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In this paper, we consider the application of the empirical likelihood method to
partially linear model. Unlike the usual cases, we first propose an approximation to
the residual of the model to deal with the nonparametric part so that Owen's (1990)
empirical likelihood approach can be applied. Then, under quite general conditions,
we prove that the empirical log-likelihood ratio statistic is asymptotically chi-
squared distributed. Therefore, the empirical likelihood confidence regions can be
constructed accordingly. � 2000 Academic Press
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1. INTRODUCTION

Consider the following partially linear model

y=x$;+ g(t)+=, (1.1)

where y and t are uni-dimensional real numbers, x and ; are k-dimensional
real vectors, k is a positive integer, x and t are non-random design
variables, t # [0, 1], y is an observation, ; is an unknown parameter, g is
an unknown real-valued function on [0, 1], = is an unobservable random
error variable with mean zero, `` $ '' stands for matrix transposition. Let
(x1 , t1)$, ..., (xn , tn)$ be the design vectors and y1 , ..., yn be the corresponding
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observations. Let =1 , ..., =n be the i.i.d. random error variables corresponding
to (1.1).

The partially linear model originated from Engle et al. (1986).
Afterwards, it has received extensive studies in the literature. For example,
see Heckman (1986), Chen (1988), Speckman (1988), Cuzick (1992a,b),
among the others. Here, what we are concerned with is the statistical
inference on the parametric part of the model (1.1). Then more specifically,
we try to construct confidence region for the parameter ;. A typical non-
parametric approach to this problem generally includes the following steps:
(1) derive an ;n to estimate ;, (2) construct an estimate of the asymptotic
variance of ;n , and (3) invert confidence region by the limiting normal dis-
tribution. However, in semiparametric and nonparametric settings,
variance estimation is often complicated. In addition, confidence regions
derived from the limiting normal distribution is predetermined to be sym-
metric which may not be adequate when the underlying distribution is
typically asymmetric.

In this paper, we propose to use the empirical likelihood method to con-
struct confidence region for ;. One of the motivations is that the empirical
likelihood does not involve any variance estimation and the other is that
the empirical likelihood based confidence region does not have the
predetermined symmetry. The method of empirical likelihood was intro-
duced by Owen (1988) and its general property was studied by Owen
(1990). Hall (1990) discussed the pseudo-likelihood theory for the method.
DiCiccio, Hall and Romano (1991) proved that the empirical likelihood is
Bartlett correctable and thus it has an advantage over the bootstrap. Qin
and Lawless (1994) gave a general account on the equivalence between the
empirical likelihood and the method of estimating equations. In addition to
the general theory of the method, its various applications have also been
studied by many authors, e.g., linear models (Owen (1991)), quantiles
(Chen and Hall (1993)), generalized linear models (Kolaczyk (1994)),
incomplete data (Li (1995) and Li et al. (1996)), among the others.

It can be seen that a key point in the existing papers concerning the
empirical likelihood method is that the support points of some class of dis-
tributions are fixed once the parameter is given. For example, in the linear
regression model y=x$;+=, the set of support points can be chosen as
[ yi&x$i;]n

i=1 if the parameter ; is given. However, in the partially linear
model, even the parametric part ; is given, the usual support points
[ yi&x$i;& g(ti)]n

i=1 are still unknown because the nonparametric part g is
unknown. Therefore, it will not be a trivial extension of Owen (1990, 1991)
to establish the nonparametric likelihood ratio statistics in this model.
Note that, in the model (1.1), g is an infinite dimensional nuisance
parameter and can be approximated by various sieves. In this paper, the
weight function method such as the nearest neighbor and the kernel will be
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employed to approximate g. Therefore, the approximated random error
sequence can be used as the set of support points and the empirical
likelihood procedure goes accordingly.

