
Calibrated Empirical Likelihood for

High-Dimensional Data in Regression Model

Hong Guo†, Changliang Zou† and Zhaojun Wang†∗
†LPMC and Department of Statistics, School of Mathematical Sciences,

Nankai University, Tianjin 300071, China

January 3, 2013

Abstract

High-dimensional data is becoming prevalent, and many new methodology and accom-
panying theory for high-dimensional data analysis have emerged in response. Empirical
likelihood, as a classical nonparametric method of statistical inference, has been proved
to possess many advantages. So, in this paper, we apply the empirical likelihood method
to high-dimensional data in regression model with random and fixed designs respectively,
and investigate it’s performance in high-dimensional setting. The work of this paper is
two-fold. First, we investigate the asymptotic behavior of empirical likelihood for re-
gression coefficients and give the regularity conditions under which the standard normal
calibration of empirical likelihood is valid in high dimensions. Second, to reduce the
lack-of-fit and improve the coverage accuracy, we apply the calibration method proposed
by Liu et al. (2012) to empirical likelihood for linear model with random regressor. Our
simulation study results in finite sample settings indicate that the proposed calibration
method has the best performance in all situations designed in the present paper, com-
pared with other calibration methods involved in this paper. For the fixed design setting,
we give empirically a calibration of empirical likelihood ratio function, which improve the
coverage accuracy to some extent. This can be verified from the simulation results.
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1 Introduction

Empirical likelihood (EL) method, proposed by Owen (1988, 1991), is a nonparametric tool
for statistical inference. It possesses both the reliability of nonparametric methods and effec-
tiveness of parametric likelihood approaches. The increasing interest in EL method is mainly
due to its attractive properties: nonparametric version of Wilk’s theorem (Wilks, 1938) and
Bartlett correction (DiCiccio et al., 1991; Chen and Cui, 2006). Owen (2001) provided a
comprehensive overview on the EL.

Recently, high-dimensional data, whose dimensionality p tends to infinity as the sample
size n → ∞, is becoming prevalent. Such as Hyperspectral Imagery, Internet portrals, Fi-
nance data, especially datasets in genomics and other areas of computational biology. So
high-dimensional data analysis is a very significant and active area of research. However,
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when dimensionality p diverges, traditional statistical methods may not cope with this kind
of growth of dimensionality. Thereby, restudying the performance of traditional statistical
methods in high-dimensional settings and while establishing completely new approaches for
high-dimensional data are very necessary and exigent. There has been a large body of inter-
esting work going on in these areas. For example, Chen et al. (2010) considered the problem
that testing certain structures of covariance matrix in the situations where p and n are of the
same order or p can be larger order than n. Fan and Li (2001), Zou and Hastie (2005), Wang
et al. (2009) and others studied the problem of variable selection in various high-dimensional
setting.

At the same time, the method of EL has also been applied to some high-dimensional
problems and there is an increasing interest in the asymptotic behavior of the empirical
likelihood ratio (ELR) when the sample size n and the dimension of observation p both tend
to infinity. The leading work on this research includes Tang and Leng (2010) for penalized
EL with application to high-dimensional variable selection; Chen et al. (2009) for asymptotic
properties of the EL for mean under a general multivariate model; Hjote et al. (2009) for a
general investigation on the ELR based on plug-in estimation.

Liu et al. (2012) considered the EL for population mean in high-dimensional settings.
They analyzed the asymptotic behavior of EL under a general multivariate model and pro-
vided weak restrictive conditions under which the best rate p = o(n1/2) for the asymptotic
normality was achieved. Furthermore, they proposed a new calibration method for ELR,
which had better performance in most situations, compared with other existing calibration
methods.

In this paper, motivated by Liu et al. (2012), we consider EL for high-dimensional data
in linear model with random and fixed designs respectively. We investigate the asymptotic
behaviors of the ELR function for these two cases and then propose a new calibration method
of the ELR function, which has better performance in terms of coverage accuracy than other
calibration methods presented in this paper, observed from simulation study. The rest paper
is organized as follows. In Section 2, we investigate the asymptotic results of ELR in linear
model with random design and present the sufficient conditions under which the asymptotic
normality holds. Furthermore, the calibrations of ELR are given in this section. The asymp-
totic normality of ELR for fixed design case is considered in Section 3. In Section 4, some
simulation studies are conducted. Section 5 concludes the paper and gives further discussion.
The technical proof of main results and some lemmas are summarized in Appendix.

2 EL in linear model with random design

In this section, we consider the linear model Yi = Xi
tβ + εi, 1 ≤ i ≤ n, where β ∈ Rp is a

column vector of unknown coefficients, Xi ∈ Rp is a column random vector with dimension
p ≥ 1, Yi ∈ R and εi is a random variable with mean zero and finite variance σ2. For
convenient, we assume, in this paper, that Xi and εi are independent. In the regression
model, the data are of the form (xti, yi) for 1 ≤ i ≤ n, which are observations of n i.i.d.
random vectors (Xt

i , Yi). Without loss of generality, we assume EXi = 0, the random vector
can be centered to have mean zero if otherwise, and Σn = Var(Xi) is positive definite. Let
Sn = 1

n

∑n
i=1XiX

t
i .
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According to Owen (1991), the ELR function for β is defined as

ln(β) = −2 sup{
n∑
i=1

log(nωi) : ωi ≥ 0,
n∑
i=1

ωi = 1,
n∑
i=1

ωiZi(β) = 0 }, (2.1)

where Zi = Zi(β) = Xi(Yi−Xt
iβ) is column vector of p components. It is known that Zi’s are

i.i.d. by construction. Let β0 denote the true value of β, then β = β0 if and only if EZi = 0.
Hence, to test β = β0, we only test whether EZi = 0. According to Owen (1990), the EL
inference may be done with respect to the random vector Zi’s.

For fixed p, Owen (1991) showed the following Wilk’s phenomenon:

ln(β0)
L→ χ2

p as n→∞, (2.2)

if the second moments of XiX
t
i and XiYi exist.

In high dimension settings, p diverges to infinity as n → ∞, and then the asymptotic
property (2.2) of ln(β0) becomes invalid. It is known that χ2

p is asymptotically normal with
mean p and variance 2p, so we may expect that

(ln(β0)− p)/
√

2p
L→ N(0, 1) as n→∞. (2.3)

One aim of this paper is just to ensure the sufficient conditions under which the standard
normal calibration of the ELR is still valid. Another one is to study the practical calibration
of the ELR in finite sample settings.

In this paper p is allowed to grow with the sample size n and p = o(n), which guarantee
that the distribution of ELR ln(β0) will not degenerate into a point mass at infinity, according
to Tsao (2004, Theorem 2). Applying Lagrange multiplier method we get

ln(β0) = 2
n∑
i=1

log( 1 + λtZi ), (2.4)

where λ satisfies
n∑
i=1

Zi
1 + λtZi

= 0. (2.5)

Throughout the paper, unless otherwise simplicity stated, let γ1(A) ≥ γ2(A) ≥ · · · ≥
γp(A) denote the eigenvalues of a symmetric matrix A. In this paper we assume that there
exists positive constants 0 < c1 < c2 <∞ such that, uniformly in n, c1 < γp(Σn) ≤ γ1(Σn) <
c2, which leads to c1/σ

2 < γp(Σ
∗
n) ≤ γ1(Σ∗n) < c2/σ

2 where Σ∗n = E(Z1Z
t
1) = σ2Σn. This

is a basic assumption in the analysis of EL for high-dimensional data, similar condition was
considered in Hjort et al. (2009).

