ss Vt =D,

tl,s
~9 ~ ~
Z Vtslylsz Z V5151 5252 — ZV
t,l,s1#s2 51752
and
Z Dts1ﬁtszﬁlsll;lsz = Z (’7§??51)2 < 2(55?22)2 =D,
t,l,s17#s2 S17£82 S1,82
we have
BLYTYRYIY)?) = O(?) for ji# o #i. (3.40)

In summary of (3.32), (3.33), (3.34), (3.36), (3.39) and (3.40), we have
E(&m) = O(p*/n* + p*/n’ + p*n®) = O* /n?)

as p = o(y/n). This leads to the conclusion of the lemma.
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Lemma 3.9 Under the conditions of Theorem 3.3, ||Bnal| = Oy(y\/7pp/7).

Proof:
Note that
1Bl = n7® > YVIVYIViVIVYIY(X - w)" (X —p)
4,91,72,01,l2
+ %y VI YV YIYLYIYL (X — )T (X, — )
11#£12,71,52,01,l2
and
Fu = n %) (X — )" (X — p)(Y V)
=1
+ 70 (X — )T (X — ) H YY) 4 6(Y V)P (YY)
i#]

+ AT (YY) + ATV (YY)}

+ 6070 Y (YR TY)RXG - ) (X - ). (3.42)
i#j A
As there are more terms in Fj,5, we classify them by the number of distinct subscripts

involved. In particular we assign F9;, j = 2,3,4, to be terms of F,, which have j

distinct subscripts. Then,

Fap = %) (X — )T (3 — ) {205 ¥) + 4YTYY Y, (YY) + (YY) (V)2
i#j
YY)V Y)YV

Fros = 0% > (Xi — )" (X, — m{(Y] Vi) (V]'Y3,)? + 4V, Vi) (VLYY YL, Y)Y,
i1#£i2#]
T 2 T 2~ T T
(YY) (VY )Y Y, YT Y, )

7

and

Faoo = 07" 3 (Xi =) (Xs, = {20577, 2(V15,)?
i1 FipF# £
HAVE Vi) (VT Vi) (YY) (YY)}

11
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Here we only derive E(F,24) as it has the largest number of terms {n(n — 1)(n —
2)(n — 3)} in the summation. Working out the expectation for the other terms is
similar, and it can be shown that the order of magnitude of these expectations is at
most O{v,p*/n?}.

Recall that T7T = (vs)1<r,0cm and (Xi, — )" (Xi, — 1) = 22, 4, Zists ZigtsVirts-

Hence for four mutually different 1,79, 5 and [,

E{(Xi, — )" (Xiy — ) (Y] Y3, (V)" Y2)?}

= E E(ijlijSZilk2Zi1k4lelZlS3Zi282Zi284Zi1t1Ziztz)I/klkzVk3k41/5182y5354l/t1t2

k1, k4,81, -84,t1,t2
m

- § E<ij1ijlZi1k22i1k2lellelZi282Zi252Zi1k22i282)ﬁk1k25k1k258182581827/@82

k1,k2,51,82
m

o 2 ~2 ~2
= mg3 § : Vk‘1 ko US1 S2 Viosg -
k1,k2,s1,52

We note here in the first equation above, ky and k3, s; and s3, ko, k4 and ¢, and so, s4
and ¢, must be the same respectively to avoid zero means. As |vg,s,| < 7,(T'TT) = ~,,
[B{(Xs, — )" (Xs, = ) (VY0 (Y5, )PH < iy (D Ko ,)* = miep®. (3.43)
k1 ko
The mean of the second term in F,54 is
E{(Xi, = ) (X, — ) (V] Vi) (VY3 (¥]Y5,) (VY5 )}

m

- E E(Zj/ﬂij3Zi1kzzi182Zl81Zl83Zi2k4Zi284Zi1t1Zi2t2)ﬂ/ﬁ/@ﬂk3k45818258384yt1t2

k1, k4,81, -84,t1,t2

_ 2 S 2 ~(2) \2
= Mg E Vttlystlyttgystgytltg_m{}E (thtg) Viity-

t,s,t1,t2 t1,t2
Hence | E{(Xi, — )" (Xiy =) (Vi Yi) ) (VY2 ) (V] Vi ) (V)Y )} < yptr {(T7T)?} = .
Thus, E(Fp4) = O(v,p?/n?) and E(||B.2]?) = O(v,p*/n?), which lead to the lemma.
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Lemma 3.10 Under the conditions of Theorem 3.3,

nY'D,Y = O,(p/\/n) and nYTD2Y = O(p*/n).

Proof:
Write 4, = Y7D,Y. Recall that ¥ = ITYIT = (D). As Y is idempotent and

tr(X) = p, we are to use the following facts repeatedly throughout our derivations:
Z 73 < (2 Z iy < (X)tr(X%) =p  and
| Z UssVistn| < Z Vssly = D" (3.44)
Since
Ay = Z¥nT'y 2,257 - 7257

m n
Z : 2 : ~ o~ ,22 :j : ~
= Z’Lllezl 23Z1Zi3lzyslll/lgl —n Zi1sZi2ll/sla

s, Ll ,l2 11,12,,13 s, 11,12

E(Ay) = n™® > AnE(ZiZuZi, Zi)Vst, it + 1(n — )00y, 3 — 7"y g

sl 12
= 2{m4zl/85—|—z (2072 + Dgst) } —n"%p
S#l
= n 2 {(my —3)szs+p+p }=0@p*/n?) (3.45)

as S 02 < 3 (D)tr (%) = p.

s~ SS

As D, is not necessarily non-negative definite, we have to derive F(A2), which can
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be expressed as

m n 2
E(AEL) = n76E <Z Z ZiquingigsZigtﬁqutl>

q,l,s,t i1,i2,,i3

m n
75 ~ ~ ~
- 2n E , E E (Zilkl Zinl Zi3l2ZislSZj1k22j2Q) V12 Vi3l Viag
k1,l1,l2,l3,k2,q  11,i2,,83,71,]2
m n
4 ~ ~
+ n § E E<Zi1/€1Zi2l1Zi3/€2Zi4l2)Vk1llV/f2l2
k1,k2 01,02 d1,02,03,04
= Il - 2[2 + 13. (346)

