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Abstract

We propose the penalized empirical likelihood (PEL) method for parameter estima-

tion and variable selection for problems with diverging numbers of parameters. Our

results are demonstrated for estimating the mean vector in multivariate analysis and

regression coefficients in linear models. By using an appropriate penalty function, we

show that PEL has the oracle property. That is, with probability tending to one,

PEL identifies the true model and estimates the nonzero coefficients as efficiently as

if the sparsity of the true model were known in advance. The advantage of PEL as a

nonparametric likelihood approach is illustrated in testing hypothesis and constructing

confidence sets. Numerical simulations confirm our theoretical findings.

Some key words: Confidence set; Empirical likelihood; High dimensional data analysis;

Smoothly clipped absolute deviation; Variable selection.

1 Introduction

The empirical likelihood (EL) method introduced by Owen (1988) is an influential nonpara-

metric statistical instrument and has successful implementations in various areas (Owen,

2001). Through optimizing data driven nonparametric likelihood functions, the EL method

is free from stringent parametric distributional assumptions. The resulting advantages in-

clude, among others, objective determination of the shape of the confidence region (Owen,

1988), seamless incorporation of auxiliary or prior information (Qin and Lawless, 1994) and

Bartlett correctability (DiCiccio et al., 1991, Chen and Cui, 2006).

Recently, high dimensional data analysis has become an area of active research. When

the data dimensionality diverges, variable selection through regularization is proven ef-
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fective. As argued in Hastie, Tibshirani and Friedman (2009) and Fan and Lv (2008), the

penalized likelihood method can properly adjust bias-variance trade-off so that performance

improvement can be achieved; see also series of works (Tibshirani, 1996; Fan and Li, 2001;

Zou, 2006; Wang, Li and Tsai, 2007; Zhang and Lu, 2007; Candes and Tao, 2007; Fan and

Lv, 2008; Lv and Fan, 2009) for penalized likelihood approaches and discussions.

The changing landscape of dimensionality from fixed (low) to growing (high) brings

new interests and challenges to the EL method (Chen and Van Keilogom, 2009). Hjort,

McKeague and Van Keilogom (2009) and Chen, Peng and Qin (2009) showed that the EL

method continues to work when data dimensionality is growing. Nonetheless, the study of

regularized EL method remains less studied, especially for high dimensional data analysis

(McKeague, 2009). An exploration to this context could further broaden and extend the

applications of EL.

Our study is motivated by the interest in exploring growing dimensional data analysis

based on the EL method. We propose a unified framework for variable selection, parameter

estimation and its inference via the penalized empirical likelihood (PEL) with the SCAD

penalty (Fan and Li, 2001). Our main finding is that the PEL method has the oracle

property and is advantageous in producing sparse models without specifying a parametric

likelihood. We show that the profiled PEL ratio is asymptotically χ2 distributed so that

it facilitates testing of hypothesis and constructing range respecting confidence regions.

Though (penalized) full parametric likelihood ratio test formulated in Fan and Peng (2004)

shares this property, specifying a high dimensional distribution can be very challenging. In

this respect, the PEL method provides a robust alternative to the parametric likelihood

ratio approach in high dimensional statistical inference. Complementary to the penalized

likelihood approach, the PEL method has the merits in both efficiency and adaptivity

stemmed from a nonparametric likelihood approach (Owen, 2001).

The rest of this paper is structured as follows. Sections 2 and 3 discuss the PEL method

for mean vectors and linear models respectively. Section 4 outlines computational aspect of

the PEL method. Section 5 demonstrates the empirical performance of PEL by simulations.

Some discussions are given in Section 6. All technical proofs are deferred to the Appendix.

2 Penalized Empirical Likelihood for Mean

We first study the PEL estimates of a mean vector µ from a collection of independent

multivariate random vectors {Xi}n
i=1, where Xi ∈ Rp with p diverging as n → ∞. The

diverging rate of p is discussed later. Throughout this paper we assume that E(Xi) = µ0

and var(Xi) = Σ = (σjk)
p
j,k=1. The EL for µ is given by

L(µ) = sup

{

n
∏

i=1

wi : wi ≥ 0,
n
∑

i=1

wi = 1 and
n
∑

i=1

wiXi = µ

}

. (2.1)
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It is seen that L(µ) is maximized when wi = n−1. Thus the maximum empirical likelihood

estimate of µ is identical to the sample mean X̄.

Two elements are important in studying the properties of the high dimensional EL

method. One is the rate of divergence of p as n → ∞. The other is the probability

distribution of Xi. In high dimensional data setup, the properties of EL are studied under

various scenarios of the two elements. Define the log EL ratio as ℓ(µ) = − log{L(µ)} −
n log(n). By assuming boundedness of Xi and p3/n → ∞, Hjort et al. (2009) showed

that (2p)−1/2{2ℓ(µ0) − p} d→ N(0, 1). If the boundedness of Xi is relaxed to moment

conditions that both E(||p−1/2Xi||q) and p−1
∑p

j=1 E|X(j)
i − µj |q are bounded for some

q ≥ 4, then p3+6/(q−2)/n → 0 is needed to ensure this result (Hjort et al. 2009). Under

milder restrictions on the diverging rate of p, Chen et al. (2009) established the same result.

They utilized the following model permitting more detailed analysis:

Xi = ΓZi + µ where Γ is a p × m matrix, m ≥ p and ΓΓT = Σ, Zi ∈ Rm satisfying

E(Zi) = 0, var(Zi) = Im, E(Zil)
4k = m4k ∈ (0,∞), for l1 6= l2 6= · · · 6= lq

E(Zα1

il1
Zα2

il2
. . . Z

αq

ilq
) = E(Zα1

il1
)E(Zα2

il2
) . . . E(Z

αq

ilq
) and

∑q
l=1 αl ≤ 4k. (2.2)

Here k is some positive integer and Im is the m-dimensional identity matrix. Chen et al.

(2009) argued that p = o(n1/2) is the best rate under which (2p)−1/2{2ℓ(µ0)−p} d→ N(0, 1).

We define the PEL estimator µ̂ to be the maximizer of

log{L(µ)} − n

p
∑

i=1

pτ (|µi|), (2.3)

where pτ (t) is a penalty function with tuning parameter τ . See Fan and Li (2001), Zou

(2006), Fan and Lv (2008) and Lv and Fan (2009) for examples of this function. In this pa-

per, we use the smoothly clipped absolute deviation (SCAD) penalty whose first derivative

satisfies

p′τ (t) = τ

{

I(t ≤ τ) +
(aτ − t)+
(a − 1)τ

I(t > τ)

}

(2.4)

for some a > 2 (Fan and Li, 2001). Following the convention in Fan and Li (2001), we set

a = 3.7 in our work. The penalty (2.4) is a spline function on an interval near zero and

constant outside, so that it can shrink small value of an estimate to zero while having no

impact on a large one. As illustrated in Fan and Li (2001), this penalty function satisfies

three requirements for variable selection, namely, asymptotic unbiasedness, sparsity and

continuity of the estimated parameters. The penalized parametric likelihood using the

SCAD penalty has the oracle property (Fan and Li, 2001; Fan and Peng, 2004)in identifying

correctly the model structure and estimating the nonzero coefficients with optimal efficiency.

An application of the Lagrange multiplier method on (2.1) leads to

wi =
1

n

1

1 + λT
µ (Xi − µ)

where λµ solves n−1
n
∑

i=1

Xi − µ

1 + λT
µ (Xi − µ)

= 0. (2.5)



PENALIZED EMPIRICAL LIKELIHOOD 4

By substituting (2.5) in L(µ), we see that maximizing (2.3) is equivalent to minimizing

ℓp(µ) =
n
∑

i=1

log{1 + λT
µ (Xi − µ)} + n

p
∑

i=1

pτ (|µi|). (2.6)

For (2.1) and (2.3) to have solutions, µ needs to be in the convex hull formed by the data

{Xi}n
i=1. Therefore, the PEL estimator µ̂ essentially respects the range of the data.

