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Abstract

This paper derives several lagrange multiplier (LM) tests for the panel data regression model
with spatial error correlation. These tests draw upon two strands of earlier work. The first is
the LM tests for the spatial error correlation model discussed in Anselin (Spatial Economet-
rics: Methods and Models, Kluwer Academic Publishers, Dordrecht; Rao’s score test in spatial
econometrics, J. Statist. Plann. Inference 97 (2001) 113) and Anselin et al. (Regional Sci. Ur-
ban Econom. 26 (1996) 77), and the second is the LM tests for the error component panel data
model discussed in Breusch and Pagan (Rev. Econom. Stud. 47(1980) 239) and Baltagi et al.
(J. Econometrics 54 (1992) 95). The idea is to allow for both spatial error correlation as well as
random region effects in the panel data regression model and to test for their joint significance.
Additionally, this paper derives conditional LM tests, which test for random regional effects
given the presence of spatial error correlation. Also, spatial error correlation given the presence
of random regional effects. These conditional LM tests are an alternative to the one-directional
LM tests that test for random regional effects ignoring the presence of spatial error correlation or
the one-directional LM tests for spatial error correlation ignoring the presence of random regional
effects. We argue that these joint and conditional LM tests guard against possible misspecifica-
tion. Extensive Monte Carlo experiments are conducted to study the performance of these LM
tests as well as the corresponding likelihood ratio tests.
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1. Introduction

Spatial dependence models deal with spatial interaction (spatial autocorrelation) and
spatial structure (spatial heterogeneity) primarily in cross-section data, see Anselin
(1988, 2001). Spatial dependence models use a metric of economic distance, see
Anselin (1988) and Conley (1999) to mention a few. This measure of economic dis-
tance provides cross-sectional data with a structure similar to that provided by the time
index in time series. There is an extensive literature estimating these spatial models
using maximum likelihood methods, see Anselin (1988). More recently, generalized
method of moments have been proposed by Kelejian and Prucha (1999) and Conley
(1999). Testing for spatial dependence is also extensively studied by Anselin (1988,
2001), Anselin and Bera (1998), Anselin et al. (1996) to mention a few.

With the increasing availability of micro- as well as macro-level panel data, spatial
panel data models studied in Anselin (1988) are becoming increasingly attractive in
empirical economic research. See Case (1991), Kelejian and Robinson (1992), Case
et al. (1993), Holtz-Eakin (1994), Driscoll and Kraay (1998), Baltagi and Li (1999)
and Bell and Bockstael (2000) for a few applications. Convergence in growth models
that use a pooled set of countries over time could have spatial correlation as well
as heterogeneity across countries to contend with, see De Long and Summers (1991)
and Islam (1995) to mention a few studies. County level data over time, whether it
is expenditures on police, or measuring air pollution levels can be treated with these
models. Also, state level expenditures over time on welfare benefits, mass transit, etc.
Household level survey data from villages observed over time to study nutrition, female
labor participation rates, or the effects of education on wages could exhibit spatial
correlation as well as heterogeneity across households and this can be modeled with a
spatial error component model.

Estimation and testing using panel data models have also been extensively studied,
see Hsiao (1986) and Baltagi (2001), but these models ignore the spatial correla-
tion. Heterogeneity across the cross-sectional units is usually modeled with an error
component model. A Lagrange multiplier (LM) test for random effects was derived
by Breusch and Pagan (1980), and an extensive Monte Carlo on testing in this er-
ror component model was performed by Baltagi et al. (1992). This paper extends the
Breusch and Pagan LM test to the spatial error component model. First, a joint LM
test is derived which simultaneously tests for the existence of spatial error correlation
as well as random region effects. This LM test is based on the estimation of the model
under the null hypothesis and its computation is simple requiring only least-squares
residuals. This test is important, because ignoring spatial correlation and heterogene-
ity due to the random region effects will result in inefficient estimates and misleading
inference. We emphasize the importance of using the one-sided version of this test
since variance components cannot be negative. Next, two conditional LM tests are
derived. One for the existence of spatial error correlation assuming the presence of
random region effects, and the other for the existence of random region effects as-
suming the presence of spatial error correlation. These tests guard against misleading
inference caused by (i) one-directional LM tests that ignore the presence of random
region effects when testing for spatial error correlation, or (ii) one-directional LM
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tests that ignore the presence of spatial correlation when testing for random region
effects.

Section 2 revisits the spatial error component model considered in Anselin (1988)
and provides the joint and conditional LM tests proposed in this paper. Only the
final LM test statistics are given in the paper. Their derivations are relegated to the
appendices. Section 3 compares the performance of these LM tests as well as
the corresponding likelihood ratio LR tests using Monte Carlo experiments. Section 4
gives a summary and conclusion.

2. The model and test statistics

Consider the following panel data regression model, see Baltagi (2001):
Vvi=XB+u;, i=1,...,N; t=1,...,T, (2.1)

where y;, is the observation on the ith region for the tth time period, X,; denotes the
k x 1 vector of observations on the non-stochastic regressors and u;; is the regression
disturbance. In vector form, the disturbance vector of (2.1) is assumed to have random
region effects as well as spatially autocorrelated residual disturbances, see Anselin
(1988):

U=+ & (2.2)
with

& = AWer + vy, (2.3)
where u; = (up,...,uw), € = (&1,...,&n) and p’ = (u,..., 1y ) denote the vector of

random region effects which are assumed to be IIN(O, ai). A is the scalar spatial auto-

regressive coefficient with |4| < 1. W is a known N x N spatial weight matrix whose
diagonal elements are zero. ¥ also satisfies the condition that (/y — W) is non-singular
for all |A] < 1. v/ =(vs,..., V), where vy is i.i.d. over i and 7 and is assumed to be
N(0,02). The {v,} process is also independent of the process {i,}. One can rewrite
(2.3) as