Now

I3 = n74 Z ﬁklhﬂkﬂz{zE(Ziklzillzikzzib) + Z <5k1115k212 + 6161125/6211 + 6k1k251112)}

k1,k2,l1,l2 i 11712
= n_3{m4 Z 773?5 + 2(2552[ + Dssﬁll)} + 7’L_2(1 - n_l) Z (Dssﬁll + 217?1)
s=1 s#l N
= n % (ms—3)> P +n(1—n"")(p’+p) (3.47)
s=1

and

m

I, = n° Z 5k1z277z31177k2q{zE(Zz'klzillZuQZz'lSZz'kzZiq)
=1

k1,l1,l2,l3,k2,q i=

+ > E(Zin, Zity Zi ) E(Zjty Zijns Z3g) 145 s K, I o]
i#]

+ Z 51213 (5k1115k2q + 5k1k25l1q + 5k1q5k211)}
i17i27 i3

m m
= n Y me Y U +ma Y (12050 + 30..07)
s=1 s#l
2 > (67,0 +455) + Y (245200 + 65aigsg)}
s#l s#l£q
+2n_3(1 - n_l) Z(ﬁgl + Dssﬂlsﬂll)
s#l
+n 21 —=n"")(1-n"?) Z(Dglﬁqq + 20514 Vsq)

s,l,q
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where [4; q; k1, 11,15] denotes 4 rotations of having ¢, ki, 1; and [y taking the current
position of ¢q. Using (3.44), we note that the terms starting with n=* and n=2 in both
I3 and I, contribute only to the order of O(p?/n=3) or smaller. Hence, it can be readily

shown that
Ii=n"2(p* +2p) + O(n?p*) and I, =n"2(p*+2p) + O(n ?p?). (3.48)
It remains to derive I;. Note that

E ~ ~ ~ ~ —5
[1 = Vk1811/t1llyk2$2yt212 n E(Ziklz’ikzzillZilQZislziSQZ’ihZitg)

k1,k2,l1,l2,81,82,t1,t2

A0 " E(Zig, Zity Zis, Zi) ) E(Zjny Zjty Zjsy Zjsy ) [6: v, 1y e, Do)
i#]

070 " Ok B(Zig, Ziyss Ziat) VE(Zigty Zigsy Zigt) (125 11 Lo ey, o)
i1#£i3#16

+n~° Z {531t1582t2E(Zi1/€1 Zilllzilkzzillz)
11713716

+E(Zi381 Zistl Zissz Zi3t2>(5k1115k2l2 + 5k1126k211 + 6k1k261112>}

+n_6 Z 5$1t1582t2 (6k1l16k212 + 5k1l25k2l1 + 5k1k251112) .
11 Fi27#i3706

All the terms except the last term in the above equation are O(n~3p?) and by working

out the last term, we have
I =n2(p* + 2p) + O(n*p?). (3.49)
Combine (3.46), (3.49) and (3.48),
E(YTD,Y)*=0(n%p?) (3.50)

which establishes the first part of the lemma.
On the second part of the lemma, let B, = ZXn Yoy AV Yoy AVAS)
then

Y'D?Y = B, — 24, - Y'Y
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where A, = YTD,Y. From (3.45),

E(—24, =Y"Y) = —2n"*{(ms = 3) Y 0% +p+p°} —n'p. (3.51)

s

It remains to derive E(B,). As

4 ~ ~ ~
B,=n E 5 Vk1l1Vs1l2V82tZi1k1Zi2hZi281Zi382Zi3lzzi4t’

k1,l1,l2,51,82,t 11,i2,13,14
by carrying out derivations similar to, but slightly less involved than, those of E(A?),

it can be shown that

E(B,) =n"'p+ O(n"?p?).
This together with (3.51) means that
E(YTDY) = O(p*/n?)
which leads to the second conclusion of the lemma.

Proof of Theorem 3.3.
The key in our proof here is to update the rates given in (3.28) and (3.29) when we
have more moments for Z; under our disposal.

We first update (3.25) by noting that

1Bmll < maXllXi—anIEAT(XZ-—M)(XFM)TAIg%ﬁllXi—uHH)\HQOp(%)

1<i<n
dhtl _6k—1 _4k—1 5/ .
= o {tr(D)} T 0Tk )+ O (tr*A(S)n ). (3.52)

Let Ao = S HX —p), ;m = (S;1 =S 1)(X — p) and n, = S;13,. Then we can

n

write (3.26) as

A= STHE )+ (S - ST — ) + S8,

= Ao+ m+ 1. (3.53)
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The order of [[Ao|| is of y/tr(X~1)/n which can be smaller than /tr(X)/n, the

existing order for ||A|| given in Theorem 3.1. From Lemmas 3.7 and 3.10, and (?77)

Imll* = (X =w"(S; =7 (X —p) =Y (V' = L)S (V' = L)Y
< WYV = L)Y =0 YD+ DL+ DRV = L) PY
_ 0,(Y"D,Y) = 0,(5*/n?). (3.54)
Hence ||| = o(||ho]]) as p = o[{ntr(X~1)}/?] is trivially true. Also ||naf|? <

113,1127772(S,,). Hence from (3.52) and Lemma 3.4, ||72]| = 0p(||Xo]|) if

_Ak+l 9p_ g

(D)} 6 (S = O,y % n5k)

which is implied by the assumption p*y) = o{tr(XYn'" ﬁ}
With (3.53), the log EL ratio
wa(p) = 20N (X = p) = nA" S A + 2R, {1+ 0,(1)}
= (X —p)"SH X = @)+ X - ) (E718,5T -2 (X —p)
+ (X =)' =288 = ETH(X — p)
+ 0By (S = ETN(X = p) + 878, Bu + FRa{1 + 0p(1)} (3.55)

where R, = > {\T(X; — u)}.

From Lemma 3.10,
n(X — )" EX1S,2 =S TYX —p) =nY"D,Y = 0,(p/vn) = 0,(1).
Since V7' — I, = —D,, + D2+ DA(V,; ' — I,,),

n(X — )" (S =SS = 27X — p)

= YTV = LWV (Vo = L)Y = n¥T{D? — D3 — D3V, ' — I,)}Y.
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As nYTDE(VA-L)Y| < |y,(V, ' = L) |InYTD3Y and ~,(V,, ' —1,) = 0,(1) as implied

from Lemma 3.4, we have from (3.23) and Lemma 3.10 that
n(X — )" (S, = S7)Su(S, " = 7K — ) = Oplp/v/n) = 0p(1).

From (3.53), we can use Ay to replace A in (3, and R, which results in

Bo=Bu{l+o0,()} and & =n""Y Wi=E&{l+0,(1)}

=1

where (3,2 and &,; are defined in (3.30). From Lemma 3.9

75,5, 1571‘ < nHﬁnHszp(Sn_l) = nHﬁnzHQ/’Yl{l +o0p(1)}

Op(”YpPQH_l) = 0p(v/P)

1
as py, = o(y/n). From Lemma 3.8 and the assumption p*y> = o{tr(X~")n'~ 1k}

Ry

IA

n 1/2
SO IWHL+ o)} < VaNTSA {ZHMI X, - ul!4}
= 0,(\/tr(E)) O Ve (E)n2np 2}

= Op{tr?’/Q( )71/217” 3/2} = 0p(v/D)-

At last, from (3.54) and Lemma 3.4,

78, (Si " = ™)X — )] < nllBullllmall = Op(vAp" /1) = 0p(\/P).

