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CHAPTER 1. Introduction

High-dimensional data, where the number of variables p is large compared to the

sample size n, are widely available from microarray studies, finance and many other

sources. This dissertation focuses on the effects of high dimensionality on some as-

pects of statistical inference. A two-sample test for means of high-dimensional data

proposed in this dissertation allows p to be much larger than n. We will show that

in the simulation study the proposed test statistic performed consistently better than

the other existing methods. Two distributions sharing the same mean may differ in

many other aspects. We therefore consider a two-sample test for high-dimensional

distributions. The proposed test statistic is based on empirical distribution functions

and is a natural extension to our two-sample test statistic for means. Empirical likeli-

hood has many important applications in nonparametric or semiparametric statistical

inference. In this dissertation, we further study the effects of data dimension on the

asymptotic normality of the empirical likelihood ratio for high-dimensional data under

a general multivariate model.

In the remaining of Chapter 1, we shall briefly review some issues arising from

high-dimensional data analysis and other topics relevant and important to the work

in this dissertation. More detailed literature reviews will be available in each chapter.
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1.1 Hypothesis Testing in Microarray Data Analysis

Microarray technology plays a key role in molecular biology and in medicine for

discovering certain diseases and developing new drugs. It is very common that microar-

ray data contain gene expression values measured on thousands of genes from much

fewer biological objects. In order to detect a small proportion of differentially ex-

pressed genes across different treatment groups given very few biological observations,

statisticians are in urgent need to develop powerful and approriate multiple testing

procedures to maintain the level of certain type of error rate. For comparison between

numerous tests used to identify differentially expressed genes, see Jeffery et al. (2006)

and many other references. The most commonly used multiple testing procedures in-

clude the Bonferroni procedure which controls the family wise error rate (FWER) and

the false discovery rate (FDR) approach proposed in Benjamini and Hochberg (1995).

Also see the q-value method as an FDR-based measure of significance for genomewide

studies in Storey and Tibshirani (2003).

Biologically speaking, each gene does not function individually in isolation. Rather,

one gene tends to work with other genes to achieve certain biological tasks. The re-

cent development of the Gene Ontology Consortium (Ashburner et al., 2000) allows

researchers to carry out statistical inference for well defined gene sets. The Gene

Ontology Consortium provides a vocabulary of defined terms representing gene sets.

Identifying sets of genes which are differentially expressed with respect to certain treat-

ments is a recent development in genetics research; see Gene Set Enrichment Analysis

in Subramanian et al. (2005) and Significance Analysis of Function and Expression

proposed in Barry et al. (2005), Efron and Tibshirani (2007), Newton et al. (2007)

and Nettleton et al. (2008).

The original motivation of my work on high-dimensional hypothesis testing is to
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develop novel statistical methods for identifying gene sets (dimension p can range from

a moderate to a very large number) whose expression levels or joint distributions of

expression values differ across two treatment groups. However, the methods proposed

in this dissertation are widely applicable to high-dimensional data from many other

sources.

1.2 High-Dimensional Data Problems

Traditional statistical data analyses are carried out for observations measured on

a fixed number of variables. Due to availability of massive data from finance, mi-

croarrays, and climatology etc., people are exposed to situations where the number of

variables increases dramatically, but, the number of observations increases much more

slowly. Especially in most microarray studies, due to budgetary constraints and other

experimental restrictions, the number of observations is relatively small compared to

thousands of variables measured on each observation. Consequently, many classical

statistical inference procedures, which require fixed data dimensions are not suitable

anymore.

1.2.1 High-dimensional hypothesis testing for means

To demonstrate some challenges arising from high-dimensional hypothesis testing,

let us consider two random samples Xi1, Xi2, · · · , Xini
∈ Rp for i = 1 and 2, which

have means µi = (µi1, µi2, · · · , µip)
′ and covariance matrices Σi. The data, for example,

can be gene expression values measured on mRNA microarrays. We therefore have

ni observations for the i-th group; the vector Xij contains gene expression values

measured on p genes for the j-th observation in the i-th group. To identify gene

sets whose expression levels differ across two groups, we are interested in testing the
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hypothesis

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2.

Traditionally, if data with fixed dimension are normally distributed, people would use

the Hotelling’s T 2 test which is defined as

T 2 =
n1n2

n1 + n2

(X̄1 − X̄2)
T S−1

n (X̄1 − X̄2),

where X̄i is the i-th sample mean vector, for i = 1, 2 and Sn is the pooled sample

covariance matrix defined as

Sn =
1

n1 + n2 − 2

2∑
i=1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)
T .

Then under the null hypothesis, n−p+1
np

T 2 has a central F -distribution (Anderson, 2003)

with p and n − p + 1 degrees of freedom where n = n1 + n2 − 2. Unfortunately, if

p > n, which happens very commonly with high-dimensional data, the Hotelling’s T 2

test is not well defined because the sample covariance matrix becomes singular. The

singularity is due to the fact that the dimension p of Sn is larger than its degrees of

freedom.

In an important work, Bai and Saranadasa (1996) proposed a test (BS test) to

replace the Hotelling’s T 2 test. The BS test statistic is based on the statistic

Mn = (X̄1 − X̄2)
T (X̄1 − X̄2)− τtrSn,

where τ = n1+n2

n1n2
and tr(·) is the trace operator of a matrix. And the authors assumed

a general multivariate model

Xij = ΓZij + µi for j = 1, · · · , ni, i = 1 and 2, (1.1)

where Γ is a p ×m matrix for some m ≥ p such that ΓΓ′ = Σ and Σ is the common

covariance matrix. And {Zij}ni
j=1 are m-variate independent and identically distributed
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(i.i.d.) random vectors satisfying E(Zij) = 0, V ar(Zij) = Im (the m × m identity

matrix), and E(z4
ijk) = 3 + ∆ < ∞. Here ∆ describes the difference between the

fourth moments of zijk and N(0, 1). Bai and Saranadasa (1996) further showed that

given p/n → y > 0 and some other mild conditions,

Mn√
V ar(Mn)

d−→ N(0, 1), as n →∞.

However, by assuming p/n → y > 0, it basically requires p and n to increase to +∞
at the same rate. Consequently, the BS test is not attractive in “large p, small n”

case. In Chapter 2, we propose a new test which allows p >> n, i.e. p can be much

larger than n. The proposed test statistic also has the asymptotic normal property

and performed more powerfully than the BS test in our simulation study.

Many other important works have been published on hypothesis testing for means

when both p and n go to infinity. Srivastava (2009) proposed a test for mean vec-

tors with fewer observations than the dimension by assuming the same multivariate

model as in (1.1). The test proposed by Srivastava can be treated as a standardized

Hotelling’s T 2 test without using a normality assumption. Schott (2007) considered

high-dimensional tests for a one-way MANOVA as a generalization of the BS test

statistic. Fan et al. (2007) evaluated approximation of the overall level of significance

for simultaneous testing of means. They demonstrated that the bootstrap method

can accurately approximate the overall level of significance if log p = o(n1/3) when the

marginal tests are performed based on the normal or the t-distributions. See also Fan

et al. (2005) and Huang et al. (2005) for high-dimensional estimation and testing in

semiparametric regression models.
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1.2.2 High-dimensional hypothesis testing for distributions

Let us consider two random samples Xi1, Xi2, · · · , Xini
∈ Rp for i = 1 and 2 drawn

independently from multivariate continuous distributions F1 and F2, respectively. The

hypothesis we are interested in becomes

H0 : F1 = F2 vs. H1 : F1 6= F2.

In fixed dimension settings, a rank test, multivariate Kolmogrorov-Smirnov test (Pea-

cock, 1983; Fasano and Franceschini, 1987; Bickel, 1969), or a multivariate Cramér-von

Mises test (Anderson and Darling, 1952; Ahmad, 1996) may be used. For arbitrary

dimensions, Baringhaus and Franz (2004) proposed a test statistic, Tn1,n2 , based on

between and within sample Euclidean distances, where

Tn1,n2 =
n1n2

n1 + n2

[
1

n1n2

n1∑
i=1

n2∑
j=1

||X1i −X2j|| − 1

2n2
1

n1∑
i=1

n1∑
j=1

||X1i −X1j||

− 1

2n2
2

n2∑
i=1

n2∑
j=1

||X2i −X2j||
]
. (1.2)

The test rejects the null hypothesis if Tn1,n2 is large. As the distribution of Tn1,n2 con-

verges to a Brownian bridge which depends on an unknown distribution, the authors

suggested a bootstrap method to simulate critical values. Alba Fernández et al. (2008)

constructed a test statistic similar to this Tn1,n2 . The test statistic is defined as

Dn1,n2 =
1

n2
1

n1∑
i,j=1

u(X1i−X1j)+
1

n2
2

n2∑
i,j=1

u(X2i−X2j)− 2

n1n2

n1∑
i=1

n2∑
j=1

u(X1i−X2j), (1.3)

where u(t) =
∫

cos(x′t)dG(x), which is the real part of the characteristic function of a

distribution function G on Rp. The authors also suggested bootstrap and permutation

procedures to estimate its limiting distribution.

Hall and Tajvidi (2002) proposed a permutation test of equal distributions for

arbitrarily high-dimensional data. The critical values are determined by using per-



7

mutation conditional on the pairwise distances between pooled data, which is defined

as

L = {X11, X12 · · · , X1n1}
⋃
{X21, X22 · · · , X2n2}.

Note that the measure of pairwise distance has to be symmetric but not necessarily

be a metric. Another nonparametric multivariate test motivated by the application

of identifying differentially expressed gene sets was investigated in Nettleton et al.

(2008). In this dissertation, we propose a test for high-dimensional distributions based

on empirical distribution functions. The limiting distribution of the test statistic will

be established.

1.3 Empirical Likelihood

Using the empirical likelihood method to construct confidence regions was first

introduced in Owen (1988, 1990) for means and some other parameters. It is a non-

parametric method of statistical inference that does not require that the data come

from a certain known family of distributions. Empirical likelihood is generally appli-

cable to many areas of statistical analysis, see Hall (1990), Hall and Owen (1993),

DiCiccio et al. (1989), Chen (1993, 1994a,b, 1996), Chen and Qin (2000), Chen and

Cui (2003, 2006), and Qin (1993, 1999), Qin and Jing (2001), Qin and Zhang (2007).

For a comprehensive reference, see Owen (2001).

Definition 1.1 Suppose X1, X2, · · · , Xn are i.i.d. random variables (univariate or

multivariate) with cumulative distribution function (cdf) F . Let πi be a probability

(such that
∑n

i=1 πi = 1 and all πi ≥ 0) assigned to the observed data value Xi. The

nonparametric likelihood is

Ln(F, π) =
n∏

i=1

πi.
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It has been proven (Owen, 2001) that Ln(F, π) is maximized by Fn (that is πi = 1/n

for i = 1, 2, · · · , n), where Fn is the empirical cumulative distribution function.

We are interested in specifically the mean vector of a multivariate cdf F , say

parameter µ. The next two definitions introduce the empirical likelihood and empirical

likelihood ratio for the mean, respectively.

Definition 1.2 The empirical likelihood function for the mean is as

Ln(µ) = sup

{ n∏
i=1

πi|πi ≥ 0,
n∑

i=1

πi = 1,
n∑

i=1

πiXi = µ

}
.

Using Lagrange multipliers, Owen (1988) showed that Ln(µ) is maximized when

πi(µ) = n−1{1 + λT (Xi − µ)}−1(1 ≤ i ≤ n),

and λ = λ(µ) is determined by

n∑
i=1

{1 + λT (Xi − µ)}−1(Xi − µ) = 0.

Definition 1.3 The empirical likelihood ratio for µ is

wn(µ) = −2 log{nnLn(µ)}. (1.4)

When p is fixed, the Wilks’ theorem indicates that

wn(µ) → χ2
p (1.5)

in distribution as n → +∞.

In this dissertation, we consider the effects of high-dimensionality on the empirical

likelihood ratio test. Let X1, . . . , Xn be i.i.d. random vectors in Rp with mean vector

µ = (µ1, . . . , µp)
T and non-singular variance matrix Σ ∈ Rp×p. As p → +∞ for

high-dimensional data, the natural substitute for (1.5) is

(2p)−1/2{wn(µ)− p} → N(0, 1) (1.6)
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in distribution as n → +∞, since χ2
p is asymptotic normal with mean p and variance

2p. A key question is how large the dimension p can be while (1.6) is valid.

In a recent study, Hjort et al. (2009) established that it is p = o(n1/3) together with

some other assumptions to ensure (1.6) is valid. We evaluate in this dissertation the

effects of data dimension on the asymptotic normality of the empirical likelihood ratio

for high-dimensional data under a general multivariate model. Data dimension and

dependence among components of the multivariate random vector affect the empirical

likelihood directly througth the trace and the eigenvalues of the covariance matrix.

The growth rates we obtain for the data dimension improve the rates of Hjort et al.

(2009).

In an important study, Tsao (2004) found that, when p is moderately large but

fixed, the distribution of wn(µ) has an atom at infinity for fixed n: the probability of

wn(µ) = ∞ is non-zero. Tsao further showed that, if p and n increase at the same rate

such that p/n ≥ 0.5, the probability of wn(µ) = ∞ converges to 1 since the probability

of µ being contained in the convex hull of the sample converges to 0. These reveal

effects of p on the empirical likelihood from another perspective.

1.4 Martingale Central Limit Theorem

Martingale theory has remarkable applications in economics, game theory, U-

statistics, survival analysis and many other areas. The martingale central limit the-

orem generalizes limit results for sums of independent random variables and plays a

key role in probability theory. In this dissertation, we apply the martingale central

limit theorem to achieve the asymptotic normality for the tests proposed in Chapter

2, Chapter 3 and Chapter 4. We therefore introduce here the general definition of a

martingale, martingale differences, martingale array, and the martingale central limit
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theorem.

Definition 1.4 Let (Ω,F , P ) be a probability space, where Ω is a set, F is a σ-field

of subset of Ω and P a probability measure defined on F . Let {Fn, n ≥ 1} be an

increasing sequence of σ-fields of F sets. Suppose that {Sn, n ≥ 1} is a sequence of

random variables on Ω satisfying

(i) Sn is measurable with respect to Fn;

(ii) E|Sn| < ∞;

(iii) E(Sn|Fm) = Sm a.s. for m < n.

Then ,the sequence {Sn,Fn} is said to be a martingale and Xn = Sn − Sn−1, n ≥ 2

denote martingale differences.

Definition 1.5 Let {Sni,Fni, 1 ≤ i ≤ kn} be a zero-mean and square-integrable mar-

tingale for each n ≥ 1. Denote the martingale differences as Xni = Sni − Sn,i−1, 1 ≤
i ≤ kn(Sn0 = 0). It is assumed that kn → ∞ as n → ∞. Then {Sni,Fni, 1 ≤ i ≤
kn, n ≥ 1} is called a martingale array.

We present the martingale central limit theorem (Hall and Heyde, 1980) in the fol-

lowing theorem.

Theorem 1.1 Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean and square-integrable

martingale array with differences Xni and let η2 be an a.s. finite random variable.

Suppose that the σ−fields are nested: Fn,i ⊆ Fn,i+1 for 1 ≤ i ≤ kn, n ≥ 1 and

for all ε > 0,
∑

i E[X2
niI(|Xni| > ε)|Fn,i−1]

P−→ 0, and

V 2
nkn

=
∑

E(X2
ni|Fn,i−1)

P−→ η2.
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Then

Snkn =
∑

Xni
d−→ Z,

where Z is a normally distributed random variable with zero mean and variance η2.

1.5 Dissertation Organization

This dissertation consists of three main chapters. In Chapter 2, we propose a

two-sample test for means when the data dimension is high. The test requires no

explicit conditions between sample size n and data dimension p. The proposed test

therefore provides great flexibility to carry out hypothesis testing in “large p, small

n” situations. The simulation study shows that the proposed test performs more

powerfully than other existing tests. A short version of this chapter has been accepted

for publication by The Annals of Statistics.

In Chapter 3, we evaluate the effects of data dimension on the asymptotic normality

of the empirical likelihood ratio for high-dimensional data under a general multivariate

model. An abbreviated version of this chapter (Chen et al., 2009) has been published

in Biometrika.

Chapter 4 focuses on a test of equality of two continuous high-dimensional cdfs.

It is shown that the proposed test statistic is a weighted average of distance measures

between two continuous cumulative distribution functions. The asymptotic normality

of the test statistic is established. This manuscript will be submitted to The Annals

of Applied Statistics.
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CHAPTER 2. A Two-Sample Test for High-Dimensional

Data with Applications to Gene-set Testing

2.1 Introduction

High-dimensional data are increasingly encountered in many applications of statis-

tics and most prominently in biological and financial studies. A common feature of

high-dimensional data is that, while the data dimension is high, the sample size is

relatively small. This is the so-called “large p, small n” phenomenon where p/n →∞;

here p is the data dimension and n is the sample size. The high data dimension (“large

p”) alone has created the need to renovate and rewrite some of the conventional mul-

tivariate analysis procedures; these needs only get much greater for “large p small n”

situations.

A specific “large p, small n” situation arises when simultaneously testing a large

number of hypotheses which is largely motivated by the identification of significant

genes in microarray and genetic sequence studies. A natural question is how many

hypotheses can be tested simultaneously. This chapter tries to answer this question

in the context of two-sample simultaneous tests for means. Consider two random

samples Xi1, · · · , Xini
∈ Rp for i = 1 and 2 which have means µ1 = (µ11, · · · , µ1p)

T

and µ2 = (µ21, · · · , µ2p)
T and covariance matrices Σ1 and Σ2, respectively. We consider
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testing the following high-dimensional hypothesis:

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (2.1)

The hypothesis H0 consists of the p marginal hypotheses H0l : µ1l = µ2l for l = 1, · · · , p

regarding the means on each data dimension.

There have been a series of important studies on the high-dimensional problem.

Van der Laan and Bryan (2001) showed that the sample mean of p-dimensional

data can consistently estimate the population mean uniformly across p dimensions

if log(p) = o(n) for bounded random variables. In a major generalization, Kosorok

and Ma (2007) considered uniform convergence for a range of univariate statistics con-

structed for each data dimension, which included the marginal empirical distribution,

sample mean and sample median. They established the uniform convergence across p

dimensions when log(p) = o(n1/2) or log(p) = o(n1/3) depending on the nature of the

marginal statistics. Fan et al. (2007) evaluated approximation of the overall level of

significance for simultaneous testing of means. They demonstrated that the bootstrap

can accurately approximate the overall level of significance if log(p) = o(n1/3) when

the marginal tests are performed based on the normal or the t-distributions. See also

Fan et al. (2005) and Huang et al. (2005) for high-dimensional estimation and testing

in semiparametric regression models.

In an important work, Bai and Saranadasa (1996) proposed using ||X̄1 − X̄2|| to

replace (X̄1 − X̄2)
T S−1

n (X̄1 − X̄2) in Hotelling’s T 2-statistic where X̄1 and X̄2 are the

two-sample means, Sn is the pooled sample covariance by assuming Σ1 = Σ2 = Σ, and

|| · || denotes the Euclidean norm in Rp. They established asymptotic normality of the

test statistic and showed that it has attractive power when p/n → c < ∞ and the

maximum eigenvalue of Σ is constrained in a suitable way. However, the requirement

of p and n being of the same order is too restrictive to be used in the “large p, small
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n” situation.

To allow simultaneous testing for ultra high-dimensional data, we construct a test

which allows p to be arbitrarily large and independent of the sample size as long as,

in the case of common covariance Σ, tr(Σ4) = o{tr2(Σ2)} where tr(·) is the trace

operator of a matrix. The above condition on Σ is trivially true for any p if either

all the eigenvalues of Σ are bounded or the largest eigenvalue is of smaller order than

(p − b)1/2b−1/4 where b is the number of unbounded eigenvalues. We establish the

asymptotic normality of a test statistic which leads to a two-sample test for high-

dimensional data.

Testing significance for gene-sets rather than a single gene is the latest development

in genetic data analysis. A critical need for gene-set testing is to have a multivariate

test that is applicable to a wide range of data dimensions (the number of genes in

a set). It requires P -values for all gene-sets to allow procedures based on either the

Bonferroni correction or the false discovery rate (Benjamini and Hochberg, 1995) to

take into account the multiplicity in the test. We demonstrate in this chapter how

to use the proposed test for testing significance for gene-sets. An advantage of the

proposed test is that it readily produces P -values for the significance for each gene-set

under study so that the multiplicity of multiple testing can be taken into consideration.

This chapter is organized as follows. We outline in Section 2.2 the framework of

the two-sample test for high-dimensional data and introduce the proposed test statis-

tic. Section 2.3 provides the theoretical properties of the test. The application of

the proposed test of significance for gene-sets is demonstrated in Section 2.4, which

includes an analysis of an Acute Lymphoblastic Leukemia data set. Results of simula-

tion studies are reported in Section 2.5. All the technical details are given in Section

2.6.
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2.2 Test Statistic

Suppose we have two independent and identically distributed random samples in

Rp,

{Xi1, Xi2, · · · , Xini
} i.i.d.∼ Fi for i = 1 and 2,

where Fi is a distribution in Rp with mean µi and covariance Σi. A well-pursued inter-

est in high-dimensional data analysis is to test if the two high-dimensional populations

have the same mean or not; namely,

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (2.2)

The above hypothesis consists of p marginal hypotheses regarding the means of each

data dimension. An important question from the point view of multiple testing is how

many marginal hypotheses can be tested simultaneously. Van der Laan and Bryan

(2001), Kosorok and Ma (2007) and Fan et al. (2007) addressed this question. Their

results show that p can reach the rate of eαnβ
for some positive constants α and β.

In establishing a rate of the above form, both Van der Laan and Bryan (2001) and

Kosorok and Ma (2007) assumed that the marginal distributions of F1 and F2 are all

supported on bounded intervals.

Hotelling’s T 2 test is the conventional test for the above hypothesis when the

dimension p is fixed and is less than n =: n1 + n2 − 2 and when Σ1 = Σ2 = Σ,

say. Its performance for high-dimensional data was evaluated in Bai and Saranadasa

(1996) when p/n → c ∈ [0, 1), and they report a decreasing power as c gets larger. A

reason for the negative effect of high-dimension is the presence of the inverse of the

sample covariance matrix in the T 2 statistic. While standardizing by the covariance

matrix brings benefits for data with a fixed dimension, it becomes a liability for high-

dimensional data. In particular, the sample covariance matrix Sn may not converge
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to the population covariance when p and n are of the same order. Indeed, Yin et al.

(1988) showed that when p/n → c, the smallest and the largest eigenvalues of the

sample covariance Sn do not converge to the respective eigenvalues of Σ. The same

phenomenon, but on the weak convergence of the extreme eigenvalues of the sample

covariance, is found in Tracy and Widom (1996). When p > n, Hotelling’s T 2 statistic

is not defined as Sn may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who proposed test-

ing hypothesis (2.2) under Σ1 = Σ2 = Σ based on

Mn = (X̄1 − X̄2)
′(X̄1 − X̄2)− τtr(Sn), (2.3)

where Sn = 1
n

∑2
i=1

∑Ni

j=1(Xij − X̄i)(Xij − X̄i)
′ and τ = n1+n2

n1n2
. The key feature of

the Bai and Saranadasa proposal is removing S−1
n in Hotelling’s T 2 since having S−1

n

is no longer beneficial when p/n → c > 0. The subtraction of tr(Sn) in (2.3) makes

E(Mn) = ||µ1 − µ2||2. As

E(Mn) =
tr(Σ)

n1

+ µ′1µ1 +
tr(Σ)

n2

+ µ′2µ2 − 2µ′1µ2 − τtr(Sn)

= τtr(Σ) + µ′1µ1 + µ′2µ2 − 2µ′1µ2 − τ

{
(n1 − 1)tr(Σ) + (n2 − 1)tr(Σ)

n1 + n2 − 2

}

= ||µ1 − µ2||2.

The asymptotic normality of Mn is established and a test statistic is formulated by

standardizing Mn with an estimate of its standard deviation.

The following are the main conditions assumed in the Bai-Saranadasa test:

p/n → c < ∞ and λp = o(p1/2); (2.4)

n1/(n1 + n2) → k ∈ (0, 1) and (µ1 − µ2)
′Σ(µ1 − µ2) = o{tr(Σ2)/n},(2.5)

where λp denotes the largest eigenvalue of Σ.
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A careful study of the Mn statistic reveals that the restrictions on p and n, and

on λp in (2.4) are needed to control terms
∑ni

j=1 X ′
ijXij, i = 1 and 2, in ||X̄1 − X̄2||2.

However, these two terms are not useful in the test. To appreciate this point, let us

consider

Tn =:
Σn1

i 6=jX
′
1iX1j

n1(n1 − 1)
+

Σn2
i6=jX

′
2iX2j

n2(n2 − 1)
− 2

Σn1
i=1Σ

n2
j=1X

′
1iX2j

n1n2

after removing
∑ni

j=1 X ′
ijXij for i = 1 and 2 from ||X̄1− X̄2||2. Elementary derivations

show that

E(Tn) = ||µ1 − µ2||2.

Hence, Tn is basically all we need for testing. Bai and Saranadasa used tr(Sn) to offset

the two diagonal terms. However, tr(Sn) itself imposes demands on the dimensionality

too.

