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Preface

Panel data econometrics continues to be a hot topic in econometrics and has
experienced a lot of growth over the last two decades. Micro- and Macro-panels are
increasing in availability, and methods to deal with these data are in high demand
from practitioners. Software programs helped this growth with freely available
programs in R and a lot of available programs in Stata as well as EViews. Since the
5th edition, there have been six international conferences on panel data. These were
held in London in 2013; Tokyo, 2014; Perth, Australia, 2016; Thessaloniki 2017;
Seoul, Korea, 2018; and Vilnius, Lithuania, 2019. Panel data is widely applied in
finance, development, trade, marketing, and micro- as well as macroeconomics.
More specifically in health, public, labor, urban, and consumer economics. These
attest to the usefulness of these panel methods in applied economics.

As of December 2020, I am proud to have more than 18,000 citations by Google
Scholar to my book entitled Econometric Analysis of Panel Data published initially
with Wiley and now updated in its 6th edition with Springer; see https://scholar.
google.com/citations?user=XWrDL6IAAAAJ&hl=en.

This book is intended for an advanced undergraduate/graduate econometrics
course focusing on panel data. The prerequisites include a good background in
mathematical statistics and econometrics at the level of Greene (2003). Matrix
algebra is necessary for the presentation of theoretical results. While this may be too
technical for some readers, the book keeps an eye on real economic applications
and replicates them using standard available software to help guide the applied
researcher. I have taught panel data courses at Central Banks and Labor Institutes
using this book focusing on the applied material and empirical applications.

Some of the major features of this book are that it provides an up-to-date
coverage of basic panel data techniques, especially for serial correlation, spatial
correlation, heteroskedasticity, seemingly unrelated regressions, simultaneous
equations, dynamic panel models, incomplete panels, limited dependent variables,
count and spatial panels, and nonstationary panels. I have tried to keep things
simple, illustrating the basic ideas using the same notation for a diverse literature
with heterogeneous notation. Many of the estimation and testing techniques are
illustrated with data sets which are available for classroom use on the book website
at https://www.springer.com/book/9783030539528. Other real economic applica-
tions are given in the text as well as in the problems sections at the end of each
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chapter with the data sets available from the journal’s website where the article was
published, like the data archive of Journal of Applied Econometrics. The book also
summarizes several empirical studies using panel data techniques, so that the reader
can relate the econometric methods with the economic applications. The book
proceeds from single equation methods to simultaneous equation methods as in any
standard econometrics text, so it should prove friendly to graduate students.

The book gives the basic coverage without being encyclopedic. There is an
extensive amount of research in this area and not all topics are covered. Recent
special issues on panel data include Baltagi and Maasoumi (2013) in Econometric
Reviews and Bai, Baltagi and Pesaran (2016) in Journal of Applied Econometrics; a
special issue of Annals of Economics and Statistics by Bonhomme and Davezies
(2019), and a special issue of the Journal of Econometrics edited by Sarafidis and
Wansbeek (2021).

I have used this book to teach panel data courses at Syracuse University;
University of Leicester; Texas A&M University; University of California-San
Diego; University of Cincinnati; University of Arizona; Aarhus University at the
Center for Research in Econometric Analysis of Time Series, CREATES, the
University of Macedonia, Thessaloniki, Greece, University of Padova, Universita
Cattolica, Roma, University of Roma “La Sapienza” in Italy, University of Coimbra
and the University of Minho in Portugal, Universidad del Rosario, Bogotá,
Colombia; Cyprus University of Technology, University of Innsbruck and the
University of Vienna in Austria; Carleton University, Canada; Universidad
Autonoma de Madrid and Pompeau Fabra in Spain, Singapore Management
University, Seoul National University in Korea, and yearly at the Barcelona
Graduate School of Economics (2008–2019); and also at the International Monetary
Fund (IMF), Washington D.C. (2004–2019); European Central Bank, Frankfurt
(2001); Central Bank of Turkey (2010); Central Bank of Argentina (2009); Banco
de Protugal (2008); Inter-American Development Bank, Washington D.C. (2005);
Instituto de Estudios Fiscales, Madrid (2009–2011); The Marie Curie Training
Programme in Applied Health Economics, Thessaloniki, Greece (2006); Center for
Economic Studies (CES-Ifo) and the University of Munich (2002; 2005; 2009);
Netherlands Network of Economics (NAKE), Utrecht University (2005); Institute
for Economic Research (IWH)-Halle (1997), German Institute for Economic
Research (DIW), Berlin (2004); Institute for Advanced Studies, Vienna (2001);
Centro Interuniversitario de Econometria (CIDE)-Bertinoro (1998 and 2008); and
The Study Center Gerzensee, a foundation of the Swiss National Bank (2014), to
mention a few. See my webpage for a complete list https://pbaltagi.wix.com/
badibaltagi.

The 6th edition continues to use empirical examples from the panel data liter-
ature to motivate the book. There are empirical illustrations and examples using
Stata and EViews throughout the book. In teaching this material around the world,
these useful applications are successful in the classroom and in teaching and
applying the methods used in this book. The book has many problems at the end of
each chapter, some of them published in Econometric Theory and I am grateful to
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Peter C. B. Phillips for having that section and providing a valuable service to the
profession.

I have written a companion to the 4th edition of this book; see Baltagi (2009).
This is available from Wiley. The companion is written in a problem/solution
format and solves a lot of the problems in this textbook. So it is a nice complement
for graduate students and instructors interested in more proofs and supplemental
material. The companion adds more empirical examples which are illustrated using
Stata and EViews. Chapter 1 of the companion, for example, gives background
material on partitioned regressions and the Frisch–Waugh–Lovell theorem that is
useful for understanding fixed effects and the Within regression. It should also be
helpful in explaining some of the technical material for those who need to see the
proofs or check derivations, or do their own research extensions.

Virtually, every chapter was revised and updated in this new edition. References
were updated and older ones were deleted when necessary due to space limitations.
Older empirical applications were replaced by newer ones. New problems were
added asking the reader to replicate recent panel data applications illustrating the
methods in the book. I kept the old problems so that the reader can still use the
companion Baltagi (2009) which accompanied the 4th edition. However, I have
added new problems to many chapters including real empirical applications not
presented in the text due to space limitations. The reader is asked to replicate these
empirical applications. These new problems are of course not available in the
Baltagi (2009) Wiley Companion.

Chapter 1 distinguishes between micro- and macro-panel data sources and dis-
cusses the benefits and limitations of using panel data in research. Both Chaps. 2 and
3 illustrate basic panel methods using a one-way (only individual effects) and
two-way (both individual and time effects) error components models with fixed and
random effects. Both chapters emphasize empirical examples and replicate their
estimation using Stata and EViews. This is done with three empirical examples. The
first is the Grunfeld (1958) investment equation. The second is the Baltagi and
Griffin (1983) gasoline demand equation, and the third is Munnell’s (1990) pro-
ductivity of public capital in the private sector. Additional empirical examples are
given in the problems section of Chap. 3. These include Ram’s (2009) study on the
relationship between openness, country size, and government size, and also Neu-
mayer’s (2003) study on the relationship between air pollution levels and left-wing
party strength. Chapter 4 illustrates the testing procedures available with the standard
software and highlight the need for more diagnostics and test statistics that have not
yet made it to these packages. Tests for poolability, tests for random and fixed effects
as well as Hausman’s specification test are the focus of this chapter. These are
illustrated with the three empirical examples used in Chap. 2. Additional empirical
examples include the gravity trade equation by Glick and Rose (2002) which studies
the effect of having the same currency on trade. Chapter 5 shows the reader how to
deal with heteroskedasticity and serial correlation and how to test for it in a panel
data context. Extensions of the Durbin–Watson test for serial correlation and the
Breusch–Pagan test for heteroskedasticity to panel data are presented along with
newly developed tests using panel data. These tests include (i) the xttest1 command
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in Stata for jointly testing for serial correlation and random effects; (ii) the xtserial
command which tests that the differenced fixed effects residuals have correlation of -
0.5 with their lagged values. Also, (iii) the xtqptest and xthrtest commands which
perform panel serial correlation tests suggested by Born and Breitung (2016). This
chapter also discusses panel data methods that account for different autoregressive
coefficient for each time series in the panel as well as heteroskedasticity across
individuals. This is illustrated with xtgls in Stata. An empirical example estimating a
dynamic unemployment rate equation using this method is replicated based on
Nickell, Nunziata and Ochel (2005). Chapter 6 gives the estimation of seemingly
unrelated regressions with panel data. This is done for the one-way and two-way
error component models. Several applications are cited from the literature. Chapter 7
illustrates how one can deal with endogeneity of the simultaneous equation type
using a crime example based on Cornwell and Trumbull (1994). This is illustrated
with Stata using the xtivreg command with fixed effects as well as random effects.
Another example on economic growth and foreign aid based on Bruckner (2013) is
used to illustrate fixed effects 3SLS. The Hausman and Taylor (1981) method is also
illustrated with Stata using PSID data applied to an earnings equation based on
Cornwell and Rupert (1988), and also a gravity trade equation based on Serlenga and
Shin (2007) studying the importance of common language on trade. Extensions
of the Hausman and Taylor estimator to serial correlation, dynamics, and spatial
correlation are discussed throughout this book. Chapter 8 treats the important
dynamic panel data literature made popular with the Arellano and Bond (1991)
paper. Two main empirical examples illustrate these methods for dynamic panel
models. The first one estimates a dynamic demand for cigarettes across American
states based on Baltagi and Levin (1986), and the second one looks at the rela-
tionship between democracy and education across countries based on Acemoglu
et al. (2005). More empirical examples are added to the problems section for the
reader to replicate. These include Tobin’s q based on Schaller (1990); democracy
and growth based on Acemoglu et al. (2019); dynamic Hausman and Taylor applied
to the earnings equation of Cornwell and Rupert (1988); a gravity equation for
foreign direct investment based on Egger and Pfaffermayr (2004); and the effect of a
twin crisis (both currency and banking crisis) on GDP growth based on Hutchison
and Noy (2005). Chapter 9 illustrates unbalanced panel data methods by estimating a
hedonic housing equation and the public capital productivity puzzle using xtmixed in
Stata. This chapter also discusses forecasting with unbalanced panels. Chapter 10
has selected topics including measurement error, rotating panels, pseudo-panels,
heterogeneous panels, short-run versus long-run, and count panel data. Count panel
is illustrated using the classic Hausman, Hall and Griliches (1984) study on the
relationship between patents and R&D expenditures. Additional empirical examples
on doctor’s visits by Winkelmann (2004) and hospital visits by Geil et al. (1997) are
in the problems section. Matched panels are highlighted in this chapter using the
study of Abrevaya (2006) who estimates the effect of smoking on birth outcomes
from panel data on mothers who give multiple births. Chapter 11 is dedicated to
limited dependent variable panel data models. Featured estimation methods include
the fixed effects probit and logit estimation suggested by Fernandez-Val and
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Weidner (2016) and their accompanying Stata applications to female labor supply
based on Fernandez-Val (2009) and a gravity trade example using probitfe and
logitfe in Stata; see Cruz-Gonzalez, Fernandez-Val and Weidner (2017). This per-
forms panel data Jackknife procedures and corrects for the bias of fixed effects in
logit and probit panel models. Another empirical example features the grouped
conditional logit estimator using Ruhm’s (1996) study on the impact of beer taxes
and a variety of alcohol-control policies on motor vehicle fatality rates. The chapter
also highlights Wooldridge’s (2005) simple approach for handling the initial con-
ditions problem in dynamic nonlinear unobserved effects. This is illustrated with the
Vella and Verbeek (1998) panel data set which estimated the union wage differential
for working men using PSID. Finally, tests for sample selection are illustrated using
nurses labor supply in Norway by Askildsen, Baltagi and Holmås (2003). Chapter 12
surveys the first-generation and second-generation panel unit roots along with the
associated literature on panel cointegration. Three empirical examples illustrate
these methods using EViews: the first on purchasing power parity using the study of
Banerjee, Marcellino and Osbat (2005); the second on international R&D spillover
using the data set by Coe and Helpman (1995); and the third on the relationship
between real per capita healthcare expenditures and real per capita gross domestic
product based on the study of Hansen and King (1996). Additional empirical
examples of these panel unit-root methods using Stata are added to the problems
section. These include Luintel’s (2000) study on black markets for foreign exchange
rates, and also test for unit roots using inflation rates by Culver and Papell (1997).
Chapter 13 tackles spatial panel data methods using the spatial autoregressive
models. Estimation methods using generalized moments and maximum likelihood
are considered as well as forecasting with spatial panel data. Lagrange and likelihood
ratio tests for spatial random effects panel models are discussed as well as panel data
tests for cross-sectional dependence. These are illustrated with Stata using com-
mands xtcsd and xttest2 as well as in EViews. In addition, extensions to instrumental
variables and dynamic spatial panel models are studied. An empirical example based
on the residential demand for electricity by Belotti, Hughes and Piano Mortari
(2017) is used to illustrate these methods with Stata using the command xsmle.

I would like to thank my students and co-authors for allowing me to draw freely on
our joint work. In particular, I would like to thank Georges Bresson, Peter Egger, Qu
Feng, Jim Griffin, Chihwa Kao,Walter Krämer, Dan Levin, Dong Li, Qi Li, Long Liu,
Michael Pfaffermayr, Alain Pirotte, Seuck Heun Song, and PingWu. Many colleagues
had direct and indirect influence on the contents of this book, most notably, Cheng
Hsiao, Roberto Mariano, M. Hashem Pesaran, Peter C. B. Phillips, Peter Schmidt, and
Tom Wansbeek, also, in memoriam, Gary Chamberlain, Arthur Goldberger, Clive
Granger, Zvi Griliches, G. S. Maddala, Halbert White, and Arnold Zellner.

David Drukker provided help with Stata on the Hausman and Taylor procedure
as well as EC2SLS in Chap. 7, and also the Baltagi and Wu LBI test in Chap. 5.
Glenn Sueyoshi provided help with EViews on the panel unit-root tests in Chap. 12.
Kevin Tappe provided valuable typos and suggestions after careful reading of an
earlier edition of my book while programing with R. Thanks also go to Johannes
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Glaeser and Judith Kripp at Springer for their editorial help. Last but not least,
thanks go to my wife Phyllis whose encouragement and support gave me the
required energy to complete this book. Responsibilities for errors and omissions are
my own.

Syracuse, NY, USA Badi H. Baltagi
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1Introduction

“The increased availability of panel data from household
surveys has been one of the most important developments in
applied social research in the last thirty years.”

Fitzgerald, Gottschalk and Moffitt (1998, p. 252)

1.1 Panel Data: Some Examples

In this book, the term “panel data” refers to the pooling of observations on a
cross-section of households, countries, firms, etc., over several time periods. This
can be achieved by surveying a number of households or individuals and following
them over time. The latter are known as micro-panels and are collected for a large
number of N individuals (usually in the hundreds or thousands) over a short time
period T (varying from a minimum of two years to a maximum rarely exceeding
10 or 20). In contrast, macro-panels usually involve a number of countries over
time. These may have a moderate size N (varying from 7 countries say for the G7
countries to a larger set of say 20 OECD or European Union countries, or a mix of
developed and developing countries, which could be as large as 100 or 200). These
are usually observed annually over 20 to 60 years. Micro- and macro-panels require
different econometric care. For example, the asymptotics for micro-panels has to be
for large N and fixed T, whereas the asymptotics for macro-panels can be for large
N and T. Also, with a long time series for macro-panels one has to deal with issues
of nonstationarity in the time series, like unit-roots, structural breaks, and cointe-
gration, see Chap. 12, whereas for micro-panels one does not deal with nonsta-
tionarity issues, especially since T is short for each individual or household. Also,
in macro-panels, one has to deal with cross-country dependence. These are not
usually an issue in micro-panels where the households are randomly sampled and
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hence not likely correlated. However, Chap. 13 studies spatial dependence in panel
data as a simple way to model externalities and spillovers across cross-sectional
units.

1.1.1 Examples of Micro-panels

Two well-known examples of US micro-panel data are the Panel Study of Income
Dynamics (PSID) collected by the Institute for Social Research at the University of
Michigan (https://psidonline.isr.umich.edu) and the National Longitudinal Surveys
(NLS) which is a set of surveys sponsored by the Bureau of Labor Statistics (https://
www.bls.gov/nls/home.htm).

PSID began in 1968 with a nationally representative sample of over 18,000
individuals living in 5,000 families in the United States. It is the World’s longest
running household panel survey. The central focus of the data is economic and
demographic. Information on these individuals and their descendants has been
collected continuously, including data covering employment, income, poverty
status, wealth, expenditures, health, marriage, childbearing, child development,
philanthropy, education, public assistance in the form of food or housing, other
financial matters (e.g., taxes and inter-household transfers), family structure and
demographic measures, housework time, housing, and numerous other topics. PSID
is directed by faculty at the University of Michigan, and the data are available on
the PSID website without cost to researchers and analysts.

NLS, on the other hand, are a set of surveys designed to gather information at
multiple points in time on labor market activities and other significant life events of
several groups of men and women. These include

(1) The NLSY 97 consisting of a nationally representative sample of young men
and women who were 12–17 years old as of 1997.

(2) The NLSY 79 consisting of a nationally representative sample of young men
and women who were 14–22 years old in 1979.

(3) The NLSY 79 children and young adults which includes the biological chil-
dren born to women in the NLSY 79.

The list of variables includes information on schooling and career transitions,
marriage and fertility, training investments, child care usage, and drug and alcohol
use. A large number of studies have used the NLS and PSID data sets. The PSID
applications cover a wide range of topics including inter-temporal models of labor
supply; wages and employment over the business cycle; unemployment, job turn-
over, and labor mobility; consumption, income, and balance sheet dynamics;
extended family behavior; poverty, welfare, and income dynamics; intergenera-
tional transmission of economic status; and antecedents of economic and demo-
graphic events.

Panels can also be constructed from the Current Population Survey (CPS), a
monthly national household survey of about 50,000 households conducted by the
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Bureau of Census for the Bureau of Labor Statistics (www.census.gov/cps). CPS is
the primary source of information on the labor force characteristics of the U.S.
population. Compared with the NLS and PSID data, CPS contains fewer variables,
spans a shorter period, and does not follow movers. However, it covers a much
larger sample and is representative of all demographic groups. CPS provides esti-
mates of employment, unemployment, earnings, hours of work, and other indica-
tors. These are available by a variety of demographic characteristics including age,
sex, race, marital status, and educational attainment. They are also available by
occupation, industry, and class of worker.