Let A = {j : µ0j 6= 0} be the set of none-zero components of the true mean vector

µ0 and denote the cardinality of A as |A| = d. Here we allow d to grow at the same

rate of p as n → ∞ without imposing any specific restriction. Without loss of generality,

denote µ = (µT
1 , µT

2 )T where µ1 ∈ Rd and µ2 ∈ Rp−d correspond to the zero and nonzero

components respectively, i.e. µ0 = (µT
10, 0)T . Correspondingly, we decompose the variance-

covariance matrix of X as

(

Σ11 Σ12

Σ21 Σ22

)

. The following regularity conditions are assumed.

A.1 The observations {Xi}n
i=1 are iid following model (2.2) for some k ≥ 3.

A.2 The eigenvalues of Σ satisfy that, C1 ≤ γ1(Σ) ≤ γ2(Σ) ≤ · · · ≤ γp(Σ) ≤ C2 for some

C2 > C1 > 0.

A.3 As n → ∞, p → ∞, p2/n1−1/(4k) → 0, p1−2δ/n1/2−2δ → 0 for the δ specified in Lemma

1 in the Appendix, and d ≤ p.

Model (2.2) in A.1 is used to characterize the tail probability behavior of Xi with

correlated components (Bai and Saranadasa, 1996; Chen et al., 2009), which is crucial in

high dimensional statistical analysis. The model in (2.2) includes the elliptical contoured

distribution and the Gaussian family as special cases, where the latter is often assumed

for high dimensional data, for example in Meinshausen and Bühlmann (2006) and Fan and

Lv (2008). Alternative conditions to (2.2) such as in Hjort et al. (2009) can be used at

the expense of a slower growing p. Both p and d are allowed to diverge as long as A.3 is

satisfied.

For the penalty function pτ (·), we make the following assumptions.

B.1 As n → ∞, the tuning parameter τ satisfies τ → 0 and τ(n/p)1/2−δ → ∞ for the δ

specified in condition A.3. The nonzero components satisfy minj∈A |µ0j |/τ → ∞.

B.2 maxj∈A p′τ (|µ0j |) = o{(√np)−1}, maxj∈A p′′τ (|µ0j |) = o(p−1/2+δn−δ).

Condition B.1 states that the weakest signal should dominate the penalty parameter τ .

This assumption is routinely made to ensure the recovery of signals. Condition B.2 is used

in controlling the impact of the penalty on the nonzero component. For the SCAD penalty

(2.4), B.2 is satisfied because maxj∈A p′(|µj |) = 0 for n large enough given B.1; see also

Fan and Li (2001).
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We show the property of PEL estimator µ̂ = (µ̂T
1 , µ̂T

2 )T in the following theorem.

Theorem 1. Under regularity conditions A.1, A.2, A.3, B.1 and B.2, as n → ∞,

1. (Selection consistency) with probability tending to 1, µ̂2 = 0;

2. (Asymptotic efficiency)

√
nWnI

−1/2
A (µ̂1 − µ10)

d→ N(0, G)

where Wn ∈ Rq×d such that WnW T
n → G for G ∈ Rq×q with fixed q and IA =

Σ11 − Σ12Σ
−1
22 Σ21.

In part 2 of Theorem 1, Wn represents the projection of a diverging dimensional vector

µ1 to any fixed dimensionality q so that the limiting distribution can be characterized by a

multivariate normal. Remarks of Theorem 1 are made in the following.

1. Theorem 1 states the oracle property of PEL in the sense of Fan and Peng (2004).

Namely, PEL is consistent in model selection, and is as efficient as the EL esti-

mates assuming the true sparse model (µ2 = 0) were known. In addition, we observe

that the PEL estimator of the nonzero component µ̂1 is more efficient than the cor-

responding subvector X̄1 in X̄, whose asymptotic distribution is characterized by
√

nWnΣ
−1/2
11 (X̄1 − µ10)

d→ N(0, G). Because the correlations are implicitly incorpo-

rated in its formulation, PEL can improve the efficiency in estimating µ1 by accounting

for µ2 = 0.

2. Although the PEL method imposes no distributional assumption, it can be as efficient

as a parametric likelihood based approach. For example when Xi ∼ N(µ,Σ), the ora-

cle efficiency of the parametric likelihood approach knowing the true zero components

agrees with the result in Theorem 1 Part 2.

Next we show that the PEL method provides a unified framework for the testing hypoth-

esis and constructing confidence sets. In practice, confidence sets for a finite dimensional

subset of the nonzero parameters is of great interest. To this end, we consider the following

hypothesis testing

H0 : Lnµ10 = 0 vs H1 : Lnµ10 6= 0,

where Ln ∈ Rq×d such that LnLT
n = Iq for a fixed q and Iq is the q dimensional identity

matrix. This type of hypotheses cover testing for both individual and multiple components,

and can be extended to linear functions of µ. A similar type of hypothesis testing is

considered in Fan and Peng (2004) under a parametric likelihood framework. Given the

PEL formulation, a nonparametric profiled likelihood ratio statistic is constructed as

ℓ̃(Ln) = −2

{

ℓp(µ̂) − min
µ,Lnµ1=0

ℓp(µ)

}

. (2.7)

We show the asymptotic property of the PEL ratio in the following theorem.
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Theorem 2. Under the null hypothesis and the conditions in Theorem 1, as n → ∞,

ℓ̃(Ln)
d→ χ2

q.

Therefore, a (1 − α)-level confidence set for Lnµ1 can be constructed as

Vα =

[

v : −2

{

ℓp(µ̂) − min
µ,Lnµ1=v

ℓp(µ)

}

≤ χ2
q,1−α

]

(2.8)

where χ2
q,1−α is the 1−α level quantile of χ2

q distribution. As a direct result of Theorem 2,

we have that P (Lnµ10 ∈ Vα) → 1 − α as n → ∞.

Theorem 2 shows that the well known Wilks’s phenomenon for the parametric likelihood

and EL (Owen, 2001) continues to apply to PEL. Results parallel to Theorem 2 can also be

established for the parametric likelihood ratio test under the usual parametric likelihood

framework (Fan and Peng, 2004). Nevertheless, the PEL method is free of any distribu-

tional assumption and does not require estimating the variance covariance matrix of the

parameters.

3 Penalized Empirical Likelihood for Linear Models

EL for linear models was first considered in Owen (1991). Chen (1994) studied the EL

confidence region for regression coefficients in linear models. Existing works of EL method

mainly focus on fixed dimensional regressions; see Owen (2001) and Chen and Van Keilegom

(2009) for comprehensive overviews. We consider the linear model of the following form

Yi = XT
i β + ǫi, i = 1, . . . , n, (3.1)

were Xi ∈ Rp, and β ∈ Rp. We assume that {Xi}i=1 is a sequence of independent and

identically distributed random vectors following some distribution, and without loss of

generality E(Xi) = 0. The random vector can be centered to have zero mean if otherwise.

We also assume error ǫi to be independent and identically distributed with mean zero

and finite variance σ2. Thus E(Yi|Xi) = XT
i β0 is the conditional mean function and

var(Yi|Xi) = σ2.

Following Owen (1991), the EL for linear models can be constructed based on the normal

equations. Let Ui(β) = Xi(Yi − XT
i β), we define the EL of β by

L(β) = sup

{

n
∏

i=1

wi : wi ≥ 0,
n
∑

i=1

wi = 1 and
n
∑

i=1

wiUi(β) = 0

}

. (3.2)

By the Lagrange multiplier method,

wi =
1

n

1

1 + λT
β Ui(β)

where λβ solves n−1
n
∑

i=1

Ui(β)

1 + λT
β Ui(β)

= 0.
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The PEL estimator β̂ is then defined as the minimizer of

ℓp(β) =
n
∑

i=1

log{1 + λT
β Ui(β)} + n

p
∑

i=1

pτ (|βi|). (3.3)

Let B = {j : β0j 6= 0} be the set of none-zero components of the true mean vector β0 and

the cardinality |B| = d where d satisfies Condition A.3 and is allowed to grow as n → ∞.