A derivation in Section 2.6 shows that under H1 and similar conditions as the

second condition in (2.5),

V ar(Tn) =

{
2

n1(n1−1)
tr(Σ2

1) + 2
n2(n2−1)

tr(Σ2
2) + 4

n1n2
tr(Σ1Σ2)

}
{1 + o(1)},

where the o(1) term vanishes under H0.

2.3 Main Results

2.3.1 Model assumptions

We assume, like Bai and Saranadasa (1996), the following general multivariate

model,

Xij = ΓiZij + µi for j = 1, · · · , ni, i = 1 and 2, (2.6)

where each Γi is a p×m matrix for some m ≥ p such that ΓiΓ
′
i = Σi, and {Zij}ni

j=1 are

m-variate independent and identically distributed (i.i.d.) random vectors satisfying
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E(Zij) = 0, V ar(Zij) = Im, the m × m identity matrix. Furthermore, if we write

Zij = (zij1, . . . , zijm)′, we assume E(z4
ijk) = 3 + ∆ < ∞, and

E
(
zα1

ijl1
zα2

ijl2
· · · zαq

ijlq

)
= E(zα1

ijl1
)E(zα2

ijl2
) · · ·E(z

αq

ijlq
) (2.7)

for a positive integer q such that
∑q

l=1 αl ≤ 8 and l1 6= l2 6= · · · 6= lq. Here ∆

describes the difference between the fourth moments of zijl and N(0, 1). Model (2.6)

says that Xij can be expressed as a linear transformation of a m-variate Zij with zero

mean and unit variance that satisfies (2.7). Model (2.6) is similar to factor models

in multivariate analysis. However, instead of having the number of factors m < p

as in the conventional multivariate analysis, we require m ≥ p. This is to allow the

basic characteristics of the covariance Σi, for instance its rank and eigenvalues, to

not be affected by the transformation. The rank and eigenvalues could be affected

if m < p. The fact that m is arbitrary offers much flexibility in generating a rich

collection of dependence structures. Condition (2.7) means that each Zij has a kind

of pseudo-independence among its components {zijl}m
l=1. Obviously, if Zij does have

independent components, then (2.7) is trivially true.

We do not assume Σ1 = Σ2, as it is a rather strong assumption, and more im-

portantly such an assumption is difficult to verify for high-dimensional data. Testing

certain special structures of the covariance matrix when p and n are of the same order

has been considered in Ledoit and Wolf (2002) and Schott (2005).

We assume

n1/(n1 + n2) → k ∈ (0, 1) as n →∞ (2.8)

(µ1 − µ2)
′Σi(µ1 − µ2) = o[n−1tr{(Σ1 + Σ2)

2}] for i = 1 or 2 (2.9)

which generalizes (2.5) to unequal covariances. Condition (2.9) is obviously satis-

fied under H0 and implies that the difference between µ1 and µ2 is small relative to
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n−1tr{(Σ1 + Σ2)
2} so that a workable expression for the variance of Tn under H0 and

the specified local alternative can be derived. It can be viewed as a high-dimensional

version of the local alternative hypotheses. When p is fixed, if we use a standard

test for two population means, for instance Hotelling’s T 2 test, the local alternative

hypotheses has the form of µ1 − µ2 = τn−1/2 for a non-zero constant vector τ ∈ Rp.

Hotelling’s test has non-trivial power under such local alternatives (Anderson, 2003).

If we assume each component of µ1−µ2 is the same, say δ, then the local alternatives

imply δ = O(n−1/2) for a fixed p. When the difference is o(n−1/2), Hotelling’s test has

no power beyond the level of significance.

To gain insight into (2.9) for high-dimensional situations, let us assume all eigen-

values of Σi are bounded above from infinity and below away from zero so that Σi = Ip

is a special case of such a regime. Let us also assume, like above, that each component

of µ1 − µ2 is the same as a fixed δ, namely µ1l − µ2l = δ for l = 1, · · · , p. Then

(2.9) implies δ = o(n−1/2) which is a smaller order than δ = O(n−1/2) for the fixed p

case. This can be understood as the high-dimensional data (p →∞) containing more

information for differentiating the two mean vectors than that in the fixed p case.

To understand the performance of the test when (2.9) is not valid, we reverse the

local alternative condition (2.9) to

n−1tr{(Σ1 + Σ2)
2} = o{(µ1 − µ2)

′Σi(µ1 − µ2)} for i = 1 or 2, (2.10)

implying that the Mahanalobis distance between µ1 and µ2 is a larger order than that

of n−1tr{(Σ1 + Σ2)
2}. This condition can be viewed as a version of fixed alternatives.

We will establish asymptotic normally of Tn under either (2.9) or (2.10) in Theorem

2.1.

The condition we impose on p to replace the first part of (2.4) is

tr(ΣiΣjΣlΣh) = o[tr2{(Σ1 + Σ2)
2}] for i, j, l, h = 1 or 2, (2.11)
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as p → ∞. To appreciate this condition, consider the case of Σ1 = Σ2 = Σ. Then

(2.11) becomes

tr(Σ4) = o{tr2(Σ2)}. (2.12)

Let λ1 ≤ λ2 ≤ ... ≤ λp be the eigenvalues of Σ. If all eigenvalues are bounded, then

(2.12) is trivially true. If, otherwise, there are b unbounded eigenvalues with respect

to p, and the remaining p − b eigenvalues are bounded above by a finite constant M

such that (p− b) →∞ and (p− b)λ2
1 →∞, and sufficient conditions for (2.12) are

λp = o{(p− b)1/2λ1b
−1/4} or λp = o{(p− b)1/4λ

1/2
1 λ

1/2
p−b+1}, (2.13)

where b can be either bounded or diverging to infinity, and the smallest eigenvalue λ1

can converge to zero. To appreciate this, we note that

tr(Σ4)

tr2(Σ2)
≤ (p− b)M4 + bλ4

p

(p− b)2λ4
1 + b2λ4

p−b+1 + 2(p− b)bλ2
1λ

2
p−b+1

.

Hence, the ratio converges to 0 under either condition in (2.13).

2.3.2 Asymptotic normality of Tn

The following theorem establishes the asymptotic normality of Tn.

Theorem 2.1 Under the assumptions (2.6), (2.7), (2.8), (2.11) and either (2.9) or

(2.10),

Tn − ||µ1 − µ2||2√
V ar(Tn)

d→ N(0, 1) as p →∞ and n →∞.

The asymptotic normality is attained without imposing any explicit restriction be-

tween p and n directly. The only restriction on the dimension is (2.11) or (2.12). As

the discussion given just before Theorem 2.1 suggests, (2.12) is satisfied provided that
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the number of divergent eigenvalues of Σ are not too many, and the divergence is not

too fast. The reason for attaining this in the case of high data-dimension is because the

statistic Tn is univariate, despite the fact that the hypothesis H0 is of high-dimension.

This is different from using a high-dimensional statistic. Indeed, Portnoy (1986) con-

sidered the central limit theorem for the p-dimensional sample mean X̄ and found that

the central limit theorem is not valid if p is not a smaller order of
√

n.

As shown in Section 2.6, V ar(Tn) = σ2
n{1 + o(1)} where, under (2.9),

σ2
n =: σ2

n1 = 2
n1(n1−1)

tr(Σ2
1) + 2

n2(n2−1)
tr(Σ2

2) + 4
n1n2

tr(Σ1Σ2), (2.14)

and under (2.10),

σ2
n =: σ2

n2 =
4

n1

(µ1 − µ2)
′Σ1(µ1 − µ2) +

4

n2

(µ1 − µ2)
′Σ2(µ1 − µ2). (2.15)

2.3.3 A ratio consistent estimator for V ar(Tn)

In order to formulate a test procedure based on Theorem 2.1, σ2
n1 in (2.14) needs

to be estimated. Bai and Saranadasa (1996) used the following estimators for tr(Σ2)

under Σ1 = Σ2 = Σ:

t̂r(Σ2) = n2

(n+2)(n−1)
{trS2

n − 1
n
(trSn)2}.

Motivated by the benefits of excluding terms like
∑ni

j=1 X ′
ijXij in the formulation

of Tn, we propose the following estimator of tr(Σ2
i ) and tr(Σ1Σ2):

t̂r(Σ2
i ) = {ni(ni − 1)}−1tr

{
Σni

j 6=k(Xij − X̄i(j,k))X
′
ij(Xik − X̄i(j,k))X

′
ik

}
,

and

̂tr(Σ1Σ2) = (n1n2)
−1tr

{
Σn1

l=1Σ
n2
k=1(X1l − X̄1(l))X

′
1l(X2k − X̄2(k))X

′
2k

}
,
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where X̄i(j,k) is the ith sample mean after excluding Xij and Xik, and X̄i(l) is the ith

sample mean without Xil. These are similar to the idea of cross-validation, in that

when we construct the deviations of Xij and Xik from the sample mean, both Xij and

Xik are excluded from the sample mean calculation. By doing so, the above estimators

t̂r(Σ2
i ) and ̂tr(Σ1Σ2) can be written as the trace of sums of products of independent

matrices. We also note that subtraction of only one sample mean per observation is

needed in order to avoid a term like ||Xij||4 which is harder to control asymptotically

without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to tr(Σ2
i )

and tr(Σ1Σ2), respectively.

Theorem 2.2 Under the assumptions (2.6)-(2.9) and (2.11), for i = 1 or 2,

t̂r(Σ2
i )

tr(Σ2
i )

p→ 1 and
̂tr(Σ1Σ2)

tr(Σ1Σ2)

p→ 1 as p and n →∞.

A ratio-consistent estimator of σ2
n1 under H0 is

σ̂2
n1 = 2

n1(n1−1)
t̂r(Σ2

1) + 2
n2(n2−1)

t̂r(Σ2
2) + 4

n1n2

̂tr(Σ1Σ2).

This together with Theorem 2.1 leads to the test statistic,

Qn = Tn/σ̂n1
d→ N(0, 1) as p and n →∞

under H0. The proposed test with an α level of significance rejects H0 if Qn > ξα

where ξα is the upper α quantile of N(0, 1).
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2.3.4 Power properties of the proposed test

Theorem 2.1 and Theorem 2.2 allow us to discuss the power properties of the

proposed test. The discussion is made under (2.9) and (2.10), respectively. The power

under the local alternative (2.9) is

βn1(||µ1 − µ2||) = Φ


−ξα +

nk(1− k)||µ1 − µ2||2√
2tr{Σ̃(k)2}


 , (2.16)

where Σ̃(k) = kΣ1 + (1 − k)Σ2 and Φ is the standard normal distribution function.

The power of the Bai-Saranadasa test has the same form if Σ1 = Σ2 and if p and n

are of the same order.

The power under (2.10) is

βn2(||µ1 − µ2||) = Φ

(
−σn1

σn2

ξα +
||µ1 − µ2||2

σn1

)
= Φ

( ||µ1 − µ2||2
σn1

)

as σn1/σn2 → 0. Substitute the expression for σn1, and we have

βn2(||µ1 − µ2||) = Φ


nk(1− k)||µ1 − µ2||2√

2tr{Σ̃(k)2}


 . (2.17)

Both (2.16) and (2.17) indicate that the proposed test has non-trivial power under

the two types of the alternative hypothesis as long as

n||µ1 − µ2||2/
√

tr{Σ̃(k)2}

does not vanish to 0 as n and p →∞. The flavor of the proposed test is different from

tests formulated by combining p marginal tests on H0l (defined after (2.1)) for l =

1, . . . , p. Such tests are usually constructed via max1≤l≤p Tnl where Tnl is a marginal

test statistic for H0l. This is the case of Kosorok and Ma (2007) and Fan, Hall and Yao

(2007). A condition on p and n is needed to ensure (i) convergence of max1≤l≤p Tnl,
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and (ii) p can reach an order of exp(αnβ) for positive constants α and β. Usually some

additional assumptions are needed; for instance, Kosorok and Ma (2007) assumed each

component of the random vector has compact support for testing means.

Naturally, if the number of significant univariate hypotheses (µ1l 6= µ2l) is a lot

less than p, which is the so-called sparsity scenario, a simultaneous test like the one

we propose may encounter a loss of power. This is actually quantified by the power

expression (2.16). Without loss of generality, suppose that each µi can be partitioned

as (µ
(1)′
i , µ

(2)′
i )′ so that under H1 : µ

(1)
1 = µ

(1)
2 and µ

(2)
1 6= µ

(2)
2 , where µ

(1)
i is of p1

dimensional and µ
(2)
i is of p2 dimensional and p1 + p2 = p. Then ||µ1 − µ2|| = p2δ

2 for

some positive constant δ2. Suppose that λm0 be the smallest non-zero eigenvalue of

Σ̃(k). Then under the local alternative (2.9), the asymptotic power is bounded above

and below by

Φ

(
−ξα +

nk(1− k)p2δ
2

√
2pλp

)
≤ β(||µ1 − µ2||) ≤ Φ

(
−ξα +

nk(1− k)p2δ
2

√
2(p−m0)λm0

)
.

If p is very large relative to n and p2 under both high-dimensionality and sparsity, so

that nk(1 − k)p2η
2/

√
2(p−m0) → 0, the test could endure low power. With this in

mind, we check on the performance of the test under sparsity in simulation studies

in Section 2.5. The simulations show that the proposed test has a robust power

and is in fact more powerful than tests based on multiple comparisons with either

the Bonferroni and false discovery rate (FDR) procedures. We note here that, due

to the multivariate nature of the test and the hypothesis, the proposed test cannot

identify which components are significant after the null multivariate hypothesis is

rejected. Additional follow-up procedures have to be employed for that purpose. The

proposed test becomes very useful when the purpose is to identify significant groups

of components like sets of genes, as illustrated in Section 2.4. The above discussion

can be readily extended to the case of (2.10) due to the similarity in the two power
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functions.

The proposed two-sample test can be modified for paired observations {(Yi1, Yi2)}n
i=1

where Yi1 and Yi2 are two measurements of p-dimensions on a subject i before and

after a treatment. Let Xi = Yi2−Yi1, µ = E(Xi) and Σ = V ar(Xi). This is effectively

a one-sample problem with high-dimensional data. The hypothesis of interest is

H0 : µ = 0 vs H1 : µ 6= 0.

We can use Fn = Σn
i 6=jX

′
iXj/{n(n− 1)} as the test statistic. It is readily shown that

E(Fn) = µ
′
µ and V ar(Fn) = 2

n(n−1)
tr(Σ2

1){1 + o(1)} under both H0 and H1 if we

assume a condition similar to (2.9) so that µ
′
Σµ = o{n−1tr(Σ2)}, and the asymptotic

normality of Fn by adding tr(Σ4) = o{tr2(Σ2)}, a variation of (2.11), can be established

by utilizing part of the proof on the asymptotic normality of Tn. The tr(Σ2) can be

ratio-consistently estimated with n1 replaced by n in t̂r(Σ2
1) which leads to a ratio-

consistent variance estimation for Fn. Then the test and its power can be expressed

in similar ways as those for the two-sample test.

When p = O(1), which may be viewed as having finite dimension, the asymptotic

normality as conveyed in Theorem 2.1 may not be valid anymore. It may be shown

under conditions (2.6)-(2.9) without (2.11), as condition (2.11) is no longer relevant

when p is bounded, that the test statistic (n1 + n2)Tn converges to
∑2p

l=1 ηlχ
2
1,l where

{χ2
1,l}2p

l=1 are independent χ2
1 distributed random variables, and {ηl}2p

l=1 is a set of

constants. The conclusion of Theorem 2.2 remains valid when p is bounded. The

proposed test can still be used for testing in this situation of bounded dimension with

estimated critical values via estimation of {ηl}2p
l=1. However, people may like to use a

test specially catered for such a case, for instance, Hotelling’s test.
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2.4 Gene-set Testing

Identifying sets of genes which are significant with respect to certain treatments is

the latest development in genetics research (Barry et al., 2005; Nettleton et al., 2008;

Efron and Tibshirani, 2007; Newton et al., 2007). Biologically speaking, each gene

does not function individually in isolation. Rather, one gene tends to work with other

genes to achieve certain biological tasks.

Suppose that S1, · · · ,Sq are q sets of genes, where the gene-set Sg consists of pg

genes. Let F1Sg and F2Sg be the distribution functions corresponding to Sg under the

treatment and control, and µ1Sg and µ2Sg be their respective means. The hypothesis

of interest is

H0g : µ1Sg = µ2Sg for g = 1, · · · , q.

The gene sets {Sg}q
g=1 can overlap as a gene can belong to several functional groups,

and pg, the number of genes in a set, can range from a moderate to a very large

number. So, there are issues of both multiplicity and high-dimensionality in gene-set

testing.

We propose applying the proposed test for the significance of each gene-set Sg

when pg is large. When pg is of low-dimension, Hotelling’s test may be used. Let

pvg, g = 1, · · · , q be the P-values obtained from these tests. To control the overall

family-wise error rate, we can employ the Bonferroni procedure; to control FDR, we

can use Benjamini and Hochberg (1995) method or its variations as in Benjamini and

Yekutieli (2001) and Storey et al. (2004). These lead to control of the family-wise error

rate or FDR in the context of gene-sets testing. In contrast, tests based on univariate

testing have difficulties in producing P-values for gene-sets.

Acute Lymphoblastic Leukemia (ALL) is a form of leukemia, a cancer of white
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blood cells. The ALL data (Chiaretti et al., 2004) contains microarray expressions

for 128 patients with either T-cell or B-cell type Leukemia. Within the B-cell type

leukemia, there are two sub-classes representing two molecular classes: the BCR/ABL

class and NEG class. The data set has been analyzed by Dudoit et al. (2008) using a

different methodology.

Gene-sets are technically defined in the Gene Ontology (GO) system that provides

structured and controlled vocabularies producing names of gene-sets (also called GO

terms). There are three groups of Gene ontologies of interest: Biological Processes

(BP), Cellular Components (CC) and Molecular Functions (MF). We carried out pre-

liminary screening for gene-filtering using the approach in Gentleman et al. (2005),

which left 2391 genes for analysis. There are 575 unique GO terms which have more

than 10 genes in BP category, 221 in MF and 154 in CC for the ALL data. The largest

gene-set contains 2059 genes in BP, 2112 genes in MF and 2078 genes in CC; and the

GO terms of the three categories share 1861 common genes. We are interested in

detecting differences in the expression levels of gene-sets within a subset of B-cell ALL

data between the BCR/ABL molecular sub-class (n1 = 37) and the NEG molecular

sub-class (n2 = 42) for each of the three categories.

We applied the proposed two-sample test with a 5% significance level to test each of

the gene-sets in conjunction with the Bonferroni correction to control the family-wise

error rate at 0.05 level. It was found that there are 259 gene-sets declared significant

in the BP group, 110 in the MF group and 53 in the CC group. Figure 2.1 displays

the histograms of the P-values and the values of test statistic Qn for the three gene-

categories. It shows a strong non-uniform distribution of the P-values with a large

number of P-values cluster near 0. At the same time, the Qn-value plots indicate

the average Qn-values are much larger than zero. These explain the large number of
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significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high. This is

mainly due to overlapping gene-sets. To appreciate this point, we computed for each

(say ith) significant gene-set, the number of other significant gene-sets which overlap

with it, say bi; and obtained the average of {bi} and their standard deviation. The

average number of overlaps (standard deviation) for BP group was 198.9(51.3), 55.6

(25.2) for MF and 41.6 (9.5) for CC. These numbers are indeed very high and reveal

the gene-sets and their P-values are highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly splitting

the 42 NEG class into two sub-classes of equal sample size and testing for mean

differences. This set-up led to the situation of H0. Figures 2.2 reports the P-values

and Qn-values for the three Gene Ontology groups. We note that the distributions of

the P-values are much closer to the uniform distribution than Figure 2.1. It is observed

that the histograms of Qn-values are centered close to zero and are much closer to the

normal distribution than their counterparts in Figure 2.1 which is reassuring.

2.5 Simulation Studies

In this section, we report results from simulation studies which were designed

to evaluate the performance of the proposed two-sample test for high-dimensional

data. For comparison, we also conducted the test proposed by Bai and Saranadasa

(1996)(BS test), and two tests based on multiple comparison procedures by employing

the Bonferroni and the FDR control (Benjamini and Hochberg, 1995). The Bonferroni

procedure controls the family-wise error rate at a level of significance α which coincides

with the significance for the FDR control, the proposed test and the BS test. In the

two multiple comparison procedures, we conducted univariate two-sample t-tests for
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the univariate hypotheses H0l : µ1l = µ2l vs. H1l : µ1l 6= µ2l for l = 1, 2, · · · , p. We

reject the null H0 : µ1 = µ2 if there exists an l ∈ {1, · · · p} such that H0l is rejected.

Two simulation models for Xij are considered. One has a moving average structure

that allows a general dependent structure; the other could allocate the the alternative

hypotheses sparsely which enables us to evaluate the performance of the tests under

sparsity.

2.5.1 Moving average model

The first simulation model has the following moving average structure:

Xijk = ρ1Zijk + ρ2Zijk+1 + · · ·+ ρpZijk+p−1 + µij

for i = 1 and 2, j = 1, 2, · · · , ni and k = 1, 2, · · · , p where {Zijk} are respectively i.i.d.

random variables. We consider two distributions for the innovations {Zijk}. One is a

centralized Gamma(4, 1) so that it has zero mean, and the other is N(0, 1).

For each distribution of {Zijk}, we consider two configurations of dependence

among components of Xij. One has weaker dependence with ρl = 0 for l > 3. This

prescribes a “two dependence” moving average structure where Xijk1 and Xijk2 are

dependent only if |k1− k2| ≤ 2. The {ρl}3
l=1 are generated independently from U(2, 3)

which are ρ1 = 2.883, ρ2 = 2.794 and ρ3 = 2.849 and are kept fixed throughout the

simulation. The second configuration has all ρls generated from U(2, 3), and again

remain fixed throughout the simulation. We call this the “full dependence case”. The

above dependence structures assign equal covariance matrices Σ1 = Σ2 = Σ which

allows a meaningful comparison with the BS test.

Without loss of generality, we fix µ1 = 0 and choose µ2 in the same fashion as

Benjamini and Hochberg (1995). Specifically, the percentage of true null hypotheses

µ1l = µ2l for l = 1, · · · , p are chosen to be 0%, 25%, 50%, 75%, 95% and 99% and
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100% , respectively. By experimenting with 95% and 99% we gain information on

the performance of the test when µ1l 6= µ2l are sparse. It provides empirical checks

on the potential concerns of the power of the simultaneous high-dimensional tests as

made at the end of Section 2.3. At each percentage level of true null, three patterns

of allocation are considered for the non-zero µ2l in µ2 = (µ21, · · · , µ2p)
′: (i) the equal

allocation where all the non-zero µ2l are equal; (ii) linearly increasing and (iii) linearly

decreasing allocations as specified in Benjamini and Hochberg (1995). To make the

power comparable among the configurations of H1, we set η =: ||µ1−µ2||2/
√

tr(Σ2) =

0.1 throughout the simulation. We choose p = 500 and 1000 and n = [20 log(p)] = 124

and 138, respectively.

Tables 2.1 and Table 2.2 report the empirical power and size of the four tests

with Gamma innovations at a 5% nominal significance level or family-wise error rate

or FDR based on 5000 simulations. The results for the Normal innovations have a

similar pattern and are shown in Table 2.3 and Table 2.4. The simulation results

in Tables 2.1, 2.2, 2.3 and 2.4 can be summarized as follows. The proposed test

is much more powerful than the BS test for all cases considered in the simulation

while maintaining a reasonably-sized approximation to the nominal 5% level. Both

the proposed test and the BS test are more powerful than the two tests based on the

multiple univariate testing using the Bonferroni and FDR procedures. This is a little

expected as both the proposed and the BS test are designed to test for the entire

p-dimensional hypotheses while the multiple testing procedures are targeted at the

individual univariate hypothesis. What is surprising is that when the percentage of

true null is high at 95% and 99%, the proposed test still is much more powerful than

the two multiple testing procedures for all three allocations of the non-zero components

in µ2. It is observed that the sparsity (95% and 99% true null) does reduce the power
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of the proposed test a little. However, the proposed test still enjoys good power,

especially when compared with the other three tests.

We also observe that when there is more dependence among multivariate compo-

nents of the data vectors in the full dependence model, there is a drop in the power for

each of the tests. The power of the tests based on the Bonferroni and FDR procedures

is alarmingly low and is only slightly larger than the nominal significance level.

We also collected information on the quality of tr(Σ2) estimation. Table (2.5)

reports empirical averages and standard deviation of t̂r(Σ2)/tr(Σ2). It shows that the

proposed estimator for tr(Σ2) has a much smaller bias and standard deviation than

those proposed in Bai and Saranadasa (1996) in all cases, and provides an empirical

verification for Theorem 2.2.

2.5.2 Sparse model

An examination of the previous simulation setting reveals that the strength of the

“signals” µ2l − µ1l corresponding to the alternative hypotheses are low relative to the

level of noise (variance) which may not be a favorable situation for the two tests based

on multiple univariate testing. To gain more information on the performance of the

tests under sparsity, we consider the following simulation model such that

X1il = Z1il and X2il = µl + Z2il for l = 1, . . . , p

where {Z1il, Z2il}p
l=1 are mutually independent N(0, 1) random variables, and the “sig-

nals”,

µl = ε
√

2 log(p) for l = 1, . . . , q = [pc] and µl = 0 for l > q,

for some c ∈ (0, 1). Here q is the number of significant alternative hypotheses. The

sparsity of the hypotheses is determined by c: the smaller the c is, the more sparse
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the alternative hypotheses with µl 6= 0. This simulation model is similar to the one

used in Abramovich et al. (2006).

