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a b s t r a c t

We propose an empirical likelihood method to test whether the coefficients in a possibly
high-dimensional linear model are equal to given values. The asymptotic distribution of
the test statistic is independent of the number of covariates in the linear model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Regressionmodel is a commonly employed technique to model the relationship between responses and covariates. Con-
sider the following classical and also the simplest linear regression model

Yi = �T Xi + ✏i, i = 1, . . . , n, (1)

where � = (�1, . . . ,�p)
T is the vector of unknown parameters, X1 = (X1,1, . . . , X1,p)

T , . . . , Xn = (Xn,1, . . . , Xn,p)
T are

independent and identically distributed (iid) random vectors, and ✏1, . . . , ✏n are iid random variables with zero mean and
variance � 2 with ✏i’s being independent of Xi’s. Statistical inference for � can be based on either least squares estimator
or M-estimator when p is fixed. When p depends on the sample size n and goes to infinity as n ! 1, Portnoy (1984,
1985) studied the consistency and asymptotic normality ofM-estimators for � , which requires that p cannot be too large in
comparison with the sample size.

Statistical inference for the linear model (1) is needed for the case when p is of an exponential order of n, motivated by
the studies in bioinformatics. To deal with the case when many of �i’s are zero (sparsity), one first selects variables with
nonzero� 0

i s and thenmakes statistical inference for the selected nonzero� 0

i s. It is not surprising that the order of the number
of nonzero � 0

i s cannot be larger than the optimal one in Portnoy (1985). We refer to Bradic et al. (2011) for more details and
references on the ultrahigh dimensional situation. Sparse estimators like the famous Lasso estimator (Tibshirani, 1996) and
its extensions (Zou, 2006; Meinshausen, 2007) are very powerful in the setting of sparse alternative. Meinshausen et al.
(2009) studied the variable selection for high-dimensional linear regression models.

On the other hand, when the number of nonzero � ’s is large, new techniques are needed. In contrast to the sparse model
and variable selection techniques, we study a general setting in this paper. We consider the problem of testing H0 : � = �0
against Ha : � 6= �0 for a given value �0 2 Rp when p is either fixed or goes to infinity as n ! 1. In particular, we are
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interested in the case when the alternative hypothesis has a dense shift (i.e. small shifts inmany dimensions instead of large
shifts in a few dimensions). When p is fixed, the traditional test is Hotelling’s T 2 test, based on the test statistic

HT =
1
�̂ 2 (�̂ � �0)

T

 
1
n

nX

i=1

XiXT
i

!�1

(�̂ � �0), (2)

where �̂ = ( 1
n

Pn
i=1 XiXT

i )�1 1
n

Pn
i=1 YiXi and �̂ 2 =

1
n

Pn
i=1(Yi��̂T Xi)

2. It is known thatHT d
! �2

p as n ! 1.However,when
p is large, finding the inverse matrix in (2) becomes problematic. To overcome such difficulty, we consider the empirical
likelihood method.

As a powerful nonparametric likelihood approach, empirical likelihood test is another useful method. More specifically,
define the traditional empirical likelihood function for � as

L(T )
n (�) = sup

(
nY

i=1

(nqi) : q1 � 0, . . . , qn � 0,
nX

i=1

qi = 1,
nX

i=1

qi(Yi � �T Xi)Xi = 0

)

.

Under some regularity conditions, one can show that theWilks theorem holds, i.e.,�2 log L(T )
n (�0) converges in distribution

to a chi-square limit with p degrees of freedom. Therefore, the empirical likelihood test can be constructed by using the test
statistic �2 log L(T )

n (�). See Owen (2001) for more details on empirical likelihood methods. However, the maximization in
computing L(T )

n (�) becomes nontrivial and even unavailable when p is large; see Chen et al. (2008) for discussions on this
phenomenon. Empirical likelihood method for high dimensional data can be found in Chen et al. (2009), Hjort et al. (2009)
and Peng and Schick (2013).