Repeating the last part of the proof of Theorem 3.2, the proof Theorem 3.3 is com-

pleted.
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Table 3.1 FEmpirical likelihood tests for Dow Jones data

Sector ‘ Dimension Test Statistic P-values
Basic Material 4 3.69 0.0001
Consumer Goods 4 2.11 0.02
Finance 5 -.54 0.69
Health Care 3 0.75 0.23
Industrial Goods 3 1.01 0.16
Services 4 1.74 0.04
Technology 7 1.35 0.09
Overall 30 1.56 0.056
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CHAPTER 4. Hypothesis Testing For High-Dimensional

Distributions

4.1 Introduction

Let us consider two random samples X;1, Xjo, -+, Xi, € RP for i« = 1 and 2,
with multivariate continuous distributions F; and F5. The distinctions between two
distributions are not limited to inequality of their mean vectors. We therefore consider
in this chapter a test for equality of distributions and that is, the hypothesis of interest
is

Hy:Fi=F,vs. H : F} # F5.

For the univariate case, traditionally, people would use rank tests, Kolmogrorov-
Smirnov and Cramér-von Mises tests and many others. See Darling (1957) for detailed
discussions of “goodness of fit” tests and two-sample tests based on the empirical dis-
tribution functions. For multivariate Kolmogrorov-Smirnov tests, see Peacock (1983)
and Fasano and Franceschini (1987). Friedman and Rafsky (1979) presented multivari-
ate generalizations of the Wald-Wolfowitz runs statistic and the Smirnov maximum
deviation statistic for the two-sample problems. Bickel (1969) considered a multi-
variate Smirnov test which is consistent against all alternatives given the conditional
convergence of the empirical distribution functions. Ahmad (1996) provided some

results on modification of two-sample univariate and multivariate Cramér-von Mises
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test. All of these existing methods have been effective in testing for equal distributions
for fixed dimensional data. However, the generalization to the case where p — oo has
not been explored.

For arbitrarily high-dimensional data, Baringhaus and Franz (2004) proposed a
test statistic (BF test) based on between and within groups’ pair-wise Euclidean dis-
tances. As the BF test converges in distribution to a Brownian bridge which depends
on an unknown distribution, the authors suggested to use the bootstrap method to
get critical values. Alba Ferndndez et al. (2008) constructed a similar test statistic
as shown in (1.3), using an empirical characteristic function. Hall and Tajvidi (2002)
proposed a permutation test (HT test). Its critical values are determined conditional
on the pairwise distances between pooled data. There is an issue of computational
burden in the HT test due to the distance ranking strategy. Motivated by the appli-
cation of identifying differentially expressed gene-sets, a Multiresponse Permutation
Procedure (MRPP) test was investigated in Nettleton et al. (2008). The authors also
addressed the problem of controlling false discovery rate for multiple gene-sets testing.

In this chapter we propose a test the equality of two distributions in high-dimensional
settings. In conjunction with the two-sample test for means we pursue the asymptotic
distribution for the proposed distribution test. This chapter is organized as follows. In
Section 4.2, we present the distribution test for high-dimensional data and explore its
asymptotic distribution via two-sample U-statistic theory and the martingale central
limit theorem. Section 4.3 contains simulation results. Technical proofs are provided

in Section 4.4.
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4.2 Main Results

The statistic T},, ,, which is a distance measure between two continuous cumulative

distribution functions (cdfs) Fy and F, is

1 L
Thiny = /{mgﬁ; I( Xy, < 2)I(Xy, < @)

2 ni n2
— I(Xy; < I(X5,; <
TS NETER) SEAEE

J=1

PR i I( X5, < @)1(Xay, < x)}w(w)d%

where w(z) is a known density (weight) function on RP, I(+) is the indicator function

and X;; <z if and only if X;; < x;,for [ =1,--- ,p. For simplicity of notation, let

41/77:// / and ﬁ‘d$”:dxp---dx1.
r1 Jx2 Tp

2
It is shown in Section 4.4 that E(T,, »,) = [ {Fl(a:) - Fg(m)} w(x)dx. Precisely, this

us define

formula explains that T),, ,, is a weighted average of distance measure between two

cdfs I} and F.

4.2.1 Limiting distribution of 7, ,, under the null H,

1,12

The idea is to consider T}, ,, or part of T}, ,, as a sum of martingale differences.
The adventure of exploring the limiting distribution of T},, ,,, is enlivened by the possi-

bility of applying the martingale central limit theorem. Let us begin with partitioning
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T, n, Into Tﬁ?nz and Tg?m.

ni

O, = / [m 3 {I(Xlil <z)— Fl(:r;)}{f(Xh-Q <) Fl(x)}

i17i0
_n12n2 5_1: {I(Xh- <z)-— Fl(f)} i {I(X2j <) - FQ(m)}
3 {100, <) - B} 106, <0 - B v,
J17#J2

. . 2
., - | [{2F1<x> —2R,(0) H{Ai(@) - B0} - {R(@) - B} |w@)ds.
where F(z) is the empirical cumulative distribution function for the ith sample and

Fy(x) = > I(Xy; < x)/n;. Under Ho : Fy = Fy, let I be the common cdf. It is

easy to check that Tn1 n, = 0 a.e. E(T,(L1 ne) = 0 and

varal, = {22 e - rwrw)f

nine nl(nl — ].) ng(ng — ].)

w(a)w(y)dady

= 0'%
Here (z Ay) = (min{zy, v}, ,min{z,,y,})T € RP, for = (21, ,1,)7 and
y=(y1, - ,yp)T. Some notations are to be introduced before we continue to present
the lemmas. Let n = ny +ng, V; = Xy; for i = 1,--- ,ny and Yy, = Xy; for
.j = 17 s, N,

9ij(x) = M {I(Y; <z) — F(2) {I(Y; <) — F(z)}, where
iy iAje{l2,
Aij = _mln2 ifie{l,2,--- ;m}tandje{n +1,--- ,ny+na},

ng(n12_1) ifi#je{n+1,--,n +ne}.