2. THE METHODOLOGY AND THE RESULT

To apply the empirical likelihood method for the partially linear model,
we have to give an approximate random error sequence. Our basic idea is:
suppose ; is known, then the model (1.1) is reduced to a nonparametric
regression model y&x$;= g(t)+=, hence g can be estimated by using
y&x$; and t as usual. Here, we adopt the weight function method to
estimate the nonparametric part g. More precisely, g can be estimated by

ĝ(t, ;)= :
n

i=1

Wni (t)( yi&x$i ;),

where [Wni (t): 1�i�n] is a group of non-negative weight functions. Let
x~ i=xi&�n

j=1 Wnj (ti) xj and y~ i= yi&�n
j=1 Wnj (t i) y j for 1�i�n. Let ;0

be the true parameter of the model. Then, we have an approximate residual
as the following:

=~ i (;0)= y i&x$i;0& ĝ(ti , ;0)= y~ i&x~ $i ;0 , 1�i�n.

An important feature of =~ i (;0) is that E(=~ i (;0))=0 because =~ i (;0)=
=i&�n

j=1 Wnj (tj) =j for 1�i�n. Therefore, it can be treated as a random
sieve approximation of the random error sequence of [=i]n

i=1 . Note that, x~ ,
y~ and =~ are locally centerized quantities of x, y and =, respectively.

Now, we can define a likelihood function according to the empirical
likelihood principle. For any ; # Rk, let =~ i (;)= y~ i&x~ $i ; for 1�i�n.
Denote a class of distribution functions F(;)=[F : F is a distribution
function which is supported only on =~ i (;) with mass pi such that
�n

i=1 pix~ i=~ i (;)=0]. Define the empirical likelihood function of ; as

Ln (;)= max
F # F(;)

`
n

i=1

pi . (2.1)

Here, set Ln (;)#0 if F(;) is empty. As a consequence, a maximum
empirical likelihood estimator (MELE) can be defined by ;� n=
arg max; # Rk Ln (;). Therefore, a nonparametric log-likelihood ratio
statistic based on (2.1) is given by

LR(;0)=log Ln (;0)&log Ln (;� ).
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Let Fn, ;=[ p̂ i (;)]n
i=1 # F(;) such that Ln (;)=>n

i=1 p̂i (;) for ; # Rk. It
can be shown later that Ln (;) is maximized at ;� with p̂ i (;� )=n&1 for
1�i�n and ;� =(�n

i=1 x~ ix~ $i)&1 �n
i=1 x~ iy~ i .

It is known that Owen's empirical log-likelihood ratio statistic has a chi-
squared limiting distribution which is analogous to the well known Wilk's
theorem for parametric settings. So, we can expect that LR(;0) will also be
asymptotically chi-squared distributed. To establish a theory for LR(;0),
some necessary assumptions have to be imposed for the model. In this
paper, the following assumptions are made.

Assumptions. To begin with, the following weight functions will be
assumed.

A.1. Weight functions [Wni (t)�0 : 1�i�n] satisfy

:
n

j=1

Wnj (ti)=1 holds for all 1�i�n,

max
1�i, j�n

Wnj (ti)=O(n&(1&a)),

max
1�i�n

:
n

j=1

Wni (tj)=O(1),

max
1�i�n

:
n

j=1

Wnj (ti) I( |ti&t j |>C0n&a)=O(n&a),

for some 0<a< 1
2 and C0>0.

Remark. The feasibility of the above condition is discussed by Shi
(1998). In fact, assuming that 0=t0�t1�t2� } } } �tn�tn+1=1, if
max1�i�n+1 |t i&t i&1|=O(n&1), then the following kn nearest neighbor
type weight functions can be employed, that is,

Wni (t)={k&1
n ,

0,
if ti belongs to the kn nearest neighbor of t,
otherwise,

for 1�i�n and kn=n1&a.

A.2. �n
i=1 &xi&

2=O(n) and max1�i�n &�n
j=1 Wni (t j) x~ j&=o(1), where

& }& denotes the Euclidean norm in Rk.

Remark. Note that, �n
j=1 Wni (tj) x~ j is a weighted average of the locally

centerized quantities [x~ j]n
j=1 . A.2 is a mild condition.

A.3. There exist some functions [hj ( } )]k
j=1 on [0, 1], such that

xi=h(ti)+ui for 1�i�n, where h=(h1 , ..., hk)$. Moreover,
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max1�i�n &�n
j=1 Wnj (ti) uj&=o(1) and mineig(n&1 �n

i=1 u i u$i) is bounded
away from 0. Hereafter, mineig( } ) and maxeig( } ) represent the minimum
and maximum eigenvalues of a symmetric matrix, respectively. Note that,
here the variable u can be viewed as the residual of the regression of x on t.