For convenience, we define some notation. For a random vector ξ, we define ‖ξ‖q =
(E‖ξ‖q)1/q. Let αi1i2···ik = E(U1i1U1i2 · · ·U1ik) and Ai1i2···ik = 1

n

∑n
j=1 Uji1Uji2 · · ·Ujik where

Uij is the j-th component of Ui ≡ Σ
∗−1/2
n Zi. In particular, αi = 0, αij = δij , here δij is the

kronecker delta.
We give the following regularity conditions in this section, which are similar to Conditions

C1-C6 presented in Liu et al. (2012):

Condition 1. p−1
∑p

j=1 E|X1j |q < K for some K > 0 and q ≥ 4.
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Condition 2. E|ε1|q <∞ for the same q as in Condition 1.

Condition 3. ‖X1‖qγ3/2
1 (Σn) = o(nq/(2q+4)).

Condition 4. p2+4/q/n → 0.

Condition 5. p = o(n2/5).

Condition 6.
∑p

i,j=1 α
iijj = O(p2).

Condition 7.
∑p

i,j,k=1 α
ijkαijk = O(p5/2) and

∑p
i,j,k=1 α

ijjαikk = O(p5/2).

Condition 1 is also assumed by Hjort et al. (2009). Conditions 1 and 4 guarantee that the
eigenvalues of Sn are close to those of Σn, so that 0 < c1 < γp(Sn) ≤ γ1(Sn) < c2 < ∞
holds with probability tending to one, when n is large. The similar statement holds for S∗n.
Condition 3, together with Conditions 1, 2 and 4, implies sup1≤i≤n |λt∗Zi| = op(1), which
guarantees Taylor expansions of (2.4) and (2.5). The Condition 6 means that each fourth
moment of Ui, like αiijj , is bounded. Obviously, Condition 6 is weak. Chen et al. (2009)
claimed that p = o(n1/2) might be the best growth rate. For this rate, Condition 7 is needed,
which is a relatively strong condition compared with Condition 6.

We give the following theorem, which may be reviewed as a corollary of Theorem 1 of Liu
et al. (2012). The proofs are parallel to that presented in Appendix A of Liu et al. (2012)
and thus we omit that here

Theorem 1. Under Conditions 1-4 and 6, if Condition 5 or 7 holds, then

(ln(β0)− p)/
√

2p
d→ N(0, 1) as n→∞.

Theorem 1 indicates that, under some regularity conditions, (2.3) is valid. Particularly,
when q = 4 in Condition 4, the asymptotic normality of ln(β0) holds for p = o(n1/3), which
achieves the the same rate to that of Liu et al. (2012) and improves the growth rate p = o(n1/4)
of Chen et al. (2009), without assumptions of a multivariate model structure and strong
condition that all the components of observations are uniformly bounded, which rules out even
normal cases. When q ≥ 8, the rate for asymptotic normality of ln(β0) is p = o(nq/(2q+4)),
which is close to p = o(n1/2) when q is large enough. Chen et al. (2009) pointed out that
p = o(n1/2) may be the best rate for asymptotic normality of ELR.

We have shown previously that (2.3) is valid under certain conditions and may be used
to conduct tests or construct confidence regions, where the critical values can be obtained
from the normal approximation (2.3). However, our simulation study show that the empirical
coverage percentage based on calibration (2.3) has a large deviation from the nominal coverage
level when the ratio p/n is large, referring to Table 1. This fact is mainly due to that p and
2p do not agree with the true mean and variance of ELn(β0) respectively. Similar findings
have also been revealed by Chen et al. (2009) and Liu et al. (2012).

According to the arguments of Liu et al. (2012), we similarly consider two approximations
of ELR in (2.1) to improve the coverage accuracy, that is T1n ≡ nZ̄tnS

∗−1
n Z̄n and T2n ≡

nZ̄nS
∗−1
1n Z̄tn with S∗1n = 1

n

∑n
i=1(Zi − Z̄n)(Zi − Z̄n)t, the sample variance-covariance matrix

of Zi. Owen (2001, Chapter 3) pointed out that

T1n = T2n

(
1 +

T2n − 1

n

)−1

.
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Furthermore, we give the approximation expressions of mean and variance of T1n and T2n

below,

ET1n ≈ E1n ≡ p+
1

n
(

p∑
i,j,k=1

αijkαijk +

p∑
i,j,k=1

αijjαikk),

Var(T1n) ≈ V1n ≡ 2p+
1

n
(12

p∑
i,j,k=1

αijjαikk + 12

p∑
i,j,k=1

αijkαijk − 2

p∑
i,j=1

αiijj),

E(T2n) ≈ E2n ≡ p+
1

n
(p2 + 2p+

p∑
i,j,k=1

αijkαijk +

p∑
i,j,k=1

αijjαikk),

Var(T2n) ≈ V2n ≡ 2p+
1

n
(8p2 + 16p+ 12

p∑
i,j,k=1

αijjαikk + 12

p∑
i,j,k=1

αijkαijk − 2

p∑
i,j=1

αiijj).

We find that the approximation expressions of mean and variance of T1n and T2n are the
same as that of Liu et al. (2012). Indeed, the calculations are similar and refer to Appendix
B of Liu et al. (2012) for details.

Denote (Êin, V̂in) for i = 1, 2 the moment estimation of (Ein, Vin), which are obtained by
substituting the unknown quantities in Ein and Vin for corresponding moments. In practice
applications, we can calculate the critical values according to

(ln(β0)− an)/
√
bn

L→ N(0, 1) as n→∞. (2.6)

where (an, bn) may be (p, 2p) or (Êin, V̂in) for i = 1, 2. In Section 4, we undertake a simulation
study to compare five calibration methods in finite sample size settings, from the viewpoint
of coverage accuracy. As expected, the new calibration method proposed by Liu et al. (2012)
has the best performance for linear model with random regressor.

3 EL for linear model with fixed design

Now we consider the linear regression model with fixed design

Yi = xi
tβ + εi, 1 ≤ i ≤ n, (3.1)

where β is a p-dimensional column vector of unknown parameters and xi is a p× 1 vector of
the ith fixed design point, for which Yi is the response. Here we suppose that εi’s are i.i.d.
with mean zero and finite variance σ2. This means that we assume homoscedasticity in the
present paper. The data observed in the form {(xti, Yi) | 1 ≤ i ≤ n}.

For the linear regression model (3.1), we know that

E(Yi | xi) = xtiβ, E(εi) = 0, Var(εi) = σ2.

Similarly, we define auxiliary variables Zi = Zi(β) = xi(Yi − xtiβ) for 1 ≤ i ≤ n and Let β0

be the true value of β. We define Vn = 1
n

∑n
i=1 V

(i) = σ2

n

∑n
i=1 xix

t
i with V (i) = Var(Zi). It

can be seen that Zi’s are independent but not identically distributed due to the fixed design
point and E{Zi(β0)} = 0 for 1 ≤ i ≤ n.

The ELR function for β is similar to that in (2.1), (2.4) and (2.5) except that Zi’s are
independent but not identically distributed here.
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Let X be the p× n design matrix whose n columns are the xi’s. We assume that X is of
full rank p (p ≤ n). Consider the following regularity conditions:

a. There exists positive absolute constants c3 and c4 such that

0 < c3 < inf
n
γp(V

(n)) ≤ sup
n
γ1(V (n)) < c4 <∞ ;

b.both E(ε41) and max1≤i≤n ‖xi‖4 have a finite upper bound for all n, where ‖ · ‖ denotes the
Euclidean norm.