Define Vm f(bm x)dx for j = 2,3, ,n, Spm(z) = Z;n=2 Vm(:c)

for 2 < m < n and F,, = a{Yl,YQ, -+, Y, } which is the o-algebra generated by
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{Y1,--+,Y}. We can therefore rewrite 7, ,%)m as

n1+n2

=2

Lemma 4.1 For each n, {Spm, Fum} S a sequence of zero mean, square integrable

martingale.

Lemma 4.1 can be proved by following the similar proof of Lemma 2.1.
The asymptotic normality of Tﬁ?nz is to be established via the martingale central
limit theorem under three assumptions:
(A1) iMpingny nat—oo N/1 = pi, € (1, +00) for k=1 and 2.
(A2) ®y/n® = o(o}), where

0 = [ B[ <)~ F@MI0 <) - FO)HIO < 0) — P}
XY <) = F(U)}] {F(z Ay) = F(a)Fy) {F (uAv) = Fu)F(v)}
w(x)w(y)w(uw)w(v)dedydudv.

(A3) ®3/n® = o(o}), where

®3=(/Wﬁﬂn<@—FmHHK<w—F@Hﬂn<w—FWH

x{I(Y; <v) — F(v)}} w(z)w(y)w(uw)w(v)dedydudv.

Lemma 4.2 Under (A1) and (A2), then

Z?LJQFME[VT%?”J_I]L}
o2 4’

when p — 00 as min{ny,ny} — oo.

Lemma 4.3 Under (A1), (A2) and (A3), then

ni—+nz

Z al_QE{VTij(|an| > €01)|Fnj1} —= 0, when p — oo as min{ny,ny} — oco.
j=2
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The proofs of Lemmas 4.2 and 4.3 are available in Section 4.4. The Lemmas 4.1,
4.2 and 4.3 verify the sufficient conditions required by the martingale central limit
theorem. The assumption (A1) ensures that sample size n; and ng increase to 400
proportionally. Both (A2) and (A3) are apparently satisfied if p is fixed. When
p — +00, (A2) and (A3) address the relationships between p and n, presented via an
integral consisting of ' and w. To elaborate on these assumptions, consider the the
case where F' consists of independent marginals and w is its corresponding probability
density function (pdf). For simplicity of notation, denote w(x)w(y)w(u)w(v)drdydudv
as w(-)d-. Then

2{F(u Av) — F(u)F(v)}w()d

——

Oy /1 {F rANy) — F(x)F(y)

N
i f{me x>F<y>}2{F<uAv>—F<u>F<v>}w<'>d'
N

(1/3° — 1/4)

") ey 1700 — a2 sy B (4.1)
where
o) =~ 01n)
{mm 1(n1-1) 2(n2 1)}

We notice that
/F(u Av)w(u)w(v)dudv = //E(ul A Uz’)wi(ui)wi@i)duidvi}p

_ /u / i(u) (v dF(uz)dF(vl)}p
(1/3)" ’ ’
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and

/F(u)F(v)w(u)w(v)dudv = {//Fi(Ui)Fi(Uz‘)wi(ui)wi@i)duidvi}p

2p
- {[  A@arw)
F;(u;)=0

= (1/4)".
We therefore have (1/37 — 1/4P) as the numerator in (4.1) and the denominator can
be derived by following the same procedure. The arguments for (A3) are similar.
Note that Rjp ~ 1204 and R, is monotonically increasing in p. Namely, (A2) ensures
that n grows much faster than p. Notably, one important issue is how stringent the
relationship between p and n should be in order to validate the asymptotic normality.

The analytical solution to this problem is closely related to the F' and w functions.

Theorem 4.1 Under Hy along with (A1), (A2) and (A3),
Tn17n2

Vot

Proof: Under (A1), (A2) and (A3), by combining Lemmas 4.1, 4.2 and 4.3 and

4, N(0,1), when p — oo as min{ny, ne} — oo.

applying the martingale central limit theorem in Chapter 1, we finish the proof.

In order to carry out the test, a ratio consistent estimator for o7 needs to be con-
structed. In practice, we suggest using a bootstrap method. The bootstrap estimator
07 is described as follows.

. * *
compute versions T} T ...

Given an integer B and the statistic 7, mms Loy ns

1,129

Tﬁtm of Ty, n, by randomly resampling n; observations, with replacement, from

{X1;}, and assigning them to sample 1, and randomly resampling another ny obser-
vations with replacement, from {X;;}2; and assigning them to sample 2; repeat this

procedure independently for each calculation of T . One bootstrap estimator for

2.
oi is

& = Var(T: ).

ni,mn2
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By repeating the above procedure for { X5, }?il, we get the second bootstrap estimator

Ef@). Later, in the simulation studies, we employ both variance estimators along with

a pooled bootstrap estimator 77.

~2(1) ~2(2)
o M0y +n20;

1=

n1+n2

The simulation results show that using the pooled variance estimator always lowers

the empirical power.

Remark: From the definition of 7T}, ,,, it is expected that w function will affect
the power of the test. More precisely, the power will be significantly increased if w
puts heavier weights at regions where F} and F3 are further apart than at regions

where they overlap and vice versa.

We establish the asymptotic normality to T3, ,, under H; by applying two-sample
U-statistic theory. Some basic definitions and theorems of two-sample U-statistics are

presented next.

4.2.2 Two-sample U-statistic

Let X, X0, -+, Xin, € R? be independent observations on a distribution F; for
i =1,2. Consider a parameter § = 0(Fy, Fy) for which there is an unbiased estimator

and 0(Fy, Fy) can be written as
6(F17F2) = Eh’(Xliu T 7Xlim1;X2j1’ U 7X2jm2)

for some symmetric function h, such that h is invariant to any permutation of its

arguments within each sample.
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Definition 4.1 A two-sample U-statistic with my and mo arguments for the first and
second sample 1s

-1 2
ny Mo

=1 (iy a9, yimy ) ECHY

(4.2)
where h is a symmetric kernel with respect to arguments within each sample and its

n 18 taken over all subsets 1 < 31 <

degrees are (my,msy). The sum Z(il,iz,m,iml)ecml

Qg <y <myof {1, ,my}.

Definition 4.1 reveals that a two-sample U-statistic is a sum of identically distributed
random variables and the summands are not independent except in the case where
my1 = mg = 1. Thus, the classic central limit theorem is not applicable if m; > 2 for
1=1or 2.

The following theorem (Lee, 1990) provides a variance decomposition for two-

sample U-statistics.