A.4. g and [hj]k
j=1 satisfy the first order Lipschitz condition on [0, 1].

A.5.

Pr(0 # ch[x~ 1=~ 1 (;0), ..., x~ n =~ n (;0)]) � 1,

here ``ch'' denotes the convex hull of a set in Rk.

Remark. Owen (1991) imposes essentially the same assumptions for
application of the empirical likelihood method for linear models, see
Theorem 2 of Owen (1991). A simple sufficient condition is also given by
Owen (1991). Let P=[x~ i | y~ i&x~ $i;0>0] and N=[x~ i | y~ i&x~ $i ;0<0].
If ch(P) & ch(N){<, then 0 is in the convex hull of [x~ i=~ i (;0)]n

i=1 .
See Corollary 2 of Owen (1991). In fact, asymptotically, we have
n&1 �n

i=1 x~ i=~ i (;0) w�
a.s.

0 which reveals that eventually 0 will fall into the
convex hull of [x~ i =~ i (;0)]n

i=1 .
Now, we can give the main result of the paper.

Theorem. Assume that conditions A.1�A.5 hold, E(=2)=_2>0 and
E( |=|2+#)<� for some #>0. If max1�i�n &xi&

2=o(n#�(2+#) (log n)&1),
then

&2LR(;0) w�
d /2

k , (2.2)

where /2
k is a chi-squared distribution with k degrees of freedom.

Remark. In order to derive the asymptotic distribution, the existence of
the fourth moment of the residuals is needed in Owen (1991) for linear
models. To our knowledge, our conditions here are so far the weakest one
in the derivation of the asymptotic distribution for partially linear models.

As a consequence of the theorem, confidence regions for the parameter
; can be constructed by (2.2). More precisely, for any 0<:<1, let c: be
such that Pr(/2

k>c:)�1&:. Then, C(:)=def [; # Rk : &2LRn (;)�c:]
constitutes a confidence region for ; with asymptotic coverage : because
the event that ;0 belongs to C(:) is equivalent to the event that
&2LRn (;0)�c: .

There are two advantages of the above nonparametric likelihood ratio
inference over the asymptotic normality approach. The first is that C(:) is
not predetermined to be symmetric so that it can better correspond with
the true shape of the underlying distribution. The second is that there is no
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need to estimate the asymptotic variance which is rather complicated in
nonparametric or semiparametric settings.

It can be seen that once the weights [Wni (tj): 1�i, j�n] are given and
the locally centerized quantities x~ , y~ and =~ (;) are computed, the computa-
tion of the empirical likelihood confidence region for this partially linear
model follows the same procedure as that of the linear regression model.
See Owen (1991) on this aspect.

On the issue of Bartlett correction, it is not difficult to see from the
following derivation that LR(;0) is linear in natural, and therefore is
Bartlett correctable under some regularity conditions as in usual linear
models. (See Chen (1994)).

3. PROOF OF THE THEOREM

Denote locally centerized quantities g~ i= g(t1)&�n
j=1 Wnj (t i) g(t j), h� i=

h(ti)&�n
j=1 Wnj (ti) h(tj), u~ i=ui&�n

j=1 Wnj (ti) u j , =~ i==i&�n
j=1 Wnj (ti) = j

for 1�i�n. Let x̂i=x~ i&�n
j=1 Wni (tj) x~ j for 1�i�n. Let A� n=n&1 �n

i=1

x~ i x~ $i , A� n=n&1 �n
i=1 x̂ i x̂$i , Un=n&1 �n

i=1 u iu$i . Let Zi=x~ i =~ i for 1�i�n,
Z� n=n&1 �n

i=1 Zi , Zn*=max1�i�n &Zi&, Vn=n&1 �n
i=1 Z iZ$i . In this

paper, we say an k_k matrix converges to zero if all its k2 entries converge
to zero uniformly, or equivalently, its maximum absolute entry converges
to zero.

Before giving the proof of the theorem, some preliminary lemmas are
listed in what follows. Their proofs are put into the Appendix.