Following the conventions in the mean case, we write β = (βT
1 , βT

2 )T where β1 ∈ Rd and

β2 ∈ Rp−d and hence the true parameter is β0 = (βT
10, 0)T .

We study the PEL for linear models with random design and we assume that the random

regressors Xi follows the multivariate model in (2.2) and the same regularity conditions

as in the mean case. Condition A.1 on the design variable Xi is the counterpart of the

assumptions made on the design matrix, for instance in Zou and Zhang (2009) and Lv

and Fan (2009). Since we allow a general correlation matrix of Xi, Condition A.1 is not

restrictive compared to those commonly assumed on the design matrix. In addition, we

assume for the random errors:

A.4 {ǫi}n
i=1 is iid and E(ǫ4k

i ) < ∞ for the same k in A.1.

In PEL for regression models, the µ0j in Condition B.1 is replaced by β0j . In particular,

B.1’ As n → ∞, the tuning parameter τ satisfies τ → 0 and τ(n/p)1/2−δ → ∞ for the δ

specified in condition A.3. The nonzero components satisfy minj∈A |β0j |/τ → ∞.

The property of the PEL estimator β̂ is given in the following theorem.

Theorem 3. Under the regularity conditions A.1-A.4, B.1’ and B.2, as n → ∞,

1. (Selection consistency) with probability tending to 1, β̂2 = 0;

2. (Asymptotic efficiency)

√
nWnI

−1/2
B (β̂1 − β10)

d→ N(0, G).

where Wn ∈ Rq×d such that WnW T
n → G for G ∈ Rq×q matrix with fixed q and

IB = σ2Σ−1
11 .

Theorem 3 states the oracle property of PEL in linear regression. To see it, consider

the EL to estimate β subject to the constraint β2 = 0. The same analysis as that in

proving Theorem 3 shows that the maximizer β̃ of (3.2) subject to β2 = 0 follows the same

asymptotic distribution given in Part 2 of the theorem.

Similar to the mean case, we consider the following test for the nonzero regression

coefficient β1:

H0 : Lnβ10 = 0 vs H1 : Lnβ10 6= 0,
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where Ln is a q × d matrix such that LnLT
n = Iq for a fixed and finite q. Then the PEL

ratio test statistic is formulated in the same as that in the mean case:

ℓ̃(Ln) = −2

{

ℓp(β̂) − min
β:Lnβ1=0

ℓp(β)

}

. (3.4)

We summarize the property of the test statistic in the following theorem.

Theorem 4. Under the null hypothesis and assumptions in Theorem 3, as n → ∞, ℓ̃(Ln)
d→

χ2
q.

Thus, a (1 − α)-level confidence set for Lnβ is constructed as

Vα =

[

v : −2

{

ℓp(β̂) − min
β,Lnβ1=v

ℓp(β)

}

≤ χ2
q,1−α

]

(3.5)

where χ2
q,1−α is the 1− α level quantile of χ2

q distribution. Again, we have that P (Lnβ10 ∈
Vα) → 1 − α as n → ∞.

For linear regression models, Theorem 4 again gives a convenient approach for hypothesis

testing and constructing data oriented confidence sets free of any shape constraint. In high

dimensional data analysis, such feature is desirable. This together with the oracle property

of the PEL method by Theorem 3 demonstrate that in high dimensional data analysis, the

PEL method is indeed appealing due to its robustness and efficiency.

4 Tuning and Computation

To choose the penalty parameter τ , we use the following BIC motivated by Wang, Li and

Leng (2009)

BIC(τ) = 2ℓp(θτ ) + Cn · log(n) · dfτ (4.6)

where θτ is the PEL estimate of θ with tuning parameter τ ; dfτ is the number of nonzero

coefficient in θτ ; Cn is a scaling factor diverging to infinity at a slow rate (Wang, et al., 2009)

for p → ∞. When p is fixed, we can simply take Cn = 1, otherwise, Cn = max{log log p, 1}
seems to be a good choice. A rigorous proof of the consistency of this BIC for PEL is much

more challenging than that for the linear regression considered in Wang, et al. (2009), and

merits further investigation for future work.

Due to the non-quadratic nature of the objective function in PEL, an iterative algorithm

must be used to solve the minimization. In this paper, we propose to use iterative nonlinear

optimization algorithm together with the local quadratic approximation (LQA) studied in

Fan and Li (2001) to minimize PEL ratio defined by (2.6). Specifically, we approximate

pτ (|θj |) by pτ (|θ(k)
j |) + 1

2{p′τ (|θ
(k)
j |)/|θ(k)

j |}{θ2
j − (θ

(k)
j )2}, where θ

(k)
j is the kth step estimate

of θj . We then make use of the algorithm discussed in Owen (2001, Chapter 12) to obtain

the minimum through nonlinear optimization. The procedure is repeated until convergence.
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During the iteration, we follow the strategy in Fan and Li (2001) to set θ̂
(k)
j as zero whenever

the jth component of the kth step minimizer θ̂(k) of (2.6) is very close to zero. The data

analysis and the simulation in the next section suggest that this algorithm converges quickly,

usually in a few iterations given a good initial value. We have also examined the local linear

approximation in Zou and Li (2008) and the results obtained were similar to those obtained

by LQA presented in Section 5.

5 Simulation

We present extensive simulation studies to illustrate the usefulness of PEL. First, we want to

assess the performance of PEL in terms of variable selection and the accuracy of resulting

estimates. Second, we evaluate the Wilks’ phenomenon of PEL as in Theorem 2 and

Theorem 4. The tuning parameter τ is taken from a fine grid and the one which minimizes

BIC(τ) is used for estimation and constructing confidence regions.

5.1 PEL for Mean

We generate iid Zi ∈ Rp whose components follow χ2
1 distribution independently and take

Xi = µ0 + Σ1/2(Zi − 1), where the true parameter was set as µ0 = (1, 0.6, 0.3, 0, . . . , 0)T in

all simulation settings. We considered Σ = (σij) in settings with σii = 1 and σij = 0.3 or

0.7 respectively for i 6= j. By increasing the correlation coefficient, we planned to examine

the performance of the PEL estimator under different degrees of dependency. Note that in

this case the property of Xi satisfies the factor model (2.2).

We conducted simulations for different dimensionality p and sample size n, and the

simulation was repeated 1000 times for each designed case. For each replication, after

generating {Xi}n
i=1, µ̂ was obtained by minimizing PEL given by (2.6). The initial value of

the minimization was naturally chosen as X̄. The optimization was conducted through an

iterative nonlinear optimization procedure and LQA described in Section 4. For each given

µ in a neighborhood of X̄, λµ was obtained by solving (2.1). Then (2.6) was minimized

via nonlinear minimization procedure. During the iterative minimization, we followed the

convention in Fan and Li (2001) to set a component of µ̂ to be zero if it is less than some

threshold level very close to zero. In our simulation study, the threshold level was 0.001.

For comparison, we also computed the sample average X̄, the soft-thresholded estimator

µ̂ST,j = sign(X̄j)[|X̄j |−λ1]+ where [s]+ = s for s > 0 and 0 otherwise; the hard-thresholded

estimator µ̂HT,j = X̄jI(|X̄j | > λ2); and finally a quadratic loss based estimator

µ̂QL = argminµ (X̄ − µ)T S−1
n (X̄ − µ) + λ3

p
∑

j=1

|µj |

where Sn = n−1
∑

(Xi − X̄)(Xi − X̄)T . Here λk, k = 1, 2, 3 are the corresponding tuning
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parameters and are chosen by 5 fold cross validation to minimize the squared predictive

error for the mean vector. The quadratic loss estimator was motivated by the need to

incorporate the correlations among the components of X. We compared these estimators

in terms of the root mean square error (RMSE) for the nonzero components. For model

selection, we recorded the average numbers of zero coefficients which were correctly (True)

and incorrectly (False) identified.

The results were summarized in Table 1. We see that PEL had small average false

estimated zeros and the average numbers of zero components are close to p − 3. This

demonstrates the good performance of the proposed PEL approach in variable selection.