Theorem 4.2 Let U,, ,, be a two-sample U-statistic based on a kennel function h of

degrees (my,my). Then

arti - §235 (A G (270) -

par (o) (o)

where £z7d = Var{hc,d(Xlila e JXlig; X2j17 T 7X2jd)} and

hc,d(xlh"' s Lles X221y 7x2d) - E{h(xlh"' 7xICJch+17”' Jlel;

Tty Toady Xodtl, 7X2m2)‘X11 =11, , Xie = Tic; Xo1 = Tot, -+, Xog = $2d}~

Theorem 4.2 holds for both fixed and growing dimensions. In the case when p is fixed,
it is expected that Var(U,, n,) is dominated by both summands for ¢ = 1,d = 0 and
c=0,d=1.
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Whereas the classic central limit theorem does not apply to U, ,, when m; > 2
for ¢ = 1 or 2, it does apply to the first order projection of U, ,,. Further, its first
order projection and the U-statistic itself share the same limiting distribution if the

difference between them is negligible.

Definition 4.2 The first order projection of the two-sample U-statistic is defined as

2 n;
Unims = Y Y E(Uny | Xij) — (n1+nz — 1)6), (4.4)

i=1 j=1

where E(Uy, n,|Xi;) is the conditional expectation of Uy, », given Xi;.

Thus Umm can be written as a sum of independent random variables Egl) (Xi;), that
is

2 ng '
Un1,n2 —0= Z Z hgl) (Xij)a

i=1 j=1

where
%:(LZ)(SEM> = E{h(X117 e 7le1;X217 e 7X2m2>‘Xi1 = .’1:'7;1} — 0.

A

Notably, the difference U, n, — Uy, », itself is also a two-sample U-statistic with
zero mean and can be expressed as

-1 2
o s N9
Un ng_UnanZ Xiu"'aXi ;X'u"',X'
; 7 |:<m1) (mQ):| Z Z ¢< 1 Limy» <32j 2]m2)

=1 (i iz, simy ) €CY,

(4.5)

where

¢(X1i17"' 7Xlim1;X2j17... 7X2jm2) = h(XliN"' 7Xlim1;X2j1>"' 7X2jm2)

2 n; o
- ZZhg”(Xij)—e.

=1 j=1
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4.2.3 Limiting distribution of 7}, ,, under the alternative H,;

Based on Definition 4.1, it can be argued that T, ,, is indeed a two-sample U-
statistic with m; = ms = 2 and the kernel function

h(X1i1>X1i2;X2j17X2j2) - / |:I(X1i1 < x)I(Xliz < :L’) + I<X2j1 < I)](XQJE < .%‘)

1 1
= I(Xi S ) I(Xy; < @) = 51Xy < 0)1(Xpy, < 2)

_ %[(XM-Q < ) I(Xy, <) — %J(xm < ) (Xay, < x)]
w(z)dz.
We now note that h(Xy;,, X1,; Xoj,, Xoj,) is symmetric within each sample. In par-
ticular, h(Xii,, X1iy Xojy Xojy), P(X1iy, Xirs Xojy, Xojo )y M Xaiy, X1ig; Xojy, Xoj,) and
h(X1iy, X1iy; Xoj,, Xojy) are all equal. Let § = [ {Fl(x) — Fg(l‘)}2"LU([L')dZL', then it is
shown in Section 4.4 that T;,, ,, is an unbiased estimator for 6.

From (4.4), the projection of T},, ,, can be expressed as
- 2 «=-a 2 =32
Tm,m -0 = — Zhg )(Xli) + — Zh(l )<X2j)7
{3 ey N2
where
I(Xy; < z)Fi(x) + F;(x) — (X1 < 2)Fy(x) — Fi(z) Fy(z) |w(x)dx — 6

/1
/

(X ) - BN - B} ut)ds -

Y (Xu) =

wee) - [ (Fi(2) — I(Xy < 2)}{Fi(x) — Fz(:r)}} w(a)dz — 0.
We proceed to Var(ﬁgi) (X)), for i =1 and 2. It is easy to check that
Var(h{" (X)) = / {Fi(z) — Fa(2){Fi(y) — B(y)H{EFi(z Ay) — Fi(2)Fi(y)}
w(@)w(y)dady,

Va6 = [ [(Fi(2) - B@E () - BB Ay) — Ba@) By}

w(z)w(y)dxdy.
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Under the alternative Hy : Fy # Fy, both Var{h{"(X1,)} and Var{h{¥ (X2} result
positive. Then the following theorem presents the limiting distribution of T n1.mp Under

H.
Theorem 4.3 Let
(52 = 4p1Var{h (Xli)} + 4ngar{;L§2) (X2j)}-

Assume that lim,,; n,—co n—i = pi < oo fork=1,2 and

Var(h{Y (X
lim W(~(12)( 1) _ e (0,00). (4.6)
P Var(hy™ (X))
Then,
V(T ny — 0)/61 N N(0,1) when p — oo as min{ny,ny} — oo. (4.7)
Proof:

We partition /(T n, — 6) into two independent sums of i.i.d. random variables as

V(T oy —0) = \/V:l\/_;hu (X1:) +2\/\/n:2\7/;;h<2 (Xa5)

=: Spu1 + Sp2, say.

By applying the classic central limit theorem,

Snk
\/4/) Var{h (Xki)}

/ /1
\/4p%Va7"{h 1+7 \/4p§Var{h Xoi)} L+

Then (4.6) follows. This finishes the proof.

%, N(0,1), for k =1,2.

As a result,

\/ﬁ<Tn1,n2 - 0)/51




105

We note that when p is fixed, the assumption (4.5) becomes apparently true, when
p — +00, it requires {Fi(z Ay) — Fi(z)Fi(y)} and {Fy(x A y) — Fa(x)Fy(y)} to be
comparable such that Var{izgl)(Xli)} and Var{ngQ)(XQj)} are of the same magnitude.
It is expected that T, ,,, and Tnlm share the same limiting distribution if e, =:

Ty ms — Ty my is negligible. More precisely, based on (4.6) and the Slutsky Theorem

we can conclude that
V(T my — 0)/61 2 N(0,1)

if \/ne,/d1 = 0,(1). For simplicity of notation, let us define

Ai = /ﬁ{ﬂ@ ANy) — E‘(I)F’i(y)}Qw(x)w(y)dxdy, fori=1,2.

b = [ {R@ny - R@RO) R Ay - RO F) fu@)dsdy,

ning

(A4) Assume for 7,5 = 1 and 2,

2 .
[{Fi@n - R@F@)} vty = o [nVar (4 ()]
(A5) Assume Ay, Ay and A;q are of the same order.

Theorem 4.4 Under (A}) and (A5),

Vne, /61 = o,(1).