Lemma 1. Let [e1 , ..., en] be i.i.d. random variables which satisfy
E(e1)=0 and E( |e1|$)<� for some $>1. Let [a ( j)

ni , 1�i, j�n] be a series
of real numbers such that max1� j�n �n

i=1 |a ( j)
ni |�C1<�. If dn=

max1�i, j�n |a ( j)
ni |, then

max
1� j�n } :

n

i=1

a ( j)
ni ei } =

a.s. O((n1�$ dn 6 d1�2
n ) log n).

Lemma 2. Under the same assumptions of the theorem, we have

(i) �n
i=1 &x~ i&

2=O(n) and �n
i=1 &x̂ i&

2=O(n);

(ii) A� n&Un � 0 and A� n&A� n � 0;

(iii) Vn&_2Un w�
a.s.

0;

(iv) Zn* =
a.s. o(n1�2 (log n)&1�2).
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Proof of the theorem. To begin with, we study the form and the
property of Fn, ;0

=[ p̂ i (;0)]n
i=1 as defined in Section 2 because LR(;0) is

relevant to it directly. Write p̂i for p̂i (;0) in the sequel.
From A.5, we know that 0 belongs to the convex hull of [x~ 1=~ 1 , ..., x~ n=~ n]

with probability tending to 1 and F(;0) is not empty. Therefore, by
analogous to Owen (1990), using the Lagrange multiplier method, we have

p̂i=
1
n

1
1+*$x~ i=~ i

(3.1)

for 1�i�n, where the Lagrange multiplier * # Rk is a solution of the
following equation

:
n

i=1

x~ i=~ i
1+*$x~ i=~ i

=0. (3.2)

It can be noticed that for any ; # Rk, if F(;) is not empty, the solution
p̂i (;) has the same form as (3.1). Therefore, the likelihood function Ln (;)
is maximized globally at ;� =A&1

n �n
i=1 x~ iy~ i with *=0 and p̂i=n&1. Thus,

we have

LR(;0)=log Ln (;0)+n log n=& :
n

i=1

log(1+*$x~ i=~ i).

We will study the magnitude of * in what follows because it plays an
important role in analyzing the asymptotic behaviour of LR(;0).

Write *=\%, where \�0, % # Rk and &%&=1. Note that, from (3.2) there
holds

|%$Z� n |�
\

1+\Zn*
%$Vn%�

\
1+\Zn*

mineig(Vn).

Because p̂i is a probability mass, from (3.1) we know that 0<1+
*$Zi�1+\Zn*. Therefore,

\[mineig(Vn)&%$Z� nZn*]�|%$Z� n |. (3.3)

It is needed to study the rate of convergence of Z� n . By reformulation, we
can see that Z� n=n&1 �n

i=1 x~ i=~ i=n&1 �n
i=1 x̂i =i . Hence Z� n is a weighted

sum of independent random variables. To investigate its asymptotic
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distribution, we know that, by (ii) of Lemma 2, mineig(A� n) is bounded
away from 0. Second, there holds

max
1�i�n

&x̂i&� max
1�i�n

&x~ i& _1+k max
1�i�n

:
n

j=1

Wni (t j)&
�_1+k max

1�i�n
:
n

j=1

Wni (t j)& (k+1) max
1�i�n

&xi&,

and moreover by (2.1) and the assumption we have max1�i�n &x̂i &=
o(n#�2(2+#) (log n)&1�2). Hence, applying the classical central limit theorem
(i.e., verifying the Lindeberg�Feller conditions), we can derive that

- n A� &1�2
n Z� n=(nA� n)&1�2 :

n

i=1

x̂ i =i w�
d N(0, _2Ik), (3.4)

where Ik is the k_k identity matrix, N(0, Ik) is the k-dimensional standard
normal distribution. As a consequence, from (i) of Lemma 2, we have

&Z� n&�n&1�2 maxeig(A� 1�2
n ) &- n A� &1�2

n Z� n &

=n&1�2 (maxeig(A� n))1�2 &- n A� &1�2
n Z� n &

�\n&1 :
n

i=1

&x̂ i&
2+

1�2

n&1�2 &- n A� &1�2
n Z� n&=Op (n&1�2). (3.5)

From (3.3), (iii) and (iv) of Lemma 2, and (3.5), we have \=Op (n&1�2)
and &*&=Op (n&1�2). Hence,

max
1�i�n

|*$Zi |�&*& Zn*=op ((log n)&1�2)=op (1). (3.6)

Let Rn1=n&1 �n
i=1(*$Zi)

2 Zi (1+*$Zi)
&1. From the constraint (3.2), we

have

Z� n&Vn*+Rn1=0.