The results also illustrate that when the correlation between components of X were not zero,

the PEL estimator consistently had smaller RMSEs than other approaches, especially for

highly correlated data. This agrees with the results in Theorem 1 that by incorporating the

correlations among components, the PEL estimates can achieve improved efficiency. The

PEL estimator was also seen to outperform other the estimators also in variable selection,

usually by a large margin especially for highly correlated data.

The performance of the PEL confidence region was also evaluated. Setting Ln =

(1, 0, . . . , 0) in (2.8) leads to a confidence set for µ1, the first component of µ, at 1 − α

level. For the nominal size α = 0.05, we report the empirical frequencies of µ1 /∈ Vα for a

sequence of µ1 values in Table 2. We note that at the true value of µ1 = 1, the frequency

in rejecting the null hypothesis was close to the nominal level α = 0.05. This is the case for

all settings of the simulation and indicates that the proposed test maintained the size and

confirmed the result in Theorem 2. When the discrepancy between µ1 and the true value

was larger, the rejection frequency increased. In particular, when the difference between

µ1 and the true value was 0.2, the rejection rate was close to one for p = 40, n = 500. This

shows that the proposed PEL-based test had a good power for testing the null hypothe-

sis. In addition, we observe that the power of the test also increased when the correlation

became stronger.

5.2 PEL for Linear Models

We consider the following linear model (Tibshirani, 1996)

Y = XT β + σǫ,

where X ∈ Rp follows a multivariate normal distribution with unit variance and the cor-

relation between the ith and jth components satisfies ρij = 0.5|i−j|. The true β ∈ Rp is

given by β0 = (3, 1.5, 0, 0, 2, 0, . . . , 0)T . We set σ = 1 and let ǫ follow standard normal

distribution. We studied a few cases with varying p and n.

After generating {Xi, Yi}n
i=1 independently from the model, the PEL estimator was

obtained by minimizing (3.3) where solving EL in (3.2) is implemented by an approach
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Avg. No. of 0 Coefficients

RMSE True False

ρ µ1 µ2 µ3

p = 10, n = 50 X̄ 0.197 0.201 0.197 - -

0.3 µ̂ 0.190 0.218 0.243 6.038 0.426

µ̂ST 0.281 0.279 0.225 4.345 0.335

µ̂HT 0.205 0.324 0.284 6.056 0.882

µ̂QL 0.255 0.261 0.225 3.269 0.299

0.7 µ̂ 0.137 0.149 0.175 5.858 0.194

µ̂ST 0.296 0.287 0.238 4.466 0.328

µ̂HT 0.208 0.308 0.284 5.730 0.817

µ̂QL 0.180 0.181 0.175 3.019 0.100

p = 20, n = 100 X̄ 0.143 0.141 0.142 - -

0.3 µ̂ 0.133 0.147 0.185 15.623 0.194

µ̂ST 0.222 0.225 0.202 12.424 0.224

µ̂HT 0.142 0.195 0.257 15.594 0.676

µ̂QL 0.187 0.189 0.183 10.984 0.116

0.7 µ̂ 0.089 0.095 0.117 15.670 0.050

µ̂ST 0.227 0.227 0.206 11.790 0.189

µ̂HT 0.143 0.182 0.245 14.060 0.564

µ̂QL 0.129 0.131 0.128 10.231 0.009

p = 30, n = 200 X̄ 0.100 0.101 0.097 - -

0.3 µ̂ 0.095 0.092 0.134 26.229 0.056

µ̂ST 0.165 0.161 0.160 20.654 0.044

µ̂HT 0.099 0.097 0.208 25.225 0.408

µ̂QL 0.141 0.139 0.141 20.030 0.015

0.7 µ̂ 0.062 0.061 0.078 26.311 0.011

µ̂ST 0.166 0.162 0.159 19.521 0.038

µ̂HT 0.101 0.098 0.183 22.998 0.288

µ̂QL 0.095 0.093 0.096 18.595 0.001

p = 40, n = 500 X̄ 0.061 0.064 0.062 - -

0.3 µ̂ 0.057 0.056 0.065 36.809 0.000

µ̂ST 0.108 0.111 0.109 29.743 0.000

µ̂HT 0.063 0.063 0.080 35.099 0.031

µ̂QL 0.093 0.096 0.093 29.788 0.000

0.7 µ̂ 0.037 0.037 0.039 36.809 0.000

µ̂ST 0.108 0.109 0.109 27.947 0.003

µ̂HT 0.063 0.063 0.076 31.531 0.022

µ̂QL 0.062 0.064 0.062 28.486 0.000

Table 1: Simulation Results of PEL method in estimating the mean vector. X̄: the sample

mean; µ̂: our approach; µ̂ST : soft-threshold estimator; µ̂HT : hard-threshold estimator;µ̂QL:

the estimator using the quadratic loss.
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µ1 ρ 0.8 0.9 1.0 1.1 1.2

p = 10, n = 50 0.3 0.170 0.068 0.062 0.113 0.211

0.7 0.302 0.107 0.059 0.148 0.311

p = 20, n = 100 0.3 0.364 0.120 0.056 0.135 0.316

0.7 0.672 0.204 0.055 0.181 0.493

p = 30, n = 200 0.3 0.668 0.206 0.069 0.229 0.517

0.7 0.936 0.386 0.071 0.319 0.758

p = 40, n = 500 0.3 0.978 0.508 0.064 0.400 0.878

0.7 0.983 0.793 0.065 0.636 0.962

Table 2: The empirical frequency that a given value of µ1 does not fall in the 95% confidence

set constructed by (2.8). The truth is µ1 = 1.

Avg. No. of 0 Coefficients

RMSE True False

β1 β2 β5

p = 10, n = 50 β̂ 0.179 0.190 0.180 6.108 0

β̂or 0.168 0.169 0.147 - -

p = 20, n = 100 β̂ 0.132 0.144 0.122 15.624 0

β̂or 0.114 0.120 0.100 - -

p = 30, n = 200 β̂ 0.088 0.092 0.081 26.082 0

β̂or 0.080 0.082 0.070 - -

p = 40, n = 500 β̂ 0.054 0.055 0.049 36.685 0

β̂or 0.051 0.052 0.046 - -

Table 3: Simulation Results of PEL method in estimating the regression coefficient in linear

models. β̂: our method; β̂or: the oracle estimator assuming the true sparsity is known.

similar to that in the mean case. The results were summarized in Tables 3 and 4, in a

similar manner to Tables 1 and 2 for the mean vector case.

From Table 3, PEL did not incorrectly set nonzero coefficients as zero, showing its

attractiveness in minimizing the false negative rate. The average numbers of the estimated

zero coefficients were also close to p− 3, implying that the selected model was very close to

the true model in terms of nonzero coefficients. The PEL estimator β̂ was compared with

the oracle estimator β̂or given by the least square estimates knowing the true sparsity of

the model beforehand. We see that the RMSEs of PEL estimates were slightly larger but

quite close to those of the Oracle ones. For large sample size (n = 500, p = 40), the RMSEs

of β̂ and β̂or were almost identical. This confirmed the theoretical results in Theorem 3

that the PEL estimates achieve the efficiency of the Oracle estimator asymptotically.

For Ln = (1, 0, . . . , 0)T in (3.4), we also examined the empirical rejection frequency for

β1 /∈ Vα constructed by (3.5), where β1 is the first component of β. From Table 4, it is
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β1 2.8 2.9 3.0 3.1 3.2

p = 10, n = 50 0.272 0.139 0.085 0.115 0.254

p = 20, n = 100 0.393 0.173 0.086 0.172 0.401

p = 30, n = 200 0.602 0.226 0.082 0.238 0.641

p = 40, n = 500 0.937 0.496 0.073 0.476 0.948

Table 4: The empirical frequency that a given value of β1 does not fall in the 95% confidence

constructed by (3.5). The truth is β1 = 3.

seen that the empirical rejection rates in the simulation were close to the nominal level 0.05

when β1 were set as the true value in the simulation. This confirmed our result in Theorem

4. The power increased when the sample sizes became larger or β1 took values departing

further away from the true value in the data model. This demonstrates the promising

performance of PEL in hypothesis testing and confidence set construction.