The proof of Theorem 4.4 is available in Section 4.4. The assumption (A5) is once
again ensures {F1(x Ay) — Fi(x)Fi(y)} and {Fy(x Ay) — Fo(x)Fy(y)} are comparable
as in (4.5). Moreover, (A4) further restricts the relationship between p and n. We
do not offer analytical solutions to this restriction which is determined by cdfs Fi, Fy
and w, but leave it as a future research problem.

To obtain the limiting distribution of T, under H;, we combine the Slutsky

1,12

Theorem, Theorem 4.3 and 4.4. Thus

V(T my — 0)/01 2, N(0,1) when p — oo as min{ny,ns} — oc.
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Under H,, we find 62 = 0. Applying the classic central limit theorem to the first

order projection T, is not suitable any more. As in Chapter 2, we attempt, in

1,12
Section 4.2.1, to establish the asymptotic normality by using the martingale central

limit theorem.

Remark: One possibility of pursuing the limiting distribution for 7},, ,,, under H
is to consider 7}, ,, again as a two-sample U-statistic. We find the following theorem
(Koroljuk and Borovskich, 1989) for univariate case might be possibly extended to
high-dimensional settings. Yet the way of extending it to where p — oo is outside the

scope of existing two-sample U-statistic theory, it needs further investigation.

Theorem 4.5 If &) = &5, =0, &, # 0, &, # 0 and £, # 0. The two-sample

U-statistic U, n, 15 asymptotically distributed as the sum

-1 —-1/2 —-1/2 -1
Ny %220 + nq No Z11 + N9 202, (48)

where zog = Y oo N(TE = 1), z0a = Doy M(G — 1) and 211 = Y oo KiTiCi, T and ¢
are all independent standard normal random variables, and \; and k; are eigenvalues

of hao(-,-)(ho2(+,-)) and hy (-, -) respectively.

Theorem 4.5 indicates that n}/Zn;/zUm’nz N p3 — Lzog + 211 + \/p3 — 1zp2. When

p — 400, the orthonormal eigenfunctions and eigenvalues in connection with the
symmetric kernel function h may hinge on p. Upon assuming their existence, the
eigenvalues \; and k; are still hard to find. In practice, we recommend a bootstrap
method to estimate the limiting distribution given in (4.8). We have described two
schemes for establishing asymptotic normality for the test statistic. Our concerns,
after all, emerge in related assumptions made towards the relationship between p and

n, and the orthonormal decomposition for symmetric kernel function h when p — +o0.
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4.3 Numerical Results

We report numerical results from three simulation studies in which we compared
the proposed distribution test with the MRPP test and the two-sample mean test
proposed in Chapter 2. For the MRPP test, we set the number of permutations to be
1,000. Our target p-variate observations {X;;}, were generated from the following

multivariate model,
Xy =TUy + i, fori=1,2,7=1,2,--+ ,n, (4.9)

where U;; € RPTL. Every standardized Uijr (with zero mean and unit variance), for
k=1,---,p+1, was generated independently from a candidate distribution C;. Two
candidate distributions we considered were N(0,1) and x?(6).

To better examine the performance of the proposed test, we considered three types
of alternatives which are listed in Table 4.1 as Case 1, Case 2 and Case 3. Note that
Case 4 leads to the size of the test. We chose the significance level a = .05.

To calculate T, n,/+/02, we set w to be the uniform distribution on [—3, 3]P.
The Monte Carlo approximation of 7}, ,, was calculated based on 10,000 p-variate
data points independently sampled from w and additional 1,000 p-variate data points
{Z:}190 where Z; = (Zy, -+, Zy)". In particular, for the kth dimension, k =
1,2,---.,p, let (Z1y < Zop < --+ < Zjooox) equally partition the interval [—3, 3].
Three types of alternatives and a null hypothesis were constructed as follows.

For case 1, let py = pp = (0,---,0)7 € RP, 'y =Ty = T'(.5) where

px(p+1)
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Table 4.1 Various alternatives and the null

pr=pe =Ty Cp =0

Case 1: true true false
Case 2:  false true true
Case 3: true false true
Case 4: true true true

and chose C; = N(0,1) and Cy = x*(6). Therefore, both {Xy;}i; and {X5;}}2,
generated from the multivariate model (4.9) had p-variate zero mean vectors and
same covariance matrix X = (0;j)pxp Where 0;; = 1+ .5% 0,5 = 5if |i — j| = 1 and
0;;, =01if |i — j| > 1. For case 2, let 'y =Ty =T'(.5), C1 = Co, g = (0,--- ,0)" € R?
and gy = (8, ,0,)" € RP where §, took positive values. The difference between
F} and F, was apparently caused by different mean vectors, p; and ps. For case 3,
let py = pp = (0,---,0)7 € R? .C; = Cy, Ty = T'(p) and Ty = I'(—p). As a result,
the covariance matrix of {X;};2; and the covariance matrix of {Xy;}72, differed in
their off-diagonal elements. Finally, for case 4, let u; = ps = (0,---,0)7 € RP,
Iy =Ty =T(.5) and C; = Cy. As a result, we had F} = F5.

Throughout our simulation studies, we set both n; and ny to be equal. Sample
size ny (or ny) was 25 and 50 and dimension p was 10, 20 and 50. We carried out 500

simulations for each combination of sample size and dimension in Case 1, 2, 3 and 4.

A permutation test using the proposed T,

1,12

In the first simulation study, a permutation test based on the proposed T,,, ,,, was

undertaken. Consider the pooled sample

{ZhZQv"' 7Zn1+n2} = {Xllv"' 7X1n1}U{X217"' 7X2n2}-
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Under the null hypothesis, Z;,- -, Z,,1n, are i.i.d. with common cdf F'. Given an

2% TM*

compute versions T e T

ni,n2’ " ni,ng’

integer M and T, of T}, n, by randomly

1,129
resampling n; observations without replacement from {Z;, Zs, -+, Z,, +n, and as-
signing them to sample 1, and including all the remaining observations into sample 2;
repeat this procedure independently for each calculation of T The permutation

ni,n2’

p-value is
1 M
i obs
M Z ]<Tn1,n2 = Tél,"l)
i=1

where [(-) is the indicator function and T,Efbfll is the value of T}, ,, for original two

samples { X1y, -, Xy, } and {Xo1, -+, Xo,,}. We chose M = 1000 in our simulation.