Notice that, by Condition a, we have γp(
1
nXX

t) > c3/σ
2 and γ1( 1

nXX
t) < c4/σ

2.
For fixed p, Owen (1991) proved that, under Conditions a and b,

ln(β0)
L→ χ2

p as n→∞, (3.2)

Furthermore, Chen (1993) showed that the ln(β0) is Bartlett correctable.
However, when p grows with the sample size n and p = o(n), (3.2) is invalid. We can

show that under some conditions,

ln(β0)− p
wn/n

L→ N(0, 1), as n→∞, (3.3)

where w2
n =

∑n
i=1 σ

2
i with

σ2
1 = (xt1V

−1
n x1)2E(ε41)− [tr(V −1

n V (1))]2,

σ2
i = 4

i−1∑
k=1

tr(V −1
n V (i)V −1

n V (k)) + (xtiV
−1
n xi)

2E(ε41)− [tr(V −1
n V (i))]2, 1 < i ≤ n.

Similar to the arguments of Liu et al. (2012), if we can show that

ELn(β0)− nZ̄tnS̃−1
n Z̄n = op(

√
p), (3.4)

nZ̄tn(V −1
n − S̃−1

n )Z̄n = op(
√
p) (3.5)

and
nZ̄tnV

−1
n Z̄n − p
wn/n

L→ N(0, 1), (3.6)

here S̃n = 1
n

∑n
i=1 ZiZ

t
i and Z̄n = 1

n

∑n
i=1 ZiZ

t
i , then (3.3) is valid.

For this, we define some notation. Let ξi = V −1
n Zi and define

ᾱj1···jk = n−1
n∑
i=1

E(ξij1 · · · ξijk) and Āj1···jk = n−1
n∑
i=1

E(ξij1 · · · ξijk − ᾱ
j1···jk),

where ξij is the j-th component of ξi. In particular, it is easy to see that ᾱi = 0, ᾱij = δij ,
δij is the kronecker delta.

In addition to the usual regularity Conditions a and b, we still need the following regu-
larity conditions in the present section, which is similar to the Conditions 1-7 in Section 2,
except that replace Conditions 1, 2, 3, 6, and 7 by:

Condition 1
′
. p−1

∑p
j=1 |xij |q < K1, 1 ≤ i ≤ n, for some constant K1 > 0 and q ≥ 4;
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Condition 2
′
. E|ε1|2q < K2 for some constant K2 > 0;

Condition 3
′
. p = o(n

q−2
2q );

Condition 6
′
.
∑p

i,j=1 ᾱ
iijj = O(p2);

Condition 7
′
.
∑p

i,j,k=1 ᾱ
ijkᾱijk = O(p5/2) and

∑p
i,j,k=1 ᾱ

ijjᾱikk = O(p5/2).

We have the following Propositions and Theorems, referring to Appendix for proofs.

Proposition 1. Assume Conditions 1
′
, 2
′

and 3
′
, if Condition 5 or both Conditions 4 and

7
′

hold, then (3.4) is valid.

Proposition 2. Suppose Conditions 1
′
, 2
′
, 4 and 6

′
, then (3.5) holds.

Proposition 3. Under model (3.1), suppose that E(ξα1
ij1
· · · ξαl

ijl
) ≤ B for some positive absolute

constant B <∞ and any 1 ≤ i ≤ n, whenever
∑l

i=1 αi ≤ 6. Then, if p3/n→ 0,

nZ̄tnV
−1
n Z̄n − p
wn/n

L→ N(0, 1).

Summarizing the results of Propositions 1, 2 and 3, and note that

{2( c3c4 )2pn2 +O(np2)}1/2 ≤ wn ≤ {2( c4c3 )2pn2 +O(np2)}1/2, and
op(
√
p)

wn/n
= op(1).

We have the following conclusion.

Theorem 2. Assume Conditions 1
′ − 3

′
, 4, 6

′
and the same conditions in Proposition 3,

then
ln(β0)− p
wn/n

L→ N(0, 1), as n→∞.

Remarks. (1) Obviously, a major difference between Theorem 1 and Theorem 2 is that
the asymptotic variance of ELR function ln(β0) depends on the design points and the forth
moment of error in fixed regressor setting. This mainly because that the auxiliary variables
Zi, 1 ≤ i ≤ n, are independent but not identically distributed and the variance of Zi depends
on the fixed design point xi; (2) We have shown that the growth rate of p for asymptotic
normality of ln(β0)can achieve to the order of

√
n in random design setting. However, we

investigate from the Proposition 3 that the rate is p = o(n1/3) in the non-random case.
We hope to give a calibration method of ln(β0) in fixed design setting, such as T2n, and

try to calculate its approximation mean and variance. However, it is very difficult when Zi’s
are independent but not identically distributed. On the other hand, it has been empirically
observed that an analogue of T2n, say Tn = nZ̄tnS̃

−1
1n Z̄n, with S̃1n = 1

n−1

∑n
i=1(Zi − Z̄n)(Zi −

Z̄n)t, is possibly better approximation to the ELR function ln(β0) than T2n. Our simulation
study also indicates that calibration of ln(β0) with the sample mean and variance of Tn, which
are obtained by resampling technique such as bootstrap, can improve the coverage accuracy
to some extent for moderate sample size, compared with the calibration method (3.5).

4 Simulation study

In this section, we carried out some simulation studies to evaluate the finite-sample perfor-
mance of the proposed calibration methods of ln(β0) in random and fixed design settings,
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Table 1: Coverage percentages when p = cn0.4, c = 3, 4, 5

n p MEL OEL SEL STEL BEL Ên Ê1n Ê2n V̂n V̂1n V̂2n

25 95.76 83.68 81.12 88.20 88.88 29.3 26.5 29.9 79.4 60.4 87.4
200 33 95.24 73.36 70.08 85.56 82.32 41.3 36.6 42.3 137.5 95.4 141.6

43 94.56 56.20 52.56 80.08 71.60 58.9 50.0 59.6 240.2 147.5 224.9

33 95.40 88.76 87.28 89.96 92.08 35.9 34.0 36.9 85.7 70.9 94.0
400 44 95.76 82.80 80.68 86.96 88.68 49.8 45.9 51.0 132.6 99.6 140.1

58 96.20 72.92 70.56 83.76 84.40 68.7 61.9 70.6 197.8 144.1 213.7

42 94.92 91.52 90.36 91.08 93.48 44.2 42.5 44.8 95.5 84.2 102.6
800 55 96.60 89.48 87.44 89.76 93.32 58.7 55.9 59.8 127.6 111.8 143.2

72 96.84 86.80 85.32 88.92 92.08 77.9 73.8 80.4 179.3 150.6 203.9

in terms of coverage accuracy. The nominal coverage level is selected as 1 − α = 0.95. We
demonstrate the advantages of the proposed calibration methods in several different growth
rates and sample sizes. Each result is based on 2000 replications.

First, we conducted simulations for random design setting. Similar to Liu et al. (2012),
we compared the following five calibrations in our simulation studies:

(1) the proposed method (named as modified EL, MEL), i.e. the normal calibration (2.6)
with (an, bn) = (Ê1n, V̂1n). In our simulation (Ê1n, V̂1n) is the simulated value (i.e. sample
mean and variance) of (E1n, V1n);
(2) the ordinary χ2

p calibration (2.2) (OEL);
(3) the standard normal calibration (2.3) (SEL);
(4) the normal calibration (2.6) with (an, bn) = (Ê1n, V̂1n) (STEL);
(5) the χ2

p calibration with Bartlett correction (BEL).