According to (2.16), the power of the proposed test has asymptotic power

β(||µ||) = Φ

(
−ξα +

np(c−1/2)ε2log(p)

2
√

2

)

which indicates that the test has a much reduced power if c < 1/2 with respect to p.

We, therefore, chose p = 1000 and c = 0.25, 0.35, 0.45 and 0.55, respectively, which

leads to q = 6, 11, 22, and 44, respectively. We call c = 0.25, 0.35 and 0.45 the sparse

cases.

In order to prevent trivial powers of α or 1 in the simulation, we set ε = 0.25

for c = 0.25 and 0.45; and ε = 0.15 for c = 0.35 and 0.55. Table 2.6 summarizes the

simulations results based on 500 simulations. It shows that in the extreme sparse cases

of c = 0.25, the FDR and Bonferroni tests did have higher power than the proposed

test. The power were largely similar among the three tests for c = 0.35. However,

when the sparsity is moderated to c = 0.45, the proposed test starts to surpass the

FDR and Bonferroni procedures. The gap in power performance is further increased

when c = 0.55. Table 2.7 reports the quality of the variance estimation in Table 2.6

which shows the proposed variance estimators incur very little bias and variance for

even very small sample sizes of n1 = n2 = 10.

2.6 Technical Proofs

Derivations for E(Tn) and V ar(Tn): As

Tn =
Σn1

i 6=jX
′
1iX1j

n1(n1 − 1)
+

Σn2
i6=jX

′
2iX2j

n2(n2 − 1)
− 2

Σn1
i=1Σ

n2
j=1X

′
1iX2j

n1n2

,

it is straightforward to show that E(Tn) = µ′1µ1 + µ′2µ2 − 2µ′1µ2 = ||µ1 − µ2||2.
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Let P1 =
Σ

n1
i 6=jX′

1iX1j

n1(n1−1)
, P2 =

Σ
n2
i6=jX′

2iX2j

n2(n2−1)
and P3 = −2

Σ
n1
i=1Σ

n2
j=1X′

1iX2j

n1n2
. It can be shown

that

V ar(P1) =
1

n2
1(n1 − 1)2

[
2Σn1

(i=s)6=(j=t)tr
{

(Σ1 + µ1µ
′
1)
′(Σ1 + µ1µ

′
1)

}

+ 4Σn1

(i=s)6=(j 6=t)

{
µ′1Σ1µ1 + (µ′1µ1)

2
}

+ Σn1
i 6=s 6=j 6=t(µ

′
1µ1)

2

]
− (µ′1µ1)

2

=
2

n1(n1 − 1)
tr(Σ2

1) +
4µ′1Σ1µ1

n1

,

V ar(P2) =
2

n2(n2 − 1)
tr(Σ2

2) +
4µ′2Σ2µ2

n2

,

V ar(P3) =
4

n1n2

tr(Σ1Σ2) +
4µ′2Σ1µ2

n1

+
4µ′1Σ2µ1

n2

,

and

Cov(P1, P3) = −4µ′1Σ1µ2

n1

and Cov(P2, P3) = −4µ′1Σ2µ2

n2

.

Because the two samples are independent, Cov(P1, P2) = 0. In summary,

V ar(Tn) =
2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2

tr(Σ1Σ2)

+
4

n1

(µ1 − µ2)
′Σ1(µ1 − µ2) +

4

n2

(µ1 − µ2)
′Σ2(µ1 − µ2).

Thus, under H0

V ar(Tn) = σ2
n1 =:

2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2

tr(Σ1Σ2).

Under H1 : µ1 6= µ2, with (2.9),

V ar(Tn) = σ2
n1{1 + o(1)};

and with (2.10),

V ar(Tn) = σ2
n2{1 + o(1)},

where σ2
n2 = 4

n1
(µ1 − µ2)

′Σ1(µ1 − µ2) + 4
n2

(µ1 − µ2)
′Σ2(µ1 − µ2).
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Asymptotic Normality of Tn: We note that Tn = Tn1 + Tn2 where

Tn1 =
Σn1

i6=j(X1i − µ1)
′(X1j − µ1)

n1(n1 − 1)
+

Σn2
i 6=j(X2i − µ2)

′(X2j − µ2)

n2(n2 − 1)

−2
Σn1

i=1Σ
n2
j=1(X1i − µ1)

′(X2j − µ2)

n1n2

(2.18)

and

Tn2 =
2Σn1

i=1(X1i − µ1)
′(µ1 − µ2)

n1

+
2Σn2

i=1(X2i − µ2)
′(µ2 − µ1)

n2

+ ||µ1 − µ2||2.

It is easy to show that E(Tn1) = 0 and E(Tn2) = ||µ1 − µ2||2, and

V ar(Tn2) =
4(µ1 − µ2)

′Σ1(µ1 − µ2)

n1

+
4(µ2 − µ1)

′Σ2(µ2 − µ1)

n2

;

V ar(Tn1) =
2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2

tr(Σ1Σ2).

Under (2.9), as

V ar

(
Tn2 − ||µ1 − µ2||2

σn1

)
= o(1),

Tn − ||µ1 − µ2||2√
V ar(Tn)

=
Tn1

σn1

+ op(1). (2.19)

Under (2.10),

Tn − ||µ1 − µ2||2√
V ar(Tn)

=
Tn2 − ||µ1 − µ2||2

σn2

+ op(1). (2.20)

As Tn2 are independent sample averages, its asymptotic normality is readily attain-

able as showed later. The main task of the following proof is for the case under (2.9)

when Tn1 is the contributor of the asymptotic distribution. From (2.18), in the deriva-

tion for the asymptotic normality of Tn1, we can assume without loss of generality

that µ1 = µ2 = 0.
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Let Yi = X1i for i = 1, · · · , n1 and Yj+n1 = X2j for j = 1, · · · , n2, and for i 6= j,

define φij as follows,

φij =





n−1
1 (n1 − 1)−1Y ′

i Yj if i, j ∈ {1, 2, · · · , n1},
−n−1

1 n−1
2 Y ′

i Yj if i ∈ {1, 2, · · · , n1} and j ∈ {n1 + 1, · · · , n1 + n2}
n−1

2 (n2 − 1)−1Y ′
i Yj, if i, j ∈ {n1 + 1, · · · , n1 + n2}.

Define Vnj =
∑j−1

i=1 φij for j = 2, 3, · · · , n =: n1 + n2, Snm =
∑m

j=2 Vnj and Fnm =

σ{Y1, Y2, · · · , Ym} which is the σ-algebra generated by {Y1, Y2, · · · , Ym}. Now Tn can

be rewritten as Tn = 2
∑n1+n2

j=2 Vnj.

Lemma 2.1 For each n, {Snm,Fnm}n
m=1 is the sequence of zero mean and a square

integrable martingale.

Proof:

It’s obvious that Fnj−1 ⊆ Fnj, for any 1 ≤ j ≤ n and Snm is of zero mean and square

integrable. We only need to show E(Snq|Fnm) = Snm for any q ≥ m. We note that

if j ≤ m ≤ n, then E(Vnj|Fnm) = Σj−1
i=1E(φij|Fnm) = Σj−1

i=1φij = Vnj. If j > m, then

E(φij|Fnm) = E(Y ′
i Yj|Fnm).

If i > m, as Yi and Yj are both independent of Fnm,

E(φij|Fnm) = E(φij) = 0.

If i ≤ m,E(φij|Fn,m) = E(Y ′
i Yj|Fn,m) = Y ′

i E(Yj) = 0. Hence,

E(Vnj|Fn,m) = 0.

In summary, for q > m, E(Snq|Fnm) = Σq
j=1E(Vnj|Fnm) = Σm

j=1Vnj = Snm. This

completes the proof of the lemma.
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Lemma 2.2 Under Condition (2.9),

Σn1+n2
j=2 E[V 2

nj|Fn,j−1]

σ2
n1

P−→ 1
4
.

Proof:

Note that

E(V 2
nj|Fnj−1) = E

{( j−1∑
i=1

Y ′
i Yj

)2

|Fnj−1

}
= E

( j−1∑
i1,i2=1

Y ′
i1
YjY

′
j Yi2|Fnj−1

)

=

j−1∑
i1,i2=1

Y ′
i1
E(YjY

′
j |Fnj−1)Yi2 =

j−1∑
i1,i2=1

Y ′
i1
E(YjY

′
j )Yi2

=

j−1∑
i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2 ,

where Σ̃j = Σ1, and ñj = n1, for j ∈ [1, n1] and Σ̃j = Σ2, ñj = n2, if j ∈ [n1 + 1, n1 +

n2].

Define ηn =
∑n1+n2

j=2 E(V 2
nj|Fnj−1). Then

E(ηn) =
tr(Σ2

1)

2n1(n1 − 1)
+

tr(Σ2
2)

2n2(n2 − 1)
+

tr(Σ1Σ2)

(n1 − 1)(n2 − 1)

= 1
4
σ2

n1{1 + o(1)}. (2.21)

Now consider

E(η2
n) = E

{ n1+n2∑
j=2

j−1∑
i1,i2=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2

}2

= E

{
2

n1+n2∑
2≤j1<j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4 (2.22)

+

n1+n2∑
j=2

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4

}

= 2E(A) + E(B), say,
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where

A =

n1+n2∑
2≤j1<j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

Y ′
i1

Σ̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

Σ̃j2

ñj2(ñj2 − 1)
Yi4 ,

B =

n1+n2∑
j=2

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

Σ̃j

ñj(ñj − 1)
Yi2Y

′
i3

Σ̃j

ñj(ñj − 1)
Yi4 . (2.23)

The term B can be further partitioned as B = B1 + B2 and

E(B1) ≡ E

{ n1∑
j=2

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

Σ1

n1(n1 − 1)
Yi2Y

′
i3

Σ1

n1(n1 − 1)
Yi4

}
,

E(B2) ≡ E

{ n1+n2∑
j=n1+1

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

Σ2

n2(n2 − 1)
Yi2Y

′
i3

Σ2

n2(n2 − 1)
Yi4

}
.

We only prove here that E(B1) = o(σ4
n1) as E(B2) = o(σ4

n1) can be proved by following

the same procedure.

Consider different combinations of i1, i2, i3, i4 such that

E(B1) = E

[ n1∑
j=2

j−1∑

i1 6=i2

{
Y ′

i1

Σ1

n1(n1 − 1)
Yi1Y

′
i2

Σ1

n1(n1 − 1)
Yi2

}

+2

n1∑
j=2

j−1∑

i1 6=i2

{
Y ′

i1

Σ1

n1(n1 − 1)
Yi2Y

′
i2

Σ1

n1(n1 − 1)
Yi1

}

+

n1∑
j=2

j−1∑
i=1

{
Y ′

i

Σ1

n1(n1 − 1)
YiY

′
i

Σ1

n1(n1 − 1)
Yi

}]

= : E(B1a) + 2E(B1b) + E(B1d),

where

B1a =

n1∑
j=2

j−1∑

i1 6=i2

{
Y ′

i1

Σ1

n1(n1 − 1)
Yi1Y

′
i2

Σ1

n1(n1 − 1)
Yi2

}
,

B1b =

n1∑
j=2

j−1∑

i1 6=i2

{
Y ′

i1

Σ1

n1(n1 − 1)
Yi2Y

′
i2

Σ1

n1(n1 − 1)
Yi1

}
,

B1d =

n1∑
j=2

j−1∑
i=1

{
Y ′

i

Σ1

n1(n1 − 1)
YiY

′
i

Σ1

n1(n1 − 1)
Yi

}
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and

E(B1a) =

n1∑
j=2

j−1∑

i1 6=i2

tr2(Σ2
1)

n4
1(n1 − 1)4

= O(n−5
1 )tr2(Σ2

1) = o(σ4
n1),

E(B1b) =

n1∑
j=2

j−1∑

i1 6=i2

tr(Σ4
1)

n4
1(n1 − 1)4

= O(n−5
1 )tr(Σ4

1) = o(σ4
n1),

E(B1d) = E

n1∑
j=2

j−1∑
i=1

{
Y ′

i

Σ1

n1(n1 − 1)
YiY

′
i

Σ1

n1(n1 − 1)
Yi

}

= n−4
1 (n1 − 1)−4

n1∑
j=2

j−1∑
i=1

E
(
Z ′

iΓ
′
1Σ1Γ1ZiZ

′
iΓ
′
1Σ1Γ1Zi

)

= n−4
1 (n1 − 1)−4

n1∑
j=2

j−1∑
i=1

{
∆

m∑

l=1

σ̃112

ll + 2tr(Σ4
1) + tr2(Σ2

1)
}

= O(n−5
1 )

{
∆

m∑

l=1

σ̃112

ll + 2tr(Σ4
1) + tr2(Σ2

1)
}

= o(σ4
n1). (2.24)

Note that: 



Γ′sΣtΓs = (σ̃
(st)
lk )m×m;

∑m
l=1(σ̃

(11)
ll )2 ≤ ∑m

s,t(σ̃
(11)
st )2 = tr(Γ′1Σ1Γ1Γ

′
1Σ1Γ1) = tr(Σ4

1).

Then we have proven that E(B1) = o(σ4
n1) and E(B2) = o(σ4

n1) can be proved similarly.

To show V ar(ηn)/σ4
n1 = o(1), we proceed with E(A).

A =

n1+n2∑
2≤j1<j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

Y ′
i1

Σj1

nj1(nj1 − 1)
Yi2Y

′
i3

Σj2

nj2(nj2 − 1)
Yi4 .

As µ1 = µ2 = 0, we only need to consider i1, i2, i3 and i4 in these four cases: (a)

(i1 = i2) 6= (i3 = i4); (b) (i1 = i3) 6= (i2 = i4);(c) (i1 = i4) 6= (i2 = i3); (d)

i1 = i2 = i3 = i4. For j1 and j2, we can have three possible combinations: (1)j1 <

j2 ≤ n1; (2)j1 ≤ n1 < j2; (3)n1 < j1 < j2. Then

2E(A) =

{
tr2(Σ2

1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1)tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+
tr(Σ2

2)tr(Σ1Σ2)

n2
2(n1 − 1)(n2 − 1)

+
tr2(Σ1Σ2)

n1n2(n1 − 1)(n2 − 1)
+

tr(Σ2
1)tr(Σ

2
2)

2n1(n1 − 1)n2(n2 − 1)

}
{1 + o(1)}.
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Hence, from (2.22) and (2.23),

E(η2
n) =

{
tr2(Σ2

1)

4n2
1(n1 − 1)2

+
tr2(Σ2

2)

4n2
2(n2 − 1)2

+
tr(Σ2

1)tr(Σ1Σ2)

n2
1(n1 − 1)(n2 − 1)

+
tr(Σ2

2)tr(Σ1Σ2)

n2
2(n1 − 1)(n2 − 1)

+
tr2(Σ1Σ2)

n1n2(n1 − 1)(n2 − 1)
+

tr(Σ2
1)tr(Σ

2
2)

2n1(n1 − 1)n2(n2 − 1)

}
+ o(σ4

n1). (2.25)

Based on (2.21) and (2.25),

V ar(ηn) = E(η2
n)− E2(ηn) = o(σ4

n1). (2.26)

Combine (2.21) and (2.26), and we have

σ−2
n1 E

{
Σn1+n2

j=1 E(V 2
nj|Fn,j−1)

}
= 1

4
and σ−4

n1 V ar

{
Σn1+n2

j=1 E(V 2
nj|Fn,j−1)

}
= o(1).

This completes the proof of Lemma 2.2.

Lemma 2.3 Under condition (2.9),

n1+n2∑
j=2

σ−2
n1 E{V 2

njI(|Vnj| > εσn1)|Fnj−1} p−→ 0.

Proof:

We note that
∑n1+n2

j=2 σ−2
n1 E{V 2

njI(|Vnj| > εσn1)|Fnj−1} ≤ σ−q
n1 ε2−q

∑n1+n2

j=2 E(V q
nj|Fnj−1)

for some q > 2. By choosing q = 4, the conclusion of the lemma is true if we can show

E
{ n1+n2∑

j=2

E(V 4
nj|Fnj−1)

}
= o(σ4

n1). (2.27)

We notice that

E
{ n1+n2∑

j=2

E(V 4
nj|Fnj−1)

}
=

n1+n2∑
j=2

E(V 4
nj) =

n1+n2∑
j=2

E
( j−1∑

i=1

φij

)4

=

n1+n2∑
j=2

j−1∑
i1,i2,i3,i4

E(φi1jφi2jφi3jφi4j).
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The last term can be decomposed as 3Q + P where

Q =

n1+n2∑
j=2

j−1∑

s 6=t

E(φ2
sjφ

2
tj)

and P = Σn1+n2
j=2 Σj−1

s=1E(φsj)
4. Now (2.27) is true if 3Q + P = o(σ4

n1). We consider the

term Q and P separately. Note that

Q = O(n−8)

n1+n2∑
j=2

j−1∑

s6=t

E
{

tr(YjY
′
j YtY

′
t YjY

′
j YsY

′
s )

}
= o(σ4

n1).

The last equation follows the similar procedure in (2.24) in Lemma 2.2. It remains to

show P = Σn1+n2
j=2 Σj−1

s=1E(φsj)
4 = o(σ4

n1). Note that

P =

n1∑
j=2

j−1∑
s=1

E(φsj)
4 +

n1+n2∑
j=n1+1

j−1∑
s=1

E(φsj)
4

=

n1∑
j=2

j−1∑
s=1

E(φsj)
4 +

n1+n2∑
j=n1+1

n1∑
s=1

E(φsj)
4 +

n1+n2∑
j=n1+1

j−1∑
s=n1+1

E(φsj)
4

= P1 + P2 + P3,

where P1 =
∑n1

j=2

∑j−1
s=1 E(φsj)

4, P2 =
∑n1+n2

j=n1+1

∑n1

s=1 E(φsj)
4 and

P3 =

n1+n2∑
j=n1+1

j−1∑
s=n1+1

E(φsj)
4.

Define Γ′1Γ2 =: (vij)m×m, Γ′1Σ2Γ1 =: (v
(2)
ij )m×m and (Γ′1Σ2Γ1)

2 =: (v
(4)
ij )m×m. Note

that the following facts which will be used repeatedly in the rest of this section:

m∑
i,j=1

v4
ij ≤ (

m∑
i,j=1

v2
ij)

2 = tr2
(
Γ′1Γ2Γ

′
2Γ1

)
= tr2(Σ1Σ2),

m∑
i=1

m∑

j1 6=j2

(v2
ij1

v2
ij2

) ≤ (
m∑

i,j=1

v2
ij)

2 = tr2(Σ1Σ2),

m∑

i1 6=i2

m∑

j1 6=j2

vi1j1vi1j2vi2j1vi2j2 ≤
m∑

i1 6=i2

v
(2)
i1i2

v
(2)
i1i2

≤
m∑

i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

,

m∑
i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

=
m∑

i1=1

v
(4)
i1i1

= tr
(
Γ′1Σ2Γ1Γ

′
1Σ2Γ1

)
= tr

{
(Σ1Σ2)

2
}

.



41

Let us consider P2 first. Note that

P2 =

n1+n2∑
j=n1+1

n1∑
s=1

E(φsj)
4 = O(n−8)

n1+n2∑
j=n1+1

n1∑
s=1

E
(
X ′

1sX2j−n1

)4

.

For P2 term, let us focus on X ′
11X21 only (i.i.d.). Then, from (2.6),

E(X ′
11X21)

4 = E(Z ′
11Γ

′
1Γ2Z21)

4 = E
( m∑

i,j=1

z11ivijz21j

)4

=
m∑

i=1

m∑
j=1

(3 + ∆)2v4
ij +

m∑
i=1

(3 + ∆)
m∑

j1 6=j2

v2
ij1

v2
ij2

+
m∑

j=1

(3 + ∆)
m∑

i1 6=i2

v2
i1jv

2
i2j + 9

m∑

i1 6=i2

m∑

j1 6=j2

vi1j1vi1j2vi2j1vi2j2

= O
{

tr2(Σ1Σ2)
}

+ O
[
tr

{
(Σ1Σ2)

2
}]

.

Then we conclude

P2 = O(n−8)

n1+n2∑
j=n1+1

n1∑
s=1

(
O

{
tr2(Σ1Σ2)

}
+ O

[
tr

{
(Σ1Σ2)

2
}])

= O(n−6)

(
O

{
tr2(Σ1Σ2)

}
+ O

[
tr

{
(Σ1Σ2)

2
}])

= o(σ4
n1).

We can also prove that P1 = o(σ4
n1) and P3 = o(σ4

n1) by going through the similar

procedure. This completes the proof of the lemma.

Proof of Theorem 2.1:

We note equations (2.19) and (2.20) under conditions (2.9) and (2.10), respectively.

Based on Corollary 3.1 of Hall and Heyde (1980), Lemma 2.1, Lemma 2.2 and Lemma

2.3, it can be concluded that Tn1/σn1
d−→ N(0, 1). This implies the desired asymp-

totic normality of Tn under (2.9). Under (2.10), as Tn2 is the sum of two independent

averages, its asymptotic normality can be attained by following the standard means.

Hence the theorem is proved.
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Proof of Theorem 2.2:

We only present the proof for the ratio consistency of t̂r(Σ2
1) as the proofs of the other

two follow the same route. We want to show

E{t̂r(Σ2
1)} = tr(Σ2

1){1 + o(1)} and V ar{t̂r(Σ2
1)} = o{tr2(Σ2

1)}. (2.28)

For notation simplicity, we denote X1j as Xj, n1 as n and Σ1 as Σ, since we are

effectively in a one-sample situation.

Note that

t̂r(Σ2) = {n(n− 1)}−1tr
{

Σn
j 6=k(Xj − µ + µ− X̄(j,k))(Xj − µ + µ)′

(Xk − µ + µ− X̄(j,k))(Xk − µ + µ)′
}

= {n(n− 1)}−1tr

[ n∑

j 6=k

{
(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′

− 2(X̄(j,k) − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′ + 2(Xj − µ)µ′(Xk − µ)(Xk − µ)′

− 2(X̄(j,k) − µ)µ′(Xk − µ)(Xk − µ)′ + (X̄(j,k) − µ)(Xj − µ)′(X̄(j,k) − µ)(Xk − µ)′

− {
2(Xj − µ)µ′(X̄(j,k) − µ)(Xk − µ)′ − 2(X̄(j,k) − µ)µ′(X̄(j,k) − µ)(Xk − µ)′

+ (Xj − µ)µ′(Xk − µ)µ′ − 2(X̄(j,k) − µ)µ′(Xk − µ)µ′

+ (X̄(j,k) − µ)µ′(X̄(j,k) − µ)µ′
}]

=:
10∑

l=1

tr(Al), say.

where Al for l = 1, 2, · · · , 10 are defined as:

A1 =
1

n(n− 1)

n∑

j 6=k

(Xj − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′,

A2 = − 2

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)(Xj − µ)′(Xk − µ)(Xk − µ)′,

A3 =
2

n(n− 1)

n∑

j 6=k

(Xj − µ)µ′(Xk − µ)(Xk − µ)′,

A4 = − 2

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)µ′(Xk − µ)(Xk − µ)′,
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A5 =
1

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)(Xj − µ)′(X̄(j,k) − µ)(Xk − µ)′,

A6 = − 2

n(n− 1)

n∑

j 6=k

(Xj − µ)µ′(X̄(j,k) − µ)(Xk − µ)′,

A7 =
2

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)µ′(X̄(j,k) − µ)(Xk − µ)′,

A8 =
1

n(n− 1)

n∑

j 6=k

(Xj − µ)µ′(Xk − µ)µ′,

A9 = − 2

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)µ′(Xk − µ)µ′,

A10 =
1

n(n− 1)

n∑

j 6=k

(X̄(j,k) − µ)µ′(X̄(j,k) − µ)µ′.

It can be shown that E{tr(A1)} = tr(Σ2), E{tr(Ai)} = 0 for i = 2, · · · , 9 and

E{tr(A10)} = µ′Σµ/(n− 2) = o{tr(Σ2)}. The last equation is based on (2.9). This

leads to the first part of (2.28). The second part is true given the sufficient conditions

that

V ar
{

tr(A1)
}

= o
{

tr2(Σ2)
}

and
tr(Al)

tr(Σ2)
= op(1), for l = 2, 3, · · · , 10.

Note that tr(A10) is non-negative and E{tr(A10)} = o{tr(Σ2)}. Then tr(A10) =

op{tr(Σ2)} since

P
{tr(A10)

tr(Σ2)
> ε

}
<

E{tr(A10)}
εtr(Σ2)

= o(1).