&=y — W) v, =By, (2.4)

where B=1y — AW and Iy is an identity matrix of dimension N. The model (2.1) can
be rewritten in matrix notation as

y=XB+u, (2.5)

where y is now of dimension N7 x 1, X is NT x k, ff is k x 1 and u is NT x 1. The
observations are ordered with ¢ being the slow running index and i the fast running
index, i.€., Y =(Vils-vvs VINs++vs YT1s-++» y7n ). X is assumed to be of full column rank
and its elements are assumed to be asymptotically bounded in absolute value. Eq. (2.2)
can be written in vector form as

u=(r @I+ Ur @B )y, (2.6)
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where v/ = (v},...,v}), ur is a vector of ones of dimension T, /7 is an identity matrix
of dimension 7 and ® denotes the Kronecker product. Under these assumptions, the
variance—covariance matrix for u can be written as

Qu=0(Jr®1Iy)+0,(Ir @ (B'B)™"), (2.7)

where J7 is a matrix of ones of dimension 7. This variance—covariance matrix can be
rewritten as

Q,=ai[Jr @ (Tdly + (B'B)")+ Er @ (B'B) '1=0l%,, (2.8)

where p=02 /02, Jr=Jr/T, Er=Ir—Jr and Z,=[J r&(Tply+(B'B) " )+Er@(B'B)'].
Using results in Wansbeek and Kapteyn (1983), 2. ! is given by
> =Jr@([T¢ly +(B'B)"")' + Er ® B'B. (2.9)
Also, |Z,| = |Tply + (B'B)~'| - |(B'B)~'|"~'. Under the assumption of normality, the
log-likelihood function for this model was derived by Anselin (1988, p. 154) as
NT 1

1
L=-— In2na? — 3 In|Z,| — 30 T

(r-1
2

NT 1
= In270? — ;I [|Toly + (B'B) '] + In |B'B|

WX u (2.10)

2
207}

with u = y — Xf. Anselin (1988, p. 154) derived the LM test for A =0 in this model.
Here, we extend Anselin’s work by deriving the joint test for spatial error correlation
as well as random region effects.

The hypotheses under consideration in this paper are the following:

(a) Hf : A= af, =0, and the alternative H{ is that at least one component is not zero.

(b) Hé’ : ai =0 (assuming no spatial correlation, i.e., A =0), and the one-sided alter-
native H{ is that o} > 0 (assuming 4= 0).

(c) Hf:A=0 (assuming no random effects, i.e., aﬁ =0), and the two-sided alternative
is H{ : 2 # 0 (assuming aﬁ =0).

(d) Hg’ : A =0 (assuming the possible existence of random effects, i.e., afl > 0), and
the two-sided alternative is H{ : 2 # 0 (assuming ai =>0).

(e) H: aft =0 (assuming the possible existence of spatial correlation, i.e., A may be
zero or different from zero), and the one-sided alternative is H{ : aﬁ > ( (assuming
that A may be zero or different from zero).

In the next sections, we derive the corresponding LM tests for these hypotheses
and we compare their performance with the corresponding LR tests using Monte Carlo
experiments.
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2.1. Joint LM test for Hi: A= aﬁ =0

The joint LM test statistic for testing H{ : A = aﬁ =0 vs. Hf is given by
NT NT
G’ +

My =570-1 b

H?, (2.11)

where G=0'(Jr@Iy)i/d'i—1, H=d' (Ir(W+W")/2)i/d i, b=tr(W+W')?|2=tr(W*+
W'W) and i denotes the OLS residuals. The derivation of this LM test statistic is given
in Appendix A.l. It is important to note that the large sample distribution of the LM
test statistics derived in this paper are not formally established, but are likely to hold
under similar sets of low level assumptions developed in Kelejian and Prucha (2001)
for the Moran I test statistic and its close cousins the LM tests for spatial correlation.
See also Pinkse (1998, 1999) for general conditions under which Moran flavoured tests
for spatial correlation have a limiting normal distribution in the presence of nuisance
parameters in six frequently encountered spatial models. Section 2.4 shows that the
one-sided version of this joint LM test should be used because variance components
cannot be negative.

2.2. Marginal LM test for H}: O'lzl =0 (assuming .=0)

Note that the first term in (2.11), call it LMg = (NT/2(T —1))G?, is the basis for the
LM test statistic for testing Hob: aft =0 assuming there are no spatial error dependence
effects, i.e., assuming that 2=0, see Breusch and Pagan (1980). This LM statistic should
be asymptotically distributed as y? under HY as N — oo, for a given 7. But this LM
test has the problem that the alternative hypothesis is assumed to be two-sided when
we know that the variance component cannot be negative. Honda (1985) suggested a

uniformly most powerful test for H? based upon the square root of the G* term, i.e.,

| NT

This should be asymptotically distributed as N(0, 1) under H{ as N — oo, for T fixed.
Moulton and Randolph (1989) showed that the asymptotic N(0, 1) approximation for
this one sided LM test can be poor even in large samples. This occurs when the number
of regressors is large or the intra-class correlation of some of the regressors is high.
They suggest an alternative standardized LM (SLM) test statistic whose asymptotic
critical values are generally closer to the exact critical values than those of the LM
test. This SLM test statistic centers and scales the one-sided LM statistic so that its
mean is zero and its variance is one:

LM, — E(LM,) d\ —E(d})
v/ var(LMy) B Vovar(dy)’

where d| =i’ Dyii/i'ii and D =(Jr ®1Iy) with @i denoting the OLS residuals. Using the
normality assumption and results on moments of quadratic forms in regression residuals

SLM, =

(2.13)
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(see e.g. Evans and King, 1985), we get

E(d))=tr(D\M))s, (2.14)
where s = NT — k and M = Iyy — X(X'X)~'X’. Also.
var(d,) = 2{s tr(D\M )* — [tr(D\M)]*}/s*(s + 2). (2.15)

Under Hé’, SLM; should be asymptotically distributed as N(0, 1).
2.3. Marginal LM test for Hg: =0 (assuming o, =0)

Similarly, the second term in (2.11), call it LMy = (N>T/b)H?, is the basis for the
LM test statistic for testing Hg: A=0 assuming there are no random regional effects, i.e.,
assuming that aﬁ =0, see Anselin (1988). This LM statistic should be asymptotically
distributed as y} under H. Alternatively, this can be obtained as

N2T

This LM, test statistic should be asymptotically distributed as N(0,1) under Hg. The
corresponding standardized LM (SLM) test statistic is given by
LM, — E(LMy)  dy — E(d>)

\/var(LMy) var(dy)’

where d, = @' D»ii/iii and D, = (Ir @ W). Under HS, SLM, should be asymptotically
distributed as N(0,1). SLM, should have asymptotic critical values that are generally
closer to the corresponding exact critical values than those of the unstandardized LM,
test statistic.

SLM, =

(2.17)

2.4. One-sided joint LM test for H§: A= aﬁ =0
Following Honda (1985) for the two-way error component model, a handy one-sided
test statistic for Hj: 1= 0,21 =0 is given by

LMY = (LM, + LMy)/V/2, (2.18)

which is asymptotically distributed N(0, 1) under Hy.

Note that LM, in (2.12) can be negative for a specific application, especially when
the true variance component oﬁ is small and close to zero. Similarly, LM, in (2.16)
can be negative especially when the true A is small and close to zero. Following
Gourieroux et al. (1982), here after GHM, we propose the following test for the joint

null hypothesis Hy':

LM} + LM;  if LM, >0, LM, > 0,

LM} if LM, >0, LM, <0,

= ) , (2.19)
LM if LM, <0, LM, > 0,

0 if LM; <0, LM, <0.
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Under the null hypothesis H¢, 2 has a mixed y>-distribution:
I ~ (D20) + (37 (1) + ()7 (2), (2.20)

where 7%(0) equals zero with probability one. The weights (}),(1) and () follow
from the fact that LM, and LM, are asymptotically independent of each other and the
results in Gourieroux et al. (1982). The critical values for the mixed 2 are 7.289,
4.321 and 2.952 for o =0.01, 0.05 and 0.1, respectively.

2.5. LR Test for Hj: A= aﬁ =0

We also compute the likelihood ratio (LR) test for Hf: A = Gi = 0. Estimation of
the unrestricted log-likelihood function is obtained using the method of scoring. The
detalls of the estimation procedure are available upon request from the authors. Let

db /. and /3 denote the unrestricted maximum likelihood estimators (MLEs) and let
B fIN — W and i = y—X ﬁ, then the unrestricted maximum log-likelihood estimator
function is given by

NT 1 ; 5 B
Ly === 1n2n6} — S nl|Tly + (5'B)~'|]

. 1 A~
+(T —1)In|B| — ﬁﬁ’z;lﬁ, (2.21)

see Anselin (1988), where X is obtained from (2.8) with B replacing B and (;’3 replacing
¢. But under the null hypothesis H{, the variance—covariance matrix reduces to Q =
Q, = af]TN and the restricted MLE of f is ﬁOLs, so that i =y — X' BOLS are the OLS
residuals and 62 = i'ii/NT. Therefore, the restricted maximum log-likelihood function
under H{ is given by

Lp=— jg In2n6? — 2;2 @il (2.22)

v

Hence, the likelihood ratio test statistic for H§: 4 = ai =0 is given by
LR; =2(Ly — Lg) (2.23)

and this should be asymptotically distributed as a mixture of > given in (2.20) under
the null hypothesis.

2.6. Conditional LM test for Hg: A =0 (assuming ai =0)

When one uses LM,, given by (2.16), to test H5: =0, one implicitly assumes that
the random region effects do not exist. This may lead to incorrect decisions especially
when ai is large. To overcome this problem, this section derives a conditional LM
test for spatially uncorrelated disturbances assuming the possible existence of random

regional effects. The null hypothesis for this model is H(jl : 2 =0 (assuming ai = 0).
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Under the null hypothesis, the variance—covariance matrix reduces to Qp = afLJT ®
Iy + o'%]NT. It is the familiar form of the one-way error component model, see Baltagi
(1995), with Qal = (6%)’1(jf ® Iy) + (62)"Y(Er ® Ly), where 67 = Ta/zt + 02, and
Er=Ir —Jr. Using derivations analogous to those for the joint LM-test, see Appendix
A.1, we obtain the following LM test for H{ vs. H{.

D(A)?
LM, = 2.24
T =)+ 6l (229
where
A 1 ~ 6-% 7 / 1 1 ~
D)= i | ZTr@ W' + W)+ = (Er @ (W' + W) i.
1 v

Here, 62 =u'(Er ®Iy)i/N(T — 1) and 62 =4d'(J7r @Iy )i/N are the MLEs of ¢? and o2
under H¢, and & denotes the maximum likelihood residuals under the null hypothesis
Hé’ . See Appendix A.2 for more details.
Therefore, the one-sided test for zero spatial error dependence (assuming o*ft =>0)
against an alternative, say of 4 > 0 is obtained from
LM} = D) (2.25)
VIT = 1) +61/611b

and this test statistic should be asymptotically distributed as N(O,1) under Hé’ for
N — oo and T fixed.