The regressors Xi’s were generated from multi-normal distribution with zero mean vector
and covariance matrix Σ = (σij), where σij = 0.5|i−j|, 1 ≤ i, j ≤ p. The noise εi’s were
drawn from the chi-squared distribution χ2

p,3 with three degrees of freedom. We considered

the growth rate p = cn0.4, with c = 3, 4 and 5 for each sample size n = 200, 400 and 800, in
the current simulation studies.

These simulation results presented in Table 1 basically agree with those that were discov-
ered by Liu et al. (2012) and show that the MEL calibration method still works well in the
linear regression with random regressors and outperforms the other four calibration methods
in term of empirical coverage probability.

For the fixed design case, we performed another simulation study to compare the coverage
accuracy of two types of confidence regions: one is based on the calibrated ln(β0) with the
sample mean and variance of Tn (denoted as CT in the tables) obtained from 500 Bootstrap
samples for each simulated data set; and the other one is based on the calibration in (3.5)
(denoted as CW in the tables). In this simulation, we generated the p-dimensional fixed
design point xi’s from the standard multivariate normal distribution and considered the t-
distribution with 5 degrees of freedom for the noise ε. Two types of growth rates were
considered: the slower growth rate (i) p = 10, 20 and 30 for each value of n = 200, 400 and
600; the faster growth rate (ii) p = 15, 30 and 45 for n = 200, 400 and 600 respectively. Our

8



Table 2: Coverage percentages when n = 200, 400, 600 and p = 10, 20, 30

p n CW CT Ên Ê2 V̂n V1 V̂2

200 84.85 93.80 12.3 10.5 33.5 23.6 195.3
10 400 89.25 91.25 11.2 10.3 25.0 21.8 92.6

600 89.90 87.80 10.8 10.1 24.2 21.2 65.6

200 66.25 86.75 28.6 22.4 100.8 53.1 438.0
20 400 81.45 84.35 24.4 21.1 69.8 46.6 216.4

600 87.25 85.10 22.7 20.5 53.3 44.4 124.6

200 44.05 73.75 49.6 35.4 227.9 88.4 750.6
30 400 70.75 79.10 39.2 32.2 122.1 74.3 319.2

600 78.15 77.80 36.4 31.6 102.6 69.6 209.2

Table 3: Coverage percentages when n = 200, 400, 600 and p = 15, 30, 45

p n CW CT Ên Ê2 V̂n V1 V̂2

200 77.75 91.50 20.0 16.3 59.8 37.6 309.1
15 400 84.90 87.40 17.9 15.9 47.7 33.8 156.3

600 88.65 86.65 16.7 15.4 39.7 32.6 98.3

200 44.20 74.40 49.5 35.3 226.0 88.6 712.3
30 400 70.75 77.05 39.3 32.4 123.3 74.3 317.9

600 78.15 77.80 36.4 31.6 102.6 69.6 209.2

200 12.05 48.30 93.1 58.0 655.6 153.1 1390.6
45 400 46.90 63.15 65.9 50.8 234.8 121.6 507.2

600 64.80 67.10 58.4 48.4 179.7 111.1 313.4

simulation results are summarized in Tables 2 and 3, also involving the simulated means and
variances of ln(β0) (labeled as (Ên, V̂n)) and Tn (labeled as (Ê2, V̂2)), and the simulated value
of asymptotic variance in (3.3) (labeled as V1).

It can be observed from the Tables 2 and 3 that for moderate sample sizes, the empirical
coverage probabilities based on CT are higher than that based on CW, especially for the case
of n = 200 and p = 10, the coverage percentage of CT is closer to the nominal coverage level,
that is more accurate. Thus the calibration method CT is a good alternative in moderate
sample size settings. We can observe from Tables 2 and 3 that the CW has improving
coverage accuracy along with the increasing sample size, however the coverage accuracy of
CT decreases somewhat when the sample sizes becomes large, even the coverage probability
is lower than that of CW for large sample size, such as n = 600. This is mainly because that
the Bootstrap samples, obtained by resampling technique with replacement, may not involve
as more as information of data when the sample size increases. This problem may become
severe as n is sufficiently large. It can also be seen that the coverage probabilities of both
CT and CW decrease when the dimension p increases, especially when n = 200 and p = 45
in Table 3, the performance of CW becomes rather worse and is unacceptable.

In addition, to investigate the asymptotic normality of empirical likelihood ratio, we
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conducted further simulation study under the same simulation schemes to that in fixed design
setting through Q-Q plots. Figures 1 and 2 display the Q-Q plots of ln(β0) standardized with
CW and CT (described above) against the normal distribution, for the two different growth
rates (i) and (ii). It can be observed that as n increases for a fixed p or p decreases for a
fixed n, there is a general convergence of standardized empirical likelihood ratio to N(0, 1).
Similar to Chen et al. (2009), the convergence in Figure 1 for the slower growth rate (i) is
faster than that in Figure 2 for the faster growth rate (ii).
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Figure 1: Normal Q-Q plots of two standardizations of ln(β0) for data drawn from tp,5: CT
(solid) and CW (dotted).

5 Discussion

In this paper, we studied the asymptotic behavior and calibrations of EL for high-dimensional
data in parametric regression and gave different calibration methods of EL for random re-
gressors and fixed design settings respectively. It can be seen from the simulation results for
the fixed design setting that, the coverage accuracy of the proposed calibration method based

10
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Figure 2: Normal Q-Q plots of two standardizations of ln(β0) for data drawn from tp,5: CT
(solid) and CW (dotted).

on the Tn statistic becomes low for the large values of n, ever though it is higher than that
based on (3.5) for moderate sample sizes. So it is still necessary to propose another calibration
method with good coverage accuracy for large sample size. Besides, Chen and Van (2009)
gave a review on EL in nonparametric regression, semiparametric regression, regression with
missing response or covariates and regression with censored data for fixed dimensionality p.
Exploring the properties, computations and asymptotic behaviors of EL in these regression
models for high-dimensional data will be an interesting and challenging work. There has been
some contribution to this area. Li et al. (2012) studied the EL for varying coefficient par-
tially linear model in high-dimensional setting. They proposed a bias-corrected EL (BCEL)
method for the estimation or inference about the parameters of interest in semiparametric
models, which leads to the normal calibration of ELR statistics in high-dimensional setting.
As shown in that paper, the standard normal calibration of ELR with (p, 2p) is very rough
and has large coverage error for high-dimensional data. So it is great interest and necessity
to study the calibration of this corrected EL, which is a direction of our future work.
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Appendix: Proofs of Propositions 1, 2 and 3

Now our task is to prove the Propositions 1, 2 and 3 and we need auxiliary lemmas. Most
of the lemmas here are analogues of those in Appendix A of Liu et al. (2012), but little
difference. Actually, the large part of arguments here parallel that in Liu et al. (2012), also
the manner of proof.

From the time being, let Ln ≡ max1≤i,j≤n | S̃n,i,j−Vn,i,j | be the largest absolute element

of S̃n − Vn with S̃n = 1
n

∑n
i=1 ZiZ

t
i and Vn = 1

n

∑n
i=1 Var(Zi) = σ2

n XX
t. Let M(A) denote

the largest element of matrix A. For convenience, define (A)ij and (a)i as the (i, j) element
of a matrix A and the i-th component of a vector a, respectively. To avoid confusion, we
state here that the auxiliary variable Zi appeared in the following arguments and formulas is
that for fixed design case.