Another important source of household survey data for developing countries is
the World Bank’s Living Standards Measurement Study (LSMS) which was
established in the early 1980s (www.worldbank.org/LSMS). Since 1985, LSMS has
conducted surveys in about 20 developing countries from Albania to Vietnam.
These tend to be small samples of the order of 2000 to 5000 households. In some
countries this could be one survey or multiple surveys. In other countries it could be
a two to a four-year panel. Three types of questionnaires were conducted: a
household, a community, and a price questionnaire. In some cases, a school or
health facility questionnaire was added. The LSMS data has focused mostly on
documenting regularities concerning the nature of poverty. Repeated surveys, like
the LSMS, even though may not constitute a genuine panel, can be used to con-
struct a pseudo-panel as we will see in Chap. 10.

Although the US panels started in the 1960s, it was only in the 1980s that the
European panels began setting up. In 1989, a special section of European Economic
Review published papers using the German Social Economic Panel, the Swedish
study of household market and nonmarket activities, and the Intomart Dutch panel
of households. The first wave of the German Socio-Economic Panel (GSOEP) was
collected by the DIW (German Institute for Economic Research, Berlin) in 1984
and included 5921 West German households (www.diw.de/soep). This included
12290 respondents. Standard demographic variables as well as wages, income,
benefit payments, level of satisfaction with various aspects of life, hopes and fears,
political involvement, etc., are collected. In 1990, 4453 adult respondents in 2179
households from East Germany were included in GSOEP due to German unifica-
tion. The attrition rate has been relatively low in GSOEP. Wagner, Burkhauser and
Behringer (1993) report that through eight waves of the GSOEP, 54.9% of the
original panel respondents have records without missing years. The British
Household Panel Survey (BHPS) is an annual survey of private households in
Britain first collected in 1991 by the Institute for Social and Economic Research at
the University of Essex (www.iser.essex.ac.uk/ulsc/bhps/). This is a national rep-
resentative sample of some 5500 households and 10,300 individuals drawn from
250 areas of Great Britain. In 1999, additional samples of 1,500 households in each
of Scotland and Wales were added to the main sample, as well as a sample of 2,000
households in 2001 from Northern Ireland. Data collected includes demographic
and household characteristics, household organization, labor market, health, edu-
cation, housing, consumption, and income, and social and political values. The
Swedish Panel Study Market and Non-market Activities (HUS) were collected in
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1984, 1986, 1988, 1991, 1993, 1996, and 1998 (https://snd.gu.se/en/catalogue/
study/SND0277). Data were collected on child care, housing, market work, income
and wealth, tax reform (1993), willingness to pay for a good environment (1996),
local taxes, public services, and activities in the black economy (1998).

The European Community Household Panel (ECHP) is centrally designed and
coordinated by the Statistical Office of the European Communities (EuroStat),
(https://ec.europa.eu/eurostat/web/microdata/european-community-household-panel).
ECHP spans 8 years, running from 1994 to 2001. This involved the member states
including Belgium, Denmark, Germany, Ireland, Greece, Spain, France, Italy,
Luxembourg, the Netherlands, Austria, Portugal, Sweden, and the United Kingdom.
The project was launched to obtain comparable information across member coun-
tries on income, work and employment, poverty and social exclusion, housing,
health, and many other diverse social indicators indicating living conditions of
private households and persons. Other panel studies include the following: The
Russian Longitudinal Monitoring Survey (RLMS) collected in 1992 by the Carolina
Population Center at the University of North Carolina (https://www.cpc.unc.edu/
projects/rlms-hse/index.html). RLMS is a nationally representative household sur-
vey designed to measure the effects of Russian reforms on economic well-being.
Data includes individual health and dietary intake, measurement of expenditures and
service utilization, and community-level data including region-specific prices and
community infrastructure. The Korea Labor and Income Panel Study (KLIPS) is
available since 1998 (https://www.kli.re.kr/klips). The Household, Income and
Labour Dynamics in Australia (HILDA) is a household panel survey whose first
wave was conducted by Melbourne Institute of Applied Economic and Social
Research in 2001 (https://melbourneinstitute.unimelb.edu.au/hilda). The Indonesia
Family Life Survey (https://www.rand.org/well-being/social-and-behavioral-policy/
data/FLS/IFLS.html), whose sample is representative of about 83% of the Indone-
sian population and contains over 30,000 individuals living in 13 of the 26 provinces
in the country. This list of panel data sets is by no means exhaustive but provides a
good selection of panel data sets readily accessible for economic research.

1.1.2 Examples of Macro-panels

In contrast to micro-panel surveys, there are several macro-panels for countries
over time, and hence they have to be expressed in the same currency and in real
terms. These include (i) The Penn World Table (PWT) available at (https://www.
rug.nl/ggdc/productivity/pwt/). PWT version 9.1 provides purchasing power parity
and national income accounts converted to international prices for 182 countries for
some or all of the years 1950–2017. In addition, the European Union or the OECD
provide detailed purchasing power and real product estimates for their countries and
the World Bank makes current price estimates for most PWT countries at the GDP
level. (ii) The World Bank is a great source of macro-panels including the World
Development Indicators (WDI) available at (https://databank.worldbank.org/source/
world-development-indicator). (iii) The International Monetary Fund (http://www.
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imf.org) provides several sources of macro-panel data. These include World Eco-
nomic Outlook Databases and International Financial Statistics which provide
time-series data for GDP growth, inflation, unemployment, payments balances,
exports, imports, external debt, capital flows, commodity prices, etc., IMF Statistics
Data, Principal Global Indicators, and Global Housing Watch. The latter is a
website that tracks developments in housing markets around the world: Balance of
Payments Statistics, Direction of Trade Statistics, Government Financial Statistics,
among others. This is a rich source that includes exchange rates, fund accounts, and
the main global and country economic indicators. (iv) United Nations provides a
wealth of macro-country panel data at (https://unstats.un.org/databases.htm).
(v) The Organization for Economic Co-operation and Development (OECD) data is
available at (http://www.oecd.org). (vi) The European Central Bank (ECB) pro-
vides data on the European Union member countries at (http://www.ecb.int).
(vii) The Central Intelligence Agency’s World Factbook is available on the Web at
https://www.cia.gov/library/publications/resources/the-world-factbook/index.html.

These are but few of the agencies providing macro-data on individual countries
over time, which can be pooled and used in panel studies.

We will study several types of panel data encountered in practice including
unbalanced panels in Chap. 9, nested panels in Sect. 9.7, unequally spaced panels
in Sect. 5.2.5, rotating panels in Sect. 10.2, pseudo-panels in Sect. 10.3, spatial
panels in Chap. 13, count panels in Sect. 10.6, and heterogeneous panels in
Sect. 10.5.

1.1.3 Some Basic References

Virtually, every graduate text in econometrics contains a chapter or a major section
on the econometrics of panel data. Recommended readings on this subject include
Hsiao’s (2003) Econometric Society monograph along with two chapters in the
Handbook of Econometrics: Chapter 22 by Chamberlain (1984) and chapter 53 by
Arellano and Honoré (2001). Maddala (1993) edited two volumes collecting some
of the classic articles on the subject. This collection of readings was updated with
two more volumes covering the period 1992–2002 and edited by Baltagi (2002).
Other books on the subject include Arellano (2003), Wooldridge (2010), and a
handbook on the econometrics of panel data edited by Mátyás and Sevestre (2008)
and more recently by Baltagi (2015). Special issues of journals dedicated to panel
data include two special issues of Journal of Econometrics. The first one edited by
Baltagi (1995) and a more recent one by Sarafidis and Wansbeek (2021). Two
volumes of Annales D’Economie et de Statistique edited by Sevestre (1999), and a
more recent one in the Annals of Economics and Statistics by Bonhomme and
Davezies (2019). A special issue of Oxford Bulletin of Economics and Statistics
edited by Banerjee (1999). Three special issues of Econometric Reviews. Two were
edited by Maasoumi and Heshmati (2000) and the third by Baltagi and Maasoumi
(2013). A special issue of Advances in Econometrics edited by Baltagi, Fomby and
Hill (2000). Two special issues of Empirical Economics. One edited by Baltagi
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(2004) and the second by Baltagi and Breitung (2011). Two special issues of the
Journal of Applied Econometrics. The first one edited by Baltagi and Pesaran
(2007) and the second by Bai, Baltagi and Pesaran (2016).

The objective of this book is to provide a simple introduction to some of the
basic issues of panel data analysis. It is intended for economists and social scientists
with the usual background in statistics and econometrics. Panel data methods have
been used in political science, see Beck and Katz (1995), in sociology, finance, and
marketing; see Keane (2015). While restricting the focus of the book to basic topics
may not do justice to this rapidly growing literature, it is nevertheless unavoidable
in view of the space limitations of the book. Topics not covered in this book include
duration models and hazard functions (see Heckman and Singer 1985), and also the
frontier production function literature using panel data (see Kumbhakar and Lovell
2000; Koop and Steel 2001), the literature on time-varying parameters, random
coefficients, and Bayesian models, see Swamy and Tavlas (2001) and Hsiao (2003),
and nonparametric and semi-parametric panels; see Li and Racine (2007).

1.2 Why Should We Use Panel Data? Their Benefits
and Limitations

Hsiao (2003) lists several benefits from using panel data. These include the
following:

(1) Controlling for individual heterogeneity. Panel data suggests that individuals,
firms, states, or countries are heterogeneous. Time-series and cross-section studies
not controlling this heterogeneity run the risk of obtaining biased results, e.g., see
Moulton (1986, 1987). Let us demonstrate this with an empirical example. Baltagi
and Levin (1986) consider panel data estimation of cigarette demand across 46
American states. Consumption is modeled as a function of lagged consumption,
price, and income. These variables vary with states and time. However, there are a
lot of other variables that may be state-invariant or time-invariant that may affect
consumption. Let us call these Zi and Wt, respectively. Examples of Zi are religion
and education. For the religion variable, one may not be able to get the percentage
of the population that is, say, Mormon in each state for every year, nor does one
expect that to change much across time. The same holds true for the percentage of
the population completing high school or a college degree. Examples of Wt include
advertising on TV and radio. This advertising is nationwide and does not vary
across states. In addition, some of these variables are difficult to measure or hard to
obtain so that not all the Zi or Wt variables are available for inclusion in the
consumption equation. Omission of these variables leads to bias in the resulting
estimates. Panel data are able to control for these state- and time-invariant variables
whereas a time-series study or a cross-section study cannot. In fact, from the data
one observes that Utah has less than half the average per capita consumption of
cigarettes in the USA. This is because it is mostly a Mormon state, a religion that
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prohibits smoking. Controlling for Utah in a cross-section regression may be done
with a dummy variable which has the effect of removing that state’s observation
from the regression. This would not be the case for panel data as we will shortly
discover. In fact, with panel data, one might first difference the data to get rid of all
Zi type variables and hence effectively control for all state-specific characteristics.
This holds whether the Zi are observable or not. Alternatively, the dummy variable
for Utah controls for every state-specific effect that is distinctive of Utah without
omitting the observations for Utah.

Another example is given by Hajivassiliou (1987) who studies the external debt
repayments problem using a panel of 79 developing countries observed over the
period 1970–82. These countries differ in terms of their colonial history, financial
institutions, religious affiliations, and political regimes. All of these country-specific
variables affect the attitudes that these countries have with regards to borrowing and
defaulting and the way they are treated by the lenders. Not accounting for this
country heterogeneity causes serious misspecification.

Deaton (1995) gives another example from agricultural economics. This pertains
to the question of whether small farms are more productive than large farms. OLS
regressions of yield per hectare on inputs such as land, labor, fertilizer, and farmer’s
education usually find that the sign of the estimate of the land coefficient is neg-
ative. These results imply that smaller farms are more productive. Some explana-
tions from economic theory argue that higher output per head is an optimal response
to uncertainty by small farmers, or that hired labor requires more monitoring than
family labor. Deaton (1995) offers an alternative explanation. This regression
suffers from the omission of unobserved heterogeneity; in this case “land quality”,
and this omitted variable is systematically correlated with the explanatory variable
(farm size). In fact, farms in low-quality marginal areas (semi-desert) are typically
large, while farms in high-quality land areas are often small. Deaton argues that
while gardens add more value per hectare than a sheep station; this does not imply
that sheep stations should be organized as gardens. In this case, differencing may
not resolve the “small farms are productive” question since farm size will usually
change little or not at all over short periods.

(2) Panel data give more informative data, more variability, less collinearity among
the variables, more degrees of freedom, and more efficiency. Time-series studies are
plagued with multicollinearity; for example, in the case of demand for cigarettes
above, there is high collinearity between price and income in the aggregate time
series for the USA. This is less likely with a panel across American states since the
cross-section dimension adds a lot of variability, adding more informative data on
price and income. In fact, the variation in the data can be decomposed into variation
between states of different sizes and characteristics, and variation within states. The
former variation is usually bigger. With additional, more informative data one can
produce more reliable parameter estimates. Of course, the same relationship has to
hold for each state, i.e., the data have to be poolable. This is a testable assumption
and one that we will tackle in due course.
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(3) Panel data are better able to study the dynamics of adjustment. Cross-sectional
distributions that look relatively stable hide a multitude of changes. Spells of
unemployment, job turnover, residential and income mobility are better studied
with panels. Panel data are also well suited to study the duration of economic states
like unemployment and poverty, and if these panels are long enough, they can shed
light on the speed of adjustments to economic policy changes. For example, in
measuring unemployment, cross-sectional data can estimate what proportion of the
population is unemployed at a point in time. Repeated cross-sections can show how
this proportion changes over time. Only panel data can estimate what proportion of
those who are unemployed in one period can remain unemployed in another period.
Important policy questions like determining whether families’ experiences of
poverty, unemployment, and welfare dependence are transitory or chronic neces-
sitate the use of panels. Deaton (1995) argues that, unlike cross-sections, panel
surveys yield data on changes for individuals or households. It allows us to observe
how the individual living standards change during the development process. It
enables us to determine who is benefiting from development. It also allows us to
observe whether poverty and deprivation are transitory or long-lived, the
income-dynamics question. Panels are also necessary for the estimation of
intertemporal relations, life-cycle and intergenerational models. In fact, panels can
relate the individual’s experiences and behavior at one point in time to other
experiences and behavior at another point in time. For example, in evaluating
training programs, a group of participants and non-participants are observed before
and after the implementation of the training program. This is a panel of at least two
time periods and the basis for the “difference-in-differences” estimator; see Chap. 2.

(4) Panel data are better able to identify and measure effects that are simply not
detectable in pure cross-section or pure time-series data. Suppose that we have a
cross-section of women with a 50% average yearly labor force participation rate.
This might be due to (a) each woman having a 50% chance of being in the labor
force, in any given year, or (b) 50% of the women working all the time and 50% not
at all. Case (a) has high turnover, while case (b) has no turnover. Only panel data
could discriminate between these cases. Another example is the determination of
whether union membership increases or decreases wages. This can be better
answered as we observe a worker moving from union to nonunion jobs or vice
versa. Holding the individual’s characteristics constant, we will be better equipped
to determine whether union membership affects wage and by how much. This
analysis extends to the estimation of other types of wage differentials holding
individuals’ characteristics constant, for example, the estimation of wage premiums
paid in dangerous or unpleasant jobs.

Economist studying workers level of satisfaction run into the problem of
anchoring in a cross-section study; see Winkelmann and Winkelmann (1998) in
Chap. 11. The survey usually asks the question: “how satisfied are you with your
life”? with zero meaning completely dissatisfied and 10 meaning completely sat-
isfied. The problem is that each individual anchors their scale at different levels,
rendering interpersonal comparisons of responses meaningless. However, in a panel
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study, where the metric used by individuals is time-invariant over the period of
observation, one can avoid this problem since a difference (or fixed effects) esti-
mator will make inference based only on intra rather than interpersonal comparison
of satisfaction.

(5) Panel data models allow us to construct and test more complicated behavioral
models than purely cross-section or time-series data. For example, technical effi-
ciency is better studied and modeled with panels (see Kumbhakar and Lovell 2000,
and Koop and Steel 2001).

(6) Micro-panel data gathered on individuals, firms, and households may be more
accurately measured than similar variables measured at the macro level. Biases
resulting from aggregation over firms or individuals may be reduced or eliminated.

(7) Macro-panel data on the other hand have a longer time series and unlike the
problem of nonstandard distributions typical of unit roots tests in time-series
analysis; Chap. 12 shows that panel unit root tests have standard asymptotic
distributions.

Limitations of panel data include

(1) Design and data collection problems. For an extensive discussion of problems
that arise in designing panel surveys as well as data collection and data
management issues, see Kasprzyk et al. (1989). These include problems of
coverage (incomplete account of the population of interest), nonresponse (due
to lack of cooperation of the respondent or because of interviewer error), recall
(respondent not remembering correctly), frequency of interviewing, interview
spacing, reference period, the use of bounding and time-in-sample bias.1

(2) Distortions of measurement errors. Measurement errors may arise because of
faulty responses due to unclear questions, memory errors, deliberate distortion
of responses (e.g., prestige bias), inappropriate informants, and misrecording
of responses and interviewer effects (see Kalton, Kasprzyk and McMillen
1989). The validation study by Duncan and Hill (1985) on PSID illustrates the
significance of the measurement error problem. They compare the responses of
the employees of a large firm with the records of the employer. They find small
response biases except for work hours which are overestimated. The ratio of
measurement error variance to the true variance is found to be 15% for annual
earnings, 37% for annual work hours, and 184% for average hourly earnings.
These figures are for a one-year recall, i.e., 1983 for 1982, and are more than
doubled with two years’ recall. Brown and Light (1992) investigate the
inconsistency in job tenure responses in PSID and NLS. Cross-section data
users have little choice but to believe the reported values of tenure (unless they
have external information) while users of panel data can check for inconsis-
tencies of tenure responses with elapsed time between interviews. For exam-
ple, a respondent may claim to have three years of tenure in one interview and
a year later claim six years. This should alert the user of this panel to the
presence of measurement error. Brown and Light (1992) show that failure to
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use internally consistent tenure sequences can lead to misleading conclusions
about the slope of wage-tenure profiles. Section 10.1 deals with measurement
error in panel data.

(3) Selectivity problems. These include

(a) Self-selectivity. People choose not to work because the reservation wage is
higher than the offered wage. In this case, we observe the characteristics
of these individuals but not their wage. Since only their wage is missing,
the sample is censored. However, if we do not observe all data on these
people, this would be a truncated sample. An example of truncation is the
New Jersey negative income tax experiment. We are only interested in
poverty, and people with income larger than 1.5 times the poverty level
are dropped from the sample. Inference from this truncated sample
introduces bias that is not helped by more data, because of the truncation
(see Hausman and Wise, 1979). Chapter 11 deals with selectivity prob-
lems in panel data.