For Case 2, we set 0, = .1 and .05, C; = C, = N(0, 1) and x*(6). For Case 3, we set
Cy =Cy = N(0,1) and x*(6), set p = .5 and 1. For Case 4, we set C; = Cy = N(0,1)
and x%(6). The empirical sizes of the three tests shown in Table 4.2, are all close
to the significance level @ = .05. Table 4.3 provides the empirical power in Case 1
where the two candidate distributions (C; # Cs) are different. The empirical power
of the distribution test increased as sample size or dimension p increased, and reached
955 when ny = ny = 50, p = 50. However, the power of the two-sample mean and
MRPP tests remained around the significance level. For Case 2, we provided Table
4.4 and Table 4.5 for ¢, = .05 and 0, = .1, respectively. From these two tables,
we found that the two-sample mean test outperformed the other two tests and the
empirical power of MRPP and the distribution tests were very close when p = 10 and
20 while the latter fell behind when p = 50. Overall, empirical power increased when

J

., sample size or dimension became larger. For Case 3 in which F} and F; differed
only due to their covariance matrices, Table 4.6 presents the empirical power when
p = .5 and Table 4.7 shows results for p = 1. The power of the distribution test

and MRPP test both increased when sample size increased, but powers decreased as
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dimension p increased. However, the two-sample mean test was only able to maintain
the significance level. As the simulation results showed that the two-sample mean
test should not be used to detect any differences between F) and F;, caused by either
different candidate distributions or different covariance matrices. The MRPP test and
the distribution test were able to detect different covariance structures in the case
where dimension p was not too high. When the marginal distributions differed in

their higher (than second) order moments, the distribution test performed the best.

A simulation study based on asymptotic normality

In the previous simulation study, for Case 2, Case 3 and Case 4 three tests per-
formed very similarly for C; = Cy = N(0,1) and C; = Cy = x?(6). We therefore only
considered N(0,1) here to implement the distribution test based on its asymptotic
normality by adopting three variance estimators described earlier. When calculating
the bootstrap estimators for o7, we chose B to be 500. For Case 2, set §, = .1 and for
Case 3, set p = 1. The simulation results shown in Table 4.8 are the empirical power
and size for the distribution test. Dist(BTV-S1) represents the distribution test using
the bootstrap variance estimator (BTV) from the first sample (S1). Dist(BTV-S2)
used BTV from the second sample (S2) and Dist (BTV-pooled) used the pooled BTV.
Overall, the empirical powers of distribution tests using the individual bootstrap vari-
ance estimators were consistently better than using the pooled one but the sizes of

the tests were not as well maintained with the individual estimators.

A simulation study based on bootstrapping 7, ,, from only one sample

We also conducted a simulation study based on bootstrapping 75,, ,, from only one

sample. The procedure can be described as follows.
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Consider either of two samples, say the first sample {Xiy, -+, X1,,}. Given an
integer M and T}, ,, compute versions T,,* . T> ... TM* of Ty, », by randomly
resampling n; observations with replacement from { Xy, - - - , X1,,, } and assigning them

to sample 1, and randomly resampling another ny observations with replacement from
{X11, -+, Xin, } and assigning them to sample 2; repeat this procedure independently
for each calculation of T7* The permutation p-value based on bootstrapping 7,, »,

ni,n2’

from the first sample is
| XM
- % (obs)
> [(Tmm > Tnn)
i=1

By repeating the above procedure for { Xy, -+, Xo,,}, we could have another p-
value. Both sets of p-values were provided in Table 4.9. The permutation test based
on T, n, in the first simulation study can be viewed as bootstrapping 7T, ,, from
pooled sample without replacement. Comparing with the permutation test and the
distribution tests using bootstrap variance estimators, the distribution test based on
bootstrapping 75, », from only one sample lost a little power but successfully controlled
the size around the significance level.

In summary, we found that the empirical powers of the distribution tests were
rather close under three testing schemes: permutation based, asymptotic normality

based and bootstrapping 715, ,, from only one sample based distribution tests.
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4.4 Technical Proofs

Derivation of Var(TT(LBM):

We are to work out Var(T,;) as following.

Var(TV,) = E(TY,,)

ni,n2

=1 k=1
n2

+m > {I(X2j1 <z)-— F(SU)}{I(Xaj2 <z)— F(a:)} X
2\ e

i {I(X2js <y)— F(y)}{](X2j4 <y)— F(y)}] w(z)w(y)dzdy
Ja#£ja

- [ e HPe - PR

ning nl(nl — ].) ng(ng — ].)

w(z)w(y)dxdy.

Proof of T, ,,, being an unbiased estimator for 0:

As T, »n, is a two-sample U-statistic and

-1 2
ni no
T = () ()] 2 X KXo )

my/ \2 =1 ny
(i15i2, simy ) €Cnd,
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where

h(X1i17X1i2;X2j17X2j2) =

—

{[(Xul < @) (X, < 2) + (X, < 2)1( Xy, < )

1
I( X1, <o)[( Xy, <) — §I(X1i1 < 2)I( Xy, < @)

N — DN

1
I(Xaiy < 0)1(Xoj < @) = S1(Xui, < 2)1(Xpy, < )

w(z)dz.

Note that T, ,, is a sum of identically distributed random variables and

©EE s

1ml)€C::Lll

Due to the independence assumption,

B{h(X,, X Xy Xap) } )+ F2(z) — 4(%)F1(I)F2(x)}w(x)dx

)}2w(x)d:13 =4.

I I
\ \

Therefore, E(T,, n,) = 0.

Proof of Lemma 4.2:
For simplicity of notation, we denote Z"1+"2 EV2|Fnj-1] as Qn. To prove Lemma
4.2, we only need to show E(Q,) = o?{1+0(1)}/4 and Var(Q,) = o(o}). We further

partition @,, into Q,1 + Qno.

ni+nz

Qn = ZE 2 Fjai]

ni+n2

m; (nj - 1)

7,1 12=1

= - in + Qn27
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where n; =mny if j € {l,--- ,m},nj=noif j€ {ny +1,--- ,ny +n2} and

ni+nz

D I O S e e L
=2 i1 I

Note that F(Q,2) = 0 and Cov(Qn1, @n2) = 0, to prove the lemma, we only need to

show E(Qn1) = 03{1 +0(1)}/4, Var(Qn1) = o(o1) and Var(Qn2) = o(o?).

ni+n2

E(Qn) = Z /(Z¢zz> G /\fs)ﬁ: I_T(x)F(y)}w(x)w(y)dxdy

(n; —1)
= (i + ”i” ) / (§ ¢n’> {Fany) - F(x)F(y)}w(x)w(y)dxdy
Jj=2  j=mi+l1 i=1

n;(n; —1)

ny j—1

2 2
ny(ng —1
j=2 i=1 1 )

ni+nz ni 2
o3y (AW OB ) dedy

nl(nl — 1)712(712 — ].)

Jj=ni1+1 =1

"N [ {F(z Ay) - F(x)F(y))?

= oi{l+o(1)}/4.