We can also get the LR test for H¢, using the scoring method. Details are available
upon request from the authors. Under the null hypothesis, and a similar set of low level
assumptions developed in Kelejian and Prucha (2001) the conditional LR test statistic
will have the same asymptotic distribution as its LM counterpart.

2.7. Conditional LM test for H§: 0‘2‘ =0 (assuming ). may or may not be =0)

Similarly, if one uses LM;, given by (2.12), to test H(’)’:aﬁ =0, one is implicitly
assuming that no spatial error correlation exists. This may lead to incorrect decisions
especially when A is significantly different from zero. To overcome this problem, this
section derives a conditional LM test for no random regional effects assuming the
possible existence of spatial error correlation. The null hypothesis for this model is
H§: aft =0 (assuming 4 may or may not be =0).

This LM test statistic is derived in Appendix A.3 and is given by

N
LM, =DIJ;'D,, (2.26)

where

A T A A

1 o
5o i1 ® (B'BY1i (2.27)

v



B.H. Baltagi et al. | Journal of Econometrics 117 (2003) 123—150 131

and
% %tr[(W’éJré’W)jL(é’é)”] Z%tr[é’é]
Jo= Lol(WB+BW)+ BBV sLolw'B+Ewl|, (228
2 Al A
L r((B'BY)
N 69 h
T | . . .
:26§ agg aﬁc o*%d , (2.29)
h  62d Te

where g = t/[(W'B + BWYB'B) "1, h = tr[B'B), ¢ = r[(W'B + B W)YB B) "),
d=t[W'B+ g W] and e = tr[(é/ﬁ)z]. Therefore,

. 264
LM, = (D,,)? (;) (ING*ec — NG*d* — Té*gPe + 26*ghd — 64 hc) ™!
X(Néic — ¢tg), (2.30)

where DAH and J, are evaluated at the MLEs under the null hypothesis H. However,
LM, ignores the fact that the variance component cannot be negative. Therefore, the
one-sided version of this LM test is given by

LM — D,/ 263/ T)(NGic — 51g%)
* \/TNGlec — NG4d* — Té4g2e + 264ghd — 64h2c

and this should be asymptotically distributed as N(0,1) under Hj as N — oo for T
fixed.

(2.31)

3. Monte Carlo results

The experimental design for the Monte Carlo simulations is based on the format
extensively used in earlier studies in the spatial regression model by Anselin and Rey
(1991) and Anselin and Florax (1995) and in the panel data model by Nerlove (1971).

The model is set as follows:

Vi = o+ X5, B+ g, i=1,...N, t=1,...,T, (3.1)

where =35 and f=0.5. x;, is generated by a similar method to that of Nerlove (1971).
In fact, x; = 0.1z + 0.5x;,—1 + z;, where z; is uniformly distributed over the interval
[ — 0.5,0.5]. The initial values x;o are chosen as (5 + 10z;y). For the disturbances,
Ujr = Ui =+ &ir, Eit = A Z?/:I Wij&it + v with i ~ IIN(O, Gi) and Vit ~ HN(O, 0'3) The
matrix W is either a rook or a queen type weight matrix, and the rows of this matrix
are standardized so that they sum to one.! We fix o7+ 07 =20 and let p=07/(07 +07)

! The weight matrix with first-order contiguity according to the rook criterion has the cells immediately
above, below, to the right, and to the left, for a total of four neighboring cells. The weight matrix with first
order contiguity according to the queen criterion is eight cells immediately surrounding the central cell, see
Anselin and Rey (1991).
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vary over the set (0, 0.2, 0.5, 0.8). The spatial autocorrelation factor 4 is varied over a
positive range from 0 to 0.9 by increments of 0.1. Two values for N =25 and 49, and
two values for 7=3 and 7 are chosen. In total, this amounts to 320 experiments.> For
each experiment, the joint, conditional and marginal LM and LR tests are computed
and 2000 replications are performed. In a first draft of this paper we reported the
two-sided LM and LR test results to show how misleading the results of these tests
can be. These results are available upon request from the authors. In this version, we
focus on the one-sided version of these tests except for testing Hé’ : oi =0 where we
thought a warning should be given to applied econometricians using packages that still
report two-sided versions of this test.

3.1. Joint tests for Hy: \=0%,=0

Table 1 gives the frequency of rejections at the 5% level for the handy one-sided
Honda-type LM test statistic LM™ given in (2.18), the GHM test statistic given in
(2.19) and LR given in (2.23). The results are reported for N =25,49 and T'=3,7 for
both the queen and rook weight matrices based on 2000 replications. Table 1 shows
that at the 5% level, the size of the joint LR test (LR}) is not significantly different
from 0.05 for all values of N and T and choice of the weight matrix W. The same is
true for LM" and GHM except for N =25 and T =3 where they are undersized. The
power of all three tests is reasonably high as long as 4 > 0.3 or p > 0.2. In fact, for
p = 0.5 this power is almost one in all cases. For a fixed 4 or p, this power improves
as N or T increase.