We shall only show V ar{tr(A1)} = o{tr(Σ2)} here. Derivations for other V ar{tr(Ai)}
are quite similar. Note that

V ar{tr(A1)} =
1

n2(n− 1)2
E

[
tr

{ n∑

j1 6=k1

(Xj1 − µ)(Xj1 − µ)′(Xk1 − µ)(Xk1 − µ)′
}

× tr
{ n∑

j2 6=k2

(Xj2 − µ)(Xj2 − µ)′(Xk2 − µ)(Xk2 − µ)′
}]

− tr2(Σ2).
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It can be shown, by considering the possible combinations of the subscripts j1, k1, j2

and k2, that

V ar{tr(A1)} =
2E

{
(X1 − µ)′(X2 − µ)

}4

n(n− 1)
+

4(n− 2)

n(n− 1)
E

{
(X1 − µ)′Σ(X1 − µ)

}2

+
(n− 2)(n− 3)

n(n− 1)
tr2(Σ2)− tr2(Σ2)

=:
2

n(n− 1)
B11 +

4(n− 2)

n(n− 1)
B12 + o

{
tr2(Σ2)

}
, (2.29)

where 4(n−2)
n(n−1)

B12 = o{tr2(Σ2)} which can be shown based on (2.24). Note that

B11 = E(Z ′
1Γ

′ΓZ2)
4 = E(

m∑
s,t=1

z1sνstz2t)
4

= E

( m∑
s1,s2,s3,s4,t1,t2,t3,t4=1

νs1t1νs2t2νs3t3νs4t4z1s1z1s2z1s3z1s4z2t1z2t2z2t3z2t4

)

=
16∑

j=1

B
(j)
11 .

Define tr(ΓΓ′) = (νst)m×m. The following combinations of the subscripts s1,s2,s3,s4

and t1,t2,t3,t4 lead to none zero B
(j)
11 :

(1) if (s1 = s2 = s3 = s4), (t1 = t2 = t3 = t4) : B
(1)
11 =

m∑
s,t=1

ν4
st(3 + ∆)2;

(2) if (s1 = s2 6= s3 = s4), (t1 = t2 = t3 = t4) : B
(2)
11 =

m∑

s1 6=s2,t=1

ν2
s1tν

2
s2t(3 + ∆);

(3) if (s1 = s3 6= s2 = s4), (t1 = t2 = t3 = t4) : B
(3)
11 =

m∑

s1 6=s2,t=1

ν2
s1tν

2
s2t(3 + ∆);

(4) if (s1 = s4 6= s2 = s3), (t1 = t2 = t3 = t4) : B
(4)
11 =

m∑

s1 6=s2,t=1

ν2
s1tν

2
s2t(3 + ∆);

(5) if (s1 = s2 = s3 = s4), (t1 = t2 6= t3 = t4) : B
(5)
11 =

m∑

t1 6=t2,s=1

ν2
st1

ν2
st2

(3 + ∆);

(6) if (s1 = s2 = s3 = s4), (t1 = t3 6= t2 = t4) : B
(6)
11 =

m∑

t1 6=t2,s=1

ν2
st1

ν2
st2

(3 + ∆);



45

(7) if (s1 = s2 = s3 = s4), (t1 = t4 6= t2 = t3) : B
(7)
11 =

m∑

t1 6=t2,s=1

ν2
st1

ν2
st2

(3 + ∆);

(8) if (s1 = s2 6= s3 = s4), (t1 = t2 6= t3 = t4) : B
(8)
11 =

m∑

t1 6=t2,s1 6=s2=1

ν2
s1t1

ν2
s2t2

;

(9) if (s1 = s2 6= s3 = s4), (t1 = t3 6= t2 = t4) : B
(9)
11 =

m∑

t1 6=t2,s1 6=s2=1

νs1t1νs1t2νs2t1νs2t2 ;

(10) if (s1 = s2 6= s3 = s4), (t1 = t4 6= t2 = t3) : B
(10)
11 =

m∑

t1 6=t2,s1 6=s2=1

νs1t1νs1t2νs2t2νs2t1 ;

(11) if (s1 = s3 6= s2 = s4), (t1 = t2 6= t3 = t4) : B
(11)
11 =

m∑

t1 6=t2,s1 6=s2=1

νs1t1νs2t1νs1t2νs2t2 ;

(12) if (s1 = s3 6= s2 = s4), (t1 = t3 6= t2 = t4) : B
(12)
11 =

m∑

t1 6=t2,s1 6=s2=1

ν2
s1t1

ν2
s2t2

;

(13) if (s1 = s3 6= s2 = s4), (t1 = t4 6= t2 = t3) : B
(13)
11 =

m∑

t1 6=t2,s1 6=s2=1

νs1t1νs2t2νs1t2νs2t1 ;

(14) if (s1 = s4 6= s2 = s3), (t1 = t2 6= t3 = t4) : B
(14)
11 =

m∑

t1 6=t2,s1 6=s2=1

νs1t1νs2t1νs2t2νs1t2 ;

(15) if (s1 = s4 6= s2 = s3), (t1 = t3 6= t2 = t4) : B
(15)
11 =

m∑

t1 6=t2,s1 6=s2=1

ν2
s1t1

ν2
s2t2

;

(16) if (s1 = s4 6= s2 = s3), (t1 = t4 6= t2 = t3) : B
(16)
11 =

m∑

t1 6=t2,s1 6=s2=1

ν2
s1t1

ν2
s2t2

.

Note that tr2(Σ2) = tr2(ΓΓ′ΓΓ′) = (
∑m

s,t=1 ν2
st)

2 =
∑m

s1,s2,t1,t2=1 ν2
s1t1

ν2
s2t2

and

tr(Σ4) = tr(Γ′ΓΓ′ΓΓ′ΓΓ′Γ) =
m∑

t1,t2,s1,s2=1

νs1t1νs1t2νs2t1νs2t2 .

It can be shown that B11 ≤ c tr2(Σ2) for a finite positive number c and hence 2
{

n(n−
1)

}−1

B11 = o
{

tr2(Σ2)
}

. Therefore, from (2.29), V ar
{

tr(A1)
}

= o
{

tr2(Σ2)
}

. By

following the similar procedure, we can also prove that V ar{tr(Aj)} = o{tr2(Σ2)}, for

j = 2, · · · , 9. In conclusion, V ar(t̂r(Σ2)) = o(tr2(Σ2)). Therefore, t̂r(Σ2) is a ratio

consistent estimator of tr(Σ2). This completes the proof.
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Table 2.1 Empirical power and size for the 2-dependence model with gamma innovation

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .511 .399 .13 .16 .521 .413 .11 .16
25% .521 .387 .14 .16 .518 .410 .12 .16
50% .513 .401 .13 .17 .531 .422 .12 .17
75% .522 .389 .13 .18 .530 .416 .11 .17
95% .501 .399 .14 .16 .500 .398 .13 .17
99% .499 .388 .13 .15 .507 .408 .15 .18
100%(size) .043 .043 .040 .041 .043 .042 .042 .042

Increasing 0% .520 .425 .11 .13 .522 .409 .12 .15
25% .515 .431 .12 .15 .523 .412 .14 .16
50% .512 .412 .13 .15 .528 .421 .15 .17
75% .522 .409 .15 .17 .531 .431 .16 .19
95% .488 .401 .14 .15 .500 .410 .15 .17
99% .501 .409 .15 .17 .511 .412 .15 .16
100%(size) .042 .041 .040 .041 .042 .040 .039 .041

Decreasing 0% .522 .395 .11 .15 .533 .406 .09 .15
25% .530 .389 .11 .15 .530 .422 .11 .17
50% .528 .401 .12 .17 .522 .432 .12 .17
75% .533 .399 .13 .18 .519 .421 .12 .17
95% .511 .410 .12 .15 .508 .411 .15 .18
99% .508 .407 .14 .15 .507 .418 .16 .17
100%(size) .041 .042 .041 .042 .042 .040 .040 .042
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Table 2.2 Empirical power and size for the full-dependence model with gamma innova-
tion

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .322 .120 .08 .10 .402 .216 .09 .11
25% .318 .117 .08 .10 .400 .218 .08 .11
50% .316 .115 .09 .11 .409 .221 .09 .10
75% .307 .113 .10 .12 .410 .213 .09 .13
95% .233 .128 .11 .14 .308 .215 .10 .13
99% .225 .138 .12 .15 .316 .207 .11 .12
100%(size) .041 .041 .043 .043 .042 .042 .040 .041

Increasing 0% .331 .121 .09 .12 .430 .225 .10 .11
25% .336 .119 .10 .12 .423 .231 .12 .12
50% .329 .123 .12 .14 .422 .226 .13 .14
75% .330 .115 .12 .15 .431 .222 .14 .15
95% .219 .120 .12 .13 .311 .218 .14 .15
99% .228 .117 .13 .15 .315 .217 .15 .17
100%(size) .041 .040 .042 .043 .042 .042 .040 .042

Decreasing 0% .320 .117 .08 .11 .411 .213 .08 .10
25% .323 .119 .09 .11 .408 .210 .08 .11
50% .327 .120 .11 .12 .403 .208 .09 .10
75% .322 .122 .12 .12 .400 .211 .12 .13
95% .217 .109 .12 .15 .319 .207 .12 .15
99% .224 .111 .13 .16 .327 .205 .11 .13
100%(size) .042 .043 .039 .041 .042 .211 .040 .041
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Table 2.3 Empirical power and size for the 2-dependence model with normal innovation

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .533 .411 .11 .16 .533 .405 .13 .16
25% .526 .409 .14 .18 .524 .399 .12 .16
50% .522 .421 .13 .19 .531 .411 .15 .18
75% .529 .416 .15 .18 .529 .413 .15 .18
95% .501 .395 .14 .16 .511 .410 .15 .16
99% .500 .401 .15 .16 .509 .411 .16 .17
100%(size) .044 .042 .042 .043 .044 .043 .042 .043

Increasing 0% .524 .388 .12 .16 .531 .413 .11 .17
25% .530 .390 .11 .17 .530 .420 .12 .16
50% .531 .402 .10 .18 .522 .421 .14 .17
75% .528 .406 .12 .18 .529 .409 .13 .18
95% .511 .411 .11 .13 .513 .416 .14 .15
99% .510 .412 .12 .13 .509 .413 .13 .15
100%(size) .043 .041 .041 .042 .044 .043 .041 .042

Decreasing 0% .529 .417 .13 .17 .529 .420 .11 .15
25% .527 .413 .13 .16 .535 .409 .12 .17
50% .531 .420 .12 .18 .520 .422 .13 .18
75% .532 .421 .15 .17 .531 .418 .13 .18
75% .508 .412 .13 .15 .512 .400 .14 .16
99% .500 .399 .13 .16 .503 .410 .15 .16
100%(size) .042 .042 .041 .043 .042 .041 .042 .042
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Table 2.4 Empirical power and size for the full-dependence model with normal innova-
tion

Type of % of p = 500, n = 124 p = 1000, n = 138

Allocation True Null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% .303 .111 .06 .08 .410 .220 .08 .11
25% .301 .109 .07 .08 .421 .225 .07 .10
50% .302 .109 .07 .10 .418 .231 .09 .11
75% .289 .111 .08 .11 .326 .233 .10 .12
95% .277 .104 .09 .10 .321 .162 .11 .15
99% .279 .100 .08 .11 .318 .171 .12 .16
100%(size) .041 .039 .041 .041 .042 .040 .041 .042

Increasing 0% .318 .108 .09 .10 .401 .210 .07 .09
25% .321 .110 .08 .09 .403 .215 .08 .10
50% .320 .112 .09 .10 .399 .213 .08 .10
75% .315 .115 .10 .12 .339 .209 .10 .12
95% .234 .101 .10 .11 .322 .155 .11 .14
99% .219 .102 .09 .11 .308 .169 .13 .14
100%(size) .042 .041 .040 .041 .041 .043 .039 .040

Decreasing 0% .226 .107 .07 .09 .379 .218 .08 .09
25% .229 .116 .07 .09 .385 .209 .08 .10
50% .232 .119 .08 .10 .380 .216 .09 .11
75% .230 .111 .08 .10 .391 .220 .10 .12
95% .217 .124 .09 .12 .324 .204 .09 .13
99% .221 .120 .10 .11 .322 .208 .10 .14
100%(size) .042 .042 .041 .041 .041 .040 .039 .040
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Figure 2.1 Two-sample tests for differentially expressed gene-sets between BCR/ABL
and NEG class B-cell ALL: Histograms of P-values (left panels) and Qn

values (right panels) for BP, CC and MF gene categories.
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Figure 2.2 Back-testing for differentially expressed gene-sets between two randomly as-
signed B-cell NEG groups: Histograms of P-values (left panels) and Qn

values (right panels) for BP, CC and MF gene categories.
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CHAPTER 3. Effects of Data Dimension on Empirical

Likelihood

3.1 Introduction

Since Owen (1988, 1990) introduced the empirical likelihood method, it has been

extended to many settings as a tool for nonparametric and semiparametric statistical

inference. Its most attractive property is its permitting likelihood-like inference in a

nonparametric or semiparametric setting. This is largely due to its sharing two key

features with the conventional likelihood: Wilks theorem and Bartlett correction (Hall

and La Scala, 1990; DiCiccio et al., 1991; Chen and Cui, 2006). See Owen (2001) for

an overview.

High-dimensional data are increasingly common; for instance, in genetic and mRNA

microarray analysis, marketing research and financial applications. There is a rapidly

expanding literature on multivariate analysis where the data dimension p depends on

the sample size n and grows to infinity as n → ∞; see, for example, Portnoy (1984,

1985) in the context of M-estimation, Bai and Saranadasa (1996) for a two-sample test

for means, Ledoit and Wolf (2002) and Schott (2005) for testing a specific covariance

structure, and Schott (2007) for tests with more than two samples.

Given the interest in both high-dimensional data and empirical likelihood, there is a

need to evaluate the behavior of the latter when the data dimension and the sample size
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increase simultaneously. In this chapter, we evaluate the effects of the data dimension

and dependence on the asymptotic normality of the empirical likelihood ratio statistic

for the mean.

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) random vectors

in Rp with mean vector µ = (µ1, . . . , µp)
T and non-singular covariance matrix Σ. Let

Ln(µ) = sup

{
Πn

i=1πi : πi ≥ 0,
n∑

i=1

πi = 1,
n∑

i=1

πiXi = µ

}
(3.1)

be the empirical likelihood for µ and wn(µ) = −2 log{nnLn(µ)} be the empirical

likelihood ratio statistic. When p is fixed, Owen (1988, 1990) showed that

wn(µ) → χ2
p (3.2)

in distribution as n → ∞, which mimics Wilks’ theorem for parametric likelihood

ratios. An extension of the above result for parameters defined by general estimating

equations is given in Qin and Lawless (1994).

As p →∞ for high-dimensional data, the natural substitute for (3.2) is

(2p)−1/2{wn(µ)− p} → N(0, 1) (3.3)

in distribution as n →∞, since χ2
p is asymptotic normal with mean p and variance 2p.

A key question is how large the dimension p can be while (3.3) is valid. In a recent

study, Hjort et al. (2009) have established that it is p = o(n1/3) under the assumptions:

(A1). The eigen-values of Σ are uniformly bounded away from zero and infinity, and

(A2). Each component of Xi is a uniformly bounded random variable.

When (A2) is relaxed, we have:

(A2’). E||Xi/
√

p||q and p−1
∑p

j=1 E|X(j)
i − µj|q are bounded for some q ≥ 4, where ||·

|| is the Euclidean norm. Hjort et al. (2009) showed that (3.3) is valid if p3+6/(q−2)/n →
0.
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When q = 4 in (A2’ ), it means p = o(n1/6). Hence, there is a significant decrease in

the rate at which p →∞ when (A2 ) is weakened. Tsao (2004) found that, when p is

moderately large but fixed, the distribution of wn(µ) has an atom at infinity for fixed

n: the probability of wn(µ) = ∞ is non-zero. Tsao showed that, if p and n increase at

the same rate such that p/n ≥ 0.5, the probability of wn(µ) = ∞ converges to 1 since

the probability of µ being contained in the convex hull of the sample converges to 0.

These reveal the effects of p on the empirical likelihood from another perspective.

In this chapter, we analyze the empirical likelihood for high-dimensional data under

a general multivariate model, which facilitates a more detailed analysis than Hjort

et al. (2009) and allows less restrictive conditions. The analysis requires neither the

largest eigenvalue of Σ nor E||Xi/
√

p||q to be bounded, and hence accommodates a

wider range of dependencies among components of Xi.

Our main finding is that the effect of the dimensionality and the dependence among

components of Xi on the empirical likelihood are leveraged through tr(Σ), the trace

of the covariance matrix Σ and its largest eigenvalue λp. We provide a general rate

for the dimension p, which is shown to be dependent on tr(Σ) and λp. In particular,

under assumptions (A1 ) and (A2 ), p = o(n1/2), which improves p = o(n1/3) of Hjort

et al. (2009). This is likely to be the best rate for p in the context of the empirical

likelihood as p = o(n1/2) is the sufficient and necessary condition for the convergence

of the sample covariance matrix to Σ under the trace-norm when all the eigenvalues

of Σ are bounded.

Empirical likelihood is known for manifesting its higher order terms in an elegant

fashion so that it has attractive higher order properties, for instance the Bartlett

correction, as recently shown in Chen and Cui (2006) for general estimating equations.

While the involvement of the higher order terms is attractive for a fixed p, we find
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for high-dimensional data these “so-called” higher order terms may not be of higher-

order anymore as they can emerge as terms of the same magnitude or larger than the

previous leading term in the fixed p case. This is the reason for imposing a restriction

on the rate of increasing of p so that those higher order terms for the fixed p case stay

as the higher order terms when p is allowed to increase as the sample size increases.

The above remark is well supported by our analysis on the performance of the least

square empirical likelihood (Owen, 1991; Brown and Chen, 1998) for high-dimensional

data. Least square empirical likelihood is a simplified version of the empirical likeli-

hood. For fixed p, it is equivalent to the empirical likelihood in the leading order and

easily computable. However, it is not Bartlett correctable due to an incomplete higher

order structure. The latter (a lighter higher order term) turns out to be an advantage

when the data dimension is high. Indeed, we find the least square empirical likelihood

allows p = o(n2/3) under (A1 ) to ensure a least square version of (3.3) is valid. This

improves the rate given by Theorem 3.3 for the empirical likelihood ratio under the

corresponding condition.

This chapter is organized as follows. The outline of some preliminary formulation

is provided in Section 3.2. Section 3.3 contains the main results which quantify the

effects of dimension on the empirical likelihood. Section 3.4 reports some numerical

results. An application to Dow Johns Industrial Average data is presented in Section

3.5. Some technical details are given in Section 3.6.

3.2 Preliminaries

Suppose that each of the i.i.d. observations Xi ∈ Rp is specified by Xi = ΓZi + µ,

where Γ is a p ×m matrix, m ≥ p and Zi = (Zi1, . . . , Zim)T is a random vector such
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that

E(Zi) = 0, var(Zi) = Im, E(Z4k
il ) = m4k ∈ (0,∞), (3.4)

E
(
Zα1

il1
Zα2

il2
· · ·Zαq

ilq

)
= E(Zα1

il1
)E(Zα2

il2
) · · ·E(Z

αq

ilq
)

whenever
∑q

l=1 αl ≤ 4k and l1 6= l2 6= · · · 6= lq. Here k is some positive integer and Im

is the m-dimensional identity matrix.

The above multivariate model, employed in Bai and Saranadasa (1996), means

that each Xi is a linear transformation of some m-variate random vector Zi. An

important feature is that m, the dimension of Zi, is left arbitrary provided m ≥ p

and ΓΓT = Σ which can generate a rich collection of Xi from Zi with the given

covariance Σ. It also requires that power transformations of different components

of Zi are uncorrelated, which is weaker than assuming that they are independent.

The model (3.4) encompasses a rich collection of multivariate models. It includes the

elliptically contoured distributions with Zi = RU (m) where R is a non-negative random

variable and U (m) is the uniform random vector on the unit sphere (Fang and Zhang,

1990). The multivariate normal and t-distribution are elliptically contoured and so

is a mixture of normal distributions whose density is defined by
∫

n(x|µ, v−2Σ)dw(v)

where n(x|µ, Σ) is the density of N(µ, Σ) and w(v) is the distribution function of a

non-negative univariate random variable (Anderson, 2003). Both the moment and the

correlation conditions are imposed on Zi rather than Xi. This model structure allows

the moments of ||Xi − µ||2k to be derived and allows us to conduct a more detailed

analysis than possible in Hjort et al. (2009).

The integer k determines the number of finite moments for Zil. As k ≥ 1, each Zil

has at least finite fourth moment. This is the minimal moment condition to ensure the

convergence of the largest eigenvalue of the sample covariance matrix to the largest

eigenvalue of Σ (Yin et al., 1988; Bai et al., 1988), and hence the convergence of the
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sample covariance matrix to Σ under the matrix norm based on the largest eigenvalue.

By inspecting the proofs given in Section 3.6, we see that a divergent sample covariance

matrix would dramatically alter the asymptotic mean and variance of the empirical

likelihood ratio. Hence, it is unclear if (3.3) would remain true.

From the standard empirical likelihood solutions (Owen, 1988, 1990) which are

valid for any p, fixed or growing, the optimal weights πi for the optimization problem

(3.1) are

πi =
1

n

1

1 + λT (Xi − µ)
,

where λ ∈ Rp is a Lagrange multiplier satisfying

g(λ) =
n∑

i=1

Xi − µ

1 + λT (Xi − µ)
= 0. (3.5)

Hence, the empirical likelihood Ln(µ) equals n−n
∏n

i=1{1 + λT (Xi − µ)}−1. As the

maximum empirical likelihood is attained at πi = n−1 (i = 1, . . . , n), the empirical

likelihood ratio for µ is

wn(µ) = −2 log{nnLn(µ)} = 2
n∑

i=1

log{1 + λT (Xi − µ)}. (3.6)

Throughout the chapter we let γ1(A) ≤ · · · ≤ γp(A) denote the eigenvalues and

tr(A) denote the trace operator of a matrix A. When A = Σ, we write γj(Σ) as γj,

(j = 1, . . . , p). It is assumed throughout the chapter that γ1 ≥ C1 for some positive

constant C1.

3.3 Effects of High-Dimension

The Lagrange multiplier λ defined in (3.5) is a key element in any empirical like-

lihood formulation, and reflects the implicit nature of the methodology. When p is
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fixed, Owen (1990) showed that

||λ|| = Op(n
−1/2). (3.7)

This has been the prevailing order for λ except in nonparametric curve estimation

where n is replaced by the “effective sample size” (Chen, 1996). When p grows with

n, (3.7) is no longer valid.

Theorem 3.1 If {tr(Σ)}4k−1γp = O(n2k−1) and γ2
pp

2 = o(n), then

||λ|| = Op[{tr(Σ)/n}1/2].

Theorem 3.1 implies that the effect of the dimension and dependence among com-

ponents of Xi on the Lagrange multiplier is directly determined through tr(Σ) and γp.

The rate for ||λ|| can be regarded as a generalization of (3.7) for a fixed p since Op[{
tr(Σ)/n}1/2] degenerates to Op(n

−1/2) in that case.

We first study the effects of dimension on the asymptotic normality of wn(µ),

assuming existence of the minimal fourth moment for each Zil. Later, we will increase

the number of moments. We assume for the time being that k = 1 in (3.4) and

tr5(Σ)γ5
p = o(np). Since pγ1 ≤ tr(Σ) ≤ pγp, this implies the conditions of Theorem 3.1.

We wish to establish an expansion for wn(µ). Put Wi = λT (Xi − µ). From (3.22)

of Section 3.6, max
i=1,...,n

|Wi| = op(1), which allows

log{1 + λT (Xi − µ)} = Wi −W 2
i /2 + W 3

i /(1 + ξi1)
4 (3.8)

where |ξi1| ≤ |λT (Xi − µ)|. Expand (3.5) so that

0 = g(λ) = X̄ − µ− Snλ + βn

where βn = n−1
∑n

i=1(Xi − µ)W 2
i /(1 + ξi)

3 for some |ξi| ≤ |λT (Xi − µ)| and Sn =

n−1
∑n

i=1(Xi − µ)(Xi − µ)T . Hence,

λ = S−1
n (X̄ − µ) + S−1

n βn. (3.9)
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From (3.8) and (3.26), we obtain an expansion for wn(µ):

wn(µ) = n(X̄ − µ)T S−1
n (X̄ − µ)− nβnS

−1
n βn + 2

3

∑n
i=1{λT (Xi − µ)}3/(1 + ξi)

4

= n(X̄ − µ)T Σ−1(X̄ − µ) + n(X̄ − µ)T (S−1
n − Σ−1)(X̄ − µ)

−nβnS−1
n βn + 2

3
Rn{1 + op(1)} (3.10)

where Rn =
∑n

i=1{λT (Xi − µ)}3. This expansion looks similar to that given in Owen

(1990) for a fixed p, but the stochastic order of each term requires careful evaluation

as p grows with n.

From Lemma 3.5 in Section 3.6, we have

(2p)−1/2{n(X̄ − µ)T Σ−1(X̄ − µ)− p} → N(0, 1) (3.11)

in distribution as n → ∞, which is true under much weaker conditions, for instance

p/n → c ≥ 0 by applying the martingale central limit theorem. Derivations given in

Section 3.6 show that the other two terms on the right hand side of (3.10) are both

op(p
1/2). These lead us to establish (3.3) as summarized in the following theorem.

Theorem 3.2 If k = 1 in (3.4) and tr5(Σ)γ5
p = o(np), then (3.3) is valid.