6 Discussion

For high dimensional data analysis, we have proposed the penalized empirical likelihood

(PEL) method for variable selection and coefficient estimation, and illustrated its useful-

ness in estimating a mean vector and regression coefficients in linear models. We have

shown that the PEL ratio statistic is valid for hypothesis tests and constructing confidence

intervals. The use of a penalty function produces sparse models, which help construct the

confidence region in at least two aspects. First, the complexity of profiling is reduced due to

sparsity. Second, sparse models is useful for constructing tighter confidence regions. This

is analogous to the smaller standard errors if the penalized likelihood is used instead of the

usual likelihood (Fan and Li, 2001).

The PEL method is computation intensive. In return, PEL shares merits stemmed

from a nonparametric likelihood based approach, for example in terms of robustness to

distributional assumptions, automatic determination of the shape of confidence regions;

automatic incorporation of information and many others. Our results show that some

of the desirable properties of empirical likelihood continue to apply in regularized high

dimensional data analysis, and that PEL is an effective yet robust approach for variable

selection. We have confirmed these results by numerical simulation. In this paper, we have

limited our discussion to two illustrative scenarios. It is of great interest to explore the

usefulness of PEL in a wider context.
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Appendix

We first prove the results in the mean case. For (2.5), Theorem 1 of Chen et al. (2009) shows

that ||λµ0
|| = Op{(p/n)1/2} assuring the asymptotic expansion of ℓ(µ0). In the following

Lemma, we extend the result for λµ where µ is in a large enough neighborhood of µ0. For

notational purposes, we define Ip = (HT
1 , HT

2 ) where H1 ∈ Rd×p and H2 ∈ R(p−d)×p. We

present the following lemmas before proving Theorem 1.

Lemma 1. Let an = (p/n)1/2−δ, Dn = {µ : ||µ − µ0|| ≤ can} where δ, c > 0 are constants

being strictly positive and δ satisfies p1−δ/n1/2−δ → 0, then ||λµ|| = Op(an) for µ ∈ Dn.

Proof of Lemma 1

For µ ∈ Dn, let Sµ = n−1
∑n

i=1(Xi − µ)(Xi − µ)T and λµ = ρθ where ||θ|| = 1 is a unit

vector. Following the argument in Owen (2001, P220), we have

ρ{θT Sµθ − max
i=1,...,n

||Xi − µ||n−1|
n
∑

i=1

θT (Xi − µ)|} ≤ n−1|
n
∑

i=1

θT (Xi − µ)|.

As µ ∈ Dn, it is seen n−1|∑n
i=1 θT (Xi − µ)| = Op(an). We may decompose Sµ as

Sµ = Sµ0
+ n−1

n
∑

i=1

(Xi − µ0)(µ0 − µ)T + n−1
n
∑

i=1

(µ0 − µ)(Xi − µ0)
T + (µ0 − µ)(µ0 − µ)T .

Using the Frobenius norm of a matrix A defined as ||A|| =
√

tr(AT A), we note that

Sµ0
converges to Σ and ||Sn − Σ|| = Op(

√

p/n) by results in Chen et al. (2009) under

model (2.2). In addition, by the fact that ||n−1
∑n

i=1(Xi − µ0)|| = Op(
√

p/n), we have

||Sµ − Sµ0
|| = op(

√

p/n). Hence for µ ∈ Dn, Sµ also converges to Σ under the Frobenius

norm. Therefore, θT Sµθ = Op(1). By Lemma 2 of Chen et al. (2009), max
i

||Xi − µ0|| =

Op{p1/2} + op{p−(2k−1)/(4k)n1/(4k)}. Thus

max
i=1,...,n

||Xi − µ|| ≤ can + max
i=1,...,n

||Xi − µ0|| = O(an) + Op{p1/2} + op{p−(2k−1)/(4k)n1/(4k)}.

By condition A.3 and the specification of δ, Lemma 1 is established by noting max
i=1,...,n

||Xi −
µ||n−1|∑n

i=1 θT (Xi −µ)| = op(1). As a consequence, Lemma 1 implies that max
i=1...,n

λT
µ (Xi −

µ) = op(1). In the rest part of the proofs, we use Frobenius norm for matrices.

Lemma 2. As n → ∞, with probability tending to 1, ℓp(µ) given by (2.6) has a minimum

in Dn.

Proof: For µ ∈ Dn, by definition of L(µ),

Q1n(µ, λ) = n−1
n
∑

i=1

Xi − µ

1 + λT (Xi − µ)
= 0.
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By Lemma 1, we have that λT
µ (Xi − µ) is stochastically small uniformly for µ ∈ Dn.

Applying Taylor’s expansion on Q1n(µ, λµ), we have 0 = X̄ − µ − Sµλµ + rn where rn =

n−1
∑n

i=1

[

(Xi − µ){λT
µ (Xi − µ)}2(1 + ξi)

−3
]

is the remainder term and |ξi| ≤ |λT
µ (Xi−µ)|.

Inverting the expansion, we have λµ = S−1
µ (X̄ − µ) + S−1

µ rn. Substituting λµ into ℓ(µ),we

establish that

2ℓ(µ) = n(X̄ − µ)T S−1
µ (X̄ − µ) − nrT

n S−1
µ rn + 2/3

n
∑

i=1

{λT
µ (Xi − µ)}3(1 + ξi)

−4. (A.1)

For µ ∈ ∂Dn where ∂Dn denotes the boundary of Dn, we write µ = µ0 + canθµ where

θµ is a unit vector, we have a decomposition as 2ℓ(µ) = T0 + T1 + T2 where T0 = n(X̄ −
µ0)

T S−1
µ0

(X̄ − µ0), T1 = n(µ − µ0)
T S−1

µ (µ − µ0) and

T2 = n
{

(X̄ − µ0)
T (S−1

µ − S−1
µ0

)(X̄ − µ0) + 2(X̄ − µ0)
T S−1

µ (µ − µ0)
}

− nrT
n S−1

µ rn + 2/3
n
∑

i=1

{λT
µ (Xi − µ)}3(1 + ξi)

−4.

As n → ∞, we see that T1 = c2na2
nθµS−1

µ θµ ≥ c2na2
nγ−1

p (Sµ) = Op(na2
n), na2

n → ∞,

T2/T1
p→ 0 and 2ℓ(µ0) − T0 = op(1). This implies that for any C given, as n → ∞

P [{2ℓ(µ) − 2ℓ(µ0)} > C] → 1. Further, note that for n large,

ℓp(µ) − ℓp(µ0) = ℓ(µ) − ℓ(µ0) + n
∑

j

{pτ (|µj |) − pτ (|µ0j |)}

≥ ℓ(µ) − ℓ(µ0) + n
∑

j∈A

{pτ (|µj |) − pτ (|µ0j |)} ≥ ℓ(µ) − ℓ(µ0)

where the last inequality holds due to Condition B.1 and the unbiased property of the SCAD

penalty so that for j ∈ A, pτ (|µ0j |) = pτ (|µj |) when n is large. Hence, with probability

tending to 1, ℓp(µ) > ℓp(µ0) for µ ∈ ∂Dn, which establishes Lemma 2.

Proof of Theorem 1

By Lemma 2, we note that the minimizer of ℓp(µ) is in Dn. Considering µ ∈ Dn, we have

that for each of its component

1

n

∂ℓp(µ)

∂µj
= n−1

n
∑

i=1

−λµj

1 + λT
µ (xi − µ)

+ p′τ (|µj |)sign(µj) = Ij + IIj .