In this paper we propose a new empirical likelihood test for testing H0 : � = �0 against Ha : � 6= �0 regardless of fixed
or divergent p. We begin with an estimator of ✓ = (�0 � �)T⌃2(�0 � �) where ⌃ = E(X1XT

1 ). It is obvious that when ⌃ is
positive definite, testing H0 : � = �0 against Ha : � 6= �0 is equivalent to testing H0 : ✓ = 0 against Ha : ✓ 6= 0. To find such
an estimator, we split the data into two parts and introduce an empirical likelihood test based on this estimator. It turns out
that the newmethodworks for both fixed and divergent p. The sample splittingmethodwas also used and discussed in Peng
et al. (in press) and Wang et al. (2013), where they proposed empirical likelihood tests and jackknife empirical likelihood
tests for high-dimensionalmeans. Othermethods based on sample splitting techniques for variable selectionwere discussed
in Wasserman and Roeder (2009) and Meinshausen et al. (2009). Note that the purpose of sample splitting in this paper is
for testing without variable selection, and hence it is different from their methods.

We organize this paper as follows. Section 2 presents the newmethodology andmain results. A simulation study is given
in Section 3. All proofs are put in Section 4.

2. Methodology

We start by splitting the sample into two groups to get a random sample with mean being ✓ = (�0 � �)T⌃2(�0 � �),
where ⌃ = E(X1XT

1 ). Putm = [n/2], the integer part of n/2, and define X̃i = Xm+i, Ỹi = Yi+m, ✏̃i = ✏i+m,

Wi(�) = (YiXi � XiXT
i �)T (ỸiX̃i � X̃iX̃ T

i �)

for i = 1, . . . ,m. Then
EWi(�0) = E[(XiXT

i (�0 � �) + Xi✏i)
T (X̃iX̃ T

i (�0 � �) + X̃i✏̃i)] = (�0 � �)T⌃2(�0 � �).

When ⌃ is positive definite, testing H0 : � = �0 against Ha : � 6= �0 is equivalent to testing H0 : EW1(�0) = 0 against
Ha : EW1(�0) 6= 0. This motivates us to apply the empirical likelihood method in Qin and Lawless (1994) to the estimat-
ing equation EW1(�0) = 0. However this direct application results in a poor power in general by noting that EW1(�0) =

O(k� � �0k
2) instead of O(k� � �0k) when k� � �0k is small, where k · k denotes the L2 norm of a vector. The explanation

of this weak power is discussed in Peng et al. (in press).
To improve thepower,wepropose to addonemore linear equationEW ⇤

1 (�0) = 0whereEW ⇤

1 (�0) is close toO(k���0k1)
where k� � �0k1 is the L1 norm, and thus it captures the small change of � � �0. More specifically, define

W ⇤

i (�) = (YiXi � XiXT
i �)T1p + (ỸiX̃i � X̃iX̃ T

i �)T1p

for i = 1, . . . ,m, where 1p = (1, 1, . . . , 1)T 2 Rp, and then define the empirical likelihood function for � as

Ln(�) = sup

(
mY

i=1

(mqi) : q1 � 0, . . . , qm � 0,
mX

i=1

qi = 1,
mX

i=1

qiWi(�) = 0,
mX

i=1

qiW ⇤

i (�) = 0

)

.

The following theorem shows that the Wilks theorem holds for the above empirical likelihood method. We use tr(A) to
denote the trace of a matrix A.

Theorem 1. Let �0 be the true value of the parameter � . Assume ⌃ is positive definite and there exists some � > 0 such that

E|XT
1 X̃1|

2+�

{tr(⌃2)}(2+�)/2

✓
E|✏1|

2+�

� 2+�
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and

E|XT
1 1p|

2+�

{E(XT
1 1p)2}(2+�)/2

✓
E|✏1|

2+�

� 2+�

◆
= o(m�/2), (4)

where � 2 = Var(✏1). Then �2 log Ln(�0) converges in distribution to a chi-square limit with 2 degrees of freedom.

Remark 1. The distribution of X1 varies with nwhen the dimension of X1 changes with n. In general, the distribution of the
error term ✏1 may also change with n and thus the moments of ✏1 may not be constants.