Because Vn&_2Un w�
a.s.

0, it follows, by summing the diagonal components
of Vn and Un , respectively, that n&1 �n

i=1 &Zi&
2&n&1 �n

i=1 &ui&
2 _2 w�

a.s.
0.

Hence, n&1 �n
i=1 &Zi&

2 is bounded from above almost surely. Conse-
quently,

&Rn1&�(&*&2 Zn*) n&1 :
n

i=1

&Zi&
2

1+*$Z i
=op ((n log n)&1�2).
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At this time, we can have

*=V &1
n Z� n+V &1

n Rn1=V &1
n Z� n+op ((n log n)&1�2).

We now turn to study the empirical likelihood ratio statistic
LR(;0)=&�n

i=1 log(1+*$Zi). Under (3.6), applying the Taylor expan-
sion, there holds

LR(;0)=& :
n

i=1
_*$Z i&

(*$Zi)
2

2 &+Rn2 , (say)

where Rn2��n
i=1 |*$Zi |

3�Zn*&*&3 �n
i=1 &Zi&

2=op ((log n)&1�2)=op (1). We
have LR(;0)=n(*$Z� n&2&1*$Vn*)+op (1). Note that *=V&1

n Z� n+op (n&1�2),
Vn&_2Un =

a.s.
0, A� n&Un � 0 and A� n&A� n � 0, then

LR(;0)=&2&1nZ� $nV &1
n Z� n+op (1)

=&2&1_&2n2Z� $nA� &1
n Z� n+op (1).

Finally, by (3.4), we have

&2LR(;0) w�
d /2

k .

This completes the proof of the theorem. K

4. APPENDIX

In this part, we prove Lemma 2 in the first place.

Proof of Lemma 2. In the beginning, by assumptions A.1 and A.4, we
have

max
1�i�n

&h� i&= max
1�i�n " :

n

j=1

Wnj (ti)(h(ti)&h(tj))(I( |t i&t j |

>C0n&a)+I( |ti&tj |�C0n&a))"
=O(n&a).

Now, we prove part (i) of Lemma 2. Denote 2n=max1�i�n

&�n
j=1 Wnj (ti) uj&. From A.3, we know that 2n=o(1). Note that &x~ i&

2=
&xi&�n

j=1 Wnj (ti) xj&
2�2 &xi &

2+2 max1�i�n &�n
j=1 Wnj (ti) xj &

2. While,

max
1�i�n " :

n

j=1

Wnj (t i) xj"� :
k

i=1

sup
t # [0, 1]

|hi (t)|+2n=O(1).
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From A.2, we therefore have �n
i=1 &x~ i&

2=O(n) which is the first assertion
of (i) of the lemma. Similarly, by A.2, there holds

&x̂i &
2="x~ i& :

n

j=1

Wni (tj) x~ j"
2

�2 &x~ i&
2+2 max

1�i�n " :
n

j=1

Wni (t j) x~ j"
2

=2 &x~ i&
2+o(1).

The second assertion of (i) of the lemma is therefore obvious.
We now turn to prove part (ii) of Lemma 2. Because max1�i�n &h� i &=

O(n&a), there holds

A� n=n&1 :
n

i=1

(h� i+u~ i)(h� i+u~ i)$=n&1 :
n

i=1

(u~ i u~ $i+h� iu~ $i+u~ ih� $i)+O(n&2a).