Theorem 3.2 indicates that, when γp is bounded, (3.3) is true if p = o(n1/4), which

improves the order p = o(n1/6) obtained by Hjort et al. (2009) under the finite fourth

moment condition of Xi which we do not need in our study. The conditions assumed

under Theorem 3.2 are liberal compared to (A1) and (A2), and there is no explicit

restriction on γp, which may diverge to ∞ as n →∞.

Next we show that the dimension p can increase more rapidly if Zil possesses more

than fourth moment. Assuming higher order moments allows us to evaluate those

terms in (3.10) more accurately. Specifically, we will assume Zil has at least finite
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12th moment, namely k ≥ 3 in model (3.4). The case k ≥ 2 can be considered as

part of the case k ≥ 1 whose analysis is covered by Theorem 3.2. The following

theoremshows that p = o(n1/2) is approachable.

Theorem 3.3 If k ≥ 3 in (3.4), {tr(Σ)}4k−1γp = O(n2k−1) and p2γ5
p = o{n(4k−1)/(4k)},

then (3.3) is valid.

When γp is bounded, Theorem 3.3 implies that wn(µ) is asymptotically normally

distributed if p = o(n1/2−1/(8k)), which is close to o(n1/2) for k ≥ 3 and improves the

earlier rate o(n1/3) attained in Hjort et al. (2009). By reviewing the proof of Theorem

3.3, we can see that, if Zij are all bounded random variables, the dimensionality p can

reach o(n1/2). We believe that p = o(n1/2) is the best rate for the asymptotic normality

of the empirical likelihood ratio with the normalizing constants p and (2p)1/2. This is

based on the following considerations. Lemma 3.4 in Section 3.6 implies that, when

the largest eigenvalue of Σ is bounded, ||Sn − Σ||tr → 0 in probability if and only

if p = o(n1/2). Here ||A||tr = {tr(A′A)}1/2 is the trace norm. Bai and Yin (1993)

established the convergence of Sn to Σ with probability one if p = o(n) under the

matrix norm based on the largest eigenvalue by assuming each Znl is independent and

identically distributed. However, it can be seen from our proofs in Section 3.6 that the

convergence of Sn to Σ under the trace norm is the one used in establishing various

results for the empirical likelihood.

As shown by Theorems 3.2 and 3.3, when (3.3) is valid, the asymptotic mean and

variance of the empirical likelihood ratio are respectively p and 2p which are known.

This means that the empirical likelihood carries out internal studentising even when

p increases along with n. However, it is apparent that the internal studentisation

prevents p from growing faster as it brings in those higher-order terms.
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The least-square empirical likelihood is a simplified version of the empirical likeli-

hood. The least-square empirical likelihood ratio for µ is

qn(µ) = min
∑

(nπi − 1)2

subject to
∑n

i=1 πi = 1 and
∑

πi(Xi − µ) = 0. The least square empirical likelihood

uses
∑

(nπi−1)2 to approximate −2
∑

log(nπi). As shown in Brown and Chen (1998),

the optimal weights πi admit close-form solutions so that

qn(µ) = n(X̄ − µ)T H−1
n (X̄ − µ) (3.12)

where Hn = Sn − (X̄ − µ)(X̄ − µ)T . Hence, qn(µ) can be readily computed without

solving the non-linear equation (3.5) as for the full empirical likelihood. The least

square empirical likelihood ratio is a first order approximation to the full empirical

likelihood ratio, and qn(µ) → χ2
p in distribution when p is fixed.

The least square empirical likelihood is less affected by higher dimension. In par-

ticular, if k ≥ 3 in (3.4), then

(2p)−1/2{qn(µ)− p} → N(0, 1) (3.13)

in distribution as n →∞ when p = o(n2/3), which improves the rate given by Theorem

3.3 for the full empirical likelihood ratio wn(µ).

To appreciate (3.13), we note from (3.12)

qn(µ) = n(X̄ − µ)T Σ−1(X̄ − µ) + n(X̄ − µ)T (H−1
n − Σ−1)(X̄ − µ). (3.14)

Then, following a similar line to the proof of Lemma 3.6,

n(X̄ − µ)T (H−1
n − Σ−1)(X̄ − µ) = Op(p

2/n) = op(p
1/2).

As the first term on the right hand side of (3.14) is asymptotically normal with mean

p and variance 2p as conveyed in (3.11), (3.13) is valid.
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If we confine ourselves to specific distributions, faster rates for p can be established.

For example if the data are normally distributed, the least square empirical likelihood

ratio is the Hotelling’s T 2 statistic, which is shown in Bai and Saranadasa (1996) to

be asymptotically normal if p/n → c ∈ [0, 1).

3.4 Numerical Results

We report results from a simulation study designed to evaluate the asymptotic

normality of the empirical likelihood ratio. The p × 1 independent and identically

distributed data vectors {Xi}n
i=1 were generated from a moving average model:

Xij = Zij + ρZij+1 (i = 1, . . . , n, j = 1, . . . , p)

where, for each i, the innovations {Zij}p+1
j=1 were independent random variables with

zero mean and unit variance. We considered two distributions for the innovation Zij.

One is the standard normal distribution, and the other is a standardized version of a

Pareto distribution with distribution function (1 − x−4.5)I(x ≥ 1). We standardized

the Pareto random variables so that they had mean zero and unit variance. As the

Pareto distribution has only the first four moments finite, we had k = 1 in (3.4),

whereas k = ∞ for the normally distributed innovations. In both distributions, Xi

is a multivariate random vector with zero mean and covariance Σ = (σij)p×p where

σii = 1 + ρ2, σii±1 = ρ and σij = 0 for |i − j| > 1. We set ρ to be 0.5 throughout the

simulation.

To make p and n increase simultaneously, we considered two growth rates for p

with respect to n: (i) p = c1n
0.4 and (ii) p = c2n

0.24. We chose the sample size

n = 200, 400 and 800. By assigning c1 = 3, 4 and 5 in the faster growth rate setting

(i), we obtained three dimensions for each sample size, which were p = 25, 33 and
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43 for n = 200, p = 33, 44 and 58 for n = 400, and p = 42, 55 and 72 for n = 800,

respectively. For the slower growth rate setting (ii), to maintain a certain amount

of increase between successive dimensions when n was increased, we assigned larger

c2 = 4, 6 and 8, which led to p = 14, 17 and 20 for n = 200; p = 21, 25 and 30 for

n = 400; and p = 29, 34 and 40 for n = 800, respectively.

We carried out 500 simulations for each of the (p, n)-combinations and for each of

the two innovation distributions. Fig 3.1 displays the Q-Q plots between the stan-

dardized empirical likelihood ratio and N(0, 1) for the faster growth rate (i), and those

for the slower growth rate (ii) are presented in Fig. 3.2. As n and p were increased

simultaneously, there was a general convergence of the standardized empirical likeli-

hood ratio to N(0, 1). We also observed that the convergence in Fig. 3.2 for the slower

growth rate setting (ii) was faster than that in Fig. 3.1 for the faster growth rate

setting. This is expected as the setting (i) ensured much higher-dimensionality. The

convergence for the normal innovation was faster than that for the Pareto case when

p = c1n
0.4 in Fig. 3.1. This may be explained by the fact that the Pareto distribution

has only four finite moments, which corresponds to k = 1, whereas the normal inno-

vation has all moments finite. According to Theorems 3.2 and 3.3, the growth rate

for p depends on the value of k, the larger the k, the higher the rate. For the lower

growth rate in setting (ii), Fig. 3.2 shows that, there was substantial improvement

in the convergence in the Q-Q plots as p was increased at the slower rate for both

distributions of innovations,

It is observed that the most of the lack-of-fit in the Gaussian Q-Q plots in Fig. 3.1

and Fig. 3.2 appeared at the lower and upper quantiles. This could be attributed

to the lack-of-fit between χ2
p and N(0, 1), as χ2

p may be viewed as the intermediate

convergence of the empirical likelihood ratio.
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To verify this point, we carried out further simulations by inverting settings (i)

and (ii) so that for a given dimension p, three sample sizes were generated according

to (iii) n = (p/c1)
1/0.4 and (iv) n = (p/c2)

1/0.24, with c1 = 3, 4 and 5 and c2 = 4, 5 and

6, respectively. We chose p = 35, 45 and 55 for the setting (iii) and p = 17, 20 and

25 for the setting (iv). Figure 3.3 and Figure 3.4 are the corresponding χ2
p Q-Q plots

for (iii) and (iv). These two figures show that there was a substantial improvement

in the overall fit of the Q-Q plots, and the lack-of-fit appeared in the Gaussian Q-Q

plots was substantially reduced.

3.5 Case Study

We give in this section a financial application of the empirical likelihood ratio in

analyzing stock returns for public companies included in the Dow Jones Industrial

Average. We have daily closing prices for the thirty stocks in the Dow Jones from

July 1st, 1986 to September 2nd, 2008. These prices had been adjusted for stock split,

buy-back, dividend payouts and other distributions. Although stock prices typically

exhibit dependence over time, their price changes are less so over time. To further

reduce the time dependence, we consider monthly (four-weekly) returns which leads

to 265 observations. Here the data-dimension p is 30 which is high relative to n = 265,

the number of observations.

Let Yt = (Yt,1, Yt,2, · · · , Yt,30)
T be the vector of closing prices of the Dow Jones

stocks at the beginning of tth month, let

Rt = ((Yt,1 − Yt−1,1)/Yt−1,1, · · · , (Yt,30 − Yt−1,30)/Yt−1,30)
T

be the relative return for the tth month and let

Xt = (log(Yt,1/Yt−1,1), · · · , log(Yt,30/Yt−1,30))
T
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be the log-returns for t = 1, 2, · · · , 265. It is assumed that X1, X2, · · · , Xn are inde-

pendent and identically distributed random vectors. Let r = E(Rt) = (r1, r2, · · · , rp)
T

be the vector of the average relative return and µ = E(Xt) = (µ1, · · · , µp)
T be the

average log-return and Σ = V ar(Xt). We wish to test

H0 : µ = 0 vs. H1 : µ 6= 0

using the empirical likelihood method. The empirical likelihood test statistic is

Tn = (2p)−1/2{wn(0)− p}.

The hypothesis is rejected at a significant level α if |Tn| ≥ zαwhere zα is the upper

α-quantile of N(0, 1). We also carried out similar tests for sectors of stocks included

in the Dow Jones. The sectors are basic materials, consumer goods, finance, health

care, industrial goods, services and technology, respectively. Let µ(j) denote the mean

for components of Xt that correspond to a specific sector. We test for H0 : µ(j) = 0

vs H1 : µ(j) 6= 0. Table 3.1 reports values of Tn and the p-values for testing the mean

log-return for the entire 30 stocks and sectors of the Dow Jones. It was found that

the p-value for the average log-return of the 30 stocks is 0.059, and hence the null

hypothesis cannot be rejected at α = 0.05. Some sectors were found to have average

log-return significantly different from zero, for instance basic material, consumer goods

and service sectors.

We would like to add that, if a hypothesis µl = 0 is not rejected, it does not nec-

essarily imply that the average relative return rl is zero. To appreciate this point, we

assume the Black-Scholes (Black and Scholes, 1973) continuous-time diffusion model

for stock price Yt,l, l = 1, · · · , p, such that

dYt,l/Yt,l = rldt + σldBt,l
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where rl and σl are respectively the instantaneous mean and standard deviation of the

relative return of the lth stock, and Bt,l is the standard Brownian motion. This model

implies, via Ito formula, that log(Yt,l/Yt−1,l) is distributed as N((rl − σ2
l /2)δt, σ

2
l δt)

where δt is the length of sampling. Hence, for our analysis, µl = (rl − σ2
l /2)δt with

δt = 1/12 as the returns are calculated monthly. If µl = 0, the average relative return

rl = σ2
l /2 implying a positive return due to holding a risky stock.

3.6 Technical Proofs

We present the proofs of Theorem 3.1, some lemmas used in the proof of Theorem

3.2, and Theorem 3.3.

We first establish some lemmas.

Lemma 3.1 If m4k < ∞ for some k ≥ 1, then

E||Xi − µ||2k = O{trk(Σ)} and V ar(||Xi − µ||2k) = O{tr2k−1(Σ)γp}.

Proof:

We only show the case of k = 1 since other cases can be done similarly. It is easy to

check that

E||Xi − µ||2 = tr{E(Xi − µ)T (Xi − µ)} = tr(Σ) (3.15)

and

E||Xi − µ||4 = E||ΓZi||4 = E
(
ZT

i ΓT ΓZiZ
T
i ΓT ΓZi

)
= tr

{
ΓT ΓE(ZiZ

T
i ΓT ΓZiZ

T
i )

}
.

Write ΓT Γ = (νsl)1≤s,l≤m. Then

ZiZ
T
i ΓT ΓZiZ

T
i =

( m∑
j=1

m∑

l=1

Zik1ZilνljZijZik2

)
1≤k1,k2≤m

.
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When k1 = k2 = s,

E(
∑m

j=1

∑m
l=1 Zik1ZilνljZijZik2) =

∑m
l=1 E{(Zis)

2(Zil)
2}νll = νssE(Zis)

4 +
∑

l 6=s νll.

When k1 6= k2, E(
∑m

j=1

∑m
l=1 Zik1ZilνljZijZik2) = 2νk1k2 . Hence

E||Xi − µ||4 =
m∑

s=1

νss{νssE(Zis)
4 +

∑

l 6=s

νll}+ 2
m∑

s=1

∑

l 6=s

νslνls

=
m∑

s=1

ν2
ss{E(Zis)

4 − 3}+ tr2(ΓT Γ) + 2tr(ΓT ΓΓT Γ)

= (m4 − 3)
m∑

s=1

ν2
ss + tr2(Σ) + 2tr(Σ2). (3.16)

Note that
∑m

s=1 ν2
ss ≤

∑m
j=1

∑m
s=1 ν2

js = tr{(ΓT Γ)2} = tr(Σ2). This together with

(3.15) and (3.16) implies that V ar(||Xi − µ||2) = (m4 − 3)
∑m

s=1 ν2
ss + 2tr(Σ2) =

O{tr(Σ2)}. This completes the proof of Lemma 3.1.

Lemma 3.2 If m4k < ∞ for some k ≥ 1, then, with probability one

max
1≤i≤n

||Xi − µ|| = o[{tr(Σ)}2k−1
4k γ

1
4k
p (Σ)n

1
4k ] + O(

√
tr(Σ)).

Proof:

We note that

max1≤i≤n ||Xi − µ||
= {max1≤i≤n ||Xi − µ||2k}1/(2k)

≤ {|max1≤i≤n |||Xi − µ||2k − E(||Xi − µ||2k)|+ E(||Xi − µ||2k)}1/(2k)

= {
√

V ar(||Xi − µ||2k) max1≤i≤n | ||Xi−µ||2k−E(||Xi−µ||2k)√
V ar(||Xi−µ||2k)

|+ E(||Xi − µ||2k)}1/(2k)

and

max
1≤i≤n

| ||Xi − µ||2k − E(||Xi − µ||2k)√
V ar(||Xi − µ||2k)

| = o(n1/2)
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with probability one as n →∞. This lemma is proved by applying Lemma 3 of Owen

(1990) and Lemma 3.1.

From now on, we let Yi = Σ−1/2(Xi − µ), Vn = 1
n

∑n
i=1 YiY

T
i , Ȳ = 1

n

∑n
i=1 Yi and

Dn = Vn − Ip = (dsl)l,s=1,··· ,p.

Lemma 3.3 . Under the conditions of Theorem 3.1, tr(D2
n) = Op(p

2/n).

Proof:

We only need to show E{tr(D2
n)} = O(p2/n). Note that Vn = Σ−1/2ΓSzΓ

T Σ−1/2 where

Sz = n−1
∑n

i=1 ZiZ
T
i . Let Σ̃ = ΓT Σ−1Γ = (σ̃jl)1≤j,l≤m, say. Then

tr(D2
n) = tr(SzΣ̃SzΣ̃)− 2tr(SzΣ̃) + p (3.17)

and

E{tr(SzΣ̃)} = E

(
m∑

j,l=1

n−1

n∑
i=1

ZijZilσ̃lj

)
=

m∑

j,l=1

δjlσ̃lj =
m∑

j=1

σ̃jj = p (3.18)

since tr(Σ̃) = tr(Ip) = p. By utilizing information of Zi given in (3.4),

E[tr{(SZΣ̃)2}] = E

(
m∑

j,l=1

m∑

l1,l2=1

n−2

n∑
i1,i2=1

Zi1jZi1l1Zi2lZi2l2σ̃l1lσ̃l2j

)

= m4n
−1

m∑
j=1

σ̃2
jj + n−1

∑

j 6=l

(
2σ̃2

jl + σ̃jjσ̃ll

)
+ (1− n−1)

m∑

j,l=1

σ̃2
jl

=
m∑

j,l=1

σ̃2
jl + (m4 − 1)n−1

m∑
j=1

σ̃2
jj + n−1

∑

j 6=l

(
σ̃2

jl + σ̃jjσ̃ll

)
.

It is easy to check that
∑m

j,l=1 σ̃2
jl = tr(Σ̃2) = p,

∑m
j=1 σ̃2

jj ≤
∑m

j,l=1 σ̃2
jl = p,

∑
j 6=l σ̃

2
jl ≤

∑m
j,l=1 σ̃2

jl = p and |∑j 6=l σ̃jjσ̃ll| ≤ (
∑m

j=1 σ̃jj)
2 = p2. Thesis together with (3.17) to

(3.18) imply E{tr(D2
n)} = O(p2/n). This completes the proof of the lemma.
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Lemma 3.4 Under condition (3.4), max1≤i≤p |γi(Sn)− γi(Σ)| = Op(γpp/
√

n).

Proof:

Note that

|γi(Sn)− γi(Σ)|2 = |γ1/2
i (S2

n)− γ
1/2
i (Σ2)|2 (3.19)

≤
p∑

i=1

|γ1/2
i (S2

n)− γ
1/2
i (Σ2)|2

=

p∑
i=1

γi(S
2
n) +

p∑
i=1

γi(Σ
2)− 2

p∑
i=1

γ
1/2
i (S2

n)γ
1/2
i (Σ2)

= tr(S2
n) + tr(Σ2)− 2

p∑
i=1

γi(Sn)γi(Σ).

By Von Neumann’s inequality,
∑p

i=1 γi(Sn)γi(Σ) ≥ tr(SnΣ). Hence

max
1≤i≤p

|γi(Sn)− γi(Σ)| ≤
√

tr{(Sn − Σ)2}.

Now

tr{(Sn − Σ)2} = tr[{Σ1/2(Vn − Ip)Σ
1/2}2]

= tr(DnΣDnΣ)

≤ γ2
ptr(D

2
n) = Op(γ

2
pp

2/n)

by applying Lemma 3.3.

This lemma implies that all the eigenvalues of Sn converge to those of Σ uniformly

at the rate of Op{γpp/
√

n}.

Proof of Theorem 3.1:

By (3.5), λ ∈ Rp satisfies

0 =
1

n

n∑
i=1

Xi − µ

1 + λT (Xi − µ)
= g(λ). (3.20)
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Write λ = ρθ where ρ ≥ 0 and ||θ|| = 1. Hence

0 = ||g(ρθ)|| ≥ |θT g(ρθ)|
= n−1|θT{∑n

i=1(Xi − µ)− ρ
∑n

i=1
(Xi−µ)θT (Xi−µ)

1+ρθT (Xi−µ)
}|

≥ ρθT Snθ{1 + ρ max1≤i≤n ||Xi − µ||}−1 − n−1|∑n
i=1 θT (Xi − µ)|.

Hence,

ρ

{
θT Snθ − max

1≤i≤n
||Xi − µ||n−1|

n∑
i=1

θT (Xi − µ)|
}
≤ n−1|

n∑
i=1

θT (Xi − µ)|.

Since n−1|∑n
i=1 θT (Xi − µ)| = Op(

√
tr(Σ)/n), it follows from Lemma 3.2 that

max
1≤i≤n

||Xi − µ||n−1|
n∑

i=1

θT (Xi − µ)|

= op{tr1− 1
4k (Σ)γ

1
4k
p (Σ)n−

1
2

+ 1
4k + Op{tr(Σ)n−1/2} = op(1). (3.21)

By Lemma 3.4, for a positive constant C1, P (θT Snθ ≥ 1
2
C1) → 1 as n → ∞. Hence

||λ|| = ρ = Op(
√

tr(Σ)/n). This completes the proof of Theorem 3.1.

By repeating (3.21) in the proof of the above theorem and Lemma 3.2, we have

max
1≤i≤n

||λT (Xi − µ)|| ≤ ||λ|| max
1≤i≤n

||Xi − µ|| = op(1) (3.22)

We need the following lemmas for proving Theorem 3.2.

Lemma 3.5 If p/n → c ≥ 0, then

n(X̄ − µ)T Σ−1(X̄ − µ)− p√
2p

d→ N(0, 1) as n →∞.

Proof:

The proof entails applying the martingale central limit theorem as given in Hall and

Hyde (1980). Bai and Saranadasa (1996) used this approach to establish the asymp-

totic normality for a two-sample test statistic for high-dimensional data. What we

have here is easier due to the one sample nature.
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Lemma 3.6 Under the conditions of Theorem 3.2,

n(X̄ − µ)T (S−1
n − Σ−1)(X̄ − µ) = op(p

2/
√

n).

Proof:

Recall that Dn = Vn − Ip = (dsl)1≤s≤p,1≤l≤p. It follows from Lemma 3.3 that

P (max1≤k1,k2≤p |dk1k2| > ε) ≤ ∑p
k1=1

∑p
k2=1 ε−2E(d2

k1k2
) = ε−2E{tr(D2

n)} = O(p2/n).

Hence, djl = Op(
√

p2/n) = op(1) uniformly in 1 ≤ j, l ≤ p. It is easy to check that

V −1
n − Ip = −Dn + D2

n + D2
n(V −1

n − Ip)

and

n(X̄ − µ)T (S−1
n − Σ−1)(X̄ − µ) = nȲ T (V −1

n − Ip)Ȳ .

From Lemma 3.1, E(||Ȳ ||2) = 1
n
E(||Y1||2) = p/n. Since |Ȳ T AȲ | ≤ ||Ȳ ||2

√
tr(A2) for

any symmetric matrix A, it follows from Lemma 3.4 and the condition p = o(n1/3)

that

|nȲ T DnȲ | ≤ n||Ȳ ||2
√

tr(D2
n) = Op(p

2/
√

n) = op(
√

p).

Similarly, |nȲ T D2
nȲ | ≤ n||Ȳ ||2tr(D2

n) = Op(p
3/n) = op(

√
p).

Furthermore, we note the following facts

|Ȳ T D3
nȲ | ≤ max

1≤i≤p
{|γi(Dn)|}Ȳ T D2

nȲ = op(Ȳ
T D2

nȲ ) (3.23)

since max1≤i≤p{|γi(Dn)|} ≤
√

tr(D2
n) → 0, and

Ȳ T D4
nȲ ≤ γp(D

2
n)Ȳ T D2

nȲ = op(Ȳ
T D2

nȲ ).

In general, if p = o(
√

n), for any positive integer l, Ȳ T D2+l
n Ȳ = op(Ȳ

T D2
nȲ ) The

lemma follows from summarizing the above results.
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Proof of Theorem 3.2:

Put Wi = λT (Xi − µ). Then (3.22) implies that max1≤i≤n |Wi| = op(1). Expand

equation (3.20),

0 = g(λ) = X̄ − µ− Snλ + βn (3.24)

where

βn = n−1

n∑
i=1

(Xi − µ)
W 2

i

(1 + ξi)3

and |ξi| ≤ |λT (Xi − µ)|. As max1≤i≤n |Wi| = op(1), max1≤i≤n |ξi| = op(1) as well.

Hence βn = βn1{1 + op(1)} where βn1 = n−1
∑n

i=1(Xi − µ)W 2
i . Apply Theorem 3.1

and Lemma 3.2 with k = 1, we have, if tr(Σ) = O{γ5/3
p (Σ)n1/3},

||βn1|| ≤ n−1

n∑
i=1

||Xi − µ||W 2
i

≤ max
1≤i≤n

||Xi − µ||n−1

n∑
i=1

λT (Xi − µ)(Xi − µ)T λ

= max
1≤i≤n

||Xi − µ||||λ||2Op(γp(Σ))

= op(||λ||γ1+
1
4

p (Σ)tr
3
4 (Σ)n−

1
4 ) + Op(||λ||tr(Σ)n−

1
2 ) = op(||λ||). (3.25)

It follows from (3.24) that

λ = S−1
n (X̄ − µ) + S−1

n βn (3.26)

and log(1 + Wi) = Wi − W 2
i /2 + W 3

i /(1 + ξi)
4 for some ξi such that |ξi| ≤ |Wi|.

Therefore

wn(µ) = n(X̄ − µ)T S−1
n (X̄ − µ)− nβnS−1

n βn + 2
3

∑n
i=1

{λT (Xi−µ)}3
(1+ξi)4

= n(X̄ − µ)T Σ−1(X̄ − µ) + n(X̄ − µ)T (S−1
n − Σ−1)(X̄ − µ)

−nβnS
−1
n βn + 2

3
Rn{1 + op(1)} (3.27)
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where Rn =
∑n

i=1{λT (Xi − µ)}3. By (3.25) and Lemma 3.4,

|nβnS−1
n βn| ≤ n||βn||2/γ1(Sn)

= Op(γ
2
p(Σ)tr3(Σ)n−1) + op(γ

5/2
p tr5/2(Σ)n−1/2) = op(

√
p). (3.28)

We also note that

Rn ≤
n∑

i=1

|Wi|3 ≤ {
n∑

i=1

W 2
i

n∑
i=1

W 4
i }1/2

≤
√

nλT Snλ{
n∑

i=1

||λ||4||Xi − µ||4}1/2

= Op(
√

tr(Σ)γp(Σ))Op(
√

tr2(Σ)n−2ntr2(Σ))

= Op(tr
5/2(Σ)γ1/2

p n−1/2) = op(
√

p). (3.29)

Hence the theorem follows from Lemmas 3.5 and 3.6.