Lemma 1. Assume Conditions 1
′

and 2
′
. Then, for any given ε > 0 and some positive

constant Cq only depending on q,

P(Ln ≥ ε) < CqK
2
1K2

p2

nq/2εq
.

Proof. Let Rn = S̃n − Vn
∧
= (Rjk)p×p with Rjk = 1

n

∑n
i=1 xijxik(ε

2
i − σ2), j, k = 1, · · · , p.

We have

P(|Rjk| ≥ ε) ≤
E|
√
nRjk|q

(
√
nε)q

=
n−

q
2 E|

∑n
i=1 xijxik(ε

2
i − σ2)|q

nq/2εq
.

Let Wijk = xijxik(ε
2
i − σ2), 1 ≤ i ≤ n and j, k = 1, 2, · · · , p. Obviously, for any fixed j, k,

Wijk’s are independent but not identically distributed random variables with mean zero. By
the Theorem 2 of S. W. Dharmadhikari et al. (1969), we have

E|
n∑
i=1

Wijk|q ≤ Cqnq/2−1
n∑
i=1

E|Wijk|q ≤ CqE|ε1|2qnq/2−1
n∑
i=1

|xij |q|xik|q,

where Cq is a finite positive constant only depending on q. This leads to

P(|Rjk| ≥ ε) ≤ CqE|ε1|2q
1
n

∑n
i=1 |xij |q|xik|q

nq/2εq
.

Therefore, by Conditions 1
′

and 2
′
, we obtain

P(Ln ≥ ε) ≤
p∑

j,k=1

P(|Rjk| ≥ ε) ≤ CqE|ε1|2qp2
1
n

∑n
i=1(p−1

∑p
j=1 |xij |q)(p−1

∑p
j=1 |xik|q)

nq/2εq

< CqK
2
1K2

p2

nq/2εq
. �

Lemma 2.
max
1≤i≤p

|γi(Vn)− γi(S̃n)| ≤ pLn
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Proof. The proof follows a similar line to that of Lemma 2 in Appendix A of Liu et al. (2012)
and refer to that for details.�

According to Lemma 1 and Conditions 1
′

and 2
′
, we have

P(pLn ≥ ε) ≤ CqK2
1K2

p2+q

nq/2εq
,

which, together with Condition 4, leads to pLn = op(1). This means that the eigenvalues of

S̃n are close to those of Vn.
Summarizing the results of Lemmas 1 and 2, we have the following Corollary:

Corollary 1. Suppose Conditions 1
′
, 2
′

and 4, then c3 < γp(S̃n) ≤ γ1(S̃n) < c4 holds with
probability tending to one as n→∞.

In order to prove sup1≤i≤n |λtZi| = op(1) for the Taylor expansions of (2.4) and (2.5), we
need the following lemma. Let ρn ≡ max1≤i≤n ‖Zi‖.

Lemma 3. Assume Conditions 1
′

and 2
′
, then

ρn = op(n
1/qp1/2).

Proof. It is easy to see that

ρn = max
1≤i≤n

{
‖Zi‖q/2 − E‖Zi‖q/2 + E‖Zi‖q/2

}2/q

≤
{

max
1≤i≤n

∣∣‖Zi‖q/2 − E‖Zi‖q/2
∣∣+ E|ε1|q/2 max

1≤i≤n
‖xi‖q/2

}2/q
.

Applying Cp inequality twice, we have ‖xi‖q/2 ≤ pq/4
(∑p

j=1 p
−1|xij |q

)1/2 ≤ pq/4K1/2
1 . Thus,

max1≤i≤n ‖xi‖q/2 = O(pq/4).
On the other hand, according to Condition 2

′
and the Lemma 3 of Owen (1990), which

continues to hold for independent but not identically distributed random variables, we get

max
1≤i≤n

∣∣‖Zi‖q/2 − E‖Zi‖q/2
∣∣ ≤ max

1≤i≤n

{∣∣‖Zi‖q/2 − E‖Zi‖q/2
∣∣[

Var(‖Zi‖q/2)
]1/2 }

max
1≤i≤n

{
Var(‖Zi‖q/2)

}1/2

≤ max
1≤i≤n

{∣∣‖Zi‖q/2 − E‖Zi‖q/2
∣∣[

Var(‖Zi‖q/2)
]1/2 }

max
1≤i≤n

{
‖xi‖q/2

}
(E|ε1|q)1/2

= op(n
1/2)O(pq/4) = op(n

1/2pq/4).

The last second equality is due to Lemma 3 of Owen (1990) and Condition 2
′
.

Summarizing the above, we obtain ρn =
{
op(n

1/2pq/4) +O(pq/4)
}2/q

= op(n
1/qp1/2). �

Lemma 4. If Conditions 1
′
, 2
′

and 3
′

hold, then

sup
1≤i≤n

|λtZi| = op(1), λ = S̃−1
n (Z̄n + ζn),

where Z̄n = Op(p
1/2n−1/2) and ζn = op(n

1−q
q p3/2).
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Proof. Let λ = ‖λ‖ϑ, where ϑ is a unit vector. Then we get from (2.5) that

1

n

n∑
i=1

ϑtZi
1 + ‖λ‖ϑtZi

= 0.

It follows that

0 =
1

n

n∑
i=1

ϑtZi
1 + ‖λ‖ϑtZi

=
1

n

n∑
i=1

ϑtZi −
‖λ‖ 1

n

∑n
i=1 ϑ

tZiZ
t
iϑ

1 + ‖λ‖ϑtZi
.

Since
0 < 1 + ‖λ‖ϑtZi ≤ 1 + ‖λ‖ max

1≤i≤n
‖Zi‖ = 1 + ‖λ‖ρn,

hence
1

n

n∑
i=1

ϑtZi −
‖λ‖ 1

n

∑n
i=1 ϑ

tZiZ
t
iϑ

1 + ‖λ‖ϑtZi
≤ ϑtZ̄n −

‖λ‖
1 + ‖λ‖ρn

ϑtS̃nϑ,

which leads to ϑtZ̄n(1 + ‖λ‖ρn) ≥ ϑtS̃nϑ‖λ‖ and then ‖λ‖(ϑtS̃nϑ− ϑtZ̄nρn) ≤ ϑtZ̄n follows.
Furthermore, we note that

E(Z̄tnZ̄n) =
1

n2

n∑
i,j=1

xtixjE(εiεj) =
σ2

n
tr(

1

n
XtX) =

σ2

n
tr(

1

n
XXt)

≤ p

n2

n∑
i=1

γ1(xix
t
iσ

2) <
p

n
c4 = O(

p

n
),

which implies that Z̄n = Op(p
1/2n−1/2).

Since ‖ϑtZ̄n‖ ≤ ‖Z̄n‖, hence ϑtZ̄n = Op(p
1/2n−1/2) and ϑtZ̄nρn = op(1). Notice that

ϑtS̃nϑ ≥ γp(S̃n) > c3 holds with probability tending to one as n → ∞. Therefore, we have

‖λ‖ = Op(|ϑtZ̄n|/c3) = Op(‖Z̄n‖) = Op(p
1/2n−1/2) and sup1≤i≤n |λtZi| = Op(pn

2−q
2q ) = op(1).

This enables us to expand (2.5) to get Z̄n−S̃nλ+ζn = 0 with ζn = 1
n

∑n
i=1 Zi(λ

tZi)
2(1+op(1)).