First, we show that

maxj /∈A|Ij | ≤ maxj /∈A|λµj |
∣

∣

∣

∣

∣

n−1
n
∑

i=1

1

1 + λT
µ (xi − µ)

∣

∣

∣

∣

∣

= Op(an)Op(1) = op(τ),

because ‖λµ‖ = Op(an) by Lemma 1 and τ(n/p)1/2−δ → ∞ by condition B.1 on pτ (·). This

implies that P (maxj /∈A|Ij | > τ/2) → 0. In addition, we note that |µj | ≤ can for j /∈ A and

τ/an → ∞. Thus for n large enough and j /∈ A, p′(|µj |) = τ and hence

IIj = p′(|µj |)sign(µj) = τsign(µj).
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Therefore, the sign of µj dominates ∂ℓp/∂µj asymptotically for j /∈ A. Namely, as n → ∞,

for any j /∈ A, with probability tending to one,

1

n

∂ℓp(µ)

∂µj
< 0 for µj ∈ (0, can) and

1

n

∂ℓp(µ)

∂µj
> 0 for µj ∈ (−can, 0).

Therefore µ̂2 = 0 with probability tending to one and we conclude part 1 of Theorem 1.

Next we show part 2 of Theorem 1. By result from part 1 and the definition of PEL,

the estimator µ̂ based on PEL is the constrained minimizer of (2.6) subject to H2µ = 0.

According to Qin and Lawless (1995), by the Lagrange multiplier method, it is equivalent

to minimizing a new objective function

ℓ̃(µ, λ, ν) = n−1
n
∑

i=1

log{1 + λT (Xi − µ)} +

p
∑

j=1

pτ (|µj |) + νT H2µ, (A.2)

where ν ∈ Rp−d is the vector of extra Lagrange multiplier. Define

Q̃1n(µ, λ, ν) = n−1
n
∑

i=1

Xi − µ

1 + λT (Xi − µ)
,

Q̃2n(µ, λ, ν) = −n−1
n
∑

i=1

λ

1 + λT (Xi − µ)
+ b(µ) + HT

2 ν and Q̃3n(µ, λ, ν) = H2µ

where b(µ) = {p′τ (|µ1|)sign(µ1), p
′
τ (|µ2|)sign(µ2), . . . , p

′
τ (|µd|)sign(µd), 0, . . . , 0}T . Note that

the minimizer (µ̂, λ̂, ν̂) satisfies that 0 = Q̃jn(µ̂, λ̂, ν̂) for j = 1, 2, 3. We have from Lemma 1

that λ̂ = Op(an) is stochastically small. And from Lemma 2, ||µ̂−µ0|| = Op(an). Therefore,

similar to the argument in Qin and Lawless (1995), from 0 = Q̃2n(µ̂, λ̂, ν̂) we conclude that

||ν̂|| = Op(an). Hence, we can use stochastic expansions of Q̃jn around value (µ0, 0, 0) for

j = 1, 2, 3. This leads to







−Q̃1n(µ0, 0, 0)

0

0






=







−Σ −I 0

−I 0 HT
2

0 H2 0













λ̂ − 0

µ̂ − µ0

ν̂ − 0






+ R(1)

n + R(2)
n + R(3)

n + R(4)
n (A.3)

where R
(1)
n = (R

T (1)
1n , R

T (1)
2n , 0)T , R

(1)
1n = n−1

∑n
i=1{λ̂T (Xi − µ̂)}2(Xi − µ̂)/{1+ λ̂(Xi − µ̂)}−

(Sµ̂ − Sµ0
)λ̂, R

(1)
2n = −n−1

∑n
i=1 λ̂λ̂T (Xi − µ̂)/{1 + λ̂(Xi − µ̂)}. Following Theorem 3 in

Chen et al. (2009), ||R(1)
1n || = op(1/

√
n) given Condition A.3. It is clear that ||R(1)

2n || =

Op(a
2
n) = op(1/

√
n). The other three terms are given by R

(2)
n = {0, bT (µ0A), 0}T , R

(3)
n =

{0, {b′(µ∗)(µ̂−µ0)}T , 0}T and R
(4)
n = −{{(Sµ0

−Σ)λ̂}T , 0, 0}T . By the implication of SCAD

penalty function in B.2, we see that ||R(2)
n || = op(1/

√
n) and ||R(3)

n || = op(1/
√

n). Further,

since b(·) and b′(·) only incur at those nonzero components, R
(2)
n = R

(3)
n = 0 for n large

enough. As ||Sµ0
− Σ|| = Op(

√

p/n), ||R(4)
n || = Op(

√

p/n)Op(an) = op(1/
√

n).

Define K11 = −Σ, K12 = (−I, 0), K21 = KT
12, K22 =

(

0 HT
2

H2 0

)

and K =

(

K11 K12

K21 K22

)
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and let ϑ = (µT , νT )T . By inverting (A.3), we have

(

λ̂ − 0

ϑ̂ − ϑ0

)

= K−1

















−Q1n(µ0, 0, 0)

0

0






+ Rn











(A.4)

where Rn =
∑4

k=1 R
(k)
n and ||Rn|| ≤

∑4
k=1 ||R

(k)
n || = op(1/

√
n) by above arguments. Ap-

plying matrix inverse by blocks, we have that

K−1 =

(

K−1
11 0

0 0

)

+

(

−K−1
11 K12

I

)

A−1
(

−K21K
−1
11 I

)

where A = K22 −K21K
−1
11 K12 =

(

Σ−1 HT
2

H2 0

)

. Then ϑ̂− ϑ0 = A−1K21K
−1
11 Q̃1n(µ0, 0, 0) +

op(1/
√

n). Another matrix inverse by blocks on A gives

A−1 =

(

Σ − ΣHT
2 (H2ΣHT

2 )−1H2Σ −ΣHT
2 (H2ΣHT

2 )−1

−(H2ΣHT
2 )−1H2Σ (H2ΣHT

2 )−1

)

.

This implies

µ̂ − µ0 = {I − ΣHT
2 (H2ΣHT

2 )−1H2}{(X̄ − µ0) + R1n} (A.5)

where R1n is the corresponding component in vector K−1Rn and ||R1n|| = op(1/
√

n). It is

clear that the expansion of the nonzero component µ1 is given by

µ̂1 − µ10 = {H1 − H1ΣHT
2 (H2ΣHT

2 )−1H2}{(X̄ − µ0) + R1n}. (A.6)

Let IA = H1ΣHT
1 − H1ΣHT

2 (H2ΣHT
2 )−1H2ΣHT

1 = Σ11 − Σ12Σ
−1
22 Σ21,

Yni =
1√
n

Zni where Zni = WnI
−1/2
A {H1 − H1ΣHT

2 (H2ΣHT
2 )−1H2}(Xi − µ0).

It is straightforward to verify that

P (||Yni|| > ǫ) ≤ n−1ǫ−2E||Zni||2 = O(1/n) and E||Yni||4 = n−2E(ZT
niZni)

2 = O(p2/n2).

Hence,
∑n

i=1 E||Yni||2I(||Yni|| > ǫ) ≤ n
√

E||Yn1||4
√

P (||Yn1|| > ǫ) → 0. As WnW T
n → G,

by Lindeberg-Feller’s CLT (Van Der Vaart, 1998), we have

√
nWnI

−1/2
A {H1 − H1ΣHT

2 (H2ΣHT
2 )−1H2}(X̄ − µ0)

d→ N(0, G).

Finally, by noting that ||√nWnI
−1/2
A H1R1n||2 ≤ nγd(WnW T

n )γ−1
1 (IA)γ−2

1 (K)||Rn||2 = op(1),

the proof of Theorem 1 is completed.
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Proof of Theorem 2

First, we present the asymptotic expansion of ℓ(µ̂) where µ̂ is the minimizer of (2.6), i.e. the

EL ratio evaluated at the PEL estimates. Let zi = λ̂T (Xi − µ̂). Since maxi |λ̂T (Xi − µ̂)| =

op(1) as implied by Lemma 1, by Taylor’s expansion and results in proof of Theorem 1, we

have

ℓ(µ̂) =
n
∑

i=1

zi −
n
∑

i=1

z2
i /2 +

n
∑

i=1

z3
i /{3(1 + ξi)

4} + op(1), (A.7)

where |ξi| < |λ̂T (Xi − µ̂)| and the op(1) term is due to the penalty function. Recall in

Lemma 2, we have shown the expansion for µ ∈ Dn as

λµ = S−1
µ (X̄ − µ) + S−1

µ rn,

where rn = n−1
∑n

i=1

[

(Xi − µ){λT
µ (Xi − µ)}2(1 + ξi)

−3
]

and |ξi| ≤ |λT
µ (Xi − µ)|. Substi-

tuting the expansion of λ̂ and µ̂ given by (A.5) into zi we show that

2ℓ(µ̂) = n(X̄ − µ0)
T HT

2 (H2ΣHT
2 )−1H2(X̄ − µ0) + op(1). (A.8)

Next we develop the expansion of ℓp(µ̂) under the null hypothesis H0 : Lnµ1 = 0.