While &ui&�&xi &+supt # [0, 1] &h(t)&, we have

"n&1 :
n

i=1

h� iu~ $i"M
="n&1 :

n

i=1

h� i \u i& :
n

j=1

Wnj (t i) uj+$"M

�C max
1�i�n

&h� i& \n&1 :
n

i=1

&u i&+2n+
=O(n&a)(O(1)+o(1))=o(1),

where & }&M is such a matrix norm that takes the maximum absolute value
of its k2 entries, C is a positive constant which characterizes the equiv-
alence between the Euclidean norm and this matrix norm. Similarly, we
have

:
n

i=1

u~ iu~ $i= :
n

i=1

uiu$i+ :
n

i=1
\ :

n

j=1

Wnj (t i) uj+\ :
n

j=1

Wnj (t i) u j+$

& :
n

i=1

:
n

j=1

Wnj (t i)(u iu$j+u ju$i),

and therefore, &n&1 �n
i=1 u~ iu~ $&n&1 �n

i=1 ui u$i&M�C 22
n+2C 2nn&1 �n

i=1

&ui&=o(1). As a consequence, we have &An&Un&M � 0 which is the first
assertion of (ii) of the lemma. We now prove the second assertion. Note
that, for 1�i�n,

x̂i x̂$i=x~ ix~ $i+\ :
n

j=1

Wni (tj) x~ j+\ :
n

j=1

Wni (t j) x~ j+$
& :

n

j=1

Wni (tj)(x~ jx~ $i+x~ ix~ $j)
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By A.2, part (i) of the lemma and the relationship between the Euclidean
norm and the matrix norm, we have

&A� n&A� n&M="n&1 :
n

i=1

x̂ i x̂$i&n&1 :
n

i=1

x~ ix~ $i"M

�o(1)+o \n&1 :
n

i=1

&x~ i&+=o(1).

This completes the proof of (ii) of the lemma. K

We now proceed to prove part (iii) of Lemma 2. It can be seen that
Zi Z$i=(u~ iu~ $i+h� ih� $i+h� iu~ $i+u~ ih� $i) =~ 2i . Because max1�i�n &h� i&=O(n&a), we
have

"n&1 :
n

i=1

(h� ih� $i+h� i u~ $i+u~ i h� $i) =~ 2i "M

=n&1 :
n

i=1

(&h� i h� $i+h� iu~ $i+u~ ih� $i&M) =~ 2i

�Cn&1 :
n

i=1

(&h� i &
2+2 &h� i& &u~ i&) =~ 2i

=\n&1 :
n

i=1

=~ 2i + O(n&2a)+\n&1 :
n

i=1

&u~ i& =~ 2i + O(n&a)

�\n&1 :
n

i=1

=~ 2i + O(n&2a+n&a)+\n&1 :
n

i=1

&u i&=~ 2i + O(n&a).

While, =~ 2i ==2
i &2 �n

j=1 Wnj (ti) = j=i+(�n
j=1 Wnj (t i) =j)

2. Because 0<a< 1
2 ,

by Lemma 1, we have

max
1�i�n } :

n

j=1

Wnj (ti) = j } =
a.s. O(n&(1&2a)�2 log n)=o(1). (4.1)

Therefore, by (4.1) and the strong law of large numbers, we have

n&1 :
n

i=1

=~ 2i �n&1 :
n

i=1

=2
i +2 max

1�i�n } :
n

j=1

Wnj (t i) =j } \n&1 :
n

i=1

|=i |+
+\ max

1�i�n } :
n

j=1

Wnj (ti) = j }+
2

<�. (a.s.).
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Moreover, by (4.1), we have

n&1 :
n

i=1

&ui& =~ 2i =
a.s. n&1 :

n

i=1

&ui& =2
i +o \n&1 :

n

i=1

&u i=i&++o \n&1 :
n

i=1

&ui &+ .

From the assumption of the theorem, we know max1�i�n &ui &=
o(n#�2(2+#) (log n)&1�2). Thus, by Lemma 1, there hold

n&1 :
n

i=1

&ui& ( |=i |&E( |=i | ))

=
a.s. o(n&1�(2+#) (log n)1�2)=o(1), and

n&1 :
n

i=1

&ui& (=2
i &_2)

=
a.s. o(n&(4+#)�4(2+#) (log n)3�4 6 n&#�2(2+#) (log n)1�2)=o(1).

Hence, we have n&1 �n
i=1 &ui& =~ 2i <� (a.s.). Furthermore, &n&1 �n

i=1

(h� ih� $i+h� iu~ $i+u~ ih� $i) =~ 2i &M w�
a.s.