Then we derive λ = S̃−1
n (Z̄n + ζn). In addition, it is easy to see that

ζn ≤ 2

n

n∑
i=1

‖Zi‖|λtZi|2 ≤
2

n

n∑
i=1

ρnλ
tZiZ

t
iλ ≤ 2ρn‖λ‖2γ1(S̃n) = ρn‖λ‖2Op(γ1(Vn))

= Op(ρn‖λ‖2) = Op(op(n
1/qp1/2)Op(p/n)) = op(n

1−q
q p3/2).

Furthermore, we get from the last second equality that

Op(op(n
1/qp1/2)Op(p/n)) = Op(op(n

1/qp1/2)Z̄np
1/2n−1/2) = Z̄nop(1).

It follows that ζn = Z̄nop(1). �

Lemma 5. Suppose Conditions 1
′
, 2
′

and 4, then

(S̃n − V −1
n )Z̄n = (V −1

n Z̄n)op(1).
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Proof. Note firstly that γ1(S̃−1
n ) < 1/c3 with probability tending to one as n → ∞.

Applying Lemma 2 we have

‖Vn(S̃−1
n − V −1

n )Z̄n‖ = ‖(Vn − S̃n)S̃−1
n Z̄n‖ =

[
Z̄nS̃

−1
n (Vn − S̃n)2S̃−1

n Z̄n

]1/2

≤ ‖Z̄n‖γ1(S̃−1
n ) max

1≤i≤n
|γi(Vn − S̃n)| ≤ ‖Z̄n‖γ1(S̃−1

n )pLn

= ‖Z̄n‖Op(pLn) = ‖Z̄n‖op(1),

which implies that (S̃−1
n − V −1

n )Z̄n = (V −1
n Z̄n)op(1). �

The following result is the direct consequence of Lemmas 4 and 5.

Corollary 2. Under Conditions 1
′
, 2
′
, 3
′

and 4, we have

λ = V −1
n Z̄n(1 + op(1)).

Proof of Proposition 1

Review that we have shown previously sup1≤i≤n λ
tZi = op(1), hence we can expand (2.4) as

follows:

ELn(β0) = 2

n∑
i=1

{
λtZi −

1

2
λtZiZ

t
iλ+

1

3
(Ztiλ)3(1 + op(1))

}
= n{2Z̄tnλ− λtS̃nλ}+ Γ1,

where Γ1 = 2
3

∑n
i=1(Ztiλ)3(1 + op(1)). By substituting λ for S̃−1

n (Z̄n + ζn) in the expression
above, we get

ELn(β0) = nZ̄tnS̃
−1
n Z̄n + Γ1 − Γ2,

where Γ2 = nζtnS̃
−1
n ζn. It is clear that the result of Proposition 1 is followed if we can prove

that Γ1 = op(
√
p) and Γ2 = op(

√
p).

Indeed, according to Corollary 2 we have

Ztiλ = ZtiV
−1
n Z̄n(1 + op(1)).

This, together with the proof of Lemma 4, leads to Γ1 = 2
3

∑n
i=1(ZtiV

−1
n Z̄n)3(1 + op(1)) and

ζn = 1
n

∑n
i=1 Zi(Z

t
iV
−1
n Z̄n)2(1 + op(1)). On the other hand, we note that Γ2 = nζtn(S̃−1

n −
V −1
n )ζn + nζtnV

−1
n ζn. Similar to Lemma 5, we can prove that (S̃−1

n − V −1
n )ζn = V −1

n ζnop(1).
Therefore we get Γ2 = nζtnV

−1
n ζn(1 + op(1)).

It is not difficult to see that we can rewrite Γ1 and Γ2 as

Γ1 =
2n

3

p∑
i,j,k=1

ᾱijkĀiĀjĀk(1 + op(1)),

Γ2 = n

p∑
i,j,k,r,s=1

ᾱijkᾱirsĀjĀkĀrĀs(1 + op(1)).

With tedious calculation we further obtain

E(
2n

3

p∑
i,j,k=1

ᾱijkĀiĀjĀk) =
4

3n

p∑
i,j,k=1

(3ᾱijjᾱikk + 2ᾱijkᾱijk)(1 + o(1)),

E(n

p∑
i,j,k,r,s=1

ᾱijkᾱirsĀjĀkĀrĀs) =
1

n

p∑
i,j,k=1

(2ᾱijkᾱijk + ᾱijjᾱikk)(1 + o(1)).
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Recalling that (A)ij denotes the (i, j) element of a matrix A and (a)i the i-th component
of a vector a. Since

E
∣∣ξrk|2 = E|(V −1/2

n Zr)k
∣∣2 = E

[(
V −1/2
n xrx

t
rV
−1/2
n ε2r

)
kk

]
=
(
V −1/2
n xrx

t
rV
−1/2
n

)
kk
σ2,

Hence, Using Cp inequality, Cauchy-Schwartz inequality, Young inequality and Lemma 4 of
Liu et al. (2012), we can verify that

|
p∑

i,j,k=1

ᾱijkᾱijk| ≤ c4

c3
p

p∑
i,j=1

ᾱiijj and
∣∣ p∑
i,j,k=1

ᾱijjᾱikk
∣∣ ≤ c4

c3
p

p∑
i,j=1

ᾱiijj .

Summarizing the arguments above, together with Condition 6
′
, we get

E
(2n

3

p∑
i,j,k=1

ᾱijkĀiĀjĀk
)2 ≤ c4

c3

20p

3n

p∑
i,j

ᾱiijj(1 + o(1)) = O(p3/n),

and

E
(
n

p∑
i,j,k,r,s=1

ᾱijkᾱirsĀjĀkĀrĀs
)
≤ 3p

n

c4

c3
ᾱiijj(1 + o(1)) = O(p3/n),

which means that Γ1 = Op(p
3/2n−1/2) = op(

√
p) and Γ2 = Op(p

3/n) by Markov’s inequality.

Further, p = o(n2/5) is sufficient for Γ2 = op(
√
p), and under the Condition 7

′
, the order of p

can achieve p = o(n1/2). �
The following Lemma is needed for the proof of Proposition 2.

Lemma 6. Let Gn = Ip −Nn with Nn = V
−1/2
n S̃nV

−1/2
n . Suppose Condition 6

′
, then

tr(G2
n) = Op(p

2/n).

Proof. Note that

G2
n = Ip −

2

n

n∑
i=1

ξiξ
t
i +

1

n2

n∑
i,j=1

ξiξ
t
iξjξ

t
j .

Thus,

E
[
tr(G2

n)
]

= E
[
p− 2

n

p∑
r=1

n∑
i=1

ξ2
ir +

1

n2

n∑
i,j=1

p∑
r,s=1

ξirξisξjrξjs
]

= p− 2

p∑
r=1

ᾱrr +
1

n2

p∑
r,s=1

(
∑
i=j

+
∑
i 6=j

)E(ξirξisξjrξjs)

≤ −p+
1

n

p∑
r,s=1

ᾱrrss +
1

n2

p∑
r,s=1

n∑
i,j=1

E(ξirξis)E(ξjrξjs)

=
1

n

p∑
r,s=1

ᾱrrss = O(p2/n).

This implies that tr(G2
n) = Op(p

2/n). �
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Proof of Proposition 2

Define en = nZ̄tn(V −1
n − S̃−1

n )Z̄n. It is easy to see that

en = nξ̄tnξ̄n − nξ̄tnV 1/2
n S̃−1

n V 1/2
n ξ̄n = nξ̄tn(Ip −N−1

n )ξ̄n.