(b) Nonresponse. This can occur at the initial wave of the panel due to refusal
to participate, nobody at home, untraced sample unit, and other reasons.
Item (or partial) nonresponse occurs when one or more questions are left
unanswered or are found not to provide a useful response. Complete
nonresponse occurs when no information is available from the sampled
household. Besides the efficiency loss due to missing data, this nonre-
sponse can cause serious identification problems for the population
parameters. The seriousness of the problem is directly proportional to the
amount of nonresponse. Nonresponse rates in the first wave of the
European panels vary across countries from 10% in Greece and Italy
where participation is compulsory to 52% in Germany and 60% in
Luxembourg. The overall nonresponse rate is 28%; see Peracchi (2002).
The comparable nonresponse rate for the first wave of the PSID is 24%,
for the BHPS (26%) and for the GSOEP (38%).

(c) Attrition. While nonresponse occurs also in cross-section studies, it is a
more serious problem in panels because subsequent waves of the panel
are still subject to nonresponse. Respondents may die, or move, or find
that the cost of responding is high. See Chap. 11 on the consequences of
attrition in panels. The degree of attrition varies depending on the panel
studied; see Kalton, Kasprzyk and McMillen (1989) for several examples.
In general, the overall rates of attrition increase from one wave to the next,
but the rate of increase declines over time. Becketti et al. (1988) study the
representativeness of the PSID 14 years after it had started. The authors
find that only 40% of those originally in the sample in 1968 remained in
the sample in 1981. However, they do find that as far as the dynamics of
entry and exit are concerned, PSID is still representative. The most
potentially damaging threat to the value of panel data is the presence of
biasing attrition. Fitzgerald, Gottschalk and Moffitt (1998) report that by
1989, 51% of the original sample had attrited. The major reasons were
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family unit nonresponse, death, or because of a residential move. Attritors
were found to have lower earnings, lower education levels, and lower
marriage propensities. Despite the large amount of attrition, Fitzgerald,
Gottschalk and Moffitt (1998) report that there is no strong evidence that
this attrition had seriously distorted the representativeness of PSID
through 1989. In the same vain of research, Lillard and Panis (1998) find
evidence of significant selectivity in attrition for PSID. For example, they
find that less-educated individuals and older people are more likely to
drop out. Married people are more likely to continue. This propensity to
participate in the survey diminishes the longer the duration of the
respondent in the sample. Despite this, the effects of ignoring this
selective attrition on household income dynamics, marriage formation and
dissolution, and adult mortality risk are mild. In Europe, the comparable
attrition rates (between the first and second wave) vary from 6% in Italy to
24% in the UK. The average attrition rate is about 10%. For BHPS,
attrition from the first to the second wave is 12%. For GSOEP, attrition is
12.4% for the West German sample and 8.9% for the East German
sample; see Peracchi (2002). In order to counter the effects of attrition,
rotating panels are sometimes used, where a fixed percentage of the
respondents are replaced in every wave to replenish the sample. More on
rotating and pseudo-panels in Chap. 10. A special issue of the Journal of
Human Resources, Spring 1998, is dedicated to attrition in longitudinal
surveys.

(4) Short time-series dimension. Typical micro-panels involve annual data cov-
ering a short time span for each individual. This means that asymptotic
arguments rely crucially on the number of individuals tending to infinity.
Increasing the time span of the panel is not without cost either. In fact, this
increases the chances of attrition and increases the computational difficulty for
limited dependent variable panel data models (see Chap. 11).

(5) Cross-section dependence. Macro-panels on countries or regions with long
time series that do not account for cross-country dependence may lead to
misleading inference. Chapter 12 shows that several panel unit-root tests
suggested in the literature assumed cross-section independence. Accounting
for cross-section dependence turns out to be important and affects inference.
Alternative panel unit-root tests are suggested that account for this depen-
dence. Chapter 13 surveys tests for cross-sectional dependence in panels.

Panel data is not a panacea and will not solve all the problems that a time-series
or a cross-section study could not handle. Examples are given in Chap. 12, where
we cite econometric studies arguing that panel data will yield more powerful unit
root tests than individual time series. This in turn should help shed more light on the
purchasing power parity (PPP) and the growth convergence questions. In fact, this
lead to a flurry of empirical applications along with some skeptics who argued that
panel data did not save the PPP or the growth convergence problem; see Maddala,
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Wu and Liu (2000) and Banerjee, Marcellino and Osbat (2004, 2005). Collecting
panel data is quite costly, and there is always the question of how often should one
interview respondents. Deaton (1995) argues that economic development is far
from instantaneous, so that changes from one year to the next are probably too
noisy and too short term to be really useful. He concludes that the payoff for panel
data is over long time periods, five years, ten years, or even longer. In contrast, for
health and nutrition issues, especially those of children, one could argue the
opposite case, i.e., those panels with a shorter time span are needed in order to
monitor the health and development of these children.

This book will make the case that panel data provides several advantages worth
its cost. However, as Zvi Griliches argued about economic data in general, the more
we have of it, the more we demand of it. The economist using panel data or any
data for that matter has to know its limitations.

1.3 Note

1. Bounding is used to prevent the shifting of events from outside the recall period
into the recall period. Time-in-sample bias is observed when a significantly different
level for a characteristic occurs in the first interview than in later interviews, when
one would expect the same level.
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2TheOne-WayError Component
RegressionModel

2.1 Introduction

A panel data regression differs from a regular time-series or cross-section regression
in that it has a double subscript on its variables, i.e.,

yit = α + X ′
itβ + uit i = 1, . . . ,N ; t = 1, . . . ,T (2.1)

with i denoting households, individuals, firms, countries, etc., and t denoting time.
The i subscript, therefore, denotes the cross-section dimension whereas t denotes the
time-series dimension. α is a scalar, β is K × 1, and Xit is the itth observation on
K explanatory variables. Most of the panel data applications utilize a one-way error
component model for the disturbances, with

uit = μi + νit (2.2)

where μi denotes the unobservable individual specific effect and vit denotes the
remainder disturbance. For example, in an earnings equation in labor economics, yit
will measure earnings of the head of the household, whereas Xit may contain a set of
variables like experience, education, union membership, sex, race, etc. Note that μi

is time-invariant and it accounts for any individual specific effect that is not included
in the regression. In this case, we could think of it as the individual’s unobserved
ability. The remainder disturbance vit varies with individuals and time and can be
thought of as the usual disturbance in the regression. Alternatively, for a production
function utilizing data on firms across time, yit will measure output and Xit will
measure inputs. The unobservable firm-specific effects will be captured by the μi,
and we can think of these as the unobservable entrepreneurial or managerial skills
of the firm’s executives. In vector form (2.1) can be written as

y = αιNT + Xβ + u = Zδ + u (2.3)

where y is NT× 1, X is NT × K , Z = [ιNT ,X ], δ′ = (α′, β ′), and ιNT is a vector of
ones of dimension NT . Also, (2.2) can be written as
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u = Zμμ + ν (2.4)

where u′ = (u11, . . . , u1T , u21, . . . , u2T , . . . , uN1, . . . , uNT ) with the observations
stacked such that the slower index is over individuals and the faster index is over
time. Zμ = IN ⊗ ιT where IN is an identity matrix of dimension N , ιT is a vector of
ones of dimension T , and ⊗ denotes Kronecker product. Zμ is a selector matrix of
ones and zeros, or simply the matrix of individual dummies that one may include
in the regression to estimate the μi if they are assumed to be fixed parameters.
μ′ = (μ1, . . . , μN ) and ν′ = (ν11, . . . , ν1T , . . . , νN1, . . . , νNT ). Note that, ZμZ ′

μ =
IN ⊗ JT where JT is a matrix of ones of dimension T , and P = Zμ(Z ′

μZμ)−1Z ′
μ; the

projection matrix on Zμ reduces to IN ⊗ J̄T where J̄T = JT /T . P is a matrix which
averages the observation across time for each individual, andQ = INT − P is amatrix
which obtains the deviations from individual means. For example, regressing y on
the matrix of dummy variables Zμ gets the predicted values Py which have a typical
element yi. = ∑T

t=1 yit/T repeated T times for each individual. The residuals of this
regression are given by Qy which have a typical element

(
yit − yi.

)
. P and Q are

(i) symmetric idempotent matrices, i.e., P′ = P and P2 = P. This means that the
rank(P) = tr(P) = N and rank(Q) = tr(Q) = N (T − 1). This uses the result that
rank of an idempotent matrix is equal to its trace (see Graybill (1961), Theorem
1.63). Also, (ii) P and Q are orthogonal, i.e., PQ = 0 and (iii) they sum to the
identity matrix P + Q = INT . In fact, any two of these properties imply the third (see
Graybill (1961), Theorem 1.68).

2.2 The One-Way Fixed Effects Model

In this case, the μi are assumed to be fixed parameters to be estimated and the
remainder disturbances stochastic with vit independent and identically distributed
IID

(
0, σ 2

ν

)
. The Xit are assumed independent of the vit for all i and t. The fixed

effects model is an appropriate specification if we are focusing on a specific set of
N firms, say, IBM, GE, Westinghouse, etc., and our inference is restricted to the
behavior of these sets of firms. Alternatively, it could be a set of N OECD countries,
or N American states. Inference in this case is conditional on the particular N firms,
countries or states that are observed. One can substitute the disturbances given by
(2.4) into (2.3) to get

y = αιNT + Xβ + Zμμ + ν = Zδ + Zμμ + ν (2.5)

and then perform ordinary least squares (OLS) on (2.5) to get estimates of α, β,
and μ. Note that Z is NT × (K + 1) and Zμ , the matrix of individual dummies,
is NT × N . If N is large, (2.5) will include too many individual dummies, and the
matrix to be inverted by OLS is large and of dimension (N + K). In fact, since α and
β are the parameters of interest, one can obtain the least squares dummy variables
(LSDV) estimator from (2.5), by premultiplying the model by Q and performing
OLS on the resulting transformed model:

Qy = QXβ + Qv (2.6)
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This uses the fact that QZμ = QιNT = 0, since PZμ = Zμ. In other words, the Q
matrix wipes out the individual effects. This is a regression of ỹ = Qy with typical
element (yit − ȳi.) on X̃ = QX with typical element (Xit,k − X̄i.,k) for the kth regres-
sor, k = 1, 2, . . . ,K . This involves the inversion of a (K × K) matrix rather than
(N + K) × (N + K) as in (2.5). The resulting OLS estimator is

β̃ = (
X ′QX

)−1
X ′Qy (2.7)

with var(β̃) = σ 2
ν (X ′QX )−1 = σ 2

ν (X̃ ′X̃ )−1. β̃ could have been obtained from (2.5)
using results on partitioned inverse or the Frisch-Waugh-Lovell theorem discussed
in Davidson and MacKinnon (1993, p. 19). This uses the fact that P is the projection
matrix on Zμ and Q = INT − P (see problem 2.1). In addition, generalized least
squares (GLS) on (2.6), using generalized inverse, will also yield β̃ (see problem
2.2).

Note that for the simple regression

yit = α + βxit + μi + νit (2.8)

and averaging over time gives

ȳi. = α + β x̄i. + μi + ν̄i. (2.9)

Therefore, subtracting (2.9) from (2.8) gives

yit − ȳi. = β(xit − x̄i.) + (νit − ν̄i.) (2.10)

Also, averaging across all observations in (2.8) gives

ȳ.. = α + β x̄.. + ν̄.. (2.11)

where we utilized the restriction that
∑N

i=1 μi = 0. This is an arbitrary restriction
on the dummy variable coefficients to avoid the dummy variable trap, or perfect
multicollinearity. In fact only β and (α + μi) are estimable from (2.8), and not α

and μi separately, unless a restriction like
∑N

i=1 μi = 0 is imposed. In this case,
β̃ is obtained from regression (2.10), α̃ = ȳ.. − β̃ x̄.. can be recovered from (2.11)
and μ̃i = ȳi. − α̃ − β̃ x̄i. from (2.9). For large labor or consumer panels, where N is
very large, regressions like (2.5) may not be feasible, since one is including (N − 1)
dummies in the regression. This fixed effects (FE) least squares, also known as least
squares dummy variables (LSDV), suffers from a large loss of degrees of freedom.
We are estimating (N − 1) extra parameters, and too many dummies may aggravate
the problem of multicollinearity among the regressors. In addition, this FE estimator
cannot estimate the effect of any time-invariant variable like sex, race, religion,
and schooling or union participation. These time-invariant variables are wiped out
by the Q transformation, the deviations from means transformation (see (2.10)).
Alternatively, one can see that these time-invariant variables are spanned by the
individual dummies in (2.5) and therefore any regression package attempting (2.5)
will fail, signaling perfect multicollinearity. If (2.5) is the true model, LSDV is
the best linear unbiased estimator (BLUE) as long as νit is the standard classical
disturbance with mean 0 and variance–covariance matrix σ 2

ν INT . Note that as T →
∞, the FE estimator is consistent. However, if T is fixed and N → ∞ as typical in
short labor panels, then only the FE estimator of β is consistent; the FE estimators of
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the individual effects (α + μi) are not consistent since the number of these parameters
increases as N increases. Note that when the true model is fixed effects as in (2.5),
OLS on (2.1) yields biased and inconsistent estimates of the regression parameters.
This is an omission variables bias due to the fact that OLS deletes the individual
dummies when in fact they are relevant.

(1) Testing for fixed effects. One could test the joint significance of these dummies,
i.e., H0;μ1 = μ2 = · · · = μN−1 = 0 , by performing an F-test. (Testing for
individual effects will be extensively treated in Chap. 4.) This is a simple Chow
test with the restricted residual sums of squares (RRSS) being that of OLS on the
pooled model and the unrestricted residual sums of squares (URSS) being that of
the LSDV regression. If N is large, one can perform the Within transformation
and use that residual sum of squares as the URSS. In this case

F0 = (RRSS −URSS)/N − 1)

URSS/(NT − N − K)

H0
∼ FN−1,N (T−1)−K (2.12)

(2) Computational warning. One computational caution for those using the Within
regression is given by (2.10). The s2 of this regression as obtained from a typical
regression package divides the residual sums of squares by NT − K since the
intercept and the dummies are not included.Theproper s2, say s∗2 from theLSDV
regression in (2.5), would divide the same residual sums of squares by N (T −
1) − K . Therefore, one has to adjust the variances obtained from the Within
regression (2.10) by multiplying the variance–covariance matrix by (s∗2/s2) or
simply by multiplying by [NT − K]/[N (T − 1) − K].

(3) Robust estimates of the standard errors. For the Within estimator, Arellano
(1987) suggests a simple method for obtaining robust estimates of the stan-
dard errors that allow for a general variance–covariance matrix on the νit as in
White (1980). One would stack the panel as an equation for each individual:

yi = Ziδ + μiιT + νi (2.13)

where yi is (T × 1), Zi = [ιT ,Xi],Xi is (T × K),μi is a scalar, δ′ = (α, β ′), ιT is
a vector of ones of dimension T , and νi is (T × 1). In general, E(νiν

′
i) = �i for

i = 1, 2, . . . ,N , where �i is a positive definite matrix of dimension T . We still
assume E(νiν

′
j) = 0, for i �= j. T is assumed small and N large as in household

or company panels, and the asymptotic results are performed for N → ∞ and T
fixed. Performing the Within transformation on this set of equations (2.13), one
gets

ỹi = X̃iβ + ν̃i (2.14)

where ỹ = Qy, X̃ = QX , and ν̃ = Qν, with ỹ = (̃y′
1, . . . , ỹ

′
N )′ and ỹi = (IT −

J̄T )yi. Computing robust least squares on this system, as described by White
(1980), under the restriction that each equation has the same β one gets the
Within estimator of β which has the following asymptotic distribution:

N 1/2(β̃ − β) ∼ N (0,M−1VM−1) (2.15)

where M = plim(X̃ ′X̃ )/N and V = plim
∑N

i=1(X̃
′
i �iX̃i)/N . Note that X̃i =

(IT − J̄T )Xi and X̃ ′Q diag[�i]QX̃ = X̃ ′diag[�i]X̃ (see problem 2.3). In this
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case, V is estimated by Ṽ = ∑N
i=1 X̃

′
i ũĩu

′
iX̃i/N , where ũi = ỹi − X̃iβ̃. There-

fore, the robust asymptotic variance–covariance matrix of β is estimated by

var(β̃) = (X̃ ′X̃ )−1

[
N∑

i=1

X̃ ′
i ũĩu

′
iX̃i

]

(X̃ ′X̃ )−1. (2.16)

Stock and Watson (2008) consider the panel data model in (2.5) with seri-
ally uncorrelated errors, and apply the conventional White (1980) cross-section
heteroskedasticity-robust variance–covariance matrix estimator to the fixed effects
regression. This amounts to replacing the term in brackets in (2.16) by

VCS =
N∑

i=1

T∑

t=1

X̃it X̃
′
it ũ

2
it/(NT − N − K).

They show that VCS is inconsistent if T is fixed (and greater than 2) and N → ∞.
They suggest a bias adjusted estimator given by

VFE = (T − 1)

(T − 2)

[

VCS − 1

N (T − 1)

N∑

i=1

(
1

T

T∑

t=1

X̃it X̃
′
it

)(
1

(T − 1)

T∑

s=1

ũ2is

)]

UsingMonte Carlo experiments, they show that tests based on VFE are recommended
especially if T is moderate or large.

Hansen (2007b) studies the properties of the FE estimator and its robust variance–
covariance matrix not only when N is large but also when T may be large. He
shows that tests based on these robust standard errors are consistent as long as
N → ∞, regardless of the relative size of N and T even in cases where the data is
equicorrelated.

Bramati and Croux (2007) focus on robust alternatives to the Within estimator.
The resulting estimator is robust in the sense that it is not altered too much by
removing or modifying a small percentage of the observations. The basic idea is to
center the variables by the median instead of the mean, since the median is known
to be min-max robust. After centering, one runs a robust regression estimator such
as the Least Trimmed Squares estimator. This estimator minimizes the sum of the
smallest h squared residuals, where 1 ≤ h ≤ NT is a truncation value. A default
choice is h = [3NT/4], making it possible to cope with up to 25% of outliers.