We focus on Var(Q,;) only as Var(Q,z2) = o(c}) can be proved similarly.

B(Q2) E{ Z /Z {1(Y: <) = P@){I(Y; < y) — F(y)}

nl i (R — 1)

X

ni+ng ni+ng Jji—1lj2—1 I Yvil ) — Fx I Y;l _F
{FleAy) = Flo)F(y)} {1V, <u) — F(u) {I(Yi, <v) — F(v)}

— X
Ty (Mg — 1)

w()d- = B*(Qu){1 +0(1)} + P2/’

M1 (i — 1)
{F(uAv)— F(U)F(U)}]
( )

Njo(Njo — 1
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where

0 = [ E{{m <)~ F@)}{I(Y; <) - F)HI(Y: < ) - F(u)}
<{1(Y; < v) - F<v>}] {Fe Ay) — F@)F(y)}{F(uAv) - F)F(v)}

w(x)w(y)w(uw)w(v)dedydudv.
Under (A1) and (A2), Var(Qu1) = o(o}). This finishes the proof.

Proof of Lemma 4.3:

Since
ni1+ne ni+nz
Z o1 PE{VAI(|Vyj] > €01)|Frjo1} < oy %71 Z E(V,L|Fnj—1) for some g > 2.
j=2 J=1

We choose ¢ = 4. Then the conclusion of the lemma is true if we can show

ni+na ni1+n2
E{ > E(Vé!mel)} = > E(V;) = o(0}).
Jj=2 j=2
Note that
ni+na ni+ng j—1 4
Z E(Vfﬂ - Z E{ /¢Zj<x>wz($)d$}
J=2 j=2 i=1
ni+no J—1
- Z E{ Z /¢i1j($)¢izj(y)¢i3j(U)¢i4j(v)w(-)d-}
Jj=2 i1,i2,i3,04=1

ni+ns 7j—1

- > X B oot |

J=2 11,i2,i3,i4=1
The last term can be decomposed as 3¢) + P where

ni+ng j—1

Q=2 > E{ /%j($)¢z‘2j(y)¢z‘1j(U)¢z‘2j(v)w(')d' }

J=2 1o

and
ni+ng j—1

P=3 ZE{ /%‘($)¢ij(y)%(u)%(v)w(')d.}

j=2 =1
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Notice that

P =

where
O3 = /E2 {{I(Yi <) = Fl){I(Y: <y) = Fy) {I(Y; <u) = F(u)}
x{I(Y; <wv)— F(v)}} w(x)w(y)w(u)w(v)drdydudv

and

0 -3 ZE{ [ 6@ )6 winshuta - |

Jj=2 i1#i2

- (B8 )7& 5{ [ 6,@0uon -

7j=2 Jj=ni1+1

ni n1+n2

_ ( v )Zo<n—8>q>2
J=2  j=na+l7 iyio

= O(n™®

Under (A1), (A2) and (A3), we have 3Q + P = o(o?}). This finishes the proof.

Proof of Theorem 4.4:

From (4.5), e,, can be written as

16 R R

i1,i2€C%1 ]’1,J’2€C’,212
The kernel function ¢ is defined as
O Xirs Xiigs Xojy, Xoy) = h(Xuiy, Xuigs Xojy s Xagy) — B (X)) — 1Y (X1,)

— hP(Xa;,) — 1P (Xoy,) — 0.
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It can be shown that

E{¢(X1i17Xlig;XQJ'uXij)} = 0,
E{¢(X1i1>X1i2;X2j17X2j2)’X18 = mls} = O,a.e. for s = 7/-1 or 2'2

E{¢(X1i17X1i2; Xojy, Xoj, )| Xor = xzt} = 0,a.e. for t = j; or jo.

Therefore the variances of these three terms are all equal to 0, that is 5, = 0;£7 =

0;£3, = 0. Then the variance of e, can be simplified as

2 2
Var(en) m{l +o(1)}&5, + m{l +o(1)}&,
4 8
+E{1 +o()}ed, + m{l +o(1)}ef,
S {101}, + : &

noni(ng — 1) ning(ny — 1)(ng — 1)

where

fg,o = VCLT{E(¢(X1i17X1i2;X2j17X2j2)|X1i1 = Ty, X1ip = Ilig)}

- Var( / [I(Xm < ) [(Xu, < o) — {I(Xy, <)+ [(Xy, < 2)}F (x)}w(w)dm)

= / {Fl(w Ay) — Fl(:v)Fl(y)}Qw(x)w(y)dxdy,

2
Similarly, &, = [ {Fz(x ANy) — Fg(x)Fg(y)} w(z)w(y)dzdy.
&, = VW{E(cb(leXuz;X2j17X2j2)|X1i1 = 1y, Xoj, = x%)}

= Vma(/%{]()(m < x)Fy(x) + Iy, <x)Fi(z) — I(Xy, <2)I(ly, < x)}w(m)dm)

_ i / {Fl(aj Ay) — Fl(x)Fl(y)}{Fg(x Ay) — Fg(a:)Fz(y)}w(:E)w(y)dxdy,
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&, = VGT{E(¢(X1i1>X1i27X2j1>X2j2)’X1i1 = T1iy, Xoj, = Xajy, Xoj, = $2j2)}
-/ {{szw ~ By(x)Fa(y))

+3{ Al A9 =A@ RO H R A - B@R 0+ ooy

= (53,2 + 25%,1)‘{1 +o(1)},
g = [|{rern-r@rm)

2

+5{ Al n9) = @ RO MR A - B@ R} (4 ooty
= (G026 {1+ o1},

fg,z = VCL?"{Cb(Xlil,Xlig;X2j1,X2j2)}
= / [{Fl(x ANY) — Fl(x)Fl(y)}Q + {F2(37 Ny) = F2(x)F2(y)}2

+ {Al Ay - ARG H{ Py - Fz(ﬂf)F2(y)}] {1+ o(1)w(e)w(y)dedy

= (fg,o + fg,z + 45%,1){1 +o(1)},

All those o(1) terms vanish when p — oo and min{n;,ny} — co. In summary,

2
Var(e,) = [nl(—éio—l—n

2 4
2ot e+ e (14 o)

2\12

Under (A1), (A4) and (A5), we have nVar(e,)/d? = o(1). This finishes the proof.
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Table 4.3 Empirical power of MRPP test, two-sample mean test and a permutation
distribution test using T}, », in Case 1 where C; = N(0,1) and Cy = x?(6).

ni=mny p| Dist Mean MRPP

25 10 | .108  .074 .068
20 | 314 .065 047
50 | .711  .072 .068
50 10 | .221  .081 078
20 | .577  .060 057
50 ] .955  .081 .066
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