0 and Vn =
a.s. n&1 �n

i=1 u~ iu~ $i=~ 2i +o(1). Note that

n&1 :
n

i=1

u~ i u~ $i=~ 2i =n&1 :
n

i=1 _uiu$i& :
n

j=1

Wnj (ti)(u iu$j+uj u$i)

+\�n
j=1 Wnj (ti) uj+\ :

n

j=1

Wnj (t i) uj+$& =~ 2i

=n&1 :
n

i=1

uiu$i=~ 2i +I1n+I2n , (say).

It is easy to see that &I1n&M�2C 2n (n&1 �n
i=1 &u i& =~ 2i ) and &I2n&M�

C 22
n(n&1 �n

i=1 =~ 2i ). Both I1n and I2n converge to zero almost surely. Conse-
quently, Vn&n&1 �n

i=1 u iu$i=~ 2i w�
a.s.

0. We will show that n&1 �n
i=1

ui u$i (=~ 2i &_2) w�
a.s.

0 in what follows. Similarly, by (4.1), there holds

"n&1 :
n

i=1

uiu$i (=~ 2i &_2)"M
�"n&1 :

n

i=1

ui u$i (=2
i &_2)"M

+o \n&1 :
n

i=1

&ui&
2 |=i |++o \n&1 :

n

i=1

&u i&
2+ .
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We only consider the first term in the right side of the above ine-
quality. Let ui=(ui1 , ..., u ik)$ for 1�i�n. For any 1� j�k, because
max1�i�n &ui&

2=o(n#�(2+#) (log n)&1), it is easy to derive from Lemma 1
that n&1 �n

i=1 u2
ij (=

2
i &_2) =

a.s. o(1). Furthermore, from the finiteness of the
dimension, we know &n&1 �n

i=1 uiu$i (=2
i &_2)&M w�

a.s.
0.

Therefore, we can conclude from the above derivation that Vn&
_2Un w�

a.s.
0 which is part (iii) of the lemma. As a consequence, mineig(Vn)

is also bounded away from 0 almost surely.
Finally, we prove part (iv) of Lemma 2. Because Zi=x~ i =~ i=

(h� i+ui&�n
j=1 Wnj (t i) uj) =~ i , there hold

&Zi&�( max
1�i�n

&h� i&+ max
1�i�n

&u i&+2n1) max
1�i�n

|=~ i |, and

max
1�i�n

|=~ i |� max
1�i�n

|=i |+ max
1�i�n } :

n

j=1

Wnj (t i) =j }.
Because E( |=1| 2+#)<�, by Lemma 3 of Ghosh et al. (1984) we know that
max1�i�n |=i | =

a.s. o(n1�(2+#)). Hence, from Lemma 2, (4.1) and the assump-
tions, we have

Zn*�( max
1�i�n

&ui&+1)( max
1�i�n

|=i |+1) =
a.s. o(n1�2 (log n)&1�2).

Thus, the proof of Lemma 2 is completed. K

Proof of Lemma 1. The proof will be divided into 5 facts.

Fact 1. Suppose Y is a random variable, |Y|�M<�, E(Y)=0,
E(Y2)={2. Then, for 0�tM�1 there holds

E(exp[tY])�exp {t2{2

2 \1+
tM
2 += .

See Petrov (1975).

Fact 2. For any 0<a<1, we can show that there holds
�n

i=1 i&a�(2a+1 (n+1)1&a)�(1&a).

Let e$i=eiI( |ei |�i1�$) and ei"=ei&e$i=ei I( |ei |>i1�$) for 1�i�n. Here,
$ is not matrix transpose. Then, for any 1� j�n, we have

} :
n

i=1

a ( j)
ni ei }� } :

n

i=1

a ( j)
ni (ei&e$i)}+ } :

n

i=1

a ( j)
ni (e$i&E(e$i))}+ } :

n

i=1

a ( j)
ni E(e$i&ei)}.

(4.2)

144 JIAN SHI AND TAI-SHING LAU



Fact 3.

max
1� j�n } :

n

i=1

a ( j)
ni (ei&e$i)} =

a.s. O(dn).