Throughout this book, the readerwill encounter several empirical exampleswhere
fixed effects give different results from pooled OLS. Some prominent examples are
(1) the effect of real beer taxes on the US states motor vehicle fatality rates from
drunken driving, see Ruhm (1996) in Chap. 11, where OLS yields a positive (0.012)
and significant effect of real beer taxes on motor vehicle fatality rates, whereas FE
obtains a negative (–0.324) and significant effect of real beer taxes on motor vehicle
fatality rates. (2) The productivity puzzle example 3 in this chapter, where Munnell
(1990) gets a positive (0.155) and significant effect of public Capital on produc-
tivity in the private sector using OLS, whereas FE obtains a negative (–0.026) and
insignificant effect of public capital on productivity in the private sector, and hence
the productivity puzzle. (3) Mothers who smoke during pregnancy are more likely
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to adopt other behaviors like drinking, poor nutritional intake, etc., that could have
a negative impact on birthweight. Abrevaya (2006) argues that if these omitted vari-
ables are positively correlated with smoking, then OLS will result in an overestimate
of the effect of smoking on birthweight. Typical OLS estimates yield a lowering
birthweight of 230–250 grams. Using a matched panel on mothers with multiple
birth, Abrevaya (2006) shows that fixed effects yields a much lower birthweight
effect of smoking mothers of about 144 grams; see problem 10.7.

Difference-in-Differences

Note that the fixed effects (FE) transformation (̃yit = yit − ȳi.) is not the only trans-
formation that will wipe out the individual effects. In fact, first differencing (FD) will
also do the trick (	yit = yit − yi,t−1). This is a crucial tool used in the Difference-
in-Differences estimator. Before the approval of any drug, it is necessary to assign
patients randomly to receive the drug or a placebo, and the drug is approved or disap-
proved depending on the difference in the health outcome between these two groups.
In this case, the FDA is concerned with the drug’s safety and its effectiveness. How-
ever, we run into problems in setting this experiment. How can we hold other factors
constant? Even twins which have been used in economic studies are not identical
and may have different life experiences. With panel data, observations on the same
subjects before and after a health policy change allow us to estimate the effectiveness
of this policy on the treated and control groups without the contamination of individ-
ual effects. In simple regression form, assuming the assignment to the control and
treatment groups is random; one regresses the change in the health outcome before
and after the health policy is enacted on a dummy variable which takes the value 1
if the individual is in the affected (treatment) group and zero if the individual is in
the unaffected (control) group. This regression computes the average change in the
health outcome for the treatment group before and after the policy change and sub-
tracts that from the average change in the health outcome for the control group. One
can include additional regressors which measure the individual characteristics prior
to the policy change. Examples are gender, race, education, and age of the individ-
ual. This is known as the difference-in-differences (DID) estimator in econometrics.
Alternatively, one can regress the health outcome y on dg, dt , and their interaction
dtxdg. dg is a dummy variable that takes the value 1 if the subject is in the treatment
group, and zero otherwise; dt is a dummy variable which takes the value 1 for the
post-treatment period, and zero otherwise. In this case, dtxdg takes the value one
only for observations in the treatment group and in the post-treatment period. The
OLS estimate of the coefficient of dtxdg yields theDID estimator. Another advantage
of running this regression is that one can robustify the standard errors with standard
software.

In economics, one cannot conduct medical experiments. Card (1990) used a nat-
ural experiment to see whether immigration reduces wages. Taking advantage of the
“Mariel boatlift” where a large number of Cuban immigrants entered Miami, Card
(1990) compared the change in wages of low-skilled workers inMiami to the change
in wages of similar workers in other comparable U.S. cities over the same period.
Card concluded that the influx of Cuban immigrants had a negligible effect on wages
of less-skilled workers. Gruber and Poterba (1994) use the DID estimator to show
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that a change in the tax law did increase the purchase of health insurance among
the self-employed. They compared the fraction of the self-employed who had health
insurance before the tax change 1985–1986 with the period after the tax change
1988–1989. The control group was the fraction of employed (not self-employed)
workers with health insurance in those years.

Donald and Lang (2007) warn that the standard asymptotics for the DID estimator
cannot be applied when the number of groups is small, as in the case where one
compares two states in two years, or self-employed workers and employees over a
small number of years. They reconsider the Gruber and Poterba (1994) paper on
health insurance and self-employment and Card (1990) study of the Mariel boatlift.
They show that analyzing the t-statistic, taking into account a possible group-error
component, dramatically reduces the precision of their results. In fact for Card (1990)
Mariel boatlift study, their findings suggest that the data cannot exclude large effects
of the migration on blacks in Miami.

Bertrand, Duflo and Mullainathan (2004) argue that several DID studies in eco-
nomics rely on a long time series. They warn that in this case, serial correlation will
understate the standard error of the estimated treatment effects, leading to overes-
timation of t-statistics and significance levels. They show that the block bootstrap
(taking into account the autocorrelation of the data) works well when the number of
states is large enough.1 Hausman and Kuersteiner (2008) warn that both the DID and
the fixed effects estimators are not efficient if the stochastic disturbances are serially
correlated. The optimal estimator in this case is generalized least squares (GLS), but
this is rarely used in applications of DID studies. Hausman and Kuersteiner (2008)
use higher order Edgeworth expansion to construct a size corrected t-statistic (based
on feasible GLS) for the significance of treatment variables in DID regressions. They
find that size corrected t-statistic based on feasible GLS yields accurate size and is
significantly more powerful than robust OLS when serial correlation in the level data
is high.

Conley and Taber (2011) consider the case where there are only a small number
N1 of treatment groups, say states, that change a law or policy within a fixed time
span T . Let N0 denote the number of control groups (states) that do not change
their policy. Conley and Taber argue that the standard large-sample approximations
used for inference can be misleading especially in the case of non-Gaussian or seri-
ally correlated errors. They suggest an alternative approach to inference under the
assumption that N1 is finite, using asymptotic approximations that let N0 grow large,
with T fixed. Point estimators of the treatment effect parameter(s) are not consistent
since N1 and T are fixed. However, they use information from the N0 control groups
to consistently estimate the distribution of these point estimators up to the true values
of the parameter.

DIDestimation has its benefits and limitations. It is simple to compute and controls
for heterogeneity of the individuals or the groups considered before and after the
policy change. However, it does not account for the possible endogeneity of the
interventions themselves. Abadie (2005) discusses how well the comparison groups
used in nonexperimental studies approximate appropriate control groups. Athey and
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Imbens (2006) critique the linearity assumptions used in DID estimation and provide
a general changes-in-changes (CIC) estimator that does not require such assumptions.

The DID estimator requires that, in the absence of the treatment, the average
outcomes for the treated and control groups would have followed parallel paths
over time. This assumption may be too restrictive. Abadie (2005) considers the
case in which differences in observed characteristics create non-parallel outcome
dynamics between treated and controls. He proposes a family of semiparametric
DID estimators that can be used to estimate the average effect of the treatment for
the treated. Abadie, Diamond and Hainmueller (2010) advocate the use of data-
driven procedures to construct suitable comparison groups. Data-driven procedures
reduce discretion in the choice of the comparison control units, forcing researchers to
demonstrate the affinities between the affected and unaffected units using observed
quantifiable characteristics. The idea behind the synthetic control approach is that
a combination of units often provides a better comparison for the unit exposed to
the intervention than any single unit alone. They apply the synthetic control method
to study the effects of California’s Proposition 99, a large-scale tobacco control
program implemented in California in 1988. They demonstrate that following the
passage of Proposition 99, tobacco consumption fell markedly in California relative
to a comparable synthetic control region. They estimate that by the year 2000, annual
per capita cigarette sales in California were about 26 packs lower than what they
would have been in the absence of Proposition 99.

Athey and Imbens (2006) generalize the DID methodology to what they call the
changes-in-changes (CIC) methodology. Their approach allows the effects of both
time and the treatment to differ systematically across individuals, as when new med-
ical technology differentially benefits sicker patients. They propose an estimator for
the entire counterfactual distribution of effects of the treatment on the treatment group
as well as the distribution of effects of the treatment on the control group, where the
two distributions may differ from each other in arbitrary ways. They provide con-
ditions under which the proposed model is identified nonparametrically and extend
the model to allow for discrete outcomes. They also provide extensions to settings
with multiple groups and multiple time periods. They revisit the effects of disability
insurance on injury durations. They show that the CIC approach leads to results that
differ from the standard DID results in terms of magnitude and significance. They
attribute this to the restrictive assumptions required for the standard DID methods.

Laporte and Windmeijer (2005) show that the FE and FD estimators lead to very
different estimates of treatment effects when these are not constant over time and
treatment is a state that only changes occasionally. They suggest allowing for flex-
ible time-varying treatment effects when estimating panel data models with binary
indicator variables. They illustrate this by looking at the effect of divorce on mental
well-being using the British Household Panel Survey. They show that divorce has
an adverse effect on mental well-being that starts before the actual divorce, peaks
in the year of the divorce, and diminishes rapidly thereafter. A model that implies a
constant instantaneous effect of divorce leads to very different FD and FE estimates,
while a model that allows for flexibility in these effects leads to similar results. In
general, the FE estimator is more efficient than the FD estimator when the remainder
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disturbance νit ∼ IID(0, σ 2
ν ). The FD estimator is more efficient than the FE esti-

mator when the remainder disturbance νit is a random walk; see Wooldridge (2002).
These estimators are affected differently by measurement error, see Chap. 10, and
by nonstationarity; see Chap. 12.

Of course, this analysis can be refined to account for perhaps better control and
treatment groups. If a policy is enacted by state s to reduce teenage smoking or motor
vehicle fatality due to alcohol consumption or healthcare service for the elderly, then,
for the two periods case, dt takes the value 1 for the post-policy period, and zero
otherwise; ds takes the value 1 if the state has implemented this policy and zero
otherwise; and dg takes the value 1 for the treatment group affected by this policy
like the elderly, and zero otherwise. In this case, one regresses healthcare outcome on
dt, ds, dg , dtxdg, dtxds, dsxdg , and dtxdsxdg . The OLS estimate of the coefficient of
dtxdsxdg yields the difference-in-difference-in-differences estimator of this policy.
This estimator computes the average change in the health outcome for the elderly
in the treatment state before and after the policy is implemented, and then subtracts
from that the average change in the health outcome for the elderly in the control
state, as well as the average change in the health outcome for the non-elderly in the
treatment state.

Carpenter (2004) studied the effect of zero-tolerance (ZT) driving laws on alcohol-
related behaviors of 18–20-year-olds, controlling for macroeconomic conditions,
other alcohol policies, state fixed effects, survey year and month effects, and linear
state-specific time trends. ZT Laws make it illegal for drivers under age 21 to have
measurable amounts of alcohol in their blood, resulting in immediate license sus-
pension and fines. Carpenter uses the Behavioral Risk Factor Surveillance System,
which includes information on alcohol consumption and drunk driving behavior for
young adults over age 18 for the years 1984–2001. He estimates the effects of ZT
Laws using the difference-in-differences approach. The control group is composed
of 22–24-year-olds who are otherwise similar to treated individuals (18–20-year-
olds) but who should have been unaffected by the ZT policies. Let dZT be a dummy
variable that takes the value 1 if the state has ZT in that year and zero otherwise; and
dg is a dummy variable that takes the value 1 if the subject is in the treatment group,
and zero otherwise. Alcohol consumption is regressed on dZT , d1820 and dZTxd1820,
and other control variables mentioned above. The OLS estimate of the coefficient of
dZTxd1820 yields the difference-in-differences estimator of the zero tolerance laws.
Carpenter’s results indicate that the laws reduced heavy episodic drinking (five or
more drinks at one sitting) among underage males by 13%.

There is now a huge literature on treatment effects and we cannot do justice here;
we refer the reader to Chap.9 of the Oxford Handbook of Panel Data by Lechner
(2015) entitled treatment effects and panel data.
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2.3 The One-Way Random Effects Model

There are too many parameters in the fixed effects model and the loss of degrees
of freedom can be avoided if the μi can be assumed random. In this case μi ∼

IID(0, σ 2
μ), νit ∼ IID(0, σ 2

ν ), and the μi are independent of the νit . In addition, the
Xit are independent of the μi and νit , for all i and t. The random effects model is
an appropriate specification if we are drawing N individuals randomly from a large
population. This is usually the case for household panel studies. Care is taken in the
design of the panel tomake it “representative” of the populationwe are trying tomake
inferences about. In this case,N is usually large and a fixed effects model would lead
to an enormous loss of degrees of freedom. The individual effect is characterized
as random, and inference pertains to the population from which this sample was
randomly drawn. From (2.4), one can compute the variance–covariance matrix

� = E(uu′) = ZμE(μμ′)Z ′
μ + E(νν′) (2.17)

= σ 2
μ(IN ⊗ JT ) + σ 2

ν (IN ⊗ IT )

This implies a homoskedastic variance var(uit) = σ 2
μ + σ 2

ν for all i and t, and an
equicorrelated block-diagonal covariance matrix which exhibits serial correlation
over time only between the disturbances of the same individual. In fact,

cov(uit, ujs) = σ 2
μ + σ 2

ν for i = j, t = s

= σ 2
μ for i = j, t �= s

and zero otherwise. This also means that the correlation coefficient between uit and
ujs is

ρ = correl(uit, ujs) = 1 for i = j, t = s
= σ 2

μ/(σ 2
μ + σ 2

ν ) for i = j, t �= s

and zero otherwise. In order to obtain theGLSestimator of the regression coefficients,
weneed�−1. This is a hugematrix for typical panels and is of dimension (NT × NT ),

so no brute force inversion should be attempted.Wewill follow a simple trick devised
by Wansbeek and Kapteyn (1982) that allows the derivation of �−1 and �−1/2.2

Essentially, one replaces JT by T J̄T , and IT by (ET + J̄T ) where ET is by definition
(IT − J̄T ). In this case

� = Tσ 2
μ(IN ⊗ J̄T ) + σ 2

ν (IN ⊗ ET ) + σ 2
ν (IN ⊗ J̄T )

Collecting terms with the same matrices, we get

� = (Tσ 2
μ + σ 2

ν )(IN ⊗ J̄T ) + σ 2
ν (IN ⊗ ET ) = σ 2

1 P + σ 2
ν Q (2.18)

where σ 2
1 = Tσ 2

μ + σ 2
ν . (2.18) is the spectral decomposition representation of �,

with σ 2
1 being the first unique characteristic root of� of multiplicityN , and σ 2

ν is the
second unique characteristic root of � of multiplicity N (T − 1). It is easy to verify,
using the properties of P and Q, that

�−1 = 1

σ 2
1

P + 1

σ 2
ν

Q (2.19)
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and

�−1/2 = 1

σ1
P + 1

σν

Q (2.20)

In fact, �r = (σ 2
1 )rP + (σ 2

ν )rQ where r is an arbitrary scalar. Now we can obtain
GLS as a weighted least squares. Fuller and Battese (1973, 1974) suggested pre-
multiplying the regression equation given in (2.3) by σν�

−1/2 = Q + (σν/σ1)P and
performingOLSon the resulting transformed regression. In this case, y∗ = σν�

−1/2y
has a typical element yit − θ ȳi.where θ = 1 − (σν/σ1) (see problem 2.4). This trans-
formed regression inverts a matrix of dimension (K + 1) and can be easily imple-
mented using any regression package.

The best quadratic unbiased (BQU) estimators of the variance components arise
naturally from the spectral decomposition of �. In fact, Pu ∼ (0, σ 2

1P) and Qu ∼

(0, σ 2
ν Q) and

σ̂ 2
1 = u′Pu

tr(P)
= T

N∑

i=1

ū2i./N (2.21)

and

σ̂ 2
ν = u′Qu

tr(Q)
=

∑N
i=1

∑T
t=1(uit − ūi.)2

N (T − 1)
(2.22)

provide the BQU estimators of σ 2
1 and σ 2

ν , respectively (see problem 2.5).
These are analyses of variance-type estimators of the variance components and

are minimum variance unbiased under normality of the disturbances (see Graybill,
1961). The true disturbances are not known and therefore (2.21) and (2.22) are not
feasible.Wallace and Hussain (1969) suggest substituting OLS residual ûOLS instead
of the true u. After all, under the random effects model, the OLS estimates are still
unbiased and consistent, but no longer efficient. Amemiya (1971) shows that these
estimators of the variance components have a different asymptotic distribution from
that knowing the true disturbances. He suggests using the LSDV residuals instead
of the OLS residuals. In this case, ũ = y − α̃ιNT − X β̃ where α̃ = ȳ.. − X̄ ′

..β̃ and X̄ ′
..

is a 1 × K vector of averages of all regressors. Substituting these ũ for u in (2.21)
and (2.22), we get the Amemiya-type estimators of the variance components. The
resulting estimates of the variance components have the same asymptotic distribution
as that knowing the true disturbances:

(√
NT (̂σ 2

ν − σ 2
ν )√

N (̂σ 2
μ − σ 2

μ)

)

∼ N

(

0,

(
2σ 4

ν 0
0 2σ 4

μ

))

(2.23)

where σ̂ 2
μ = (̂σ 2

1 − σ̂ 2
ν )/T .3

Swamy and Arora (1972) suggest running two regressions to get estimates of the
variance components from the corresponding mean square errors of these regres-
sions. The first regression is the Within regression, given in (2.10), which yields the
following s2:

̂̂σ
2
ν = [y′Qy − y′QX (X ′QX )−1X ′Qy]/[N (T − 1) − K] (2.24)
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The second regression is the Between regression which runs the regression of aver-
ages across time, i.e.,

ȳi. = α + X̄ ′
i.β + ūi. i = 1, . . . ,N (2.25)

This is equivalent to premultiplying the model in (2.5) by P and running OLS. The
only caution is that the latter regression has NT observations because it repeats the
averages T times for each individual, while the cross-section regression in (2.25) is
based on N observations. To remedy this, one can run the cross-section regression

√
T ȳi. = α

√
T + √

TX̄ ′
i.β + √

T ūi. (2.26)

where one can easily verify that var(
√
T ūi.) = σ 2

1 . This regression will yield an s2

given by
̂̂σ
2
1 = (y′Py − y′PZ(Z ′PZ)−1Z ′Py)/(N − K − 1) (2.27)

Note that stacking the following two transformed regressions we just performed
yields (

Qy
Py

)

=
(
QZ
PZ

)

δ +
(
Qu
Pu

)

(2.28)

and the transformed error has mean 0 and variance–covariance matrix given by
(

σ 2
ν Q 0
0 σ 2

1 P

)

Problem 2.7 asks the reader to verify that OLS on this system of 2NT observations
yields OLS on the pooledmodel (2.3). Also, GLS on this system yields GLS on (2.3).
Alternatively, one could get rid of the constant α by running the following stacked
regressions:

(
Qy

(P − J̄NT )y

)

=
(

QX
(P − J̄NT )X

)

β +
(

Qu
(P − J̄NT )u

)

(2.29)

This follows from the fact that QιNT = 0 and (P − J̄NT )ιNT = 0. The transformed
error has zero mean and variance–covariance matrix

(
σ 2

ν Q 0
0 σ 2

1 (P − J̄NT )

)

OLS on this system yields OLS on (2.3) and GLS on (2.29) yields GLS on (2.3). In
fact,

β̂GLS = [(X ′QX /σ 2
ν ) + X ′(P − J̄NT )X /σ 2

1 ]−1[(X ′Qy/σ 2
ν ) + X ′(P − J̄NT )y/σ 2

1 ]
= [WXX + φ2BXX ]−1[WXy + φ2BXy] (2.30)

with var(β̂GLS) = σ 2
ν [WXX + φ2BXX ]−1 . Note that WXX = X ′QX , BXX =

X ′(P − J̄NT )X , and φ2 = σ 2
ν /σ 2

1 . Also, the Within estimator of β is β̃Within =
W−1

XX WXy and the Between estimator of β is β̂Between = B−1
XX BXy. This shows that

β̂GLS is a matrix-weighted average of β̃Within and β̂Between weighing each estimate
by the inverse of its corresponding variance. In fact

β̂GLS = W1β̃Within + W2β̂Between (2.31)
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where
W1 = [WXX + φ2BXX ]−1WXX

and
W2 = [WXX + φ2BXX ]−1(φ2BXX ) = I − W1

This was demonstrated by Maddala (1971). Note that (i) if σ 2
μ = 0 then φ2 = 1

and β̂GLS reduces to β̂OLS . (ii) If T → ∞, then φ2 → 0 and β̂GLS tends to β̃Within.
Also, if WXX is huge compared to BXX then β̂GLS will be close to β̃Within. However,
if BXX dominates WXX then β̂GLS tends to β̂Between. In other words, the Within
estimator ignores the Between variation, and the Between estimator ignores the
Within variation. The OLS estimator gives equal weight to the Between and Within
variations. From (2.30), it is clear that var(β̃Within)−var(β̂GLS) is a positive semi-
definite matrix, since φ2 is positive. However, as T → ∞ for any fixed N , φ2 → 0
and both β̂GLS and β̃Within have the same asymptotic variance.