3.2. Marginal and conditional tests for 1 =0

Fig. 1 plots the frequency of rejections in 2000 replications for testing A =0, i.e.,
zero spatial error correlation. Fig. 1 reports these frequencies for various values of
N =25,49 and T = 3,7, for both rook and queen weight matrices. Marginal tests for
H§: 2 =0 (assuming aﬁ =0) as well as conditional tests for H¢: . =0 (assuming
aft > 0) are plotted for various values of A. As clear from the graphs, marginal tests
can have misleading size when p is large (0.5 or 0.8). Marginal tests also have lower
power than conditional tests for p > 0.2 and 0.2 < 4 < 0.8. This is true whether we
use LM or LR type tests. This difference in power is quite substantial for example
when p = 0.8 and / = 0.6. This phenomena persists even when we increase N or 7.
However, it is important to note that marginal tests still detect that something is wrong
when p is large.

3.3. Marginal and conditional tests for 0,21 =0

Table 2 gives the frequency of rejections in 2000 replications for the marginal LR
and LM tests for Hy: afl =0 (assuming A = 0). The results are reported only when

2 The Monte Carlo experiments were also run for negative A ranging between —0.1 and —0.9. The results
were similar and are not reproduced here to save space.
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Table 1

Joint tests for Hf, 1= Jﬁ =0

N, T ) p=0.0 p=02 p=05

Lt GHM LR} vt GHM LR} LmH GHM LR}

Weight matrix is rook

25,3 0.0 0.021 0.022 0.048 0.241 0.351 0.379 0.825 0.961 0.963
0.1 0.073 0.074 0.089 0.359 0.386 0.405 0.875 0.967 0.970
0.2 0.154 0.198 0.219 0.474 0.432 0.473 0.920 0.969 0.973
0.3 0.277 0.414 0.435 0.605 0.566 0.633 0.944 0.970 0.980
0.4 0.469 0.688 0.728 0.727 0.711 0.788 0.963 0.976 0.989
0.5 0.634 0.876 0.900 0.845 0.844 0.909 0.983 0.980 0.996
0.6 0.832 0.967 0.976 0.934 0.953 0.978 0.989 0.988 0.998
0.7 0.950 0.999 1.000 0.973 0.984 0.996 0.997 0.996 0.999
0.8 0.987 1.000 1.000 0.995 0.999 1.000 0.999 0.997 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25,7 0.0 0.038 0.039 0.061 0.805 0.895 0.890 1.000 1.000 1.000
0.1 0.115 0.144 0.151 0.916 0.940 0.916 1.000 1.000 1.000
0.2 0.299 0.450 0.463 0.962 0.949 0.947 1.000 1.000 1.000
0.3 0.611 0.827 0.836 0.986 0.984 0.986 1.000 1.000 1.000
0.4 0.866 0.983 0.984 0.997 0.997 0.997 1.000 1.000 1.000
0.5 0.975 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.6 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

49, 3 0.0 0.035 0.041 0.062 0.440 0.608 0.613 0.979 0.999 0.999
0.1 0.120 0.133 0.135 0.613 0.638 0.633 0.996 1.000 1.000
0.2 0.289 0.384 0.403 0.786 0.750 0.767 0.999 1.000 1.000
0.3 0.513 0.724 0.738 0.902 0.860 0.895 1.000 1.000 1.000
0.4 0.782 0.948 0.956 0.965 0.946 0.969 1.000 1.000 1.000
0.5 0.920 0.992 0.992 0.989 0.994 0.997 1.000 1.000 1.000
0.6 0.993 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.7 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

49, 7 0.0 0.033 0.040 0.050 0.977 0.996 0.994 1.000 1.000 1.000
0.1 0.188 0.259 0.263 0.994 0.997 0.996 1.000 1.000 1.000
0.2 0.563 0.779 0.775 0.999 0.999 1.000 1.000 1.000 1.000
0.3 0.895 0.984 0.986 1.000 1.000 1.000 1.000 1.000 1.000
0.4 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Weight matrix is queen

25,3 0.0 0.020 0.029 0.064 0.216 0.344 0.372 0.822 0.955 0.958
0.1 0.059 0.067 0.066 0.301 0.369 0.380 0.864 0.962 0.967
0.2 0.112 0.151 0.140 0.375 0.402 0.411 0.902 0.967 0.968
0.3 0.229 0.299 0.282 0.510 0.505 0.519 0.932 0.977 0.981
0.4 0.379 0.536 0.514 0.638 0.608 0.650 0.954 0.973 0.984
0.5 0.576 0.748 0.743 0.786 0.764 0.806 0.970 0.983 0.992
0.6 0.771 0.895 0.891 0.903 0.899 0.923 0.985 0.990 0.995
0.7 0.916 0.975 0.974 0.970 0.973 0.980 0.997 0.993 1.000
0.8 0.972 0.997 0.997 0.992 0.992 0.996 0.999 0.999 0.999
0.9 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 1 (continued)

N, T 2 p=00 p=02 p=05

LM% GHM LR} LM% GHM LR} LM% GHM LR}

25,7 0.0 0.040 0.042 0.056 0.782 0.893 0.876 1.000 1.000 1.000
0.1 0.109 0.131 0.117 0.870 0.920 0.904 1.000 1.000 1.000
0.2 0.226 0.337 0.317 0.937 0.936 0.932 1.000 1.000 1.000
0.3 0.493 0.679 0.646 0.964 0.956 0.951 1.000 1.000 1.000

0.4 0.772 0.893 0.883 0.995 0.990 0.989 1.000 1.000 1.000
0.5 0.937 0.987 0.987 0.999 0.999 0.999 1.000 1.000 1.000
0.6 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