Because E( |e1|$)<�, we have ��
i=1 P( |e1| $>i)<�. By the Borel�

Cantelli lemma, we have P([ |ei |>i1�$] i.o.)=0, i.e., the event [ |e i |>
i1�$] i�1 can only happen for finite many times. Therefore ��

i=1 |ei" |=
��

i=1 |ei | I( |ei |>i1�$)<� (a.s.). Moreover, we have

max
1� j�n } :

n

i=1

a ( j)
ni (ei&e$i)}�dn :

�

i=1

|ei" | =
a.s. O(dn).

This derives the Fact 3.

Fact 4.

max
1� j�n } :

n

i=1

a ( j)
ni E(ei&e$i)}=O(n1�$ dn).

By the Fact 2, it can be seen that

max
1� j�n } :

n

i=1

a ( j)
ni E(ei&e$i)}� max

1� j�n } :
n

i=1

|a ( j)
ni | E( |ei | I( |e i |>i1�$)) }

�dn :
n

i=1

i&($&1)�$E( |e1|$)

=O(n1�$ dn).

the Fact 4 is thus derived.

In what follows, we analyze the rate of convergence of max1� j�n

|�n
i=1 a ( j)

ni (e$i&E(e$i))|. For any fixed 1� j�n, let Yi=a ( j)
ni (e$i&E(e$i)),

1�i�n, Mn=2n1�$ dn , t=(2&1n&1�$ d &1
n ) 7 d&1�2

n . It is obvious that 0�
tMn�1. Then, for some {n>0, we have

P \ :
n

i=1

a ( j)
ni (e$i&E(e$i))>{n +=P \ :

n

i=1

Yi>{n)

�exp[&t{n] } E _exp {t :
n

i=1

Yi=& . (4.3)
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E[exp[t �n
i=1 Yi]] = >n

i=1 E[exp[tY i]]. For any 1 � i � n, because
|Yi |�Mn , E(Yi)=0, and 0�tMn�1, using the Fact 1 we have

E _exp {t :
n

i=1

Yi=&� `
n

i=1

exp {t2

2
E(Y 2

i ) \1+
tMn

2 +=
=exp {t2

2 \1+
tMn

2 + :
n

i=1

E(Y 2
i )= . (4.4)

If 1<$<2, then

E _exp {t :
n

i=1

Yi=&�exp [4&1n&2�$ d &2
n :

n

i=1

|a ( j)
ni | 2 E(e$i&E(e$i))2=

�exp {4&1n&2�$ :
n

i=1

E( |e$i |
$ i(2&$)�$)=

�exp {4&1n&2�$n(2&$)�$ :
n

i=1

E( |ei |
$)=

�exp[4&1E( |e1|$)] (4.5)

If $�2, then

E _exp {t :
n

i=1

Yi=&�exp {d &1
n :

n

i=1

|a ( j)
ni |2 E(e$i&E(e$i))2=

�exp { :
n

i=1

|a ( j)
ni | E(e$i)

2=�exp[C1E(e2
1)]. (4.6)

Therefore, it can be inferred from (4.3)�(4.6) that there exists some
constant C2>0 such that P(�n

i=1 a ( j)
ni (e$i&E(e$i))>{n)�exp[&t{n+C2].

Taking t{n=4 log n, i.e., {n=4(2n1�$ dn 6 d1�2
n ) log n, there holds

P(�n
i=1 a ( j)

ni (e$i&E(e$i))>{n)�exp[&3 log n]=n&3 when n is large enough.
Moreover, symmetrically we have P(�n

i=1 a( j)
ni (e$i&E(e$i))<&{n)�n&3.

Thus, P( |�n
i=1 a ( j)

ni (e$i&E(e$i))|>{n)�2n&3. From the above derivation,
when n is large enough, we have

P \ max
1� j�n } :

n

i=1

a ( j)
ni (e$i&E(e$i))}>4(21�2n1�$ dn 6 d1�2

n ) log n+
� :

n

j=1

P \} :
n

i=1

a ( j)
ni (e$i&E(e$i))}>4(21�2n1�$ dn 6 d1�2

n ) log n+
�2 :

n

j=1

n&3=2n&2.
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By the Borel�Cantelli lemma, we have the following fact

Fact 5.

max
1� j�n } :

n

i=1

a ( j)
ni (e$i&E(e$i))} =a.s. O((n1�$ dn 6d1�2

n ) log n).

Finally, the lemma is proved by combining (4.2) and the Facts 3, 4 and 5.
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