Another estimator of the variance components was suggested by Nerlove (1971).
His suggestion is to estimateσ 2

μ as
∑N

i=1(μ̂i − μ̂)2/(N − 1)where μ̂i are the dummy
coefficients estimates from the LSDV regression. σ 2

ν is estimated from the Within
residual sums of squares divided by NT without correction for degrees of freedom.4

Note that, except for Nerlove (1971) method, one has to retrieve σ̂ 2
μ as ( σ̂ 2

1 −
σ̂ 2

ν )/T . In this case, there is no guarantee that the estimate of σ̂ 2
μ would be nonnega-

tive. Searle (1971) has an extensive discussion of the problemof negative estimates of
the variance components in the biometrics literature. One solution is to replace these
negative estimates by zero. This in fact is the suggestion of the Monte Carlo study by
Maddala and Mount (1973). This study finds that negative estimates occurred only
when the true σ 2

μ was small and close to zero. In these cases OLS is still a viable
estimator. Therefore, replacing negative σ̂ 2

μ by zero is not a sin after all, and the
problem is dismissed as not being serious.

How about the properties of the various feasible GLS estimators of β? Under the
random effects model, GLS based on the true variance components is BLUE, and
all the feasible GLS estimators considered are asymptotically efficient as either N or
T → ∞.Maddala andMount (1973) comparedOLS,Within, Between, feasibleGLS
methods, MINQUE, Henderson’s method III, true GLS, and maximum likelihood
estimation using their Monte Carlo study. They found little to choose among the
various feasible GLS estimators in small samples and argued in favor of methods
that were easier to compute. MINQUE was dismissed due to being more difficult
to compute, and the applied researcher given one shot at the data was warned to
compute at least two methods of estimation, like an ANOVA feasible GLS and
maximum likelihood to ensure that they do not yield drastically different results.
When they do give different results, the authors diagnose misspecification.

Taylor (1980) derived exact finite sample results for the one-way error component
model. He compared the Within estimator with the Swamy–Arora feasible GLS
estimator. He found the following important results:

(1) Feasible GLS is more efficient than LSDV for all but the fewest degrees of free-
dom.
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(2) The variance of feasible GLS is never more than 17% above the Cramer–Rao
lower bound.

(3) More efficient estimators of the variance components do not necessarily yield
more efficient feasible GLS estimators.

These finite sample results are confirmed by the Monte Carlo experiments carried
out by Maddala and Mount (1973) and Baltagi (1981).5

Fixed versus Random
Having discussed thefixed effects and the randomeffectsmodels and the assumptions
underlying them, the reader is left with the daunting question, which one to choose?
This is not as easy a choice as it might seem. In fact, the fixed versus random effects
issue has generated a hot debate in the biometrics and statistics literature which has
spilled over into the panel data econometrics literature. Wallace and Hussain (1969)
and Mundlak (1978) were early proponents of the fixed effects model. In Chap. 4,
we will study a specification test proposed by Hausman (1978) which is based on the
difference between the fixed and random effects estimators. Unfortunately, applied
researchers have interpreted a rejection as an adoption of the fixed effects model
and non-rejection as an adoption of the random effects model.6 Chamberlain (1984)
showed that the fixed effects model imposes testable restrictions on the parameters
of the reduced form model and one should check the validity of these restrictions
before adopting the fixed effects model (see Chap. 4). Mundlak (1978) argued that
the random effects model assumes exogeneity of all the regressors with the random
individual effects. In contrast, the fixed effects model allows for endogeneity of all
the regressors with these individual effects. So, it is an “all” or “nothing” choice
of exogeneity of the regressors and the individual effects; see Chap. 7 for a more
formal discussion of this subject. Hausman and Taylor (1981) allowed for some of the
regressors to be correlated with the individual effects, as opposed to the all or nothing
choice. These over-identification restrictions are testable using a Hausman-type test
(see Chap. 7). For the applied researcher, performing fixed effects and random effects
and the associated Hausman test reported in standard packages like Stata, LIMDEP,
TSP, etc., the message is clear: Do not stop here. Test the restrictions implied by
the fixed effects model derived by Chamberlain (1984) (see Chap. 4) and check
whether a Hausman and Taylor (1981) specification might be a viable alternative
(see Chap. 7).

2.4 Maximum Likelihood Estimation

Under normality of the disturbances, one can write the likelihood function as

L(α, β, φ2, σ 2
ν ) = constant − NT

2
log σ 2

ν + N

2
logφ2 − 1

2σ 2
ν

u′�−1u (2.32)

where � = σ 2
ν �, φ2 = σ 2

ν /σ 2
1 , and � = Q + φ−2P from (2.18). This uses the fact

that | � |= product of its characteristic roots= (σ 2
ν )N (T−1) (σ 2

1 )N = (σ 2
ν )NT (φ2)−N .
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Note that there is a one-to-one correspondence between φ2 and σ 2
μ. In fact, 0 � σ 2

μ <

∞ translates into 0 < φ2 � 1. Brute force maximization of (2.32) leads to nonlinear
first-order conditions (see Amemiya (1971)). Instead, Breusch (1987) concentrates
the likelihoodwith respect toα and σ 2

ν . In this case, α̂mle = ȳ.. − X̄ ′
..β̂mle and σ̂ 2

ν,mle =
(1/NT )̂u′�̂−1̂uwhere û and �̂ are based on maximum likelihood estimates of β, φ2,
and α. Let d = y − X β̂mle then α̂mle = (1/NT )ι′NTd and û = d − ιNT α̂mle = d −
J̄NT d . This implies that σ̂ 2

ν,mle can be rewritten as

σ̂ 2
ν,mle = d ′[Q + φ2(P − J̄NT )]d/NT (2.33)

and the concentrated likelihood becomes

LC(β, φ2) = constant − NT

2
log{d ′[Q + φ2(P − J̄NT )]d} + N

2
logφ2 (2.34)

Maximizing (2.34) over φ2, given β (see problem 2.9), yields

φ̂2 = d ′Qd
(T − 1)d ′(P − J̄NT )d

=
∑∑

(dit − d̄i.)2

T (T − 1)
∑

(d̄i. − d̄..)2
(2.35)

Maximizing (2.34) over β, given φ2, yields

β̂mle = [X ′(Q + φ2(P − J̄NT ))X ]−1X ′[Q + φ2(P − J̄NT )]y (2.36)

One can iterate between β and φ2 until convergence. Breusch (1987) shows that
provided T > 1, any ith iteration β, call it βi, gives 0 < φ2

i+1 < ∞ in the (i + 1)th
iteration. More importantly, Breusch (1987) shows that these φ2

i have a “remarkable
property” of forming a monotonic sequence. In fact, starting from the Within esti-
mator of β, for φ2 = 0, the next φ2 is finite and positive and starts a monotonically
increasing sequence of φ2. Similarly, starting from the Between estimator of β, for
(φ2 → ∞) the next φ2 is finite and positive and starts a monotonically decreas-
ing sequence of φ2. Hence, to guard against the possibility of a local maximum,
Breusch (1987) suggests starting with β̃Within and β̂Between and iterating. If these two
sequences converge to the same maximum, then this is the global maximum. If one
starts with β̂OLS for φ2 = 1, and the next iteration obtains a larger φ2, then we have
a local maximum at the boundary φ2 = 1. Maddala (1971) finds that there are at
most two maxima for the likelihood L(φ2) for 0 < φ2 � 1. Hence, we have to guard
against one local maximum.

2.5 Prediction

Suppose we want to predict S periods ahead for the ith individual. For the GLS
model, knowing the variance–covariance structure of the disturbances, Goldberger
(1962) showed that the best linear unbiased predictor (BLUP) of yi,T+S is

ŷi,T+S = Z ′
i,T+S δ̂GLS + w′�−1̂uGLS for s � 1 (2.37)
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where ûGLS = y − Z δ̂GLS and w = E(ui,T+Su). Note that for period T + S

ui,T+S = μi + νi,T+S (2.38)

and w = σ 2
μ(li ⊗ ιT ) where li is the ith column of IN , i.e., li is a vector that has 1 in

the ith position and zero elsewhere. In this case

w′�−1 = σ 2
μ(l′i ⊗ ι′T )

[
1

σ 2
1

P + 1

σ 2
ν

Q

]

= σ 2
μ

σ 2
1

(l′i ⊗ ι′T ) (2.39)

since (l′i ⊗ ι′T )P = (l′i ⊗ ι′T ) and (l′i ⊗ ι′T )Q = 0. Using (2.39), the typical ele-
ment of w′�−1̂uGLS becomes ((Tσ 2

μ/σ 2
1 )̂ui.,GLS) where ûi.,GLS = ∑T

t=1 ûit,GLS/T .
Therefore, in (2.37), the BLUP for yi,T+S corrects the GLS prediction by a fraction
of the mean of the GLS residuals corresponding to that ith individual. This predictor
was considered by Taub (1979). The BLUP are optimal assuming true values of the
variance components. In practice, these are replaced with estimated values that yield
empirical BLUP. Kackar and Harville (1984) propose inflation factors that account
for the additional uncertainty introduced by estimating these variance components.

Baillie and Baltagi (1999) consider the practical situation of prediction from the
error component regression model when the variance components are not known.
They derive both theoretical and simulation evidence as to the relative efficiency of
four alternative predictors: (i) an ordinary predictor, based on the optimal predictor
given in (2.37), but with MLEs replacing population parameters, (ii) a truncated
predictor that ignores the error component correction, given by the last term in (2.37),
but usesMLEs for its regression parameters, (iii) a misspecified predictor which uses
OLS estimates of the regression parameters, and (iv) a fixed effects predictor which
assumes that the individual effects are fixed parameters that can be estimated. The
asymptotic formula for MSE prediction is derived for all four predictors. Using
numerical and simulation results, these are shown to perform adequately in realistic
sample sizes (N = 50 and 500 and T = 10 and 20). Both the analytical and sampling
results show that there are substantial gains in mean square error prediction by
using the ordinary predictor instead of the misspecified or the truncated predictors,
especially with increasing ρ = σ 2

μ/(σ 2
μ + σ 2

ν ) values. The reduction inMSE is about
tenfold for ρ = 0.9 and a little more than twofold for ρ = 0.6 for various values
of N and T . The fixed effects predictor performs remarkably well being a close
second to the ordinary predictor for all experiments. Simulation evidence confirm
the importance of taking into account the individual effectswhenmaking predictions.
The ordinary predictor and the fixed effects predictor outperform the truncated and
misspecified predictors and are recommended in practice.7
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2.6 Examples

2.6.1 Example 1: Investment Equation

Grunfeld (1958) considered the following investment equation:

Iit = α + β1Fit + β2Cit + uit (2.40)

where Iit denotes real gross investment for firm i in year t, Fit is the real value of the
firm (shares outstanding), and Cit is the real value of the capital stock. These panel
data consist of 10 large US manufacturing firms over 20 years, 1935-54, and are
available on the Springer website as Grunfeld.fil. This data set, even though dated,
is of manageable size for classroom use and has been used by Zellner (1962) and
Taylor (1980). Table2.1 gives the OLS, Between andWithin estimators for the slope
coefficients along with their standard errors. The Between estimates are different
from the Within estimates and a Hausman (1978) test based on their difference
is given in Chap. 4. OLS and feasible GLS are matrix-weighted combinations of
these two estimators. Table2.1 reports three feasible GLS estimates of the regression
coefficients along with the corresponding estimates of ρ, σμ, and σν . These are
WALHUS, AMEMIYA, and SWAR. EViews computes the Wallace and Hussain
(1969) estimator as an option under the random effects panel data procedure. This
EViews output is reproduced in Table2.2. Similarly, Table2.3 gives the EViews
output for the Amemiya (1971) procedure which is named Wansbeek and Kapteyn
(1989) in EViews, since the latter paper generalizes the Amemiya method to deal
with unbalanced or incomplete panels; seeChap. 9. Table2.4 gives the EViews output
for the Swamy and Arora (1972) procedure. Note that in Table2.4, σ̂μ = 84.2, σ̂ν =
52.77, and ρ̂ = σ̂ 2

μ/(̂σ 2
μ + σ̂ 2

ν ) = 0.72. This is not θ̂ , but the latter can be obtained
as θ̂ = 1 − (̂σν/σ̂1) = 0.86. Next, Breusch (1987) iterative maximum likelihood

Table 2.1 Grunfeld’s data. One-way error component results

β1 β2 ρ σμ σν

OLS 0.116
(0.006)∗

0.231
(0.025)∗

Between 0.135
(0.029)

0.032
(0.191)

Within 0.110
(0.012)

0.310
(0.017)

WALHUS 0.110
(0.011)

0.308
(0.017)

0.73 87.36 53.75

AMEMIYA 0.110
(0.010)

0.308
(0.017)

0.71 83.52 52.77

SWAR 0.110
(0.010)

0.308
(0.017)

0.72 84.20 52.77

IMLE 0.110
(0.010)

0.308
(0.017)

0.70 80.30 52.49

∗These are biased standard errors when the true model has error component disturbances (see
Moulton 1986)
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Table 2.2 Grunfeld’s data: Wallace and Hussain RE estimator

Dependent Variable: I
Method: Panel EGLS (Cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wallace and Hussain estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -57.86253 29.90492 -1.934883 0.0544
F 0.109789 0.010725 10.23698 0.0000
K 0.308183 0.017498 17.61207 0.0000

Effects Specification

Cross-section random S.D. / Rho 87.35803 0.7254
Idiosyncratic random S.D. / Rho 53.74518 0.2746

Weighted Statistics

R-squared 0.769410 Mean dependent var 19.89203
Adjusted R-squared 0.767069 S.D. dependent var 109.2808
S.E. of regression 52.74214 Sum squared resid 548001.4
F-statistic 328.6646 Durbin-Watson stat 0.683829
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803285 Mean dependent var 145.9582
Sum squared resid 1841243. Durbin-Watson stat 0.203525

estimation is performed (IMLE). This procedure converged to a global maximum in
three to four iterations depending on whether one started from the Between orWithin
estimators. There is not much difference among the feasible GLS estimates or the
iterative MLE and they are all close to the Within estimates. This is understandable
given that θ̂ for these estimators is close to 1.
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Table 2.3 Grunfeld’s data: Amemiya/Wansbeek and Kapteyn RE estimator

Dependent Variable: I
Method: Panel EGLS (Cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -57.82187 28.68562 -2.015710 0.0452
F 0.109778 0.010471 10.48387 0.0000
K 0.308081 0.017172 17.94062 0.0000

Effects Specification

Cross-section random S.D. / Rho 83.52354 0.7147
Idiosyncratic random S.D. / Rho 52.76797 0.2853

Weighted Statistics

R-squared 0.769544 Mean dependent var 20.41664
Adjusted R-squared 0.767205 S.D. dependent var 109.4431
S.E. of regression 52.80503 Sum squared resid 549309.2
F-statistic 328.9141 Durbin-Watson stat 0.682171
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803313 Mean dependent var 145.9582
Sum squared resid 1840981. Durbin-Watson stat 0.203545

2.6.2 Example 2:Gasoline Demand Equation

Baltagi and Griffin (1983) considered the following gasoline demand equation:

ln
Gas

Car
= α + β1 ln

Y

N
+ β2 ln

PMG

PGDP
+ β3 ln

Car

N
+ u (2.41)

where Gas/Car is motor gasoline consumption per auto, Y /N is real per capita
income, PMG/PGDP is real motor gasoline price, and Car/N denotes the stock of
cars per capita. This panel consists of annual observations across 18OECDcountries,
covering the period 1960–78. The data for this example are given as Gasoline.dat
on the Springer website. Table2.5 gives the parameter estimates for OLS, Between,
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Table 2.4 Grunfeld’s data: Swamy and Arora RE estimator

Dependent Variable: I
Method: Panel EGLS (Cross-section random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -57.83441 28.88930 -2.001932 0.0467
F 0.109781 0.010489 10.46615 0.0000
K 0.308113 0.017175 17.93989 0.0000

Effects Specification

Cross-section random S.D. / Rho 84.20095 0.7180
Idiosyncratic random S.D. / Rho 52.76797 0.2820

Weighted Statistics

R-squared 0.769503 Mean dependent var 20.25556
Adjusted R-squared 0.767163 S.D. dependent var 109.3928
S.E. of regression 52.78556 Sum squared resid 548904.1
F-statistic 328.8369 Durbin-Watson stat 0.682684
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803304 Mean dependent var 145.9582
Sum squared resid 1841062. Durbin-Watson stat 0.203539

Within, and three feasible GLS estimates of the slope coefficients along with their
standard errors, and the corresponding estimates of ρ, σμ, and σν . Breusch’s (1987)
iterative maximum likelihood converged to a global maximum in four to six itera-
tions depending on whether one starts from the Between or Within estimators. For
the SWARprocedure, σ̂μ = 0.196, σ̂ν = 0.092, ρ̂ = 0.82, and θ̂ = 0.89. Once again
the estimates of θ are closer to 1 than 0, which explains why feasible GLS is closer to
the Within estimator than the OLS estimator. The Between and OLS price elasticity
estimates of gasoline demand are more than double than those for the Within and
feasible GLS estimators.
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2.6.3 Example 3: Public Capital Productivity

Following Munnell (1990), Baltagi and Pinnoi (1995) considered the following
Cobb–Douglas production function relationship investigating the productivity of
public capital in private production:

ln Y = α + β1 lnK1 + β3 lnK2 + β3 ln L + β4 Unemp + u (2.42)

where Y is gross state product, K1 is public capital which includes highways and
streets, water and sewer facilities, and other public buildings and structures. K2 is
the private capital stock based on the Bureau of Economic Analysis national stock
estimates, L is labor input measured as employment in nonagricultural payrolls.
Unemp is the state unemployment rate included to capture business cycle effects.
This panel consists of annual observations for 48 contiguous states over the period
1970-86. This data set was provided by Munnell (1990) and is given as Produc.prn
on the Springer website. Table2.6 gives the estimates for a one-way error component
model. Note that both OLS and the Between estimators report that public capital is
productive and significant in the states private production. In contrast, theWithin and
feasible GLS estimators find that public capital is insignificant. This result was also
reported by Holtz-Eakin (1994) who found that after controlling for state-specific
effects, the public-sector capital has no role in affecting private production.