Note that Ip −N−1
n = −Gn −G2

n − · · · −Gkn +Gkn(Ip −N−1
n ). Hence,

en = n[−ξ̄tnGnξ̄n − ξ̄tnG2
nξ̄n − · · · − ξ̄tnGknξ̄n] + nξ̄tnG

k
n(Ip −N−1

n )ξ̄n. (A1)

Now we consider the convergence of the right-hand side of (A1). First, we focus on the
first term. By Lemmas 4 and 5, we have

‖ξ̄n‖2 ≤
1

c3
‖Z̄n‖2 = Op(p/n),

and |γi(Gn)| ≤ [tr(G2
n)]1/2 = Op(p/

√
n). Therefore,

|ξ̄tnGknξ̄n| ≤ ‖ξ̄n‖2 max
1≤i≤p

|γi(Gkn)| ≤ ‖ξ̄n‖2[tr(G2
n)]k/2 = Op(p

k+1/nk/2+1),

which implies that the series n
∑∞

k=1(−ξ̄tnGknξ̄n) is convergent, as long as n is fixed and
p = o(n1/2). On the other hand, with lengthy algebra we have

E|nξ̄tnGnξ̄n|2 = n2E|Z̄tn(Vn − S̃n)Z̄n|2 = O(p3/n),

which means that nξ̄tnGnξ̄n = Op(p
3/2/n1/2) = op(

√
p). Therefore we conclude from above

that n
∑∞

k=1(−ξ̄tnGknξ̄n) = op(
√
p).

For the second term in (A1), we will next show in the following arguments that the
remainder term nξ̄tnG

k
n(Ip −N−1

n )ξ̄n is negligible as k →∞. For this, we firstly note that∣∣nξ̄tnGkn(Ip −N−1
n )ξ̄n

∣∣ ≤ ∣∣nξ̄tnGknξ̄n∣∣+
∣∣nξ̄tnGknN−1

n ξ̄n
∣∣

and ∣∣nξ̄tnGknξ̄n∣∣ = nOp(p
k+1/nk/2+1) = Op(p

k+1/nk/2).

Furthermore, applying the Lemma 4 of Liu et al. (2012), which remains valid for the case of
any n× n symmetric matrix A = (aij), that is , M(A) ≤ max1≤i≤n |γi(A)|, we have∣∣nξ̄tnGknN−1

n ξ̄n
∣∣ ≤ n‖ξ̄n‖2 max

1≤i≤n

{
|γi(GknN−1

n )|
}
≤ np‖ξ̄n‖2M(GknN

−1
n )

≤ np2‖ξ̄n‖2 max
1≤i≤p

|γi(Gkn)|γ1(N−1
n ) ≤ np2‖ξ̄n‖2

[
tr(G2

n)
]k/2

γ1(Vn)γ1(S̃n)

= Op(p
k+3/nk+2) = op(1).

Under Condition 4, the last equality holds as k →∞. Therefore, the consequence of Propo-
sition 2 follows. �

We give the following Lemma for the proof of Proposition 3.

Lemma 7. Under model (3.1), suppose that E(ξα1
ij1
ξα2
ij2
· · · ξαl

ijl
) ≤ B for some finite positive

constant B < ∞ and any 1 ≤ i ≤ n, whenever
∑l

i=1 αi ≤ 6, then for some finite positive
constant c,

E
(
ξtn

n−1∑
i=1

ξi
)6 ≤ cp6(n3 + n2 + n).
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Proof. We state that, here and in the sequel, c stands for constant which may be different
from line to line and even from formula to formula and whose value is not of interest.

Indeed, a direct calculation gives that

E
(
ξtn

n−1∑
i=1

ξi
)6

= E
[
(ξtn

n−1∑
i1=1

ξi1) · · · (ξtn
n−1∑
i6=1

ξi6)
]

=
n−1∑

i1,··· ,i6=1

p∑
j1,··· ,j6=1

E(ξnj1 · · · ξnj6)E(ξi1j1 · · · ξi6j6)

= B
[
5(n− 1)(n− 2)p6B2 + 10(n− 1)(n− 2)p2B2 + 45(n− 1)(n− 2)(n− 3)p6B2

]
≤ cp6(n3 + n2 + n). �

Proof of Proposition 3

Let Jn =
∑n

i=1 ξi, it is clear that

nZ̄tnV
−1
n Z̄n − p
wn/n

=
n‖ξ̄n‖2 − p
wn/n

=
‖Jn‖2 − np

wn

To prove the Proposition 3, the strategy is to construct a martingale and then to apply
the martingale central limit theorem based on it. Hence, it is technically convenient to define
Mn = ‖Jn‖2 − np, n ≥ 1, M0 = 0, and Hn = Mn −Mn−1, n ≥ 1. It is easy to see that

Mn = ‖Jn−1‖2 − (n− 1)p+ 2ξtnJn−1 + ‖ξn‖2 − p,

and then
Hn = 2ξtnJn−1 + ‖ξn‖2 − p, EHn = E‖ξn‖2 − p.

In addition, denote by Fi = σ(ξ1, · · · , ξi) = σ(J1, · · · , Ji), for i = 1, 2, · · · , n, the σ-fileds
generated by ξ1, · · · , ξi. It can be seen that {Mn, Fn, n ≥ 1} is not a martingale, although
it is true in the situation of Portnoy, S. (1988). In order to construct a martingale based on
Mn for martingale limit theorem, we define some other notation.

Let φn = Hn − EHn, n ≥ 1, and Wn =
∑n

i=1 φi = Mn −
∑n

i=1 EHi. It is easy to show
that, for each s < t,

E[Wn|Fs] = ‖Js‖2 − s p = Ws,

which indicates that {Wn,Fn, n ≥ 1} is a martingale.
Recalling the definitions of σi’s and wn, it is easy to see that σ2

i = Eφ2
i and w2

n =
∑n

i=1 σ
2
i .

To apply the martingale central limit theorem of Chow and Teicher (1997, Theorem 1, P336),
it suffices to show that if p3/n→ 0, then both

n∑
i=1

E|φi|3/w3
n → 0 (A2)

and
n∑
i=1

E
∣∣E(φ2

i |Fi−1)− σ2
i

∣∣/w2
n → 0 (A3)

hold.
Hence, in the following arguments, our task is to prove (A2) and (A3). For this, we

calculate firstly σi’s, for i ≥ 1. It is easy to see that, for i ≥ 1,

σ2
i = 4E[J ti−1ξiξ

t
iJi−1] + E(‖ξi‖2 − p)2 − (E‖ξi‖2 − p)2.
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For the first term of the expression above, we can verify that

E[J ti−1ξiξ
t
iJi−1] = E

[
J ti−1E(ξiξ

t
i)Ji−1

]
=

i−1∑
k=1

tr(V −1
n V (i)V −1

n V (k))

≥
i−1∑
k=1

p
γp(V

(i))γp(V
(k))

γ2
1(Vn)

≥ p(i− 1)(
c3

c4
)2.

Recall that E(ξα1
ij1
ξα2
ij2
· · · ξαl

ijl
) ≤ B for any 1 ≤ i ≤ n and all j1, j2, · · · , jl = 1, · · · , p,

whenever
∑k

i=1 αi ≤ 6. Therefore we have, for k ≤ 3,

E‖ξi‖2k = E
[
(

p∑
j=1

ξ2
ij)

k
]
≤ pk−1

p∑
j=1

Eξ2k
ij ≤ pkB.