The proof of Theorem 3.3 requires the following lemmas.

Lemma 3.7 Under the conditions of Theorem 3.3, tr{(V −1
n − Ip)

2} = Op(p
2/n).

Proof:

We note that

tr{(V −1
n − Ip)

2} =

p∑
i=1

(γ−1
i (Vn)− 1)2 ≤ γ−2

1 (Vn)

p∑
i=1

(γi(Vn)− 1)2 = γ−2
1 (Vn)tr(D2

n).

Thus, the lemma follows from that γ1(Vn) → 1 in probability from Lemma 3.4 and

tr(D2
n) = Op(p

2/n) from Lemma 3.3.

Let

ξn1 = n−1

n∑
i=1

(Ȳ T Yi)
4 and βn2 = n−1

n∑
i=1

(Xi − µ)(Ȳ T Yi)
2. (3.30)
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Lemma 3.8 Under the conditions of Theorem 3.3, E(ξn1) = O(p2/n2) and ξn1 =

Op(p
2/n2).

Proof:

Note that

E(ξn1) = n−5

n∑
i=1

E(Y T
i Yi)

4 + n−5

n∑

i6=j

[
E(Y T

i Yj)
4 + 4E{Y T

i Yi(Y
T
i Yj)

3} (3.31)

+6E{(Y T
i Yi)

2(Y T
i Yj)

2}
]

+ 3n−5
∑

i6=j1 6=j2

E{(Y T
j1

Yi)
2(Y T

j2
Yi)

2}. (3.32)

Put Γ̃ = Σ−1/2Γ and write Γ̃T Γ̃ = ΓT Σ−1Γ = (ν̃jl)1≤j,l≤m. Using a similar deriva-

tion of Lemma 3.1, we have

E(Y T
i Yi)

4 = E(ZT
i Γ̃T Γ̃Zi)

4

=
∑

k1,··· ,k4,l1,··· ,l4
E(Zik1Zik2Zik3Zik4Zil1Zil2Zil3Zil4)ν̃k1,l1 ν̃k2,l2 ν̃k3,l3 ν̃k4,l4

= O{tr4(Σ)}. (3.33)

When i 6= j,

E(Y T
i Yj)

4 = E(ZT
i Γ̃T Γ̃Zj)

4

=
∑

k1,··· ,k4,l1,··· ,l4
E(Zik1Zik2Zik3Zik4)E(Zjl1Zjl2Zjl3Zjl4)ν̃k1,l1 ν̃k2,l2 ν̃k3,l3 ν̃k4,l4

= m2
4

∑

s,l

ν̃4
sl + 12m4

∑

k1 6=k2,l

ν̃2
k1lν̃

2
k2l + 36

∑

k1 6=k2,l1 6=l2

ν̃2
k1l1

ν̃2
k2l2

.

Since
∑

s,l ν̃
4
sl,

∑
k1 6=k2,l ν̃

2
k1lν̃

2
k2l and

∑
k1 6=k2,l1 6=l2

ν̃2
k1l1

ν̃2
k2l2

are all bounded by

(
∑

s,l

ν̃2
sl)

2 = tr2{(Γ̃T Γ̃)2} = tr2(Γ̃T Σ−1Γ̃) = tr2(Ip) = p2,

we have

E(Y T
i Yj)

4 = O(p2) for i 6= j. (3.34)
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When i 6= j,

E{Y T
i Yi(Y

T
i Yj)

3}

=
∑

k1,k2,l1,l2,s1,s2,t1,t2

E(Zik1Zik2Zil2Zis2Zit2)E(Zjl1Zjs1Zjt1)ν̃k1,k2 ν̃l1,l2 ν̃s1,s2 ν̃t1,t2

= m3m5

∑

s,l

ν̃sν̃
3
sl + m2

3

∑

s 6=l,r

{ν̃ssν̃
3
rl + 9ν̃slν̃rsν̃

2
rl}. (3.35)

Since |ν̃sl|2 ≤ ν̃ssν̃ll and ν̃ll ≤ γp(Γ
T Σ−1Γ) ≤ tr(ΓT Σ−1Γ) = p for any 1 ≤ l ≤ m,

|
∑

s,l

ν̃ssν̃
3
sl| ≤ p

∑

s,l

ν̃2
ssν̃ll ≤ ptr{(ΓT Σ−1Γ)2}tr(ΓT Σ−1Γ) = p3.

Using the same argument, we have the other terms on the right hand side of (3.35)

are O(p3) as well. This leads to

E{Y T
i Yi(Y

T
i Yj)

3} = O(p3) for i 6= j. (3.36)

When i 6= j,

E{(Y T
i Yi)

2(Y T
i Yj)

2}

=
∑

k1,k2,l1,l2,s1,s2,l2,t2

E(Zik1Zik2Zil2Zis1Zis2Zit2)ν̃k1k2 ν̃ll2 ν̃s1s2 ν̃lt2

= m6

∑

l,s

ν̃2
ssν̃

2
sl + m2

3

∑

k1 6=k2,l

{J1ν̃k1k1 ν̃k2k2 ν̃lk1 ν̃lk2 + J2ν̃
2
k1k2

ν̃lk1 ν̃lk2 + J3ν̃k1k1 ν̃k2k2 ν̃
2
lk1
}

+
∑

l,k1 6=k2 6=k3

{J4ν̃k1k1 ν̃k2k2 ν̃
2
lk3

+ J5ν̃
2
k1k2

ν̃2
lk3

+ J6ν̃k1k3 ν̃k2k3 ν̃lk1 ν̃lk2}. (3.37)

Here and from now on we use Jj, j ≥ 1 to denote positive integers representing the

number of combinations of the subscripts and whose values have no effect on the order

of magnitude of E{(Y T
i Yi)

2(Y T
i Yj)

2}.
Write (Γ̃T Γ̃)2 = (ν̃

(2)
ls )1≤l,s≤m. Then

∑

l,s

ν̃2
ssν̃

2
sl =

∑
s

ν̃2
ssν̃

(2)
ss ≤ tr2{(ΓΣ−1Γ)2} = p2,
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and

∑

k1 6=k2,l

ν̃k1k1 ν̃k2k2 ν̃lk1 ν̃lk2 =
∑

k1 6=k2

ν̃k1k1 ν̃k2k2 ν̃
(2)
k1k2

=
∑

k1,k2

ν̃k1k1 ν̃k2k2 ν̃
(2)
k1k2

−
∑

s

ν̃2
ssν̃

(2)
k1k2

= O(p3) (3.38)

since

|
∑

k1,k2

ν̃k1k1 ν̃k2k2 ν̃
(2)
k1k2

| ≤ γp{(ΓT Σ−1Γ)2}
∑

k1,k2

ν̃k1k1 ν̃k2k2 ≤ p(
∑

s

ν̃ss)
2 = p3.

It can be shown that the other terms on the RHS of (3.37) are at most of order p3.

Hence

E{(Y T
i Yi)

2(Y T
i Yj)

2} = O(p3) for i 6= j. (3.39)

When j1 6= j2 6= i,

E{(Y T
j1

Yi)
2(Y T

j2
Yi)

2} = m4

∑

t,l,s

ν̃2
tsν̃

2
ls +

∑

t,l,s1 6=s2

{J7ν̃
2
ts1

ν̃2
ls2

+ J8ν̃ts1 ν̃ts2 ν̃ls1 ν̃ls2},

∑

t,l,s

ν̃2
tsν̃

2
ls =

∑
t,s

ν̃2
tsν̃

(2)
ss ≤ (

∑
t,s

ν̃2
ts)(

∑
s

ν̃(2)
ss ) = p2,

∑

t,l,s1 6=s2

ν̃2
ts1

ν̃2
ls2

=
∑

s1 6=s2

ν̃(2)
s1s1

ν̃(2)
s2s2

≤ (
∑

s

ν̃(2)
ss )2 = p2

and
∑

t,l,s1 6=s2

ν̃ts1 ν̃ts2 ν̃ls1 ν̃ls2 =
∑

s1 6=s2

(ν̃(2)
s1s1

)2 ≤
∑
s1,s2

(ν̃(2)
s1s2

)2 = p,

we have

E{(Y T
j1

Yi)
2(Y T

j2
Yi)

2} = O(p2) for j1 6= j2 6= i. (3.40)

In summary of (3.32), (3.33), (3.34), (3.36), (3.39) and (3.40), we have

E(ξn1) = O(p4/n4 + p3/n3 + p2/n2) = O(p2/n2)

as p = o(
√

n). This leads to the conclusion of the lemma.
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Lemma 3.9 Under the conditions of Theorem 3.3, ||βn2|| = Op(
√

γpp/n).

Proof:

Note that

||βn2||2 = n−6
∑

i,j1,j2,l1,l2

Y T
j1

YiY
T
j2

YiY
T
l1

YiY
T
l2

Yi(Xi − µ)T (Xi − µ)

+ n−6
∑

i1 6=i2,j1,j2,l1,l2

Y T
j1

Yi1Y
T
j2

Yi1Y
T
l1

Yi2Y
T
l2

Yi2(Xi1 − µ)T (Xi2 − µ)

=: Fn1 + Fn2 (3.41)

and

Fn1 = n−6

n∑
i=1

(Xi − µ)T (Xi − µ)(Y T
i Yi)

4

+ n−6
∑

i6=j

(Xi − µ)T (Xi − µ)}{(Y T
j Yi)

4 + 6(Y T
i Yi)

2(Y T
j Yi)

2

+ 4(Y T
i Yi)(Y

T
j Yi)

3 + 4(Y T
i Yi)

3(Y T
j Yi)}

+ 6n−3
∑

i 6=j 6=l

(Y T
j Yi)

2(Y T
l Yi)

2(Xi − µ)T (Xi − µ). (3.42)

As there are more terms in Fn2, we classify them by the number of distinct subscripts

involved. In particular we assign Fn2j, j = 2, 3, 4, to be terms of Fn2 which have j

distinct subscripts. Then,

Fn22 = n−6

n∑

i 6=j

(Xi − µ)T (Xj − µ){2(Y T
j Yi)

4 + 4Y T
i YiY

T
i Yj(Y

T
j Yj)

2 + (Y T
i Yi)

2(Y T
j Yj)

2

+(Y T
i Yi)(Y

T
j Yi)

2Y T
j Yj},

Fn23 = n−6
∑

i1 6=i2 6=j

(Xi1 − µ)T (Xi2 − µ){(Y T
j Yi1)

2(Y T
j Yi2)

2 + 4(Y T
i1

Yi1)(Y
T
i2

Yi2)
2Y T

j Yi1Y
T
j Yi2

+8(Y T
i2

Yi1)
2(Y T

j Yi1)
2Y T

j Yi2Y
T
j Yi2}

and

Fn24 = n−6
∑

i1 6=i2 6=j 6=l

(Xi1 − µ)T (Xi2 − µ){2(Y T
j Yi1)

2(Y T
l Yi2)

2

+4(Y T
i1

Yi1)(Y
T
l Yi1)(Y

T
j Yi2)(Y

T
l Yi2)}.
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Here we only derive E(Fn24) as it has the largest number of terms {n(n− 1)(n−
2)(n − 3)} in the summation. Working out the expectation for the other terms is

similar, and it can be shown that the order of magnitude of these expectations is at

most O{γpp
2/n2}.

Recall that ΓT Γ = (νls)1≤l,s≤m and (Xi1 − µ)T (Xi2 − µ) =
∑

t1,t2
Zi1t1Zi2t2νt1t2 .

Hence for four mutually different i1, i2, j and l,

E{(Xi1 − µ)T (Xi2 − µ)(Y T
j Yi1)

2(Y T
l Yi2)

2}

=
m∑

k1,··· ,k4,s1,···s4,t1,t2

E(Zjk1Zjk3Zi1k2Zi1k4Zls1Zls3Zi2s2Zi2s4Zi1t1Zi2t2)ν̃k1k2 ν̃k3k4 ν̃s1s2 ν̃s3s4νt1t2

=
m∑

k1,k2,s1,s2

E(Zjk1Zjk1Zi1k2Zi1k2Zls1Zls1Zi2s2Zi2s2Zi1k2Zi2s2)ν̃k1k2 ν̃k1k2 ν̃s1s2 ν̃s1s2νk2s2

= m2
3

m∑

k1,k2,s1,s2

ν̃2
k1k2

ν̃2
s1s2

νk2s2 .

We note here in the first equation above, k1 and k3, s1 and s3, k2, k4 and t1, and s2, s4

and t2 must be the same respectively to avoid zero means. As |νk2s2| ≤ γp(Γ
T Γ) = γp,

|E{(Xi1 − µ)T (Xi2 − µ)(Y T
j Yi1)

2(Y T
l Yi2)

2}| ≤ m2
3γp(

∑

k1,k2

kν̃2
k1k2

)2 = m2
3γpp

2. (3.43)

The mean of the second term in Fn24 is

E{(Xi1 − µ)T (Xi2 − µ)(Y T
i1

Yi1)(Y
T
l Yi1)(Y

T
j Yi2)(Y

T
l Yi2)}

=
m∑

k1,··· ,k4,s1,···s4,t1,t2

E(Zjk1Zjk3Zi1k2Zi1s2Zls1Zls3Zi2k4Zi2s4Zi1t1Zi2t2)ν̃k1k2 ν̃k3k4 ν̃s1s2 ν̃s3s4νt1t2

= m2
3

∑
t,s,t1,t2

ν̃tt1 ν̃st1 ν̃tt2 ν̃st2νt1t2 = m2
3

∑
t1,t2

(ν̃
(2)
t1t2)

2νt1t2 .

Hence |E{(Xi1−µ)T (Xi2−µ)(Y T
i1

Yi1)(Y
T
l Yi1)(Y

T
j Yi2)(Y

T
l Yi2)}| ≤ γptr{(Γ̃T Γ̃)2} = γpp.

Thus, E(Fn24) = O(γpp
2/n2) and E(||βn2||2) = O(γpp

2/n2), which lead to the lemma.
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Lemma 3.10 Under the conditions of Theorem 3.3,

nȲ T DnȲ = Op(p/
√

n) and nȲ T D2
nȲ = O(p2/n).

Proof:

Write An = Ȳ T DnȲ . Recall that Σ̃ = ΓT Σ−1Γ = (ν̃lk). As Σ̃ is idempotent and

tr(Σ̃) = p, we are to use the following facts repeatedly throughout our derivations:

m∑
s=1

ν̃3
ss ≤ γp(Σ̃)2tr(Σ̃) = p,

m∑

s,l

ν̃2
slν̃ll ≤ γp(Σ̃)tr(Σ̃2) = p and

|
∑

s,l

ν̃ssν̃lsν̃ll| ≤
∑

s,l

ν̃ssν̃ll = p2. (3.44)

Since

An = Z̄Σ̃n−1
∑

ZiZ
T
i Σ̃Z̄ − Z̄Σ̃Z̄

= n−3

m∑

s,l,l1,l2

n∑
i1,i2,,i3

Zi1sZi2lZi3l1Zi3l2 ν̃sl1 ν̃l2l − n−2

m∑

s,l

n∑
i1,i2

Zi1sZi2lν̃sl,

E(An) = n−3

m∑

s,l,l1,l2

{nE(ZisZilZil1Zil2)ν̃sl1 ν̃l2l + n(n− 1)δslδl1l2} − n−1

m∑
s

ν̃ss

= n−2{m4

m∑
s

ν̃2
ss +

∑

s6=l

(
2ν̃2

sl + ν̃ssν̃ll

)} − n−2p

= n−2{(m4 − 3)
∑

s

ν̃2
ss + p + p2} = O(p2/n2) (3.45)

as
∑

s ν̃2
ss ≤ γp(Σ̃)tr(Σ̃) = p.

As Dn is not necessarily non-negative definite, we have to derive E(A2
n), which can
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be expressed as

E(A2
n) = n−6E

(
m∑

q,l,s,t

n∑
i1,i2,,i3

Zi1qZi2lZi3sZi3tν̃qsν̃tl

)2

− 2n−5

m∑

k1,l1,l2,l3,k2,q

n∑
i1,i2,,i3,j1,j2

E (Zi1k1Zi2l1Zi3l2Zi3l3Zj1k2Zj2q) ν̃k1l2 ν̃l3l1 ν̃k2q

+ n−4

m∑

k1,k2,l1,l2

n∑
i1,i2,i3,i4

E(Zi1k1Zi2l1Zi3k2Zi4l2)ν̃k1l1 ν̃k2l2

=: I1 − 2I2 + I3. (3.46)

Now

I3 = n−4

m∑

k1,k2,l1,l2

ν̃k1l1 ν̃k2l2{
n∑
i

E(Zik1Zil1Zik2Zil2) +
∑

i1 6=i2

(δk1l1δk2l2 + δk1l2δk2l1 + δk1k2δl1l2)}

= n−3{m4

m∑
s=1

ν̃2
ss +

∑

s6=l

(2ν̃2
sl + ν̃ssν̃ll)}+ n−2(1− n−1)

m∑

s,l

(
ν̃ssν̃ll + 2ν̃2

sl

)

= n−3(m3 − 3)
m∑

s=1

ν̃2
ss + n−2(1− n−1)(p2 + p) (3.47)

and

I2 = n−5

m∑

k1,l1,l2,l3,k2,q

ν̃k1l2 ν̃l3l1 ν̃k2q{
n∑

i=1

E (Zik1Zil1Zil2Zil3Zik2Ziq)

+
n∑

i6=j

E(Zik1Zil1Zil2)E(Zjl3Zjk2Zjq)[4; q; k1, l1, l2]

+
∑

i1 6=i2 6=i3

δl2l3(δk1l1δk2q + δk1k2δl1q + δk1qδk2l1)}

= n−4{m6

m∑
s=1

ν̃3
ss + m4

m∑

s6=l

(
12ν̃2

slν̃ll + 3ν̃ssν̃
2
ll

)

+m2
3

∑

s 6=l

(6ν̃ssν̃lsν̃ll + 4ν̃3
sl) +

∑

s 6=l 6=q

(24ν̃2
slν̃qq + 6ν̃slν̃lqν̃sq)}

+2n−3(1− n−1)
∑

s 6=l

(ν̃3
sl + ν̃ssν̃lsν̃ll)

+n−2(1− n−1)(1− n−2)
∑

s,l,q

(ν̃2
slν̃qq + 2ν̃slν̃lqν̃sq)
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where [4; q; k1, l1, l2] denotes 4 rotations of having q, k1, l1 and l2 taking the current

position of q. Using (3.44), we note that the terms starting with n−4 and n−3 in both

I3 and I2 contribute only to the order of O(p2/n−3) or smaller. Hence, it can be readily

shown that

I3 = n−2(p2 + 2p) + O(n−3p2) and I2 = n−2(p2 + 2p) + O(n−3p2). (3.48)

It remains to derive I1. Note that

I1 =
∑

k1,k2,l1,l2,s1,s2,t1,t2

ν̃k1s1 ν̃t1l1 ν̃k2s2 ν̃t2l2

[
n−5E(Zik1Zik2Zil1Zil2Zis1Zis2Zit1Zit2)

+n−6
∑

i6=j

E(Zik1Zil1Zis1Zit1)E(Zjk2Zjl2Zjs2Zjt2)[6; k1, l1; k2, l2]

+n−6
∑

i1 6=i3 6=i6

δk1,k2E(Zi3l1Zi3s1Zi3t1)E(Zi6l2Zi6s2Zi6t2)[12; l1; l2; k1, k2]

+n−6
∑

i1 6=i3 6=i6

{δs1t1δs2t2E(Zi1k1Zi1l1Zi1k2Zi1l2)

+E(Zi3s1Zi3t1Zi3s2Zi3t2)(δk1l1δk2l2 + δk1l2δk2l1 + δk1k2δl1l2)}

+n−6
∑

i1 6=i2 6=i3 6=i6

δs1t1δs2t2(δk1l1δk2l2 + δk1l2δk2l1 + δk1k2δl1l2)

]
.

All the terms except the last term in the above equation are O(n−3p2) and by working

out the last term, we have

I1 = n−2(p2 + 2p) + O(n−3p2). (3.49)

Combine (3.46), (3.49) and (3.48),

E(Ȳ T DnȲ )2 = O(n−3p2) (3.50)

which establishes the first part of the lemma.

On the second part of the lemma, let Bn = Z̄Σ̃n−1
∑n

i=1 ZiZ
T
i Σ̃n−1

∑n
i=1 ZiZ

T
i Σ̃,

then

Ȳ T D2
nȲ = Bn − 2An − Ȳ T Ȳ
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where An = Ȳ T DnȲ . From (3.45),

E(−2An − Ȳ T Ȳ ) = −2n−2{(m4 − 3)
∑

s

ν̃2
ss + p + p2} − n−1p. (3.51)

It remains to derive E(Bn). As

Bn = n−4
∑

k1,l1,l2,s1,s2,t

∑
i1,i2,i3,i4

ν̃k1l1 ν̃s1l2 ν̃s2tZi1k1Zi2l1Zi2s1Zi3s2Zi3l2Zi4t,

by carrying out derivations similar to, but slightly less involved than, those of E(A2
n),

it can be shown that

E(Bn) = n−1p + O(n−2p2).

This together with (3.51) means that

E(Ȳ T D2
nȲ ) = O(p2/n2)

which leads to the second conclusion of the lemma.

Proof of Theorem 3.3.

The key in our proof here is to update the rates given in (3.28) and (3.29) when we

have more moments for Zil under our disposal.

We first update (3.25) by noting that

||βn1|| ≤ max
1≤i≤n

||Xi − µ||n−1

n∑
i=1

λT (Xi − µ)(Xi − µ)T λ = max
1≤i≤n

||Xi − µ||||λ||2Op(γp)

= op(γ
4k+1
4k

p {tr(Σ)}−6k−1
4k n−

4k−1
4k ) + Op(tr

3/2(Σ)n−1γp). (3.52)

Let λ0 = Σ−1(X̄ − µ), η1 = (S−1
n − Σ−1)(X̄ − µ) and η2 = S−1

n βn. Then we can

write (3.26) as

λ = Σ−1(X̄ − µ) + (S−1
n − Σ−1)(X̄ − µ) + S−1

n βn

=: λ0 + η1 + η2. (3.53)
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The order of ||λ0|| is of
√

tr(Σ−1)/n which can be smaller than
√

tr(Σ)/n, the

existing order for ||λ|| given in Theorem 3.1. From Lemmas 3.7 and 3.10, and (??)

||η1||2 = (X̄ − µ)T (S−1
n − Σ−1)2(X̄ − µ) = Ȳ T (V −1

n − Ip)Σ
−1(V −1

n − Ip)Ȳ

≤ γ−1
1 Ȳ T (V −1

n − Ip)
2Ȳ = γ−1

1 γ−1
1 Ȳ T{−Dn + D2

n + D2
n(V −1

n − Ip)}2Ȳ

= Op(Ȳ
T DnȲ ) = Op(p

2/n2). (3.54)

Hence ||η1|| = o(||λ0||) as p = o[{ntr(Σ−1)}1/2] is trivially true. Also ||η2||2 ≤
||βn||2γ−2

1 (Sn). Hence from (3.52) and Lemma 3.4, ||ηn2|| = op(||λ0||) if

{tr(Σ)}6k−1
2k tr−1(Σ−1) = Op(γ

−4k+1
2k

p n
2k−1
2k )

which is implied by the assumption p3γ5
p = o{tr(Σ−1)n1− 1

4k }.
With (3.53), the log EL ratio

wn(µ) = 2nλT (X̄ − µ)− nλT Snλ + 2
3
Rn{1 + op(1)}

= n(X̄ − µ)T Σ−1(X̄ − µ) + n(X̄ − µ)T (Σ−1SnΣ−1 − Σ−1)(X̄ − µ)

+ n(X̄ − µ)T (S−1
n − Σ−1)Sn(S−1

n − Σ−1)(X̄ − µ)

+ nβT
n (S−1

n − Σ−1)(X̄ − µ) + βT
n S−1

n βn + 2
3
Rn{1 + op(1)} (3.55)

where Rn =
∑n

i=1{λT (Xi − µ)}3.

From Lemma 3.10,

n(X̄ − µ)T (Σ−1SnΣ−1 − Σ−1)(X̄ − µ) = nȲ T DnȲ = Op(p/
√

n) = op(1).

Since V −1
n − Ip = −Dn + D2

n + D2
n(V −1

n − Ip),

n(X̄ − µ)T (S−1
n − Σ−1)Sn(S−1

n − Σ−1)(X̄ − µ)

= nȲ T (V −1
n − Ip)Vn(V −1

n − Ip)Ȳ = nȲ T{D2
n −D3

n −D3
n(V −1

n − Ip)}Ȳ .
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As |nȲ T D3
n(V −1

n −Ip)Ȳ | ≤ |γp(V
−1
n −Ip)|nȲ T D3

nȲ and γp(V
−1
n −Ip) = op(1) as implied

from Lemma 3.4, we have from (3.23) and Lemma 3.10 that

n(X̄ − µ)T (S−1
n − Σ−1)Sn(S−1

n − Σ−1)(X̄ − µ) = Op(p/
√

n) = op(1).