Tables2.7 and 2.8 give the Stata output reproducing the Between and within
estimates in Table2.6. This is done using the xtreg command with options (,be) for
Between and (,fe) for fixed effects. Note that the fixed effects regression prints out
the F-test for the significance of the state effects at the bottom of the output. This
is the F-test described in (2.12). It tests whether all state dummy coefficients are

Table 2.5 Gasoline demand data. One-way error component results

β1 β2 β3 ρ σμ σν

OLS 0.890
(0.036)∗

–0.892
(0.030)∗

–0.763
(0.019)∗

Between 0.968
(0.156)

–0.964
(0.133)

–0.795
(0.082)

Within 0.662
(0.073)

–0.322
(0.044)

–0.640
(0.030)

WALHUS 0.545
(0.066)

–0.447
(0.046)

–0.605
(0.029)

0.75 0.197 0.113

AMEMIYA 0.602
(0.066)

–0.366
(0.042)

–0.621
(0.027)

0.93 0.344 0.092

SWAR 0.555
(0.059)

–0.420
(0.042)

–0.607
(0.026)

0.82 0.196 0.092

IMLE 0.588
(0.066)

–0.378
(0.044)

–0.616
(0.027)

0.91 0.292 0.092

∗These are biased standard errors when the true model has error component disturbances (see
Moulton, 1986)
Source Baltagi and Griffin (1983). Reproduced by permission of Elsevier Science Publishers
B.V.(North-Holland)
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Table 2.6 Public capital productivity data. One-way error component results

β1 β2 β3 β4 ρ σμ σν

OLS 0.155
(0.017)∗

0.309
(0.010)∗

0.594
(0.014)∗

-0.007
(0.001)∗

Between 0.179
(0.072)

0.302
(0.042)

0.576
(0.056)

–0.004
(0.010)

Within –0.026
(0.029)

0.292
(0.025)

0.768
(0.030)

–0.005
(0.001)

WALHUS 0.006
(0.024)

0.311
(0.020)

0.728
(0.025)

–0.006
(0.001)

0.82 0.082 0.039

AMEMIYA 0.002
(0.024)

0.309
(0.020)

0.733
(0.025)

–0.006
(0.001)

0.84 0.088 0.038

SWAR 0.004
(0.023)

0.311
(0.020)

0.730
(0.025)

–0.006
(0.001)

0.82 0.083 0.038

IMLE 0.003
(0.024)

0.310
(0.020)

0.731
(0.026)

–0.006
(0.001)

0.83 0.085 0.038

∗ These are biased standard errors when the true model has error component disturbances (see
Moulton (1986))

Table 2.7 Public capital productivity data: the Between estimator

. xtreg lny lnk1 lnk2 lnl u, be

Between regression (regression on group means)  Number of obs      =       816
Group variable (i) : stid                       Number of groups   =        48

R-sq:  within  = 0.9330                         Obs per group: min =        17
       between = 0.9939                                        avg =      17.0
       overall = 0.9925                                        max =        17

                                 F(4,43)            =   1754.11
sd(u_i + avg(e_i.))=  .0832062                  Prob > F           =    0.0000

------------------------------------------------------------------------------
         lny |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        lnk1 |   .1793651   .0719719     2.49   0.017     .0342199    .3245104
        lnk2 |   .3019542   .0418215     7.22   0.000     .2176132    .3862953
         lnl |   .5761274   .0563746    10.22   0.000     .4624372    .6898176
           u | -.0038903   .0099084 -0.39   0.697 -.0238724    .0160918
       _cons |   1.589444   .2329796     6.82   0.000     1.119596    2.059292
------------------------------------------------------------------------------

equal and in this case it yields an F(47,764) = 75.82 which is statistically significant.
This indicates that the state dummies are jointly significant. It also means that the
OLS estimates which omit these state dummies suffer from an omission variables
problem rendering them biased and inconsistent. Table2.9 gives the Swamy and
Arora (1972) estimate of the random effects model. This is the default option in
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Table 2.8 Public capital productivity data: the Within estimator
. xtreg lny lnk1 lnk2 lnl u, fe

Fixed-effects (within) regression               Number of obs      =       816
Group variable (i) : stid                       Number of groups   =  48

R-sq:  within  = 0.9413                         Obs per group: min =        17
       between = 0.9921                                        avg =      17.0
       overall = 0.9910                                        max =        17

                                   F(4,764)           =   3064.81
corr(u_i, Xb)  = 0.0608                         Prob > F           =    0.0000

------------------------------------------------------------------------------
         lny |      Coef. Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        lnk1 | -.0261493   .0290016 -0.90   0.368 -.0830815    .0307829
        lnk2 |   .2920067   .0251197    11.62   0.000     .2426949    .3413185
         lnl |   .7681595   .0300917    25.53   0.000     .7090872    .8272318
           u | -.0052977   .0009887 -5.36   0.000 -.0072387 -.0033568
       _cons |   2.352898   .1748131    13.46   0.000     2.009727  2.696069
-------------+----------------------------------------------------------------
     sigma_u |  .09057293
     sigma_e |  .03813705

rho |   .8494045   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0:     F(47, 764) =    75.82             Prob > F = 0.0000

Table 2.9 Public capital productivity data: the Swamy and Arora estimator
. xtreg lny lnk1 lnk2 lnl u, re theta

Random-effects GLS regression                   Number of obs      =       816
Group variable (i) : stid                       Number of groups =        48

R-sq:  within  = 0.9412                         Obs per group: min =        17
       between = 0.9928                                        avg =      17.0
       overall = 0.9917                                        max =        17

Random effects u_i ~ Gaussian                   Wald chi2(4)       =  19131.09
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
theta              = .8888353

------------------------------------------------------------------------------
         lny |      Coef.   Std. Err. z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        lnk1 |   .0044388   .0234173     0.19   0.850 -.0414583    .0503359
        lnk2 |   .3105483   .0198047    15.68   0.000     .2717317    .3493649
         lnl |   .7296705   .0249202    29.28   0.000     .6808278    .7785132
           u | -.0061725   .0009073 -6.80   0.000 -.0079507 -.0043942
       _cons |   2.135411   .1334615    16.00   0.000     1.873831     2.39699
-------------+----------------------------------------------------------------
     sigma_u |   .0826905
     sigma_e |  .03813705
         rho |  .82460109   (fraction of variance due to u_i)
------------------------------------------------------------------------------
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Table 2.10 Public capital productivity data: the maximum likelihood estimator

. xtreg lny lnk1 lnk2 lnl u, mle

Random-effects ML regression                    Number of obs      =       816
Group variable (i) : stid                       Number of groups   =        48

Random effects u_i ~ Gaussian                   Obs per group: min =        17
                                                               avg =      17.0
                                                               max =        17

                 LR chi2(4)         =   2412.91
Log likelihood  =  1401.9041                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
         lny |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        lnk1 |   .0031446   .0239185     0.13   0.895 -.0437348     .050024
        lnk2 |    .309811    .020081    15.43   0.000      .270453    .349169
         lnl |   .7313372   .0256936    28.46   0.000     .6809787    .7816957
           u | -.0061382   .0009143 -6.71   0.000 -.0079302 -.0043462
       _cons |   2.143865   .1376582    15.57   0.000      1.87406    2.413671
-------------+----------------------------------------------------------------
    /sigma_u |    .085162   .0090452     9.42   0.000     .0674337    .1028903
    /sigma_e |   .0380836   .0009735    39.12   0.000     .0361756    .0399916
-------------+----------------------------------------------------------------
         rho |   .8333481   .0304597                      .7668537    .8861754
------------------------------------------------------------------------------
Likelihood ratio test of sigma_u=0: chibar2(01)= 1149.84 Prob>=chibar2 = 0.000

Stata and is obtained from the xtreg command with option (,re). Finally, Table2.10
gives the Stata output for the maximum likelihood estimator. These are obtained
from the xtreg command with option (,mle).

2.7 Selected Applications

There are far too many applications of the error component model in economics to
be exhaustive and here we only want to refer the reader to a few applications. These
include the following:

(1) Cornwell and Rupert (1997) used panel data from the NLSY to show that much
of the wage premium normally attributed to marriage is associated with unob-
servable individual effects that are correlated with marital status and wages.
Their fixed effects estimates of the marriage premium is no more than 5% to
7%. This cast doubt on the interpretation that marriage enhances productivity
through specialization.

(2) Lundberg and Rose (2002) used panel data from the PSID to estimate the effects
of children and the differential effects of sons and daughters on men’s labor sup-
ply and hourly wage rate. Their fixed effects estimates indicate that, on average,
a child increases a man’s wage rate by 4.2% and his annual hours of work by 38
hours per year.
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(3) Glick and Rose (2002) studied the question of whether leaving a currency union
reduces international trade. They used panel data on bilateral trade among 217
countries over the period 1948–1997. Their fixed effects estimates show that
currency union more than doubles trade.

2.8 Computational Note

There is no magical software written explicitly for all panel data estimation and
testing procedures. Simple panel data estimators can be done with LIMDEP, RATS,
SAS, TSP, R, EViews, or Stata. In fact, the results reported in examples 2.1, 2.2,
and 2.3 have been verified using EViews and Stata. Unfortunately, not all panel data
methods discussed in this book have made it into these standard software packages,
and researchers had to program them with the help of GAUSS, OX, MATLAB, and
R, to mention a few. A recent book using the splm package in R which illustrates

them using several examples from this book is Croissant and Millo (2019).

2.9 Notes

1. See also Hansen (2007a) for inference in panel models with serial correlation
and fixed effects, and Stock and Watson (2008) for a heteroskedasticity-robust
variance matrix estimator for the fixed effects estimator.

2. See also Searle and Henderson (1979) for a systematic method for deriving the
characteristic roots and vectors of � for any balanced error component model.

3. It is important to note that once one substitutes OLS or LSDV residuals in (2.21)
and (2.22), the resulting estimators of the variance components are no longer
unbiased. The degrees of freedom corrections required to make these estimators
unbiased involve traces of matrices that depend on the data. These correction
terms are given in Wallace and Hussain (1969) and Amemiya (1971), respec-
tively. Alternatively, one can infer these correction terms from the more general
unbalanced error component model considered in Chap. 9.

4. One can also apply Rao (1971a, b) minimum norm quadratic unbiased estimation
(MINQUE) procedure or Henderson’s method III as described by Fuller and
Battese (1973). These methods are studied in detail in Baltagi (1995, Appendix
3) for the two-way error component model and in Chap. 9 for the unbalanced
error component model. Unfortunately, these methods have not been widely used
in the empirical economics literature.

5. For the estimation of fixed effects nonparametric and semi-parametric partially
linear panel data models, see Li and Racine (2007) and the references cited there.
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6. Hsiao and Sun (2000) argue that fixed versus random effects specification is better
treated as an issue ofmodel selection rather than hypothesis testing. They suggest a
recursive predictive density ratio as well as the Akaike and Schwartz information
criteria for model selection. Monte Carlo results indicate that all three criteria
perform well in finite samples. However, the Schwartz criterion was found to be
the more reliable of the three.

7. For a survey on forecasting using panel data, see Baltagi (2013).

2.10 Problems

2.1 LSDV is identical to the Within estimator. Prove that β̃ given in (2.7) can
be obtained from OLS on (2.5) using results on partitioned inverse. This can
be easily obtained using the Frisch–Waugh–Lovell theorem of Davidson and
MacKinnon (1993, p. 19). Hint: this theorem states that the OLS estimate of β

from (2.5) will be identical to the OLS estimate of β from (2.6). Also, the least
squares residuals will be the same. See Chap.1 of Baltagi (2009).

2.2 OLS and GLS are equivalent for the Within transformed model.

(a) Using generalized inverse, show that OLS or GLS on (2.6) yields β̃, the
Within estimator given in (2.7).

(b) Show that (2.6) satisfies the necessary and sufficient condition for OLS to
be equivalent to GLS (see Baltagi (1989)). Hint: show that var(Qv) = σ 2

ν Q
which is positive semi-definite and then use the fact that Q is idempotent
and is its own generalized inverse.

2.3 Robust FE variance–covariance estimates. Verify that by stacking the panel as
an equation for each individual in (2.13) and performing the Within transfor-
mation as in (2.14), one gets theWithin estimator as OLS on this system. Verify
that the robust asymptotic var(β̃) is the one given by (2.16).

2.4 Fuller andBattese (1973) transformation for the one-way random effectsmodel.

(a) Verify (2.17) and check that �−1� = I using (2.18).
(b) Verify that �−1/2�−1/2 = �−1 using (2.20) and (2.19).
(c) Premultiply y by σν�

−1/2 from (2.20), and show that the typical element
is yit − θ ȳi. where θ = 1 − (σν/σ1).

2.5 Unbiased estimates of the variance components: The one-way model. Using
(2.21) and (2.22), show that E(̂σ 2

1 ) = σ 2
1 and E(̂σ 2

ν ) = σ 2
ν , Hint: E(u′Qu) =

E{tr(u′Qu)} = E{tr(uu′Q)} = tr{E(uu′)Q} = tr(�Q).
2.6 Swamy and Arora (1972) estimates of the variance components: The one-way

model.
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(a) Show that ̂̂σ
2
ν given in (2.24) is unbiased for σ 2

ν .

(b) Show that ̂̂σ
2
1 given in (2.27) is unbiased for σ 2

1 .

2.7 System estimation for the one-way model: OLS versus GLS.

(a) Perform OLS on the system of equations given in (2.28) and show that the
resulting estimator is pooled OLS δ̂OLS = (Z ′Z)−1Z ′y.

(b) Perform GLS on the system of equations given in (2.28) and show that the
resulting estimator is the randomeffects estimator δ̂GLS = (Z ′�−1Z)−1Z ′�−1y
where �−1 is given in (2.19).

2.8 GLS is more efficient thanWithin. Using the var(β̂GLS) expression below (2.30)
and var(β̃Within) = σ 2

ν W
−1
XX , show that

(var(β̂GLS))
−1 − (var(β̃Within))

−1 = φ2BXX /σ 2
ν

which is positive semi-definite. Conclude that var(β̃Within)−var(β̂GLS) is pos-
itive semi-definite.

2.9 Maximum likelihood estimation of the random effects model.

(a) Using the concentrated likelihood function in (2.34), solve ∂LC/∂φ2 = 0
and verify (2.35).

(b) Solve ∂LC/∂β = 0 and verify (2.36).

2.10 Prediction in the one-way random effects model.

(a) For the predictor yi,T+S given in (2.37), compute E(ui,T+Suit) for t =
1, 2, . . . ,T and verify that w = E(ui,T+Su) = σ 2

μ(li ⊗ ιT ) where li is the
ith column of IN .

(b) Verify (2.39) by showing that (l′i ⊗ ι′T )P = (l′i ⊗ ι′T ).

2.11 UsingGrunfeld’s data given as Grunfeld.fil on the Springer website, reproduce
Table2.1.

2.12 Using the gasoline data of Baltagi and Griffin (1983), given as Gasoline.dat on
the Springer website, reproduce Table2.5.

2.13 Using the Monte Carlo setup for the one-way error component model, given
in Maddala and Mount (1973), compare the various estimators of the variance
components and regression coefficients studied in this chapter.
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2.14 Bounds for s2 in a one-way random effects model. For the random one-way
error component model given in (2.1) and (2.2), consider the OLS estimator of
var(uit) = σ 2, which is given by s2 = û′

OLS ûOLS/(n − K ′), where n = NT and
K ′ = K + 1.

(a) Show that E(s2) = σ 2 + σ 2
μ[K ′ − tr(IN ⊗ JT )Px]/(n − K ′).

(b) Consider the inequalities given by Kiviet and Krämer (1992) which state
that

0 � mean of (n − K ′) smallest roots of � � E(s2)

� mean of (n − K ′) largest roots of � � tr(�)/(n − K ′)
where � = E(uu′). Show that for the one-way error component model,
these bounds are

0 � σ 2
ν + (n − TK ′)σ 2

μ/(n − K ′) � E(s2) � σ 2
ν + nσ 2

μ/(n − K ′)
� nσ 2/(n − K ′)

As n → ∞, both bounds tend to σ 2, and s2 is asymptotically unbiased,
irrespective of the particular evolution ofX . See Baltagi andKrämer (1994)
for a proof of this result.