Remark 2. Recently Tang and Leng (2010) proposed penalized empirical likelihood method for selecting variables and
showed the Wilks theorem for the case of finite number of constraints. This is different from the above theorem, where
the number of constraints is either fixed or divergent.

Conditions (3) and (4) may impose some restrictions on p implicitly. When the dependence on Xi has some special
structures, we can show that indeed little restriction on p is required in Theorem 1; see the following two examples with
proofs given in Section 4.

Example 1. LetX1 be aGaussian randomvectorwithmean0 and covariancematrix⌃ = (�i,j)1i,jp, where⌃ is an arbitrary
p by p positively definite matrix. Assume E(✏4

1)/�
4 = o(m1/2), then conditions (3) and (4) hold.

Example 2. Let 0 < �1  �2  · · ·  �p be the p eigenvalues of ⌃ . Assume that
A1: 0 < lim infn!1 �1  lim supn!1 �p < 1, lim infn!1 � 2 > 0;
A2: For some � > 0, 1

p

Pp
i=1 E[|X1,i|

2+�] = O(1), E|✏1|
2+� = O(1);

A3: p = o(m
�

2+� ).
Then conditions (3) and (4) hold.

Note that Example 1 assumes a special dependence structure, which is just a special case of the following model consid-
ered by Bai and Saranadasa (1996), Chen et al. (2009), and Chen and Qin (2010):

Xi = � Bi + µ, 1  i  n,
where� is p⇥kmatrixwith� � T = ⌃ , k � p, andµ is a non-random vector, and {Bi = (Bi,1, . . . , Bi,k)

T , 1  i  n} are i.i.d.
random k-vectors with EBi = 0, Var(Bi) = Ik⇥k, EB4

i,j = 3+⇠ < 1 and E
Qk

l=1 B
⌫l
i,l =

Qk
l=1 EB⌫l

i,l whenever ⌫1 +· · ·+⌫k = 4
for nonnegative integers ⌫l’s. One can also show that Theorem 1 holds for the above model. Example 2 imposes moment
conditions A1 and A2 on X1 and ✏1, and the only restriction on p is A3.

One advantage of the proposed empirical likelihood method is that one can easily add more equations if one has more
information on the alternative hypothesis, or replaceW ⇤

1 (�) by another statistic W̄1(�) satisfying EW̄1(�) = O(k� ��0k1).
Although adding more relevant equations may improve the test power, computing the empirical likelihood function be-
comesmore complicated. The simulation study in the next section shows that the test of usingEWi(�) = 0 andEW ⇤

i (�) = 0
in Theorem 1 performs well in terms of both size and power.

3. Simulation study

In this section, we examine the finite sample behavior of the proposed empirical likelihood test and compare it with
Hotelling’s T 2 test and the standard empirical likelihood method in terms of both size and power. Note that it is expected
that Hotelling’s T 2 test and the standard empirical likelihood test do not work for large p. For the case of dense shift with
large p, there are no existing tests in the literature which are proper to compare with.

We draw 10,000 random sampleswith size n = 200 and 1000 from the linearmodel (1)with Xi = (Xi1, . . . , Xip)
T ⇠ N(0,

⌃0),⌃0 = (0.5(|i�j|))1i,jp, ✏i ⇠ t8 and� = �0+�/
p
n for some� � 0,�0 = 1p. Note thatwhen� > 0, the alternative hy-

pothesis in thismodel has a dense shift. Consider testingH0 : � = �0 againstHa : � 6= �0.We use TEL, NEL and HT to denote
the traditional empirical likelihood test based on�2 log L(T )

n (�), the newempirical likelihood test based on�2 log Ln(�), and
Hotelling’s T 2 test in (2).

We compute the sizes (� = 0) and powers (� = 0.3) of these three tests at level 0.05 in Tables 1 and 2 for p = 5, 10,
20, . . . , 100.