From (3.53), we can use λ0 to replace λ in βn1 and Rn, which results in

βn = βn2{1 + op(1)} and ξn = n−1

n∑
i=1

W 4
i = ξn1{1 + op(1)}

where βn2 and ξn1 are defined in (3.30). From Lemma 3.9

|nβnS−1
n βn| ≤ n||βn||2γp(S

−1
n ) = n||βn2||2/γ1{1 + op(1)}

= Op(γpp
2n−1) = op(

√
p)

as pγp = o(
√

n). From Lemma 3.8 and the assumption p3γ5
p = o{tr(Σ−1)n1− 1

4k }

Rn ≤
n∑

i=1

|Wi|3{1 + op(1)} ≤
√

nλT Snλ

{
n∑

i=1

||λ||4||Xi − µ||4
}1/2

= Op(
√

tr(Σ)γp)Op{
√

tr2(Σ)n−2np2/n2}

= Op{tr3/2(Σ)γ1/2
p pn−3/2} = op(

√
p).

At last, from (3.54) and Lemma 3.4,

|nβT
n (S−1

n − Σ−1)(X̄ − µ)| ≤ n||βn||||ηn1|| = Op(
√

γpp
2/n) = op(

√
p).

Repeating the last part of the proof of Theorem 3.2, the proof Theorem 3.3 is com-

pleted.
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Table 3.1 Empirical likelihood tests for Dow Jones data

Sector Dimension Test Statistic P-values

Basic Material 4 3.69 0.0001
Consumer Goods 4 2.11 0.02
Finance 5 -.54 0.69
Health Care 3 0.75 0.23
Industrial Goods 3 1.01 0.16
Services 4 1.74 0.04
Technology 7 1.35 0.09
Overall 30 1.56 0.056
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CHAPTER 4. Hypothesis Testing For High-Dimensional

Distributions

4.1 Introduction

Let us consider two random samples Xi1, Xi2, · · · , Xini
∈ Rp for i = 1 and 2,

with multivariate continuous distributions F1 and F2. The distinctions between two

distributions are not limited to inequality of their mean vectors. We therefore consider

in this chapter a test for equality of distributions and that is, the hypothesis of interest

is

H0 : F1 = F2 vs. H1 : F1 6= F2.

For the univariate case, traditionally, people would use rank tests, Kolmogrorov-

Smirnov and Cramér-von Mises tests and many others. See Darling (1957) for detailed

discussions of “goodness of fit” tests and two-sample tests based on the empirical dis-

tribution functions. For multivariate Kolmogrorov-Smirnov tests, see Peacock (1983)

and Fasano and Franceschini (1987). Friedman and Rafsky (1979) presented multivari-

ate generalizations of the Wald-Wolfowitz runs statistic and the Smirnov maximum

deviation statistic for the two-sample problems. Bickel (1969) considered a multi-

variate Smirnov test which is consistent against all alternatives given the conditional

convergence of the empirical distribution functions. Ahmad (1996) provided some

results on modification of two-sample univariate and multivariate Cramér-von Mises
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test. All of these existing methods have been effective in testing for equal distributions

for fixed dimensional data. However, the generalization to the case where p →∞ has

not been explored.

For arbitrarily high-dimensional data, Baringhaus and Franz (2004) proposed a

test statistic (BF test) based on between and within groups’ pair-wise Euclidean dis-

tances. As the BF test converges in distribution to a Brownian bridge which depends

on an unknown distribution, the authors suggested to use the bootstrap method to

get critical values. Alba Fernández et al. (2008) constructed a similar test statistic

as shown in (1.3), using an empirical characteristic function. Hall and Tajvidi (2002)

proposed a permutation test (HT test). Its critical values are determined conditional

on the pairwise distances between pooled data. There is an issue of computational

burden in the HT test due to the distance ranking strategy. Motivated by the appli-

cation of identifying differentially expressed gene-sets, a Multiresponse Permutation

Procedure (MRPP) test was investigated in Nettleton et al. (2008). The authors also

addressed the problem of controlling false discovery rate for multiple gene-sets testing.

In this chapter we propose a test the equality of two distributions in high-dimensional

settings. In conjunction with the two-sample test for means we pursue the asymptotic

distribution for the proposed distribution test. This chapter is organized as follows. In

Section 4.2, we present the distribution test for high-dimensional data and explore its

asymptotic distribution via two-sample U-statistic theory and the martingale central

limit theorem. Section 4.3 contains simulation results. Technical proofs are provided

in Section 4.4.
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4.2 Main Results

The statistic Tn1,n2 which is a distance measure between two continuous cumulative

distribution functions (cdfs) F1 and F2, is

Tn1,n2 =

∫ {
1

n1(n1 − 1)

n1∑

i1 6=i2

I(X1i1 ≤ x)I(X1i2 ≤ x)

− 2

n1n2

n1∑
i=1

I(X1i ≤ x)

n2∑
j=1

I(X2j ≤ x)

+
1

n2(n2 − 1)

n2∑

j1 6=j2

I(X2j1 ≤ x)I(X2j2 ≤ x)

}
w(x)dx,

where w(x) is a known density (weight) function on Rp, I(·) is the indicator function

and Xij ≤ x if and only if Xijl ≤ xl, for l = 1, · · · , p. For simplicity of notation, let

us define

“

∫
” =

∫

x1

∫

x2

· · ·
∫

xp

and “dx” = dxp · · · dx1.

It is shown in Section 4.4 that E(Tn1,n2) =
∫ {

F1(x)−F2(x)
}2

w(x)dx. Precisely, this

formula explains that Tn1,n2 is a weighted average of distance measure between two

cdfs F1 and F2.

4.2.1 Limiting distribution of Tn1,n2 under the null H0

The idea is to consider Tn1,n2 or part of Tn1,n2 as a sum of martingale differences.

The adventure of exploring the limiting distribution of Tn1,n2 is enlivened by the possi-

bility of applying the martingale central limit theorem. Let us begin with partitioning
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Tn1,n2 into T
(1)
n1,n2 and T

(2)
n1,n2 .

T (1)
n1,n2

=

∫ [
1

n1(n1 − 1)

n1∑

i1 6=i2

{
I(X1i1 ≤ x)− F1(x)

}{
I(X1i2 ≤ x)− F1(x)

}

− 2

n1n2

n1∑
i=1

{
I(X1i ≤ x)− F1(x)

} n2∑
j=1

{
I(X2j ≤ x)− F2(x)

}

+
1

n2(n2 − 1)

n2∑

j1 6=j2

{
I(X2j1 ≤ x)− F2(x)

}{
I(X2j2 ≤ x)− F2(x)

}]
w(x)dx,

T (2)
n1,n2

=

∫ [{
2F1(x)− 2F2(x)

}{
F̂1(x)− F̂2(x)

}
−

{
F1(x)− F2(x)

}2]
w(x)dx.

where F̂i(x) is the empirical cumulative distribution function for the ith sample and

F̂i(x) =
∑ni

j=1 I(Xij ≤ x)/ni. Under H0 : F1 = F2, let F be the common cdf. It is

easy to check that T
(2)
n1,n2 = 0 a.e., E(T

(1)
n1,n2) = 0 and

V ar(T (1)
n1,n2

) =

∫ {
4

n1n2

+
2

n1(n1 − 1)
+

2

n2(n2 − 1)

}{
F (x ∧ y)− F (x)F (y)

}2

w(x)w(y)dxdy

=: σ2
1.

Here (x ∧ y) = (min{x1, y1}, · · · , min{xp, yp})T ∈ Rp, for x = (x1, · · · , xp)
T and

y = (y1, · · · , yp)
T . Some notations are to be introduced before we continue to present

the lemmas. Let n = n1 + n2, Yi = X1i for i = 1, · · · , n1 and Yj+n1 = X2j for

j = 1, · · · , n2,

φij(x) = λij{I(Yi < x)− F (x)}{I(Yj < x)− F (x)}, where

λij =





1
n1(n1−1)

if i 6= j ∈ {1, 2, · · · , n1},
− 1

n1n2
if i ∈ {1, 2, · · · , n1} and j ∈ {n1 + 1, · · · , n1 + n2},

1
n2(n2−1)

if i 6= j ∈ {n1 + 1, · · · , n1 + n2}.
Define Vnj(x) =

∑j−1
i=1

∫
φij(x)w(x)dx for j = 2, 3, · · · , n, Snm(x) =

∑m
j=2 Vnj(x)

for 2 ≤ m ≤ n and Fnm = σ{Y1, Y2, · · · , Ym} which is the σ-algebra generated by
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{Y1, · · · , Ym}. We can therefore rewrite T
(1)
n1,n2 as

T (1)
n1,n2

= 2

n1+n2∑
j=2

Vnj(x).

Lemma 4.1 For each n, {Snm,Fnm} is a sequence of zero mean, square integrable

martingale.

Lemma 4.1 can be proved by following the similar proof of Lemma 2.1.

The asymptotic normality of T
(1)
n1,n2 is to be established via the martingale central

limit theorem under three assumptions:

(A1) limmin{n1,n2}→∞ n/nk = ρ2
k ∈ (1, +∞) for k = 1 and 2.

(A2) Φ2/n
5 = o(σ4

1), where

Φ2 =

∫
E

[
{I(Yi < x)− F (x)}{I(Yi < y)− F (y)}{I(Yi < u)− F (u)}

×{I(Yi < v)− F (v)}
]
{F (x ∧ y)− F (x)F (y)}{F (u ∧ v)− F (u)F (v)}

w(x)w(y)w(u)w(v)dxdydudv.

(A3) Φ3/n
6 = o(σ4

1), where

Φ3 =

∫
E2

[
{I(Yi < x)− F (x)}{I(Yi < y)− F (y)}{I(Yi < u)− F (u)}

×{I(Yi < v)− F (v)}
]
w(x)w(y)w(u)w(v)dxdydudv.

Lemma 4.2 Under (A1) and (A2), then

Σn1+n2
j=2 E[V 2

nj|Fn,j−1]

σ2
1

P−→ 1

4
, when p →∞ as min{n1, n2} → ∞.

Lemma 4.3 Under (A1), (A2) and (A3), then

n1+n2∑
j=2

σ−2
1 E{V 2

njI(|Vnj| > εσ1)|Fnj−1} p−→ 0, when p →∞ as min{n1, n2} → ∞.



98

The proofs of Lemmas 4.2 and 4.3 are available in Section 4.4. The Lemmas 4.1,

4.2 and 4.3 verify the sufficient conditions required by the martingale central limit

theorem. The assumption (A1) ensures that sample size n1 and n2 increase to +∞
proportionally. Both (A2) and (A3) are apparently satisfied if p is fixed. When

p → +∞, (A2) and (A3) address the relationships between p and n, presented via an

integral consisting of F and w. To elaborate on these assumptions, consider the the

case where F consists of independent marginals and w is its corresponding probability

density function (pdf). For simplicity of notation, denote w(x)w(y)w(u)w(v)dxdydudv

as w(·)d·. Then

Φ2/n
5

σ4
1

≤ η(n)

∫ {
F (x ∧ y)− F (x)F (y)

}2{
F (u ∧ v)− F (u)F (v)

}
w(·)d·

∫ {
F (x ∧ y)− F (x)F (y)

}2{
F (u ∧ v)− F (u)F (v)

}2

w(·)d·

= η(n)

∫ {
F (u ∧ v)− F (u)F (v)

}
w(u)w(v)dudv

∫ {
F (u ∧ v)− F (u)F (v)

}2

w(u)w(v)dudv

= η(n)
(1/3p − 1/4p)

1/6p + 1/9p − 2(2/15)p
=: η(n)Rp. (4.1)

where

η(n) =
1/n5

{
4

n1n2
+ 2

n1(n1−1)
+ 2

n2(n2−1)

}2 = O(1/n).

We notice that

∫
F (u ∧ v)w(u)w(v)dudv =

{ ∫ ∫
Fi(ui ∧ vi)wi(ui)wi(vi)duidvi

}p

=
{

2

∫ 1

Fi(ui)=0

∫ Fi(ui)

Fi(vi)=0

Fi(vi)dFi(ui)dFi(vi)
}p

= (1/3)p
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and
∫

F (u)F (v)w(u)w(v)dudv =
{ ∫ ∫

Fi(ui)Fi(vi)wi(ui)wi(vi)duidvi

}p

=
{ ∫ 1

Fi(ui)=0

Fi(ui)dFi(ui)
}2p

= (1/4)p.

We therefore have (1/3p − 1/4p) as the numerator in (4.1) and the denominator can

be derived by following the same procedure. The arguments for (A3) are similar.

Note that R10 ≈ 1204 and Rp is monotonically increasing in p. Namely, (A2) ensures

that n grows much faster than p. Notably, one important issue is how stringent the

relationship between p and n should be in order to validate the asymptotic normality.

The analytical solution to this problem is closely related to the F and w functions.

Theorem 4.1 Under H0 along with (A1), (A2) and (A3),

Tn1,n2√
σ2

1

d−→ N(0, 1), when p →∞ as min{n1, n2} → ∞.

Proof: Under (A1) , (A2) and (A3), by combining Lemmas 4.1, 4.2 and 4.3 and

applying the martingale central limit theorem in Chapter 1, we finish the proof.

In order to carry out the test, a ratio consistent estimator for σ2
1 needs to be con-

structed. In practice, we suggest using a bootstrap method. The bootstrap estimator

σ̂2
1 is described as follows.

Given an integer B and the statistic Tn1,n2 , compute versions T 1∗
n1,n2

, T 2∗
n1,n2

· · · ,
TB∗

n1,n2
of Tn1,n2 by randomly resampling n1 observations, with replacement, from

{X1i}n1
i=1 and assigning them to sample 1, and randomly resampling another n2 obser-

vations with replacement, from {X1i}n1
i=1 and assigning them to sample 2; repeat this

procedure independently for each calculation of T ∗
n1,n2

. One bootstrap estimator for

σ2
1 is

σ̂
2(1)
1 = V ar(T ∗

n1,n2
).
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By repeating the above procedure for {X2j}n2
j=1, we get the second bootstrap estimator

σ̂
2(2)
1 . Later, in the simulation studies, we employ both variance estimators along with

a pooled bootstrap estimator σ̂2
1.

σ̂2
1 =

n1σ̂
2(1)
1 + n2σ̂

2(2)
1

n1 + n2

.

The simulation results show that using the pooled variance estimator always lowers

the empirical power.

Remark: From the definition of Tn1,n2 , it is expected that w function will affect

the power of the test. More precisely, the power will be significantly increased if w

puts heavier weights at regions where F1 and F2 are further apart than at regions

where they overlap and vice versa.

We establish the asymptotic normality to Tn1,n2 under H1 by applying two-sample

U-statistic theory. Some basic definitions and theorems of two-sample U-statistics are

presented next.

4.2.2 Two-sample U-statistic

Let Xi1, Xi2, · · · , Xini
∈ Rp be independent observations on a distribution Fi for

i = 1, 2. Consider a parameter θ = θ(F1, F2) for which there is an unbiased estimator

and θ(F1, F2) can be written as

θ(F1, F2) = Eh(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

)

for some symmetric function h, such that h is invariant to any permutation of its

arguments within each sample.
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Definition 4.1 A two-sample U-statistic with m1 and m2 arguments for the first and

second sample is

Un1,n2 =

[(
n1

m1

)(
n2

m2

)]−1 2∑

l=1

∑

(i1,i2,··· ,iml
)∈C

nl
ml

h(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

)

(4.2)

where h is a symmetric kernel with respect to arguments within each sample and its

degrees are (m1,m2). The sum
∑

(i1,i2,··· ,iml
)∈C

nl
ml

is taken over all subsets 1 ≤ i1 <

i2 · · · < iml ≤ nl of {1, · · · , nl}.

Definition 4.1 reveals that a two-sample U-statistic is a sum of identically distributed

random variables and the summands are not independent except in the case where

m1 = m2 = 1. Thus, the classic central limit theorem is not applicable if mi ≥ 2 for

i = 1 or 2.

The following theorem (Lee, 1990) provides a variance decomposition for two-

sample U-statistics.

Theorem 4.2 Let Un1,n2 be a two-sample U-statistic based on a kennel function h of

degrees (m1, m2). Then

V ar(Un1,n2) =

m1∑
c=0

m2∑

d=0

(
m1

c

)(
m2

d

)(
n1−m1

m1−c

)(
n2−m2

m2−d

)
(

n1

m1

)(
n2

m2

) ξ2
c,d, (4.3)

where ξ2
c,d = V ar

{
hc,d(X1i1 , · · · , X1ic ; X2j1 , · · · , X2jd

)
}

and

hc,d(x11, · · · , x1c; x21, · · · , x2d) = E
{

h(x11, · · · , x1c, X1c+1, · · · , X1m1 ;

x21, · · · , x2d, X2d+1, · · · , X2m2)|X11 = x11, · · · , X1c = x1c; X21 = x21, · · · , X2d = x2d

}
.

Theorem 4.2 holds for both fixed and growing dimensions. In the case when p is fixed,

it is expected that V ar(Un1,n2) is dominated by both summands for c = 1, d = 0 and

c = 0, d = 1.
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Whereas the classic central limit theorem does not apply to Un1,n2 when mi ≥ 2

for i = 1 or 2, it does apply to the first order projection of Un1,n2 . Further, its first

order projection and the U-statistic itself share the same limiting distribution if the

difference between them is negligible.

Definition 4.2 The first order projection of the two-sample U-statistic is defined as

Ûn1,n2 =
2∑

i=1

ni∑
j=1

E(Un1,n2|Xij)− (n1 + n2 − 1)θ, (4.4)

where E(Un1,n2|Xij) is the conditional expectation of Un1,n2 given Xij.

Thus Ûn1,n2 can be written as a sum of independent random variables h̃
(i)
1 (Xij), that

is

Ûn1,n2 − θ =
2∑

i=1

ni∑
j=1

h̃
(i)
1 (Xij),

where

h̃
(i)
1 (xi1) = E

{
h(X11, · · · , X1m1 ; X21, · · · , X2m2)|Xi1 = xi1

}
− θ.

Notably, the difference Un1,n2 − Ûn1,n2 itself is also a two-sample U-statistic with

zero mean and can be expressed as

Un1,n2−Ûn1,n2 =

[(
n1

m1

)(
n2

m2

)]−1 2∑

l=1

∑

(i1,i2,··· ,iml
)∈C

nl
ml

φ(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

)

(4.5)

where

φ(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

) = h(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

)

−
2∑

i=1

ni∑
j=1

h̃
(i)
1 (Xij)− θ.
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4.2.3 Limiting distribution of Tn1,n2 under the alternative H1

Based on Definition 4.1, it can be argued that Tn1,n2 is indeed a two-sample U-

statistic with m1 = m2 = 2 and the kernel function

h(X1i1 , X1i2 ; X2j1 , X2j2) =

∫ [
I(X1i1 ≤ x)I(X1i2 ≤ x) + I(X2j1 ≤ x)I(X2j2 ≤ x)

− 1

2
I(X1i1 ≤ x)I(X2j1 ≤ x)− 1

2
I(X1i1 ≤ x)I(X2j2 ≤ x)

− 1

2
I(X1i2 ≤ x)I(X2j1 ≤ x)− 1

2
I(X1i2 ≤ x)I(X2j2 ≤ x)

]

w(x)dx.

We now note that h(X1i1 , X1i2 ; X2j1 , X2j2) is symmetric within each sample. In par-

ticular, h(X1i1 , X1i2 ; X2j1 , X2j2), h(X1i2 , X1i1 ; X2j1 , X2j2), h(X1i1 , X1i2 ; X2j2 , X2j1) and

h(X1i2 , X1i1 ; X2j2 , X2j1) are all equal. Let θ =
∫ {

F1(x) − F2(x)
}2

w(x)dx, then it is

shown in Section 4.4 that Tn1,n2 is an unbiased estimator for θ.

From (4.4), the projection of Tn1,n2 can be expressed as

T̂n1,n2 − θ =
2

n1

n1∑
i=1

h̃
(1)
1 (X1i) +

2

n2

n2∑
j=1

h̃
(2)
1 (X2j),

where

h̃
(1)
1 (X1i) =

∫ [
I(X1i ≤ x)F1(x) + F 2

2 (x)− I(X11 ≤ x)F2(x)− F1(x)F2(x)

]
w(x)dx− θ

=

∫ [
{I(X1i ≤ x)− F2(x)}{F1(x)− F2(x)}

]
w(x)dx− θ,

h̃
(2)
1 (X2j) =

∫ [
{F1(x)− I(X2j ≤ x)}{F1(x)− F2(x)}

]
w(x)dx− θ.

We proceed to V ar(h̃
(i)
1 (Xij)), for i = 1 and 2. It is easy to check that

V ar(h̃
(1)
1 (X1i)) =

∫ [
{F1(x)− F2(x)}{F1(y)− F2(y)}{F1(x ∧ y)− F1(x)F1(y)}

]

w(x)w(y)dxdy,

V ar(h̃
(2)
1 (X2j)) =

∫ [
{F1(x)− F2(x)}{F1(y)− F2(y)}{F2(x ∧ y)− F2(x)F2(y)}

]

w(x)w(y)dxdy.
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Under the alternative H1 : F1 6= F2, both V ar{h̃(1)
1 (X11)} and V ar{h̃(2)

1 (X21)} result

positive. Then the following theorem presents the limiting distribution of T̂n1,n2 under

H1.

Theorem 4.3 Let

δ2
1 = 4ρ2

1V ar{h̃(1)
1 (X1i)}+ 4ρ2

2V ar{h̃(2)
1 (X2j)}.

Assume that limn1,n2→∞
n
nk

= ρ2
k < ∞ for k = 1, 2 and

lim
p→∞

V ar(h̃
(1)
1 (X1i))

V ar(h̃
(2)
1 (X2j))

= γ ∈ (0,∞). (4.6)

Then,

√
n(T̂n1,n2 − θ)/δ1

d−→ N(0, 1) when p →∞ as min{n1, n2} → ∞. (4.7)

Proof:

We partition
√

n(T̂n1,n2 − θ) into two independent sums of i.i.d. random variables as

√
n(T̂n1,n2 − θ) = 2

√
n√
n1

√
n1

n1

n1∑
i=1

h̃
(1)
1 (X1i) + 2

√
n√
n2

√
n2

n2

n2∑
j=1

h̃
(2)
1 (X2j)

=: Sn1 + Sn2, say.

By applying the classic central limit theorem,

Snk√
4ρ2

kV ar{h̃(k)
1 (Xki)}

d−→ N(0, 1), for k = 1, 2.

As a result,

√
n(T̂n1,n2 − θ)/δ1 =

Sn1√
4ρ2

1V ar{h̃(1)
1 (X1i)}

√
γ

1 + γ
+

Sn2√
4ρ2

2V ar{h̃(2)
1 (X2i)}

√
1

1 + γ
.

Then (4.6) follows. This finishes the proof.
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We note that when p is fixed, the assumption (4.5) becomes apparently true, when

p → +∞, it requires {F1(x ∧ y) − F1(x)F1(y)} and {F2(x ∧ y) − F2(x)F2(y)} to be

comparable such that V ar{h̃(1)
1 (X1i)} and V ar{h̃(2)

1 (X2j)} are of the same magnitude.

It is expected that Tn1,n2 and T̂n1,n2 share the same limiting distribution if en =:

Tn1,n2 − T̂n1,n2 is negligible. More precisely, based on (4.6) and the Slutsky Theorem

we can conclude that
√

n(Tn1,n2 − θ)/δ1
d−→ N(0, 1)

if
√

nen/δ1 = op(1). For simplicity of notation, let us define

∆i =

∫
2

ni(ni − 1)

{
Fi(x ∧ y)− Fi(x)Fi(y)

}2

w(x)w(y)dxdy, for i = 1, 2.

∆12 =

∫
4

n1n2

{
F1(x ∧ y)− F1(x)F1(y)

}{
F2(x ∧ y)− F2(x)F2(y)

}
w(x)w(y)dxdy.

(A4) Assume for i, j = 1 and 2,
∫ {

Fi(x ∧ y)− Fi(x)Fi(y)
}2

w(x)w(y)dxdy = o
[
nV ar{h(j)

1 (Xj1)}
]
.

(A5) Assume ∆1, ∆2 and ∆12 are of the same order.

Theorem 4.4 Under (A4) and (A5),

√
nen/δ1 = op(1).

The proof of Theorem 4.4 is available in Section 4.4. The assumption (A5) is once

again ensures {F1(x∧ y)−F1(x)F1(y)} and {F2(x∧ y)−F2(x)F2(y)} are comparable

as in (4.5). Moreover, (A4) further restricts the relationship between p and n. We

do not offer analytical solutions to this restriction which is determined by cdfs F1, F2

and w, but leave it as a future research problem.