2.15 Using the public capital data of Munnell (1990) given as Produc.prn on the
Springer website, reproduce Table2.6.

2.16 Using the Monte Carlo design of Baillie and Baltagi (1999), compare the four
predictors described in Sect. 2.5.

2.17 Heteroskedastic fixed effects models. This is based on problem 96.5.1 in Econo-
metric Theory by Baltagi (1996). Consider the fixed effects model

yit = αi + uit i = 1, 2, . . . ,N ; t = 1, 2, . . . , Ti

where yit denotes output in industry i at time t and αi denotes the industry fixed
effect. The disturbances uit are assumed to be independent with heteroskedas-
tic variances σ 2

i . Note that the data are unbalanced with different number of
observations for each industry.

(a) Show that OLS and GLS estimates of αi are identical.
(b) Let σ 2 = ∑N

i=1 Tiσ
2
i /n where n = ∑N

i=1 Ti, be the average disturbance
variance. Show that the GLS estimator of σ 2 is unbiased, whereas the OLS
estimator of σ 2 is biased. Also show that this bias disappears if the data are
balanced or the variances are homoskedastic.

(c) Defineλ2i = σ 2
i /σ 2 for i = 1, 2 . . . ,N . Show that forα′ = (α1, α2, . . . , αN )

E[estimated var(̂αOLS) − true var(̂αOLS)]

= σ 2[(n −
N∑

i=1

λ2i )/(n − N )] diag (1/Ti) − σ 2 diag (λ2i /Ti)
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This problem shows that in case there are no regressors in the unbalanced
panel data model, fixed effects with heteroskedastic disturbances can be
estimated by OLS, but one has to correct the standard errors. See solution
96.5.1 in Econometric Theory by Kleiber (1997).
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3TheTwo-WayError Component
RegressionModel

3.1 Introduction

Consider the regression model given by (2.1), but with two-way error component
disturbances:

uit = μi + λt + νit i = 1, . . . ,N t = 1, . . . ,T (3.1)

where μi denotes the unobservable individual effect discussed in Chap.2, λt denotes
the unobservable time effect, and νit is the remainder stochastic disturbance term.
Note that λt is individual-invariant and it accounts for any time-specific effect that is
not included in the regression. For example, it could account for strike year effects
that disrupt production, oil embargo effects that disrupt the supply of oil and affect
its price, Surgeon General reports on the ill-effects of smoking, or government laws
restricting smoking in public places, all of which could affect consumption behavior.
In vector form, (3.1) can be written as

u = Zμμ + Zλλ + ν (3.2)

where Zμ, μ, and ν were defined earlier. Zλ = ιN ⊗ IT is the matrix of time dummies
that one may include in the regression to estimate the λt if they are fixed parame-
ters, and λ′ = (λ1, . . . ,λT ). Note that ZλZ ′

λ = JN ⊗ IT and the projection on Zλ is
Zλ(Z ′

λZλ)−1Z ′
λ = J̄N ⊗ IT . This last matrix averages the data over individuals, i.e.,

if we regress y on Zλ, the predicted values are given by (J̄N ⊗ IT )y which have a
typical element ȳ.t = ∑N

i=1 yit/N .
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3.2 TheTwo-Way Fixed Effects Model

If the μi and λt are assumed to be fixed parameters to be estimated and the remainder
disturbances stochastic with νit ∼ IID(0, σ2

ν), then (3.1) represents a two-way fixed
effects error component model. The Xit are assumed independent of the νit for all i
and t. Inference in this case is conditional on the particularN individuals and over the
specific time periods observed. Recall that Zλ, the matrix of time dummies, is NT ×
T . IfN or T is large, there will be too many dummy variables in the regression {(N −
1) + (T − 1)} of them, and this causes an enormous loss in degrees of freedom.
In addition, this attenuates the problem of multicollinearity among the regressors.
Rather than invert a large (N + T + K − 1) matrix, one can obtain the fixed effects
estimates of β by performing the following Within transformation given by Wallace
and Hussain (1969):

Q = EN ⊗ ET = IN ⊗ IT − IN ⊗ J̄T − J̄N ⊗ IT + J̄N ⊗ J̄T (3.3)

where EN = IN − J̄N and ET = IT − J̄T . This transformation “sweeps” the μi and
λt effects. In fact, ỹ = Qy has a typical element ỹit = (yit − ȳi. − ȳ.t + ȳ..) where
ȳ.. = ∑

i
∑

t yit/NT , and one would perform the regression of ỹ = Qy on X̃ = QX
to get the Within estimator β̃ = (X ′QX )−1X ′Qy.

Note that by averaging the simple regression given in (2.8) over individuals, we
get

ȳ.t = α + βx̄.t + λt + ν̄.t (3.4)

where we have utilized the restriction that
∑

i μi = 0 to avoid the dummy variable
trap. Similarly, the averages defined in (2.9) and (2.11) still hold using

∑
t λt = 0,

and one can deduce that

(yit − ȳi. − ȳ.t + ȳ..) = (xit − x̄i. − x̄.t + x̄..)β + (νit − ν̄i. − ν̄.t + ν̄..) (3.5)

OLS on this model gives β̃, theWithin estimator for the two-waymodel. Once again,
the Within estimate of the intercept can be deduced from α̃ = ȳ.. − β̃x̄.. and those
of μi and λt are given by

μ̃i = (ȳi. − ȳ..) − β̃(x̄i. − x̄..) (3.6)

λ̃t = (ȳ.t − ȳ..) − β̃(x̄.t − x̄..) (3.7)

Note that the Within estimator cannot estimate the effect of time-invariant and
individual-invariant variables because the Q transformation wipes out these vari-
ables. If the true model is a two-way fixed effects model as in (3.2), then OLS on
(2.1) yields biased and inconsistent estimates of the regression coefficients. OLS
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ignores both sets of dummy variables, whereas the one-way fixed effects estimator
considered in Chap. 2 ignores only the time dummies. If these time dummies are
statistically significant, the one- way fixed effects estimator will also suffer from
omission bias.

3.2.1 Testing for Fixed Effects

As in the one-way error component model case, one can test for joint significance
of the dummy variables:

H0;μ1 = . . . = μN−1 = 0 and λ1 = . . . = λT−1 = 0

The restricted residual sums of squares (RRSS) is that of pooled OLS and the unre-
stricted residual sums of squares (URSS) is that from the Within regression in (3.5).
In this case,

F1 = (RRSS −URSS)/(N + T − 2)

URSS/(N − 1)(T − 1) − K
H0
∼ F(N+T−2),(N−1)(T−1)−K (3.8)

Next, one can test for the existence of individual effects allowing for time effects,
i.e.,

H2;μ1 = . . . = μN−1 = 0 allowing λt �= 0 for t = 1, . . . ,T − 1

The URSS is still the Within residual sum of squares. However, the RRSS is the
regression with time-series dummies only, or the regression based upon

(yit − ȳ.t) = (xit − x̄.t)β + (uit − ū.t) (3.9)

In this case, the resulting F-statistic is F2
H0
∼ F(N−1),(N−1)(T−1)−K . Note that F2 dif-

fers from F0 in (2.12) in testing for μi = 0. The latter testsH0;μi = 0 assuming that
λt = 0, whereas the former tests H2;μi = 0 allowing λt �= 0 for
t = 1, . . . ,T − 1. Similarly, one can test for the existence of time effects allowing
for individual effects, i.e.,

H3;λ1 = . . . = λT−1 = 0 allowing μi �= 0, i = 1, . . . , (N − 1)

The RRSS is given by the regression in (2.10), while the URSS is obtained from the

regression (3.5). In this case, the resulting F-statistic is F3
H0
∼ F(T−1),(N−1)(T−1)−K .

These conditional F-tests are applied to the Grunfeld data in Chap. 4.

Computational warning

As in the one-way model, s2 from the regression in (3.5) as obtained from any
standard regression package has to be adjusted for loss of degrees of freedom. In
this case, one divides by (N − 1)(T − 1) − K and multiplies by (NT − K) to get the
proper variance–covariance matrix of the Within estimator.
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Empirical Applications

(i) Ram (2009) questions the body of influential research that suggests that there
is a negative association between country size (as measured by logarithm of
population) and government size (as proxied by government consumption as
percent of GDP), and also between country size and trade openness (as measured
by the sum of imports and exports as a percent of GDP). Ram uses a 41-year
panel data (1960–2000) for over 150 countries from the Penn World Tables 6.1.
The pooled OLS results support the foregoing scenario, whereas the two-way
fixed effects results find little evidence of a negative association of country size
with either government size or trade openness. Both country and time dummies
are significant and indicate that pooled OLS is biased and inconsistent. Problem
3.17 asks the reader to replicate these results.

(ii) Neumayer (2003a) investigates the effect of left-wing party strength on air pol-
lution levels using a panel of 21 OECD countries observed over the period 1980–
1999. Neumayer reports the two-way fixed effects estimates of several measures
of air pollution levels (like carbon dioxide emissions) regressed on measures
of scale: (GDP and vehicle use), measures of composition (share of manufac-
turing and fossil fuels), and a measure of efficiency, as well as three measures
of left-wing party strength, and one indicator of corporatism. The results find
that parliamentary green/left-libertarian party strength is associated with lower
pollution levels. Problem 3.18 asks the reader to replicate these results.

(iii) Neumayer (2003b) provides empirical evidence that good political governance
and good economic policies can lower homicide rates. This is based on two-way
fixed effects estimates using a panel of homicide data from up to 117 coun-
tries over the period 1980–97. The results suggest that economic growth, higher
income levels, respect for human rights, and the abolition of the death penalty
are all associated with lower homicide rates. The same is true for democracy but
only at high levels of democracy. Problem 3.19 asks the reader to replicate these
results.

3.3 TheTwo-Way Random Effects Model

If μi ∼ IID(0,σ2
μ), λt ∼ IID(0,σ2

λ) and νit ∼ IID (0, σ2
ν) independent of each other,

then this is the two-way random effects model. In addition, Xit is independent of
μi, λt , and νit for all i and t. Inference in this case pertains to the large population
from which this sample was randomly drawn. From (3.2), one can compute the
variance–covariance matrix

� = E(uu′) = ZμE(μμ′)Z ′
μ + ZλE(λλ′)Z ′

λ + σ2
νINT

= σ2
μ(IN ⊗ JT ) + σ2

λ(JN ⊗ IT ) + σ2
ν(IN ⊗ IT ) (3.10)



3.3 The Two-Way Random Effects Model 51

The disturbances are homoskedastic with var(uit) = σ2
μ + σ2

λ + σ2
ν for all i and t,

cov(uit, ujs) = σ2
μ i = j, t �= s

= σ2
λ i �= j, t = s (3.11)

and zero otherwise. This means that the correlation coefficient

correl(uit, ujs) = σ2
μ/(σ2

μ + σ2
λ + σ2

ν) i = j, t �= s
= σ2

λ/(σ2
μ + σ2

λ + σ2
ν) i �= j, = s

= 1 i = j, t = s
= 0 i �= j, t �= s

(3.12)

In order to get �−1, we replace JN by NJ̄N , IN by EN+ J̄N , JT by T J̄T and IT by
ET + J̄T , and collect terms with the same matrices. This gives

� =
4∑

i=1

λiQi (3.13)

where λ1 = σ2
ν,λ2 = Tσ2

μ + σ2
ν, λ3 = Nσ2

λ + σ2
ν , and λ4 = Tσ2

μ + Nσ2
λ + σ2

ν .

Correspondingly, Q1 = EN ⊗ ET ,Q2 = EN ⊗ J̄T ,Q3 = J̄N ⊗ ET and Q4 =
J̄N ⊗ J̄T , respectively. The λi are the distinct characteristic roots of � and theQi are
the corresponding matrices of eigenprojectors. λ1 is of multiplicity (N − 1)(T − 1),
λ2 is of multiplicity (N − 1), λ3 is of multiplicity (T − 1), and λ4 is of multiplicity
1.1. Each Qi is symmetric and idempotent with its rank equal to its trace. Moreover,
theQi are pairwise orthogonal and sum to the identity matrix. The advantages of this
spectral decomposition are that

�r =
4∑

i=1

λr
i Qi (3.14)

where r is an arbitrary scalar so that

σν�
−1/2 =

4∑

i=1

(σν/λ
1/2
i )Qi (3.15)

and the typical element of y∗ = σν�
−1/2y is given by

y∗
it = yit − θ1yi. − θ2ȳ.t + θ3ȳ.. (3.16)

where θ1 = 1 − (σν/λ
1/2
2 ), θ2 = 1 − (σν/λ

1/2
3 ), and θ3 = θ1 + θ2 + (σν/λ

1/2
4 ) −

1. As a result, GLS can be obtained as OLS of y∗ on Z∗, where Z∗ = σν�
−1/2Z .

This transformation was first derived by Fuller and Battese (1974).
The best quadratic unbiased (BQU) estimators of the variance components arise

naturally from the fact that Qiu ∼ (0, λiQi). Hence,

λ̂i = u′Qiu/tr(Qi) (3.17)
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is the BQU estimator of λi for i = 1, 2, 3. These ANOVA estimators are minimum
variance unbiased (MVU) under normality of the disturbances (see Graybill 1961).
As in the one-way error component model, one can obtain feasible estimates of
the variance components by replacing the true disturbances by OLS residuals (see
Wallace and Hussain 1969). OLS is still an unbiased and consistent estimator under
the random effects model but it is inefficient and results in biased standard errors
and t-statistics. Alternatively, one could substitute the Within residuals with ũ =
y − α̃ιNT − X β̃, where α̃ = ȳ.. − X̄ ′

..β̃ and β̃ is obtained by the regression in (3.5).
This is the method proposed by Amemiya (1971). In fact, Amemiya (1971) shows
that the Wallace and Hussain (1969) estimates of the variance components have a
different asymptotic distribution from that knowing the true disturbances, while the
Amemiya (1971) estimates of the variance components have the same asymptotic
distribution as that knowing the true disturbances:

⎛

⎝

√
NT (̂σ2

ν − σ2
ν)√

N (̂σ2
μ − σ2

μ)√
T (̂σ2

λ − σ2
λ)

⎞

⎠
∼ N

⎛

⎝0,

⎛

⎝
2σ4

ν 0 0
0 2σ4

μ 0
0 0 2σ4

λ

⎞

⎠

⎞

⎠ (3.18)

Substituting OLS or Within residuals instead of the true disturbances in (3.17) intro-
duces bias in the corresponding estimates of the variance components. The degrees
of freedom corrections that make these estimates unbiased depend upon traces of
matrices that involve the matrix of regressors X . These corrections are given in
Wallace and Hussain (1969) and Amemiya (1971), respectively. Alternatively, one
can infer these correction terms from the more general unbalanced error component
model considered in Chap. 9.

Swamy and Arora (1972) suggest running three least squares regressions and
estimating the variance components from the corresponding mean square errors of
these regressions. The first regression corresponds to the Within regression which
transforms the original model byQ1 = EN ⊗ ET . This is equivalent to the regression
in (3.5) and yields the following estimate of σ2

ν :

̂̂λ1 = ̂̂σ
2
ν = [y′Q1y − y′Q1X (X ′Q1X )−1X ′Q1y]/[(N − 1)(T − 1) − K] (3.19)

The second regression is the Between individuals regression which transforms the
original model by Q2 = EN ⊗ J̄T . This is equivalent to the regression of (ȳi. − ȳ..)

on (X̄i. − X̄..) and yields the following estimate of λ2 = Tσ2
μ + σ2

ν :

̂̂λ2 = [y′Q2y − y′Q2X (X ′Q2X )−1X ′Q2y]/[(N − 1) − K] (3.20)

fromwhich one obtainŝ̂σ
2
μ = (̂̂λ2 − ̂̂σ

2
ν)/T . The third regression is the Between time

periods regression which transforms the original model by Q3 = J̄N ⊗ ET . This is
equivalent to the regression of (ȳ.t − ȳ..) on (X̄.t − X̄..) and yields the following
estimate of λ3 = Nσ2

λ + σ2
ν :

̂̂λ3 = [y′Q3y − y′Q3X (X ′Q3X )−1X ′Q3y]/[(T − 1) − K] (3.21)
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from which one obtains ̂̂σ
2
λ = (̂̂λ3 − ̂̂σ

2
ν)/N . Stacking the three transformed regres-

sions just performed yields
⎛

⎝
Q1y
Q2y
Q3y

⎞

⎠ =
⎛

⎝
Q1X
Q2X
Q3X

⎞

⎠ β +
⎛

⎝
Q1u
Q2u
Q3u

⎞

⎠ (3.22)

sinceQiιNT = 0 for i = 1, 2, 3, and the transformed error has mean 0 and variance–
covariance matrix given by Diag[λiQi] with i = 1, 2, 3. Problem 3.4 asks the reader
to show that OLS on this system of 3NT observations yields the same estimator of
β as OLS on the pooled model (2.3). Also, GLS on this system of equations (3.22)
yields the same estimator of β as GLS on (2.3). In fact,

β̂GLS = [(X ′Q1X )/σ2
ν + (X ′Q2X )/λ2 + (X ′Q3X )/λ3]−1

×[(X ′Q1y)/σ
2
ν + (X ′Q2y)/λ2 + (X ′Q3y)/λ3]

= [WXX + φ2
2BXX + φ2

3CXX ]−1[WXy + φ2
2BXy + φ2

3CXy] (3.23)

with var(̂βGLS) = σ2
ν[WXX + φ2

2BXX + φ2
3CXX ]−1. Note that WXX = X ′Q1X ,

BXX = X ′Q2X , andCXX = X ′Q3X withφ2
2 = σ2

ν/λ2,φ2
3 = σ2

ν/λ3. Also, theWithin
estimator of β is β̃W = W−1

XX WXy, the Between individuals estimator of β is β̂B =
B−1
XX BXy, and the Between time periods estimator of β is β̂C = C−1

XX CXy. This shows
that β̂GLS is a matrix-weighted average of β̃W , β̂B, and β̂C . In fact,

β̂GLS = W1β̃W + W2β̂B + W3β̂C (3.24)

where

W1 = [WXX + φ2
2BXX + φ2

3CXX ]−1WXX

W2 = [WXX + φ2
2BXX + φ2

3CXX ]−1(φ2
2BXX )

W3 = [WXX + φ2
2BXX + φ2

3CXX ]−1(φ2
3CXX )

This was demonstrated byMaddala (1971). Note that (i) if σ2
μ = σ2

λ = 0, φ2
2 = φ2

3 =
1 and β̂GLS reduces to β̂OLS , (ii) as T and N → ∞, φ2

2 and φ2
3 → 0 and β̂GLS tends

to β̃W , (iii) if φ2
2 → ∞ with φ2

3 finite, then β̂GLS tends β̂B, (iv) if φ2
3 → ∞ with φ2

2
finite, then β̂GLS tends to β̂C .