49, 3 0.0 0.029 0.032 0.057 0.406 0.6070 0.622 0.990 1.000 1.000
0.1 0.094 0.108 0.100 0.552 0.6380 0.636 0.992 1.000 1.000
0.2 0.212 0.259 0.232 0.719 0.7140 0.716 0.998 1.000 1.000
0.3 0.392 0.546 0.517 0.811 0.7860 0.804 0.999 1.000 1.000
0.4 0.641 0.797 0.782 0.915 0.8890 0.901 0.999 1.000 1.000
0.5 0.862 0.959 0.953 0.972 0.9650 0.973 1.000 1.000 1.000
0.6 0.968 0.991 0.993 0.993 0.9940 0.995 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 0.9990 1.000 1.000 1.000 1.000

49,7 0.0 0.052 0.056 0.056 0.961 0.994 0.995 1.000 1.000 1.000
0.1 0.156 0.167 0.153 0.989 0.993 0.995 1.000 1.000 1.000
0.2 0.419 0.566 0.536 0.998 0.998 0.996 1.000 1.000 1.000
0.3 0.775 0.908 0.899 1.000 1.000 0.999 1.000 1.000 1.000
0.4 0.961 0.995 0.994 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Frequency of rejections in 2000 replications.

ai =0 for N=25,49 and T =3,7 for both the queen and rook weight matrices. Table 2
shows that at the 5% level, the size of the two-sided LM test (LMg) for H} (compared
to its one sided counterpart LM, ) could be missleading, especially when / is large. For
example, for the queen weight matrix when N =49, T =7 and 1= 0.9, the frequency
of rejection for LMy is 50.4% whereas the corresponding one-sided LM (LM;) has a
size of 7.6%. The two-sided likelihood ratio (LRg) test for H? performs better than its
two-sided LM counterpart (LMg). However, in most experiments, LRs underestimates
its size and is outperformed by its one-sided LR alternative (LR)).

Table 2 also gives the frequency of rejections in 2000 replications for the conditional
LR and LM tests (LR, and LM ) for H: 0220 (assuming 4 # 0). These were derived
in Section 2.2. The results are reported only when aft =0 for N=25,49 and T =3,7
for both the queen and rook weight matrices. For most experiments, the conditional
LM and LR tests have size not significantly different from 5%. For cases where 4
is large, conditional tests have better size than marginal tests. For example, when the
weight matrix is queen, N =49,7 =3 and 4=0.9, the frequency of rejections at the 5%
significance level, when the null is true, is 11.4% and 12% for LM, and LR; compared
to 4.9% and 4.3% for LM,; and LR;.
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N, T w i H{, 6% =0 (assuming 4 =0) H§, 0% =0
(assuming 4 # 0)
Two-sided One-sided One-sided
LM LRg LM, SLM, LR, LM LR,
25,3 Rook 0.0 0.037 0.014 0.038 0.038 0.045 0.036 0.027
0.1 0.052 0.020 0.044 0.047 0.050 0.043 0.041
0.2 0.044 0.015 0.039 0.045 0.045 0.040 0.039
0.3 0.055 0.023 0.044 0.049 0.047 0.040 0.036
0.4 0.058 0.023 0.046 0.049 0.054 0.031 0.039
0.5 0.069 0.017 0.043 0.046 0.048 0.041 0.038
0.6 0.100 0.031 0.060 0.067 0.067 0.043 0.038
0.7 0.143 0.043 0.067 0.070 0.075 0.043 0.035
0.8 0.215 0.050 0.074 0.080 0.083 0.040 0.034
0.9 0.341 0.055 0.068 0.074 0.072 0.036 0.035
25,3 Queen 0.0 0.038 0.016 0.037 0.043 0.042 0.039 0.033
0.1 0.045 0.020 0.042 0.046 0.050 0.036 0.041
0.2 0.044 0.020 0.044 0.045 0.053 0.045 0.041
0.3 0.058 0.020 0.043 0.043 0.051 0.039 0.040
0.4 0.054 0.017 0.038 0.041 0.043 0.030 0.030
0.5 0.083 0.033 0.054 0.062 0.062 0.038 0.042
0.6 0.089 0.032 0.055 0.060 0.058 0.041 0.034
0.7 0.154 0.041 0.068 0.073 0.072 0.044 0.030
0.8 0.239 0.038 0.057 0.066 0.063 0.042 0.049
0.9 0.388 0.033 0.039 0.045 0.051 0.031 0.035
25,7 Rook 0.0 0.053 0.020 0.052 0.058 0.059 0.043 0.042
0.1 0.045 0.018 0.045 0.047 0.053 0.039 0.030
0.2 0.033 0.011 0.035 0.039 0.033 0.051 0.032
0.3 0.051 0.018 0.049 0.050 0.051 0.045 0.044
0.4 0.063 0.022 0.046 0.046 0.047 0.051 0.036
0.5 0.062 0.018 0.044 0.044 0.046 0.052 0.039
0.6 0.100 0.023 0.051 0.050 0.055 0.066 0.046
0.7 0.168 0.035 0.056 0.059 0.058 0.050 0.036
0.8 0.257 0.032 0.050 0.050 0.050 0.061 0.049
0.9 0.510 0.017 0.024 0.024 0.023 0.050 0.035
25,7 Queen 0.0 0.059 0.022 0.059 0.057 0.058 0.052 0.044
0.1 0.043 0.014 0.038 0.041 0.043 0.039 0.031
0.2 0.036 0.014 0.041 0.039 0.039 0.053 0.037
0.3 0.050 0.012 0.045 0.044 0.049 0.055 0.041
0.4 0.050 0.014 0.040 0.044 0.040 0.061 0.046
0.5 0.069 0.025 0.050 0.054 0.049 0.053 0.039
0.6 0.089 0.023 0.036 0.036 0.041 0.042 0.030
0.7 0.151 0.022 0.040 0.038 0.041 0.049 0.045
0.8 0.307 0.015 0.030 0.030 0.030 0.052 0.051
0.9 0.589 0.008 0.014 0.014 0.014 0.042 0.057
49,3 Rook 0.0 0.053 0.024 0.336 0.054 0.059 0.045 0.046
0.1 0.041 0.017 0.049 0.050 0.052 0.048 0.039