Under the null hypothesis, since LnLT
n = Iq, there exists H̃2 such that H̃2µ = 0 and

H̃2H̃
T
2 = Ip−d+q. Now by repeating the proof of Theorem 1, we establish that under the

null hypothesis, the estimation of µ can be obtained by minimizing

ℓ̃p(µ, λ, ν) =

n
∑

i=1

log{1 + λT (Xi − µ)} + n

p
∑

i=1

pτ (|µi|) + νT H̃2µ, (A.9)

Denote the minimizer of (A.9) by (µ̆, λ̆, ν̆). By the proof of part 1 in Theorem 1, µ̆2 = 0

with probability tending to 1. Thus n{∑p
i=1 pτ (|µ̂j |)−

∑p
i=1 pτ (|µ̆j |)} = 0 with probability

tending to 1. By replacing H2 in (A.5) by H̃2 and by expansion (A.7), we establish that

2ℓ(µ̂)Lnµ1=0 = 2ℓ(µ̆) = n(X̄ − µ0)
T H̃T

2 (H̃2ΣH̃T
2 )−1H̃2(X̄ − µ0) + op(1). (A.10)

Combining (A.8) and (A.10), we have

ℓ̃(Ln) = n(X̄ − µ0)Σ
−1/2{P1 − P2}Σ−1/2(X̄ − µ0) + op(1)

where P1 = Σ1/2H̃T
2 (H̃2ΣH̃T

2 )−1H̃2Σ
1/2 and P2 = Σ1/2HT

2 (H2ΣHT
2 )−1H2Σ

1/2. As P1 − P2

is an idempotent matrix of rank q, P1−P2 can be written as ΞT
nΞn where Ξn is a q×p matrix

such that ΞnΞT
n = Iq (Fan and Peng, 2004). Further we see that

√
nΞnΣ−1/2(X̄ − µ0)

d→
N(0, Iq) can be straightforwardly established. Then n(X̄ − µ0)

T Σ−1/2(P1 − P2)Σ
−1/2(X̄ −

µ0)
d→ χ2

q and Theorem 2 follows.

To establish Theorem 3 for linear models, we need the following Lemmas. We use the

same set of notations as those in the mean case in the following proofs.

Lemma 3. Let an = (p/n)1/2−δ, Dn = {β : ||β − β0|| ≤ can} where δ, c > 0 are constants

and δ satisfies p1−δ/n1/2−δ → 0 , then ||λβ|| = Op(an) for β ∈ Dn.
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Proof of Lemma 3

For simplicity, we assume E(Xi) = 0 in the following proof. It can be extended to case

E(Xi) = µ by centering the random vector. We start from the following inequality similar

to that in Lemma 1. Let λβ = ρθ, where ρ = ||λβ|| and θ is a unit vector

ρ{θT Tn(β)θ − max
1≤i≤n

||Ui(β)||n−1|
n
∑

i=1

θT Ui(β)|} ≤ n−1|
n
∑

i=1

θT Ui(β)|,

where Tn(β) = n−1
∑n

i=1 Ui(β)UT
i (β). Note that Ui(β0) = Xiǫi and Xi satisfies the factor

model (2.2) and ǫi is independent of Xi satisfying condition A.4. Therefore it is straight-

forward to show that ||n−1
∑n

i=1 Ui(β0)|| = Op(
√

p/n). And hence n−1|∑n
i=1 θT Ui(β0)| =

Op(
√

p/n). As Tn(β0) = n−1
∑n

i=1 XiX
T
i ǫ2i , it is seen that that θT Tn(β0)θ = Op(1). Fur-

ther, by noting condition A.4 that m4k = E(ǫ4k
i ) < ∞, we show that

max
i

||Ui(β0)|| =

{

max
i

(XT
i Xiǫ

2
i )

k − m2kE(XT
i Xi)

k + m2kE(XT
i Xi)

k

}1/(2k)

=

[

var{(XT
i Xiǫ

2
i )

k}max
i

{

(XT
i Xiǫ

2
i )

k − m2kE(XT
i Xi)

k

var{(XT
i Xiǫ2i )

k

}

+ m2kE(XT
i Xi)

k

]1/(2k)

= O(p1/2) + op{p−(2k−1)/(4k)n1/(4k)}.

Therefore max1≤i≤n ||Ui(β0)||n−1|
∑n

i=1 θT Ui(β0)| = op(1). And we conclude that ||λβ0
|| =

Op(
√

p/n). For other β ∈ Dn, we note that n−1|∑n
i=1 θT Ui(β)| = n−1|∑n

i=1 θT {Ui(β0) +

XiX
T
i (β − β0)}|. Since

Tn(β) − Tn(β0) = −2n−1
n
∑

i=1

XiX
T
i XT

i (β − β0)ǫi + n−1
n
∑

i=1

XiX
T
i {XT

i (β − β0)}2,

we have θT Tn(β)θ = θT Tn(β0)θ + op(1) = Op(1). By results in the proof of Lemma

1, since E(Xi) = 0, we have maxi ||Xi|| = Op(p
1/2) + op{p−(2k−1)/(4k)n1/(4k)}. Fur-

ther we note that for β ∈ Dn, maxi ||XiX
T
i (β − β0)|| ≤ can maxi ||Xi||2 = op(1). Then

maxi ||Ui(β)||n−1|∑n
i=1 θT Ui(β)| = op(1) by Condition A.3 and thus Lemma 3 follows. As

consequences of Lemmas 1 and 3, maxi |λT
β Xi| = op(1) and maxi |λT

β Ui(β)| = op(1).

Before proving Theorem 3, we present the following lemma.

Lemma 4. As n → ∞, with probability tending to 1, ℓp(β) given by (3.3) has a minimum

in Dn.

Proof of Lemma 4

We sketch the proof of Lemma 4 as follows. By Lemma 3 and the definition of EL, for

β ∈ Dn,

0 = Q1n(β, λβ) = n−1
n
∑

i=1

Ui(β)

1 + λT
β Ui(β)



PENALIZED EMPIRICAL LIKELIHOOD 20

can be expanded as 0 = n−1
∑n

i=1 Ui(β) − λT
β Tn(β) + rn, where the remainder term rn =

n−1
∑n

i=1 Ui(β){λT
β Ui(β)}2(1+ξi)

−3 and |ξi| ≤ |λT
β Ui(β)|. This implies λβ = T−1

n (β)Ū(β)+

T−1
n (β)rn where Ū(β) = n−1

∑n
i=1 Ui(β). Substituting this into ℓ(β), we show, similar to

that in proof of Lemma 2, that

2ℓ(β) = nŪ(β)T T−1
n (β)U(β) − nrT

n T−1
n (β)rn + 2/3

n
∑

i=1

{λT
β Ui(β)}3(1 + ξi)

−4.

Note that Ui(β0) = Xiǫi and Xi follows model (2.2). Also, for β in in boundary set ∂Dn,

2ℓ(β) − 2ℓ(β0) is dominated by a positive term similar to that in proving Lemma 2

n{n−1
n
∑

i=1

(XiX
T
i )(β − β0)}T T−1

n (β){n−1
n
∑

i=1

(XiX
T
i )(β − β0)} = Op(na2

n).

Therefore, as n → ∞, P [2{ℓ(β) − ℓ(β0)} > C] → 1 for any C > 0. , Hence, we conclude

the existence of a minimum in Dn similar to that in proving Lemma 2.