As expected, the traditional empirical likelihood method and Hotelling’s T 2 test do not have a consistent size when p
is slightly large. Hence, the power for those tests does not make real sense. In contrast the proposed empirical likelihood
test has a very stable size with respect to p and is powerful too. When n becomes large, the size of the proposed empirical
likelihood test is more accurate.

In summary, the proposed empirical likelihood test has a very stable size with respect to the number of covariates and is
powerful too. Moreover the proposed new test is quite easy to implement by using the R package emplik, which does not
need to compute the inverse of a high dimensional covariance matrix. Our method does not distinguish between p is fixed
or p ! 1, and works particularly well in the dense setting of the alternative hypothesis.

i.
_
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4. Proofs

Throughout we denote

ui := Wi(�0) = (XT
i X̃i)✏i✏̃i, vi := W ⇤

i (�0) = (XT
i 1p)✏i + (X̃ T

i 1p)✏̃i,

�1 =
p
Var(u1) and �2 =

p
Var(v1).

Then it is easy to verify that E(u1) = E(v1) = E(u1v1) = 0. One can also easily show that conditions (3) and (4) imply

S := E

"����
u1

�1

����
2+�
#

+ E

"����
v1

�2

����
2+�
#

= o(m
�
2 ). (5)

Lemma 1. Under conditions of Theorem 1, we have

1
p
m

mX

i=1

✓
ui/�1

vi/�2

◆
d

! N(0, I2), (6)

mP
i=1

u2
i

m� 2
1

� 1
p

! 0, (7)

mP
i=1

v2
i

m� 2
2

� 1
p

! 0, (8)

mP
i=1

uivi

m�1�2

p
! 0, (9)

max
1im

����
ui

�1

���� = op(m1/2) and max
1im

����
vi

�2

���� = op(m1/2), (10)

where I2 is a 2 ⇥ 2 identity matrix.

Proof. For any constants a and b with a2 + b2 = 1, let Zi = aui/�1 + bvi/�2, i = 1, . . . ,m. It is clear that Zi, i = 1, . . . ,m
are iid random variables with mean zero and variance one. To show (6)–(10) it suffices to prove that

1
p
m

mX

i=1

Zi
d

! N(0, 1), (11)

1
m

mX

i=1

Z2
i

p
! 1, (12)

and

max
1im

Zi = op(m1/2) (13)

hold for all constants a and bwith a2 + b2 = 1. Indeed, (6) follows from (11), (7)–(9) follow from (12), and (10) follows from
(13), by choosing different values of a and b. We check that Zi, i = 1, . . . ,m satisfy the Lindeberg condition for ⌘ > 0:

Mm(⌘) := E[Z2
1 1(|Z1| > ⌘m1/2)] 

E[|Z1|2+�]

⌘�m�/2 
(|a| + |b|)2+�S

⌘�m�/2 ! 0. (14)

(11) and (13) follow from (14). To show (12), let

T1 =
1
m

mX

i=1

�
Z2
i 1(|Zi|  ⌘m1/2) � E[Z2

i 1(|Zi|  ⌘m1/2)]
�
,

and

T2 =
1
m

mX

i=1

�
Z2
i 1(|Zi| > ⌘m1/2) � E[Z2

i 1(|Zi| > ⌘m1/2)]
�
.
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It is straightforward to compute

E[T 2
1 ] 

1
m

E[Z4
1 11(|Zi|  ⌘m1/2)]  ⌘2E[Z2

1 ] = ⌘2,

and E[T2]  2Mm(⌘) ! 0. Therefore, we have that

lim sup
m!1

E[|T1 + T2|]  ⌘,

and since ⌘ is arbitrary, we have

lim sup
m!1

E[|T1 + T2|] = lim sup
m!1

E

"�����
1
m

mX

i=1

Z2
i � 1

�����

#

= 0

and (12) follows.

Proof of Theorem 1. The theorem follows from Theorem 6.1 of Peng and Schick (2013) and Lemma 1, and so we skip all
details.