Then, it follows that E(‖ξi‖2 − p)2 = O(p2), and (E‖ξi‖2 − p)2 = O(p2). These lead to
σ2
i ≥ 4( c3c4 )2p(i− 1) +O(p2) and then

w2
n = 2(

c3

c4
)2p n(n− 1) +O(np2) ≥ 2(

c3

c4
)2n2p(1 +O(p/n)). (A4)

In order to prove (A2), we note that the martingale difference sequence φn = 2ξtnJn−1 +
‖ξn‖2 − E‖ξn‖2. Hence, we have

E|φi|3 ≤ 32
[
E(ξtiJi−1)6

]1/2
+ 4Bp3 ≤ c

[
(E|ξtiJi−1|6)1/2 + p3

]
.

From Lemma 7, we know that E(ξtiJi−1)6 ≤ cp6(i3 + i2 + i). Hence we obtain that

n∑
i=1

E|φi|3 ≤ c
n∑
i=1

p3(i3/2 + i+
√
i+ 1) ≤ cp3(n5/2 + n2 + n3/2 + n).

Due to (A4), if p3

n → 0, then we derive∑n
i=1 E|φi|3

w3
n

≤ cp3/2(1/
√
n+ 1/n+ 1/n3/2 + 1/n2)→ 0

and then (A2) follows.
We now focus on the proof of (A3). It is easy to see that

E[φ2
i |Fi−1] = 4J ti−1E(ξiξ

t
i)Ji−1 + 4J ti−1E

[
ξi(‖ξi‖2 − E‖ξi‖2)

]
+O(p2).

Therefore we have∣∣E[φ2
i

∣∣Fi−1]− σ2
i |2 ≤ 12

{∣∣J ti−1E(ξiξ
t
i)Ji−1 − E(J ti−1ξiξ

t
iJi−1)

∣∣2
+E
[
ξti(‖ξi‖2 − E‖ξi‖2)

]
Ji−1J

t
i−1E

[
ξi(‖ξi‖2 − E‖ξi‖2)

]
+O(p4)

}
and then[

E
∣∣E(φ2

i |Fi−1)− σ2
i

∣∣2]1/2 ≤ √12
{

E
[
J ti−1E(ξiξ

t
i)Ji−1 − E(J ti−1ξiξ

t
iJi−1)

]2
+E
[
ξti(‖ξi‖2 − E‖ξi‖2)

]
E(Ji−1J

t
i−1)E

[
ξi(‖ξi‖2 − E‖ξi‖2)

]
+O(p4)

}1/2
. (A5)
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For the first term in (A5), with tedious calculation we obtain that

E
∣∣J ti−1E(ξiξ

t
i)Ji−1 − E(J ti−1ξiξ

t
iJi−1)

∣∣2
=

i−1∑
k,l,s,t=1

E[(ξtkV
−1/2
n V (i)V −1/2

n ξl)(ξ
t
sV
−1/2
n V (i)V −1/2

n ξt)] +
[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
]2

−2
[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
]
E
[ i−1∑
k,l=1

ξtkV
−1/2
n V (i)V −1/2

n ξl
]

(A6)

Recalling that ξi, 1 ≤ i ≤ n are independent with mean zero and noting that ξtiAξj = ξtjAξi
if A is a symmetric matrix, we can further simplify the terms of (A6) as follows. That is

i−1∑
k,l,s,t=1

E
[
(ξtkV

−1/2
n V (i)V −1/2

n ξl)(ξ
t
sV
−1/2
n V (i)V −1/2

n ξt)
]

=
i−1∑
k 6=l=1

E
[
ξtkV

−1/2
n V (i)V −1/2

n ξk
]
E
[
ξtlV

−1/2
n V (i)V −1/2

n ξl
]

+2
i−1∑
k 6=l=1

E
[
ξtkV

−1/2
n V (i)V −1/2

n ξkξ
t
kV
−1/2
n V (i)V −1/2

n ξl
]

+
i−1∑
j=1

E
[
ξtjV

−1/2
n V (i)V −1/2

n ξj
]2

≤
[ i−1∑
k=1

tr(V −1/2
n V (k)V −1/2

n V −1/2
n V (i)V −1/2

n )
]2

+2

i−1∑
k 6=l=1

E
[
ξtl (V

−1/2
n V (i)V −1/2

n )E(ξkξ
t
k)(V

−1/2
n V (i)V −1/2

n )ξl
]

+
i−1∑
j=1

p∑
k,l,s,t=1

(
V −1/2
n V (i)V −1/2

n

)
kl

(
V −1/2
n V (i)V −1/2

n

)
st

E(ξjkξjlξjsξjt)

≤
[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
]2

+ 2(i− 1)(i− 2)pγ4
1(V −1

n )γ1(V (l))γ1(V (k))γ1(V (i))

+(i− 1)p4γ4
1(V −1/2

n )γ2
1(V (i))B

≤
[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
]2

+ 2i2p(
c4

c3
)4 + ip4B(

c4

c3
)2 (A7)

and[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
][ i−1∑
k,l=1

E(ξtkV
−1/2
n V (i)V −1/2

n ξl)
]

=
[ i−1∑
k=1

tr(V −1
n V (k)V −1

n V (i))
]
.

(A8)
Finally, by (A6), (A7) and (A8), we derive that

E[J ti−1E(ξiξ
t
i)Ji−1 − E(J ti−1ξiξ

t
iJi−1)]2 ≤ 2i2p(

c4

c3
)4 + ip4B(

c4

c3
)2 (A9)
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For the second term in (A5), it is clear that

E
[
ξti(‖ξi‖2 − E‖ξi‖2)

]
E(Ji−1J

t
i−1)E

[
ξi(‖ξi‖2 − E‖ξi‖2)

]
= E(ξti‖ξi‖2)

[ i−1∑
j,k=1

E(ξkξ
t
k)
]
E(ξi‖ξi‖2)

=

p∑
k,l=1

p∑
s,t=1

( i−1∑
j=1

V −1/2
n V (j)V −1/2

n

)
kl

E(ξikξ
2
is)E(ξilξ

2
it)

≤
p∑

k,l=1

p∑
s,t=1

M
( i−1∑
j=1

V −1/2
n V (j)V −1/2

n

)
E(ξikξ

2
is)E(ξilξ

2
it)

≤ p4γ1

( i−1∑
j=1

V −1/2
n V (j)V −1/2

n

)
B2

≤ p4γ2
1(V −1/2

n )
( i−1∑
j=1

γ1(V (j))
)
B2 < ip4B

c3

c4
(A10)

Summarizing (A5), (A9), and (A10), we get[
E
∣∣E(φ2

i |Fi−1)− σ2
i

∣∣2]1/2 ≤ c{i2p+ ip4 +O(p4)
}1/2

,

and further we obtain that

n∑
i=1

E
∣∣E(φ2

i |Fi−1)− σ2
i

∣∣/w2
n ≤

n∑
i=1

[
E
∣∣E(φ2

i |Fi−1)− σ2
i

∣∣2]1/2/w2
n

≤ c
(
n2p1/2 + n3/2p2 +O(np2)

)
/(n2p) = o(1)

The last equality holds if p3/n→ 0. Therefore, (A3) follows.
Applying the martingale central limit theorem of Chow and Teicher (1999), we get

Wn

wn

L→ N(0, 1), as n→∞.

In addition, note that nZ̄t
nV
−1
n Z̄n−p
wn/n

=
Wn+

∑n
i=1 EHi

wn/n
and

∑n
i=1 EHi = 0 whenever n is the

sample size. Therefore, the consequence of Proposition 3 follows. �
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