To obtain the limiting distribution of Tn1,n2 under H1, we combine the Slutsky

Theorem, Theorem 4.3 and 4.4. Thus

√
n(Tn1,n2 − θ)/δ1

d−→ N(0, 1) when p →∞ as min{n1, n2} → ∞.
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Under H0, we find δ2
1 = 0. Applying the classic central limit theorem to the first

order projection T̂n1,n2 is not suitable any more. As in Chapter 2, we attempt, in

Section 4.2.1, to establish the asymptotic normality by using the martingale central

limit theorem.

Remark: One possibility of pursuing the limiting distribution for Tn1,n2 under H0

is to consider Tn1,n2 again as a two-sample U-statistic. We find the following theorem

(Koroljuk and Borovskich, 1989) for univariate case might be possibly extended to

high-dimensional settings. Yet the way of extending it to where p →∞ is outside the

scope of existing two-sample U-statistic theory, it needs further investigation.

Theorem 4.5 If ξ2
1,0 = ξ2

0,1 = 0, ξ2
2,0 6= 0, ξ2

0,2 6= 0 and ξ2
1,1 6= 0. The two-sample

U-statistic Un1,n2 is asymptotically distributed as the sum

n−1
1 z20 + n

−1/2
1 n

−1/2
2 z11 + n−1

2 z02, (4.8)

where z20 =
∑∞

i=1 λi(τ
2
i − 1), z02 =

∑∞
i=1 λi(ζ

2
i − 1) and z11 =

∑∞
i=1 κiτiζi, τi and ζi

are all independent standard normal random variables, and λi and κi are eigenvalues

of h2,0(·, ·)(h0,2(·, ·)) and h1,1(·, ·) respectively.

Theorem 4.5 indicates that n
1/2
1 n

1/2
2 Un1,n2

d−→
√

ρ2
1 − 1z20 + z11 +

√
ρ2

2 − 1z02. When

p → +∞, the orthonormal eigenfunctions and eigenvalues in connection with the

symmetric kernel function h may hinge on p. Upon assuming their existence, the

eigenvalues λi and κi are still hard to find. In practice, we recommend a bootstrap

method to estimate the limiting distribution given in (4.8). We have described two

schemes for establishing asymptotic normality for the test statistic. Our concerns,

after all, emerge in related assumptions made towards the relationship between p and

n, and the orthonormal decomposition for symmetric kernel function h when p → +∞.
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4.3 Numerical Results

We report numerical results from three simulation studies in which we compared

the proposed distribution test with the MRPP test and the two-sample mean test

proposed in Chapter 2. For the MRPP test, we set the number of permutations to be

1,000. Our target p-variate observations {Xij}ni
j=1 were generated from the following

multivariate model,

Xij = ΓiUij + µi, for i = 1, 2, j = 1, 2, · · · , ni (4.9)

where Uij ∈ Rp+1. Every standardized Uijk (with zero mean and unit variance), for

k = 1, · · · , p + 1, was generated independently from a candidate distribution Ci. Two

candidate distributions we considered were N(0, 1) and χ2(6).

To better examine the performance of the proposed test, we considered three types

of alternatives which are listed in Table 4.1 as Case 1, Case 2 and Case 3. Note that

Case 4 leads to the size of the test. We chose the significance level α = .05.

To calculate Tn1,n2/
√

σ2
1, we set w to be the uniform distribution on [−3, 3]p.

The Monte Carlo approximation of Tn1,n2 was calculated based on 10,000 p-variate

data points independently sampled from w and additional 1,000 p-variate data points

{Zi}1000
i=1 where Zi = (Zi1, · · · , Zip)

T . In particular, for the kth dimension, k =

1, 2, · · · , p, let (Z1k < Z2k < · · · < Z1000,k) equally partition the interval [−3, 3].

Three types of alternatives and a null hypothesis were constructed as follows.

For case 1, let µ1 = µ2 = (0, · · · , 0)T ∈ Rp, Γ1 = Γ2 = Γ(.5) where

Γ(ρ) =




1 ρ 0 0 0 0 · · · · · ·
0 1 ρ 0 0 0 0 · · ·
...

...
...

...
...

...
...

...

0 0 · · · · · · 0 0 1 ρ




p×(p+1)
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Table 4.1 Various alternatives and the null

µ1 = µ2 Γ1 = Γ2 C1 = C2

Case 1: true true false
Case 2: false true true
Case 3: true false true
Case 4: true true true

and chose C1 = N(0, 1) and C2 = χ2(6). Therefore, both {X1i}n1
i=1 and {X2j}n2

j=1

generated from the multivariate model (4.9) had p-variate zero mean vectors and

same covariance matrix Σ = (σij)p×p where σii = 1 + .52, σij = .5 if |i − j| = 1 and

σij = 0 if |i− j| > 1. For case 2, let Γ1 = Γ2 = Γ(.5), C1 = C2, µ1 = (0, · · · , 0)T ∈ Rp

and µ2 = (δµ, · · · , δµ)T ∈ Rp where δµ took positive values. The difference between

F1 and F2 was apparently caused by different mean vectors, µ1 and µ2. For case 3,

let µ1 = µ2 = (0, · · · , 0)T ∈ Rp ,C1 = C2, Γ1 = Γ(ρ) and Γ2 = Γ(−ρ). As a result,

the covariance matrix of {X1i}n1
i=1 and the covariance matrix of {X2j}n2

j=1 differed in

their off-diagonal elements. Finally, for case 4, let µ1 = µ2 = (0, · · · , 0)T ∈ Rp,

Γ1 = Γ2 = Γ(.5) and C1 = C2. As a result, we had F1 = F2.

Throughout our simulation studies, we set both n1 and n2 to be equal. Sample

size n1 (or n2) was 25 and 50 and dimension p was 10, 20 and 50. We carried out 500

simulations for each combination of sample size and dimension in Case 1, 2, 3 and 4.

A permutation test using the proposed Tn1,n2

In the first simulation study, a permutation test based on the proposed Tn1,n2 was

undertaken. Consider the pooled sample

{Z1, Z2, · · · , Zn1+n2} = {X11, · · · , X1n1}
⋃
{X21, · · · , X2n2}.
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Under the null hypothesis, Z1, · · · , Zn1+n2 are i.i.d. with common cdf F . Given an

integer M and Tn1,n2 , compute versions T 1∗
n1,n2

, T 2∗
n1,n2

, · · · , TM∗
n1,n2

of Tn1,n2 by randomly

resampling n1 observations without replacement from {Z1, Z2, · · · , Zn1+n2} and as-

signing them to sample 1, and including all the remaining observations into sample 2;

repeat this procedure independently for each calculation of T ∗
n1,n2

. The permutation

p-value is

1

M

M∑
i=1

I
(
T i∗

n1,n2
≥ T (obs)

n1,n2

)

where I(·) is the indicator function and T
(obs)
n1,n2 is the value of Tn1,n2 for original two

samples {X11, · · · , X1n1} and {X21, · · · , X2n2}. We chose M = 1000 in our simulation.

For Case 2, we set δµ = .1 and .05, C1 = C2 = N(0, 1) and χ2(6). For Case 3, we set

C1 = C2 = N(0, 1) and χ2(6), set ρ = .5 and 1. For Case 4, we set C1 = C2 = N(0, 1)

and χ2(6). The empirical sizes of the three tests shown in Table 4.2, are all close

to the significance level α = .05. Table 4.3 provides the empirical power in Case 1

where the two candidate distributions (C1 6= C2) are different. The empirical power

of the distribution test increased as sample size or dimension p increased, and reached

.955 when n1 = n2 = 50, p = 50. However, the power of the two-sample mean and

MRPP tests remained around the significance level. For Case 2, we provided Table

4.4 and Table 4.5 for δµ = .05 and δµ = .1, respectively. From these two tables,

we found that the two-sample mean test outperformed the other two tests and the

empirical power of MRPP and the distribution tests were very close when p = 10 and

20 while the latter fell behind when p = 50. Overall, empirical power increased when

δµ, sample size or dimension became larger. For Case 3 in which F1 and F2 differed

only due to their covariance matrices, Table 4.6 presents the empirical power when

ρ = .5 and Table 4.7 shows results for ρ = 1. The power of the distribution test

and MRPP test both increased when sample size increased, but powers decreased as
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dimension p increased. However, the two-sample mean test was only able to maintain

the significance level. As the simulation results showed that the two-sample mean

test should not be used to detect any differences between F1 and F2 caused by either

different candidate distributions or different covariance matrices. The MRPP test and

the distribution test were able to detect different covariance structures in the case

where dimension p was not too high. When the marginal distributions differed in

their higher (than second) order moments, the distribution test performed the best.

A simulation study based on asymptotic normality

In the previous simulation study, for Case 2, Case 3 and Case 4 three tests per-

formed very similarly for C1 = C2 = N(0, 1) and C1 = C2 = χ2(6). We therefore only

considered N(0, 1) here to implement the distribution test based on its asymptotic

normality by adopting three variance estimators described earlier. When calculating

the bootstrap estimators for σ2
1, we chose B to be 500. For Case 2, set δµ = .1 and for

Case 3, set ρ = 1. The simulation results shown in Table 4.8 are the empirical power

and size for the distribution test. Dist(BTV-S1) represents the distribution test using

the bootstrap variance estimator (BTV) from the first sample (S1). Dist(BTV-S2)

used BTV from the second sample (S2) and Dist (BTV-pooled) used the pooled BTV.

Overall, the empirical powers of distribution tests using the individual bootstrap vari-

ance estimators were consistently better than using the pooled one but the sizes of

the tests were not as well maintained with the individual estimators.

A simulation study based on bootstrapping Tn1,n2 from only one sample

We also conducted a simulation study based on bootstrapping Tn1,n2 from only one

sample. The procedure can be described as follows.
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Consider either of two samples, say the first sample {X11, · · · , X1n1}. Given an

integer M and Tn1,n2 , compute versions T 1∗
n1,n2

, T 2∗
n1,n2

, · · · , TM∗
n1,n2

of Tn1,n2 by randomly

resampling n1 observations with replacement from {X11, · · · , X1n1} and assigning them

to sample 1, and randomly resampling another n2 observations with replacement from

{X11, · · · , X1n1} and assigning them to sample 2; repeat this procedure independently

for each calculation of T ∗
n1,n2

. The permutation p-value based on bootstrapping Tn1,n2

from the first sample is

1

M

M∑
i=1

I
(
T i∗

n1,n2
≥ T (obs)

n1,n2

)
.

By repeating the above procedure for {X21, · · · , X2n2}, we could have another p-

value. Both sets of p-values were provided in Table 4.9. The permutation test based

on Tn1,n2 in the first simulation study can be viewed as bootstrapping Tn1,n2 from

pooled sample without replacement. Comparing with the permutation test and the

distribution tests using bootstrap variance estimators, the distribution test based on

bootstrapping Tn1,n2 from only one sample lost a little power but successfully controlled

the size around the significance level.

In summary, we found that the empirical powers of the distribution tests were

rather close under three testing schemes: permutation based, asymptotic normality

based and bootstrapping Tn1,n2 from only one sample based distribution tests.
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4.4 Technical Proofs

Derivation of V ar(T
(1)
n1,n2):

We are to work out V ar(Tn1) as following.

V ar(T (1)
n1,n2

) = E(T (1)2

n1,n2
)

=

∫
E

[
1

n2
1(n1 − 1)2

n1∑

i1 6=i2

{
I(X1i1 ≤ x)− F (x)

}{
I(X1i2 ≤ x)− F (x)

}
×

n1∑

i3 6=i4

{
I(X1i3 ≤ y)− F (y)

}{
I(X1i4 ≤ y)− F (y)

}

+
4

n2
1n

2
2

n1∑
i=1

{
I(X1i ≤ x)− F (x)

} n2∑
j=1

{
I(X2j ≤ x)− F (x)

}
×

n1∑

l=1

{
I(X1l ≤ y)− F (y)

} n2∑

k=1

{
I(X2k ≤ y)− F (y)

}

+
1

n2
2(n2 − 1)2

n2∑

j1 6=j2

{
I(X2j1 ≤ x)− F (x)

}{
I(X2j2 ≤ x)− F (x)

}
×

n2∑

j3 6=j4

{
I(X2j3 ≤ y)− F (y)

}{
I(X2j4 ≤ y)− F (y)

}]
w(x)w(y)dxdy

=

∫ { 4

n1n2

+
2

n1(n1 − 1)
+

2

n2(n2 − 1)

}{
F (x ∧ y)− F (x)F (y)

}2

w(x)w(y)dxdy.

Proof of Tn1,n2 being an unbiased estimator for θ:

As Tn1,n2 is a two-sample U-statistic and

Tn1,n2 =

[(
n1

m1

)(
n2

m2

)]−1 2∑

l=1

∑

(i1,i2,··· ,iml
)∈C

nl
ml

h(X1i1 , · · · , X1im1
; X2j1 , · · · , X2jm2

),
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where

h(X1i1 , X1i2 ; X2j1 , X2j2) =

∫ [
I(X1i1 ≤ x)I(X1i2 ≤ x) + I(X2j1 ≤ x)I(X2j2 ≤ x)

− 1

2
I(X1i1 ≤ x)I(X2j1 ≤ x)− 1

2
I(X1i1 ≤ x)I(X2j2 ≤ x)

− 1

2
I(X1i2 ≤ x)I(X2j1 ≤ x)− 1

2
I(X1i2 ≤ x)I(X2j2 ≤ x)

]

w(x)dx.

Note that Tn1,n2 is a sum of identically distributed random variables and

[(
n1

m1

)(
n2

m2

)]−1 2∑

l=1

∑

(i1,i2,··· ,iml
)∈C

nl
ml

1 = 1.

Due to the independence assumption,

E
{

h(X1i1 , X1i2 ; X2j1 , X2j2)
}

=

∫ {
F 2

1 (x) + F 2
2 (x)− 4(

1

2
)F1(x)F2(x)

}
w(x)dx

=

∫ {
F1(x)− F2(x)

}2

w(x)dx = θ.

Therefore, E(Tn1,n2) = θ.

Proof of Lemma 4.2:

For simplicity of notation, we denote
∑n1+n2

j=2 E[V 2
nj|Fn,j−1] as Qn. To prove Lemma

4.2, we only need to show E(Qn) = σ2
1{1 + o(1)}/4 and V ar(Qn) = o(σ4

1). We further

partition Qn into Qn1 + Qn2.

Qn =

n1+n2∑
j=2

E[V 2
nj|Fn,j−1]

=

n1+n2∑
j=2

∫ ( j−1∑
i1,i2=1

φi1i2

){F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy

= : Qn1 + Qn2,
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where ñj = n1 if j ∈ {1, · · · , n1}, ñj = n2 if j ∈ {n1 + 1, · · · , n1 + n2} and

Qn1 =

n1+n2∑
j=2

∫ ( j−1∑
i=1

φii

){F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy,

Qn2 =

n1+n2∑
j=2

∫ ( j−1∑

i1 6=i2

φi1,i2

){F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy.

Note that E(Qn2) = 0 and Cov(Qn1, Qn2) = 0, to prove the lemma, we only need to

show E(Qn1) = σ2
1{1 + o(1)}/4, V ar(Qn1) = o(σ4

1) and V ar(Qn2) = o(σ4
1).

E(Qn1) =

n1+n2∑
j=2

∫ ( j−1∑
i=1

φii

){F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy

=
( n1∑

j=2

+

n1+n2∑
j=n1+1

) ∫ ( j−1∑
i=1

φii

){F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy

=

n1∑
j=2

j−1∑
i=1

∫ {F (x ∧ y)− F (x)F (y)}2

n2
1(n1 − 1)2

w(x)w(y)dxdy

+

n1+n2∑
j=n1+1

n1∑
i=1

∫ {F (x ∧ y)− F (x)F (y)}2

n1(n1 − 1)n2(n2 − 1)
w(x)w(y)dxdy

+

n1+n2∑
j=n1+1

j−1∑
i=n1+1

∫ {F (x ∧ y)− F (x)F (y)}2

n2
2(n2 − 1)2

w(x)w(y)dxdy

= σ2
1{1 + o(1)}/4.

We focus on V ar(Qn1) only as V ar(Qn2) = o(σ4
1) can be proved similarly.

E(Q2
n1) = E

[ n1+n2∑
j=2

∫ j−1∑
i=1

{I(Yi < x)− F (x)}{I(Yi < y)− F (y)}
ñi(ñi − 1)

×

{F (x ∧ y)− F (x)F (y)}
ñj(ñj − 1)

w(x)w(y)dxdy

]2

=

n1+n2∑
j1=2

n1+n2∑
j2=2

∫
E

[ j1−1∑
i1=1

j2−1∑
i2=1

{I(Yi1 < x)− F (x)}{I(Yi1 < y)− F (y)}
ñi1(ñi1 − 1)

×

{F (x ∧ y)− F (x)F (y)}
ñj1(ñj1 − 1)

{I(Yi2 < u)− F (u)}{I(Yi2 < v)− F (v)}
ñi2(ñi2 − 1)

×
{F (u ∧ v)− F (u)F (v)}

ñj2(ñj2 − 1)

]
w(·)d· = E2(Qn1){1 + 0(1)}+ Φ2/n

5,
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where

Φ2 =

∫
E

[
{I(Yi < x)− F (x)}{I(Yi < y)− F (y)}{I(Yi < u)− F (u)}

×{I(Yi < v)− F (v)}
]
{F (x ∧ y)− F (x)F (y)}{F (u ∧ v)− F (u)F (v)}

w(x)w(y)w(u)w(v)dxdydudv.

Under (A1) and (A2), V ar(Qn1) = o(σ4
1). This finishes the proof.

Proof of Lemma 4.3:

Since

n1+n2∑
j=2

σ−2
1 E{V 2

njI(|Vnj| > εσ1)|Fnj−1} ≤ σ−q
1 ε2−q

n1+n2∑
j=1

E(V q
nj|Fnj−1) for some q > 2.

We choose q = 4. Then the conclusion of the lemma is true if we can show

E
{ n1+n2∑

j=2

E(V 4
nj|Fnj−1)

}
=

n1+n2∑
j=2

E(V 4
nj) = o(σ4

1).

Note that

n1+n2∑
j=2

E(V 4
nj) =

n1+n2∑
j=2

E

{ j−1∑
i=1

∫
φij(x)wi(x)dx

}4

=

n1+n2∑
j=2

E

{ j−1∑
i1,i2,i3,i4=1

∫
φi1j(x)φi2j(y)φi3j(u)φi4j(v)w(·)d ·

}

=

n1+n2∑
j=2

j−1∑
i1,i2,i3,i4=1

E

{∫
φi1j(x)φi2j(y)φi3j(u)φi4j(v)w(·)d ·

}

The last term can be decomposed as 3Q + P where

Q =

n1+n2∑
j=2

j−1∑

i1 6=i2

E

{∫
φi1j(x)φi2j(y)φi1j(u)φi2j(v)w(·)d ·

}

and

P =

n1+n2∑
j=2

j−1∑
i=1

E

{ ∫
φij(x)φij(y)φij(u)φij(v)w(·)d ·

}
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Notice that

P =

( n1∑
j=2

+

n1+n2∑
j=n1+1

) j−1∑
i=1

E

{ ∫
φij(x)φij(y)φij(u)φij(v)w(·)d ·

}

=

( n1∑
j=2

+

n1+n2∑
j=n1+1

) j−1∑
i=1

O(n−8)Φ3

= O(n−6)Φ3,

where

Φ3 =

∫
E2

[
{I(Yi < x)− F (x)}{I(Yi < y)− F (y)}{I(Yi < u)− F (u)}

×{I(Yi < v)− F (v)}
]
w(x)w(y)w(u)w(v)dxdydudv

and

Q =

n1+n2∑
j=2

j−1∑

i1 6=i2

E

{ ∫
φi1j(x)φi2j(y)φi1j(u)φi2j(v)w(·)d ·

}

=

( n1∑
j=2

+

n1+n2∑
j=n1+1

) j−1∑

i1 6=i2

E

{∫
φi1j(x)φi2j(y)φi1j(u)φi2j(v)w(·)d ·

}

=

( n1∑
j=2

+

n1+n2∑
j=n1+1

) j−1∑

i1 6=i2

O(n−8)Φ2

= O(n−5)Φ2.

Under (A1), (A2) and (A3), we have 3Q + P = o(σ4
1). This finishes the proof.

Proof of Theorem 4.4:

From (4.5), en can be written as

en =

[(
n1

2

)(
n2

2

)]−1 ∑

i1,i2∈C2
n1

∑

j1,j2∈C2
n2

φ(X1i1 , X1i2 ; X2j1 , X2j2).

The kernel function φ is defined as

φ(X1i1 , X1i2 ; X2j1 , X2j2) = h(X1i1 , X1i2 ; X2j1 , X2j2)− h̃
(1)
1 (X1i1)− h̃

(1)
1 (X1i2)

− h̃
(2)
1 (X2j1)− h̃

(2)
1 (X2j2)− θ.
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It can be shown that

E
{

φ(X1i1 , X1i2 ; X2j1 , X2j2)
}

= 0,

E
{

φ(X1i1 , X1i2 ; X2j1 , X2j2)|X1s = x1s

}
= 0, a.e. for s = i1 or i2

E
{

φ(X1i1 , X1i2 ; X2j1 , X2j2)|X2t = x2t

}
= 0, a.e. for t = j1 or j2.

Therefore the variances of these three terms are all equal to 0, that is ξ2
0,0 = 0; ξ2

1,0 =

0; ξ2
0,1 = 0. Then the variance of en can be simplified as

V ar(en) =
2

n1(n1 − 1)
{1 + o(1)}ξ2

0,2 +
2

n2(n2 − 1)
{1 + o(1)}ξ2

2,0

+
4

n1n2

{1 + o(1)}ξ2
1,1 +

8

n1n2(n2 − 1)
{1 + o(1)}ξ2

1,2

+
8

n2n1(n1 − 1)
{1 + o(1)}ξ2

2,1 +
4

n1n2(n1 − 1)(n2 − 1)
ξ2
2,2.

where

ξ2
2,0 = V ar

{
E(φ(X1i1 , X1i2 ; X2j1 , X2j2)|X1i1 = x1i1 , X1i2 = x1i2)

}

= V ar

( ∫ [
I(X1i1 ≤ x)I(X1i2 ≤ x)− {I(X1i1 ≤ x) + I(X1i2 ≤ x)}F1(x)

]
w(x)dx

)

=

∫ {
F1(x ∧ y)− F1(x)F1(y)

}2

w(x)w(y)dxdy,

Similarly, ξ2
0,2 =

∫ {
F2(x ∧ y)− F2(x)F2(y)

}2

w(x)w(y)dxdy.

ξ2
1,1 = V ar

{
E(φ(X1i1 , X1i2 ; X2j1 , X2j2)|X1i1 = x1i1 , X2j1 = x2j1)

}

= V ar

( ∫
1

2

[
I(X1i1 ≤ x)F2(x) + I(I2j1 ≤ x)F1(x)− I(X1i1 ≤ x)I(I2j1 ≤ x)

]
w(x)dx

)

=
1

4

∫ {
F1(x ∧ y)− F1(x)F1(y)

}{
F2(x ∧ y)− F2(x)F2(y)

}
w(x)w(y)dxdy,
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ξ2
1,2 = V ar

{
E(φ(X1i1 , X1i2 , X2j1 , X2j2)|X1i1 = x1i1 , X2j1 = x2j1 , X2j2 = x2j2)

}

=

∫ [{
F2(x ∧ y)− F2(x)F2(y)

}2

+
1

2

{
F1(x ∧ y)− F1(x)F1(y)

}{
F2(x ∧ y)− F2(x)F2(y)

}]
{1 + o(1)}w(x)w(y)dxdy

= (ξ2
0,2 + 2ξ2

1,1){1 + o(1)},

ξ2
2,1 =

∫ [{
F1(x ∧ y)− F1(x)F1(y)

}2

+
1

2

{
F1(x ∧ y)− F1(x)F1(y)

}{
F2(x ∧ y)− F2(x)F2(y)

}]
{1 + o(1)}w(x)w(y)dxdy

= (ξ2
2,0 + 2ξ2

1,1){1 + o(1)},

ξ2
2,2 = V ar

{
φ(X1i1 , X1i2 ; X2j1 , X2j2)

}

=

∫ [{
F1(x ∧ y)− F1(x)F1(y)

}2

+
{

F2(x ∧ y)− F2(x)F2(y)
}2

+
{

F1(x ∧ y)− F1(x)F1(y)
}{

F2(x ∧ y)− F2(x)F2(y)
}]
{1 + o(1)}w(x)w(y)dxdy

= (ξ2
2,0 + ξ2

0,2 + 4ξ2
1,1){1 + o(1)},

All those o(1) terms vanish when p →∞ and min{n1, n2} → ∞. In summary,

V ar(en) =

[
2

n1(n1 − 1)
ξ2
2,0 +

2

n2(n2 − 1)
ξ2
0,2 +

4

n1n2

ξ2
1,1

]
{1 + o(1)}.

Under (A1), (A4) and (A5), we have nV ar(en)/δ2
1 = o(1). This finishes the proof.
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Table 4.3 Empirical power of MRPP test, two-sample mean test and a permutation
distribution test using Tn1,n2 in Case 1 where C1 = N(0, 1) and C2 = χ2(6).

n1 = n2 p Dist Mean MRPP

25 10 .108 .074 .068
20 .314 .065 .047
50 .711 .072 .068

50 10 .221 .081 .078
20 .577 .060 .057
50 .955 .081 .066
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