140 B.H. Baltagi et al. | Journal of Econometrics 117 (2003) 123—150

Table 2 (continued)

N, T W J H{, 6% =0 (assuming 4 =0) HE, 62=0
(assuming 4 # 0)
Two-sided One-sided One-sided
LMg LRg LM, SLM, LR, LM;; LR}

0.2 0.065 0.024 0.048 0.048 0.051 0.041 0.037
0.3 0.061 0.025 0.050 0.051 0.055 0.052 0.053
0.4 0.085 0.031 0.056 0.056 0.060 0.042 0.036
0.5 0.104 0.037 0.065 0.067 0.069 0.048 0.035
0.6 0.118 0.046 0.074 0.080 0.078 0.042 0.038
0.7 0.162 0.050 0.075 0.078 0.078 0.040 0.032
0.8 0.260 0.067 0.107 0.111 0.110 0.050 0.027
0.9 0.422 0.096 0.123 0.129 0.130 0.042 0.040

49, 3 Queen 0.0 0.048 0.021 0.046 0.048 0.049 0.044 0.043
0.1 0.045 0.018 0.046 0.047 0.050 0.045 0.040
0.2 0.062 0.031 0.059 0.066 0.063 0.054 0.059
0.3 0.055 0.023 0.039 0.045 0.044 0.046 0.039
0.4 0.086 0.036 0.062 0.065 0.064 0.051 0.047
0.5 0.085 0.026 0.051 0.053 0.053 0.037 0.038
0.6 0.126 0.038 0.068 0.072 0.076 0.047 0.044
0.7 0.168 0.051 0.087 0.093 0.088 0.046 0.043
0.8 0.282 0.074 0.102 0.105 0.103 0.045 0.051
0.9 0.463 0.098 0.114 0.121 0.120 0.049 0.043

49, 7 Rook 0.0 0.057 0.023 0.062 0.060 0.061 0.053 0.044
0.1 0.046 0.016 0.045 0.039 0.042 0.046 0.033
0.2 0.053 0.022 0.055 0.052 0.057 0.053 0.039
0.3 0.067 0.019 0.048 0.049 0.052 0.054 0.044
0.4 0.067 0.030 0.064 0.063 0.067 0.048 0.043
0.5 0.077 0.021 0.060 0.058 0.058 0.054 0.042
0.6 0.129 0.036 0.067 0.066 0.067 0.051 0.036
0.7 0.190 0.046 0.086 0.088 0.083 0.061 0.036
0.8 0.280 0.062 0.097 0.096 0.093 0.043 0.025
0.9 0.504 0.055 0.076 0.081 0.077 0.054 0.033

49, 7 Queen 0.0 0.043 0.017 0.043 0.046 0.048 0.047 0.034
0.1 0.057 0.017 0.054 0.057 0.061 0.058 0.045
0.2 0.042 0.017 0.048 0.051 0.050 0.060 0.043
0.3 0.053 0.022 0.054 0.056 0.057 0.048 0.038
0.4 0.061 0.024 0.048 0.048 0.046 0.046 0.035
0.5 0.084 0.023 0.065 0.061 0.066 0.056 0.043
0.6 0.117 0.037 0.071 0.068 0.069 0.060 0.048
0.7 0.195 0.043 0.071 0.073 0.070 0.059 0.046
0.8 0313 0.046 0.075 0.073 0.069 0.056 0.056
0.9 0.574 0.034 0.050 0.050 0.049 0.041 0.045

Frequency of rejections in 2000 replications, p = 0.0.
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4. Conclusion

It is clear from the extensive Monte Carlo experiments performed that the spatial
econometrics literature should not ignore the heterogeneity across cross-sectional units
when testing for the presence of spatial error correlation. Similarly, the panel data
econometrics literature should not ignore the spatial error correlation when testing for
the presence of random regional effects. Both joint and conditional LM tests have been
derived in this paper that are easy to implement and that perform better in terms of size
and power than the one-directional LM tests. The latter tests ignore the random regional
effects when testing for spatial error correlation or ignore spatial error correlation when
testing for random regional effects. We emphasize the importance of using the one-sided
version of these tests since variance components cannot be negative. This paper does
not consider testing for spatial lag dependence and random regional effects in a panel.
This should be the subject of future research. Also, the results in the paper should be
tempered by the fact that the N =25,49 used in our Monte Carlo experiments may be
small for a typical micro panel. Larger N will probably improve the performance of
these tests whose critical values are based on their large sample distributions. However,
it will also increase the computation difficulty and accuracy of the eigenvalues of the big
weighting matrix /. Finally, it is important to point out that the asymptotic distribution
of our test statistics were not explicitly derived in the paper but that they are likely to
hold under a similar set of low level assumptions developed by Kelejian and Prucha
(2001).
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Appendix A

A. 1. Joint LM test

This appendix derives the joint LM test for spatial error correlation and random
regional effects. The null hypothesis is given by Hj: ai:/l:O. Let 0=(a2, (ri, ). Note
that the part of the information matrix corresponding to f will be ignored in computing
the LM statistic, since the information matrix between the 6 and f§ parameters will be

block diagonal and the first derivatives with respect to 8 evaluated at the restricted
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MLE will be zero. The LM statistic is given by
< e
LM = DZ)J() Dy, (A.1)

where Dy = (8L/30)(0) is a 3 x 1 vector of partial derivatives with respect to each
element of 0, evaluated at the restricted MLE 0. Also, J = E[ — ¢*L/0000'](0) is the
information matrix corresponding to 0, evaluated at the restricted MLE 0. Under the
null hypothesis, the variance-covariance matrix reduces to o’l7y and the restrlcted
MLE of f§ is ﬁOLS: so that =y — X' ,[)’OLs are the OLS residuals and 62 = #'ii/NT.