Proof of Example 1. Let Z = O⌃�1/2X1, and Z̃ = O⌃�1/2X̃ where O is an orthogonal matrix such that ⇤ := O⌃OT is
diagonal. It is obvious that Z and Z̃ are iid standard Gaussian random vectors. It follows that

XT
1 X̃1 = ZTO⌃OT Z̃ = ZT⇤Z̃ =

pX

i=1

�iZiZ̃i,

where �1, . . . , �p are eigenvalues of ⌃ . Then we have that

E[(XT
1 X̃1)

4
] = E

2

4
 

pX

i=1

�iZiZ̃i

!4
3

5  9
pX

i=1

pX

i=j

�2
i �

2
j = 9(tr(⌃2))2.

Thus we have that E[(XT
1 X̃1)

4]/(tr(⌃2))2 = O(1) is bounded uniformly for p.
Similarly,we can show that the first termon the left-hand side of (4) is also boundeduniformly for p. Therefore, conditions

(3) and (4) will be fulfilled with � = 2 for any p if E(✏4
1)/�

4 = o(m1/2). ⇤

Proof of Example 2. By A1 and A2, obviously E|✏1|
2+�/� 2+� = O(1). It follows from the Cauchy–Schwarz inequality that

|XT
1 X̃1|

2
 kX1k

2
kXm+1k

2.

Then by using the Cr inequality we conclude that
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pX

i=1
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.

By the above inequality, A1 and A2 we have E|XT
1 X̃1|2+�

{tr(⌃2)}(2+�)/2 = O(p(2+�)/2), and by A3 and the fact E|✏1|
2+�/� 2+� = O(1) we

have (3). Similarly, from the Cr inequality we have

E|XT
1 1p|

2+�
 E

 
pX

i=1

|X1,i|

!2+�

 p1+�
pX

i=1

E|X1,i|
2+�,

and (4) follows from A1–A3. ⇤
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Table 1
Sizes of the traditional empirical likelihood test (TEL), the proposed empirical likelihood test (NEL) and Hotelling’s T 2 test at level 5% are given for the case
of � = 0.
p TEL NEL HT TEL NEL HT

n = 200 n = 200 n = 200 n = 1000 n = 1000 n = 1000

5 0.0811 0.0875 0.0620 0.0541 0.0582 0.0534
10 0.1327 0.0816 0.0760 0.0591 0.0554 0.0539
20 0.3104 0.0835 0.1173 0.0840 0.0557 0.0614
30 0.5735 0.0820 0.1992 0.1163 0.0550 0.0659
40 0.8180 0.0802 0.3117 0.1575 0.0521 0.0790
50 0.9510 0.0821 0.4724 0.2237 0.0609 0.0878
60 0.9933 0.0859 0.6343 0.2959 0.0589 0.1123
70 0.9993 0.0828 0.7866 0.3902 0.0577 0.1272
80 0.9997 0.0867 0.9040 0.4897 0.0590 0.1472
90 1 0.0891 0.9655 0.5926 0.0621 0.1830

100 1 0.0817 0.9913 0.6987 0.0555 0.2059

Table 2
Powers of the traditional empirical likelihood test (TEL), the proposed empirical likelihood test (NEL) and Hotelling’s T 2 test at level 5% are given for the
case of � = 0.3.
p TEL NEL HT TEL NEL HT

n = 200 n = 200 n = 200 n = 1000 n = 1000 n = 1000

5 0.1264 0.1550 0.1006 0.0938 0.1266 0.0882
10 0.2250 0.2443 0.1480 0.1255 0.2062 0.1144
20 0.5046 0.4386 0.2725 0.2127 0.4012 0.1723
30 0.7841 0.6006 0.4192 0.3069 0.5680 0.2180
40 0.9454 0.7209 0.5922 0.4193 0.6977 0.2740
50 0.9902 0.8001 0.7565 0.5450 0.8078 0.3445
60 0.9997 0.8665 0.8742 0.6656 0.8785 0.4181
70 1 0.9077 0.9474 0.7618 0.9211 0.4685
80 1 0.9423 0.9859 0.8501 0.9526 0.5389
90 1 0.9624 0.9980 0.9096 0.9693 0.6013

100 1 0.9747 0.9996 0.9550 0.9812 0.6724
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