Proof of Theorem 3

By Lemma 4, we denote the solution to ℓp(β) as β̂ satisfying ||β̂ − β0|| ≤ can. We shall

again show that for any j /∈ B, with probability tending to one,

1

n

∂ℓp(β)

∂βj
< 0 for βj ∈ (0, ǫn) and

1

n

∂ℓp(β)

n∂βj
> 0 for βj ∈ (−ǫn, 0) and ǫn = can.

Firstly, we have

1

n

∂ℓp(β)

∂βj
= n−1

n
∑

i=1

−λT
β XiXij

1 + λT
β Ui(β)

+ p′τ (|βj |)sign(βj) =: Ij + IIj ,

Note that maxi |λT
β Xi| = op(1) from Lemma 3, for n large enough we have

max
j /∈B

|Ij | ≤ maxi|λT
β Xi|max

j /∈B

∣

∣

∣

∣

∣

n−1
n
∑

i=1

Xij

∣

∣

∣

∣

∣

≤ maxi|λT
β Xi|

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1
n
∑

i=1

Xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= op(
√

p/n).

This implies that P (maxj /∈A|Ij | > τ/2) → 0. Then the conclusion of part 1 follows.

The rest part of the proof is similar to that in proving Theorem 1, sketched as follows.

For simplicity in presentation, we assume σ2 = 1. Since β̂2 = 0 with probability tending to

one, we consider the constrained minimization of ℓ(β) subject to H2β = 0. By the Lagrange

multiplier method, this leads to minimizing the objective function

ℓ̃(β, λ, ν) = n−1
n
∑

i=1

log{1 + λT Ui(β)} +
d
∑

j=1

pτ (|βj |) + νT H2β.

For β ∈ Dn, ||λ|| and ||ν|| are op(1) by Lemma 3 and 0 = Q̃1n(β, λ, ν) := n−1
∑n

i=1 Ui(β)/{1+

λT Ui(β)}. Define

Q̃2n(β, λ, ν) = −n−1
n
∑

i=1

XiX
T
i λ

1 + λT Ui(β)
+ b(β) + HT

2 ν and Q̃3n(β, λ, ν) = H2β
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where b(β) = {p′τ (|β1|)sign(β1), p
′
τ (|β2|)sign(β2), . . . , p

′
τ (|βd|)sign(βd), 0, . . . , 0}T . We ex-

pand Q̃jn(β, λ, ν) at (β0, 0, 0)T as follows:






Q̃1n(β0, 0, 0)

0

0






=







−Σ −Σ 0

−Σ 0 HT
2

0 H2 0













λ̂ − 0

β̂ − β0

ν̂ − 0






+ Rn (A.11)

where Rn =
∑5

k=1 R
(k)
n , R

(1)
n = (R

T (1)
1n , R

T (1)
2n , 0)T , R

(1)
1n ∈ Rp and R

(2)
1n ∈ Rp and the kth

component of R
(1)
jn , j = 1, 2, is given by

R
(1)
jn,k =

1

2
(η̂ − η0)

T ∂2Qjn,k(η
∗)

∂η∂ηT
(η̂ − η0),

η = (β, λ)T , η∗ = (β∗, λ∗) satisfying ||β∗ − β0|| ≤ ||β̂ − β0|| and ||λ∗|| ≤ ||λ̂||, R
(2)
n =

{0, bT (β0), 0}T , R
(3)
n = {0, {b′(µ0)(β̂ − β0)}T , 0}T , R

(4)
n = {{(Tn(β0) − Σ)λ̂}T , 0, 0}T and

R
(5)
n = {{(Tn(β0)−Σ)λ̂}T , {(Tn(β0)−Σ)(β̂−β0)}T , 0)}T . For k = 1, . . . , 4, R

(k)
n = op(1/

√
n)

following the arguments in proving Theorem 1. Since ||Tn(β0)−Σ|| = Op(
√

p/n), ||β̂−β0|| =

Op(an) and ||λ̂β|| = Op(an), ||R(5)
n || = op(1/

√
n) as well. By (A.11) and matrix inverting

by blocks as those in proving Theorem 1, we have

β̂ − β0 = {Σ−1 − Σ−1HT
2 (H2Σ

−1HT
2 )−1H2Σ

−1}
(

n−1
n
∑

i=1

Xiǫi + R1n

)

.

where R1n is the corresponding component in Rn. The asymptotic covariance of
√

nβ̂1 =
√

nH1β̂ is given by IB = H1Σ
−1HT

1 − H1Σ
−1HT

2 (H2Σ
−1HT

2 )−1H2Σ
−1HT

1 . By decomposi-

tion Σ−1 =

(

Σ̇11 Σ̇12

Σ̇21 Σ̇22

)

where Σ̇ij = HiΣ
−1HT

j , we have IB = Σ̇11−Σ̇12Σ̇
−1
22 Σ̇21. Applying

matrix inverse by blocks on Σ, we note that

Σ−1 =

(

Σ−1
11 + Σ−1

11 Σ12F
−1Σ21Σ

−1
11 −Σ−1

11 Σ12F
−1

−F−1Σ21Σ
−1
11 F−1

)

where F = Σ22 − Σ21Σ
−1
11 Σ12. This implies IB = Σ−1

11 . Since ||√nWnI
−1/2
B R1n|| = op(1),

applying Lindeberg-Feller’s CLT, part 2 of Theorem 3 follows.

Proof of Theorem 4

The proof of Theorem 4 follows that of Theorem 2. Under the null hypothesis, there exist

H̃2 such that H̃2β0 = 0 and H̃2H̃
T
2 = Ip−d+q. Define Ū = n−1

∑n
i=1 Xiǫi. Essentially, we

have shown in the proof of Theorem 2 that

ℓ̃(Ln) = nŪΣ−1/2{P1 − P2}Σ−1/2Ū + op(1)

where P1 = Σ−1/2H̃T
2 (H̃2Σ

−1H̃T
2 )−1H̃2Σ

−1/2 and P2 = Σ−1/2HT
2 (H2Σ

−1HT
2 )−1H2Σ

−1/2.

Then Theorem 4 can be verified by noting that P1 −P2 is an idempotent matrix with rank

q. The rest of the proof follows that of Theorem 2 straightforwardly.



PENALIZED EMPIRICAL LIKELIHOOD 22

References

Bai, Z. and Saranadasa, H. (1996). Effect of high dimension: by an example of a two sample

problem. Statistica Sinica 6 311 - 329.

Candes, E. and Tao, T. (2007). The Dantzig selector: statistical estimation when p is much

larger than n (with discussion). The Annals of Statistics 35 2313-2351.

Chen, S. X. (1994). Empirical likelihood confidence intervals for linear regression coeffi-

cients. Journal of Multivariate Analysis 49 24-40.

Chen, S. X. and Cui, H-J. (2006). On Bartlett correction of empirical likelihood in the

presence of nuisance parameters. Biometrika 16 1101-1115.

Chen, S. X. and Van Keilegom, I. (2009). A review on empirical likelihood methods for

regression (with discussion). Test 18 415-447.

Chen, S. X., Peng, L. and Qin, Y-L. (2009). Effects of Data Dimension on Empirical

Likelihood. Biometrika 96 711-722.

DiCiccio, T. J., Hall, P. and Romano, J.P. (1991). Empirical likelihood is Bartlett-

correctable. The Annals of Statistics 19 1053-1061.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association 96 1348–1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature

space (with discussion). Journal of the Royal Statistical Society Series B 70 849-911.

Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of

parameters. The Annals of Statistics 32 928-961.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning

Data Mining, Inference, and Prediction. 2nd Edition. Springer-New York.

Hjort, N. L., McKeague, I., and Van Keilegom, I. (2009). Extending the scope of empirical

likelihood. The Annals of Statistics 37 1079-1111.

Lv, J. and Fan, Y. (2009). A unified approach to model selection and sparse recovery using

regularized least squares. The Annals of Statistics 37 3498-3528.

McKeague, I. W. (2009). Comments on: A review on empirical likelihood methods for

regression. Test 18 461-462.
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