Hartley and Rao (1967) or Hemmerle and Hartley(1973) give a useﬁll general for-
mula to obtain Dy:

0L/00, = — % tr[Q;, ' (09,/00,)] + [/ 2, ' (09,/00,)2;, 'u] (A.2)

for r =1,2,3. It is easy to check that 0Q,/d0% = Ir © (B'B)™', 0Q,/dc% = Jr @ Iy
and 0Q,/0/.=c%[Ir @ (B'B)""(W'B+B'W)(B'B)~'] using the fact that d(B'B)~'/0.=
(B'B)Y"Y(W'B+ B'W)(B'B)~!, see Anselin (1988, p. 164).

Under H§, we get

i 1
Qg =~ Ir @1y, (A3)
0Q,
a 2 :]T ®1Na
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Ol H
09,

L =W +W).

02 | pga

This uses the fact that B = /Iy under H{. Using (A.2), we obtain
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Therefore, the score with respect to 6, evaluated at the restricted MLE is given by

0 0
Dy=| D@ | = | (e -1 | (A4)
D(7) NT e
uu

For the information matrix, it is useful to use the formula given by Harville (1977):
1
Jre = E[ = 0°L/00,005] = 5 tr{ Q" (09,/00,)2; (92u/20, )] (A5)

for r,s =1,2,3. The corresponding elements of the information matrix are given by
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*L 1
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1 [
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[

2

1
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202

v

1 1
J3 = Tk [0_2 (Jr @ Iy)Ur @ (W + W/))}

1
=—w[Jr@W+W)H]=0,
202

v

where the result that J;3 =J,;3 =0 follows from the fact that the diagonal elements of
W are 0 and J33 uses the fact that tr(W?) = tr(W’z) and b=tr(W? + W'W).
Therefore, the information matrix evaluated under H{ is given by

1 1 0
” NT
- |1 T 0 A.6
=35 nl (A.6)
0 0 2bG,
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using (A.1), we get

T 1
. —1 T T—1 0 0
NT 264
LM, = [o, 7 G,NTH] (NT> -4 L0 %G
v N
0 0 2667 NTH
NT N2T
= G? H? A7
2AT —1) % ’ (A7)

where G = i’ (Jr @ Iy)i/i'i—1 and H = &' (Ir @ (WW')/2)ii/il'ii as described in (2.11).

A.2. Conditional LM test for A=0 (given aﬁ >0)

In this appendix we derive the conditional LM test which tests for no spatial error
correlation given the existence of random regional effects. The null hypothesis is given
by H{: . =0 (assuming ai > 0). Under the null hypothesis, the variance—covariance
matrix reduces to Q)= GﬁJT ® Iy + a%INT. It is the familiar form of the one-way error
component model, see Baltagi (1995), with QO_I =) ' Jr@Iy)+ () HEr®1Iy),
where o7 = Tai + a2.

Under the null hypothesis Hg : A=0 (assuming aft > 0), we get

1. 1
Qe = <02JT + O_ZET) ® Iy, (A.8)
1 v
0Q
ol =nely, (A9)
86\' H(g/
0Q,
=Jr ® Iy, (A.10)
daZ |,
HO
oQ,
=0, ® + . .
Iy @ (W + W' (A.11
2 |y

Using (A.2), one obtains
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oL 1 | VP 1A
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where 62 =0'(Er ® Iy)i/N(T — 1) and 63 =4'(J7 @ Iy )i/N are the MLEs of ¢2 and
¢, and 7 is the maximum likelihood residual under the null hypothesis Hg .
Therefore, the score vector under Hg is given by

0
D=0 |. (A.15)
D;

Using (A.5), the elements of the information matrix are given by
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L 1 - _2
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2 o)

where the result that J;3 =J;3 =0 follows from the fact that the diagonal elements of

W is 0 and Ji; uses the fact that t+(W?2) = tr(W'*), and b= tr(W?* + W'W).
Therefore, the information matrix evaluated under H¢ is given by

MG E) o 0
A NT NT?
Jo= 27 267 0 . (A.22)
4
0 0 (T—1+4%)b
1
Therefore,

LM; =D}J;'D;
B D())?
- a4
(T-1)+ %]b

as described in (2.24).

A.3. Conditional LM test for aﬁ =0 (assuming A #0)

This appendix derives the conditional LM tests for zero random regional effects
assuming that spatial error correlation exists. We give the detailed derivation of the
score and information matrix for testing H : aﬁ =0 (assuming 4 # 0).

Under A,

Qy=0d’lr ® (B'B)"!, (A.23)
1
Q' = p Ir @ (B'B) (A.24)
and
0Q,
=Jr ® 1y, (A.25)
oo

2
e



B.H. Baltagi et al. | Journal of Econometrics 117 (2003) 123—150 147

0Q,

=I; 2 BB, (A.26)
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where B =1y — AW and 4 is the MLE of A under H§. Using (A.2), we get
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This uses the fact that
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which yields
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because
1 0Q, 1 A A 2 Alal A NG Al Al
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Therefore, the score vector under /j is given by

0
D=0 . (A.30)
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The elements of the information matrix for this model using (A.5) are given by
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