Wallace andHussain (1969) compare β̂GLS and β̃Within in the case of nonstochastic
(repetitive) X and find that both are (i) asymptotically normal, (ii) consistent and
unbiased, and that (iii) β̂GLS has a smaller generalized variance (i.e,.more efficient) in
finite samples. In the case of nonstochastic (nonrepetitive)X , they find that both β̂GLS

and β̃Within are consistent, asymptotically unbiased, and have equivalent asymptotic
variance–covariance matrices, as both N and T → ∞. The last statement can be
proved as follows: the limiting variance of the GLS estimator is

1

NT
lim

N→∞
T→∞

(X ′�−1X /NT )−1 = 1

NT
lim

N→∞
T→∞

[
3∑

i=1

1

λi
(X ′QiX /NT )

]−1

(3.25)
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But the limit of the inverse is the inverse of the limit, and

lim
N→∞
T→∞

X ′QiX

NT
for i = 1, 2, 3 (3.26)

all exist and are positive semi-definite, since limN→∞
T→∞

(X ′X /NT ) is assumed finite

and positive definite. Hence

lim
N→∞
T→∞

1

(Nσ2
λ + σ2

ν)

(
X ′Q3X

NT

)

= 0

and

lim
N→∞
T→∞

1

(Tσ2
μ + σ2

ν)

(
X ′Q2X

NT

)

= 0

Therefore, the limiting variance of the GLS estimator becomes

1

NT
lim

N→∞
T→∞

σ2
ν

(
X ′Q1X

NT

)−1

which is the limiting variance of the Within estimator.
One can extend Nerlove (1971a) method for the one-way model, by estimating

σ2
μ as

∑N
i=1(̂μi − μ̂)2/(N − 1) and σ2

λ as
∑T

t=1(̂λt − λ̂)2/(T − 1) where the μ̂i and

λ̂t are obtained as coefficients from the least squares dummy variables regression
(LSDV). σ2

ν is estimated from the Within residual sums of squares divided by NT .
Baltagi (1995, Appendix 3) develops two other methods of estimating the variance
components. The first is Rao’s (1971) minimum norm quadratic unbiased estimation
(MINQUE) and the second is Henderson’s method III as described by Fuller and
Battese (1973). These methods require more notation and development and may be
skipped in a brief course on this subject. Chapter 9 studies these estimation methods
in the context of an unbalanced error component model.

Baltagi (1981) performed a Monte Carlo study on a simple regression equation
with two-way error component disturbances and studied the properties of the follow-
ing estimators: ordinary least squares (OLS), the Within estimator, and six feasible
GLS estimators denoted by WALHUS, AMEMIYA, SWAR, MINQUE, FUBA, and
NERLOVE corresponding to themethods developed byWallace andHussain (1969),
Amemiya (1971), Swamy and Arora (1972), Rao (1971), Fuller and Battese (1974),
and Nerlove (1971a), respectively. The mean square error (MSE) of these estima-
tors was computed relative to that of true GLS, i.e., GLS knowing the true variance
components.

To review some of the properties of these estimators, OLS is unbiased, but asymp-
totically inefficient, and its standard errors are biased; see Moulton (1986) for the
extent of this bias in empirical applications. In contrast, theWithin estimator is unbi-
ased whether or not prior information about the variance components is available.
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It is also asymptotically equivalent to the GLS estimator in case of weakly non-
stochastic exogenous variables. Early in the literature, Wallace and Hussain (1969)
recommended the Within estimator for the practical researcher, based on theoretical
considerations but more importantly for its ease of computation. InWallace andHus-
sain’s (1969, p. 66) words the “covariance estimators come off with a surprisingly
clear bill of health.” True GLS is BLUE, but the variance components are usually not
known and have to be estimated. All of the feasible GLS estimators considered are
asymptotically efficient. In fact, Swamy and Arora (1972) proved the existence of a
family of asymptotically efficient two-stage feasibleGLS estimators of the regression
coefficients. Therefore, based on asymptotics only, one cannot differentiate among
these two-stage GLS estimators. This leaves undecided the question of which esti-
mator is the best to use. Swamy and Arora (1972) derived the relative efficiencies of
(i) SWAR with respect to OLS, (ii) SWAR with respect to Within, and (iii) Within
with respect to OLS. Then, for various values of N , T , the variance components, the
Between groups, Between time periods, and Within groups sums of squares of the
independent variable, they tabulated these relative efficiency values (see Swamy and
Arora, 1972, p. 272). Among their basic findings is the fact that, for small samples,
SWAR is less efficient than OLS if σ2

μ and σ2
λ are small. Also, SWAR is less efficient

than Within if σ2
μ and σ2

λ are large. The latter result is disconcerting, since Within
which uses only a part of the available data is more efficient than SWAR, a feasible
GLS estimator, which uses all of the available data.

3.3.1 Monte Carlo Results

Baltagi (1981) considered the following simple regression equation:

yit = α + βxit + uit (3.27)

with

uit = μi + λt + νit i = 1, . . . ,N t = 1, . . . , T (3.28)

The exogenous variable x was generated by a similar method to that of Nerlove
(1971a). Throughout the experiment, α = 5,β = 0.5,N = 25, T = 10, and σ2 =
20. However, ρ = σ2

μ/σ2 and ω = σ2
λ/σ2 were varied over the set (0, 0.01, 0.2, 0.4,

0.6, 0.8) such that (1 − ρ − ω) is always positive. In each experiment, 100 replica-
tions were performed. For every replication, (NT + N + T ) independent and iden-
tically distributed Normal IIN(0, 1) random numbers were generated. The first N
numbers were used to generate the μi as IIN(0, σ2

μ). The second T numbers were
used to generate the λt as IIN(0,σ2

λ), and the last NT numbers were used to generate
the νit as IIN(0,σ2

ν). For the estimation methods considered, theMonte Carlo results
show the following:
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(1) For the two-way model, the researcher should not label the problem of negative
variance estimates “not serious” as in the one-way model. This is because we
cannot distinguish between the case where the model is misspecified (i.e., with
at least one of the variance components actually equal to zero), and the case
where the model is properly specified (i.e., with at least one of the variance
components relatively small but different from zero). Another important reason
is that we may not be able to distinguish between a case where OLS is equivalent
to GLS according to the MSE criterion and a case where it is not. For these
cases, the practical solution seems to be the replacement of a negative estimate
by zero. Of course, this will affect the properties of the variance components
estimates especially if the actual variances are different from zero. The Monte
Carlo results of Baltagi (1981) report that the performance of the two-stage GLS
methods is not seriously affected by this substitution.

(2) As long as the variance components are not relatively small and close to zero,
there is always gain according to the MSE criterion in performing feasible GLS
rather than least squares or least squares with dummy variables.

(3) All the two-stageGLSmethods considered performed reasonablywell according
to the relative MSE criteria. However, none of these methods could claim to be
the best for all the experiments performed. Most of these methods had relatively
close MSEs which therefore made it difficult to choose among them. This same
result was obtained in the one-way model by Maddala and Mount (1973).

(4) Better estimates of the variance components do not necessarily give better
second-round estimates of the regression coefficients. This confirms the finite
sample results obtained by Taylor (1980) and extends them from the one-way to
the two-way model.

Finally, the recommendation given in Maddala and Mount (1973) is still valid,
i.e., always perform more than one of the two-stage GLS procedures to see whether
the estimates obtained differ widely.

3.4 Maximum Likelihood Estimation

In this case, the normality assumption is needed on our error structure. The log-
likelihood function is given by

log L = constant − 1

2
log | � | −1

2
(y − Zγ)′�−1(y − Zγ) (3.29)

where � and �−1 were given in (3.13) and (3.14). The maximum likelihood esti-
mators of γ,σ2

ν,σ
2
μ and σ2

λ are obtained by simultaneously solving the following
normal equations:
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∂ log L

∂γ
= Z ′�−1y − (Z ′�−1Z)γ = 0

∂ log L

∂σ2
ν

= −1

2
tr �−1 + 1

2
u′�−2u = 0

∂ log L

∂σ2
μ

= −1

2
tr �−1(IN ⊗ JT ) + 1

2
u′�−2(IN ⊗ JT )u = 0

∂ log L

∂σ2
λ

= −1

2
tr �−1(JN ⊗ IT ) + 1

2
u′�−2(JN ⊗ IT )u = 0 (3.30)

Even if the u were observable, these would still be highly nonlinear and difficult
to solve explicitly. However, Amemiya (1971) suggests an iterative scheme to solve
(3.30). The resulting maximum likelihood estimates of the variance components are
shown to be consistent and asymptotic normal with an asymptotic distribution given
by (3.18).

Following Breusch (1987), one can write the likelihood for the two-way model
as

L(α, β, σ2
ν,φ

2
2, φ

2
3) = constant − (NT/2) logσ2

ν + (N/2) logφ2
2 + (T/2) logφ2

3

−(1/2 log[φ2
2 + φ2

3 − φ2
2φ

2
3] − (1/2σ2

ν)u
′�−1u (3.31)

where � = σ2
ν� = σ2

ν(
∑4

i=1Qi/φ
2
i ) from (3.13) with φ2

i = σ2
ν/λi for i = 1, . . . , 4.

The likelihood (3.31) uses the fact that | � |−1= (σ2
ν)

−NT (φ2
2)

N−1(φ2
3)

T−1φ2
4. The

feasibility conditions ∞ > λi � σ2
ν are equivalent to 0 < φ2

i � 1 for i = 1, 2, 3, 4.
Following Breusch (1987), we define d = y − Xβ, therefore u = d − ιNTα. Given
arbitrary values of β,φ2

2,φ
2
3, one can concentrate this likelihood function with respect

to α and σ2
ν . Estimates of α and σ2

ν are obtained later as α̂ = ι′NTd/NT and σ̂2
ν =

(u′�−1u/NT ). Substituting the maximum value of α in u one gets u = d − ιNT α̂ =
(INT − J̄NT )d . Also, using the fact that

(INT − J̄NT )�−1(INT − J̄NT ) = Q1 + φ2
2Q2 + φ2

3Q3

one gets σ̂2
ν = d ′[Q1 + φ2

2Q2 + φ2
3Q3]d/NT , given β, φ2

2, and φ2
3. The concentrated

likelihood function becomes

LC(β, φ2
2, φ

2
3) = constant − (NT/2) log[d ′(Q1 + φ2

2Q2 + φ2
3Q3)d ]

+(N/2) logφ2
2 + (T/2) logφ2

3

−(1/2) log[φ2
2 + φ2

3 − φ2
2φ

2
3] (3.32)

Maximizing LC over β, given φ2
2 and φ2

3, Baltagi and Li (1992a) get

β̂ = [X ′(Q1 + φ2
2Q2 + φ2

3Q3)X ]−1X ′(Q1 + φ2
2Q2 + φ2

3Q3)y (3.33)
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which is the GLS estimator knowing φ2
2 and φ2

3. Similarly, maximizing LC over φ2
2,

given β and φ2
3, one gets

2

δLC
δφ2

2

= −NT

2

d ′Q2d

d ′[Q1 + φ2
2Q2 + φ2

3Q3]d
+ N

2

1

φ2
2

− 1

2

(1 − φ2
3)

[φ2
2 + φ2

3 − φ2
2φ

2
3]

= 0

(3.34)
which can be written as

aφ4
2 + bφ2

2 + c = 0 (3.35)

where a = −[N (T − 1) + 1](1 − φ2
3)(d

′Q2d), b = (1 − φ2
3)(N − 1)d ′[Q1 + φ2

3
Q3]d − φ2

3(T − 1)N (d ′Q2d), and c = Nφ2
3d

′[Q1 + φ2
3Q3]d . We will fix φ2

3, where
(0 < φ2

3 < 1) and focus on iterating betweenβ andφ2
2.
3 For a fixedφ2

3, ifφ
2
2 = 0, then

(3.33) becomes β̂BW = [X ′(Q1 + φ2
3Q3)X ]−1X ′(Q1 + φ2

3Q3)y, which is a matrix-
weighted average of theWithin estimator β̂W = (X ′Q1X )−1X ′Q1y and the Between
time periods estimator β̂C = (X ′Q3X )−1X ′Q3y. If φ2

2 → ∞, with φ2
3 fixed, then

(3.33) reduces to the Between individuals estimator β̂B = (X ′Q2X )−1X ′Q2y. Using
standard assumptions, Baltagi and Li (1992a) show that a < 0 and c > 0 in (3.35).
Hence b2 − 4ac > b2 > 0, and the unique positive root of (3.35) is

φ̂2
2 =

[
−b −

√
b2 − 4ac

]
/2a =

[
b +

√
b2 + 4 | a | c

]
/2 | a | (3.36)

Since φ2
3 is fixed, we let Q̄1 = Q1 + φ2

3Q3, then (3.33) becomes

β̂ = [X ′(Q̄1 + φ2
2Q2)X ]−1X ′(Q̄1 + φ2

2Q2)y (3.37)

Iterated GLS can be obtained through the successive application of (3.36) and (3.37).
Baltagi and Li (1992a) show that the update of φ2

2(i + 1) in the (i + 1)th iteration
will be positive and finite even if the initial β(i) value is β̂BW (from φ2

2(i) = 0 ) or
β̂B (from the limit as φ2

2(i) → ∞). More importantly, Breusch (1987) “remarkable
property” extends to the two-way error component model in the sense that the φ2

2
form a monotonic sequence. Therefore, if one starts with β̂BW , which corresponds
to φ2

2 = 0, the sequence of φ2
2 is strictly increasing. On the other hand, starting

with β̂B, which corresponds to φ2
2 → ∞, the sequence of φ2

2 is strictly decreasing.
This remarkable property allows the applied researcher to check for the possibility of
multiple localmaxima. For a fixedφ2

3, startingwith both β̂BW and β̂B as initial values,
there is a single maximum if and only if both sequences of iterations converge to the
sameφ2

2 estimate.4 Since this result holds for any arbitraryφ2
3 between zero and one, a

search overφ2
3 in this rangewill guard againstmultiple localmaxima.Of course, there

are other computationally more efficient maximum likelihood algorithms. In fact,
two-wayMLE can be implemented using TSP. The iterative algorithm described here
is of value for pedagogical reasons as well as for guarding against a local maximum.
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3.5 Prediction

How does the best linear unbiased predictor (BLUP) look like for the ith individual,
S periods ahead for the two-way model? From (3.1), for period T + S

ui,T+S = μi + λT+S + νi,T+S (3.38)

and

E(ui,T+Sujt) = σ2
μ for i = j

= 0 for i �= j (3.39)

and t = 1, 2, . . . ,T . Hence, for the BLUP given in (2.37), w = E(ui,T+Su) =
σ2

μ(li ⊗ ιT ) remains the same where li is the ith column of IN . However, �−1 is
given by (3.14), and

w′�−1 = σ2
μ(l′i ⊗ ι′T )

[
4∑

i=1

1

λi
Qi

]

(3.40)

Using the fact that

(l′i ⊗ ι′T )Q1 = 0 (l′i ⊗ ι′T )Q2 = (l′i ⊗ ι′T ) − ι′NT /N
(l′i ⊗ ι′T )Q3 = 0 (l′i ⊗ ι′T )Q4 = ι′NT /N

(3.41)

one gets

w′�−1 = σ2
μ

λ2
[(l′i ⊗ ι′T ) − ι′NT /N ] + σ2

μ

λ4
(ι′NT /N ) (3.42)

Therefore, the typical element of w′�−1̂uGLS where ûGLS = y − Z δ̂GLS is

Tσ2
μ

(Tσ2
μ + σ2

ν)
(̂ui.,GLS − û..,GLS) + Tσ2

μ

(Tσ2
μ + Nσ2

λ + σ2
ν)
û..,GLS (3.43)

or
Tσ2

μ

(Tσ2
μ + σ2

ν)
ûi.,GLS + Tσ2

μ

[
1

λ4
− 1

λ2

]

û..,GLS

where ûi.,GLS = ∑T
t=1 ûit,GLS/T and û..,GLS = ∑

i
∑

t ûit,GLS/NT . See problem
88.1.1 in Econometric Theory by Baltagi (1988) and its solution 88.1.1 by Kon-
ing (1989). In general, û..,GLS is not necessarily zero. The GLS normal equations
are Z ′�−1̂uGLS = 0. However, if Z contains a constant, then ι′NT�−1̂uGLS = 0, and
using the fact that ι′NT�−1 = ι′NT /λ4 from (3.14), one gets û..,GLS = 0. Hence, for
the two-way model, if there is a constant in the model, the BLUP for yi,T+S corrects
the GLS prediction by a fraction of the mean of the GLS residuals corresponding to
that ith individual

ŷi,T+S = Z ′
i,T+S δ̂GLS +

(
Tσ2

μ

Tσ2
μ + σ2

ν

)

ûi.,GLS (3.44)

This looks exactly like the BLUP for the one-way model but with a different �. If
there is no constant in the model, the last term in (3.44) should be replaced by (3.43).
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How would one forecast with a two-way fixed effects model with both country
and time effects? After all, future coefficients of time dummies cannot be estimated
unless more structure can be placed on the model. One example is the study by
Schmalensee, Stoker, and Judson (1998) which forecasted the world carbon dioxide
emissions through 2050 using national-level panel data over the period 1950–1990.
This consisted of 4018 observations. In 1990, this data covered 141 countries which
accounted for 98.6% of the world’s population. This paper estimated a reduced
form model relating per capita CO2 emissions from energy consumption to a flex-
ible functional form of real GDP per capita using time and period fixed effects.
Schmalensee, Stoker, and Judson (1998) forecasted the time effects using a linear
spline model with different growth rates prior to 1970 and after 1970, i.e., λt =
γ1+ γ2t + γ3(t − 1970).1[t � 1970], with the last term being an indicator function
which is 1 when t � 1970, and also using a nonlinear trend model including a loga-
rithmic term, i.e., λt = δ1+ δ2t + δ3 ln(t − 1940). Although these two time effects
specifications had essentially the same goodness-of-fit performance, they resulted in
different out of sample projections. The linear spline projected the time effects by
continuing the estimated 1970–1990 trend to 2050, while the nonlinear trend pro-
jected a flattening trend consistent with the trend deceleration from 1950 to 1990. An
earlier study by Holtz-Eakin and Selden (1995) employed 3754 observations over
the period 1951–1986. For their main case, they simply set the time effect at its value
in the last year in their sample.

3.6 Examples

3.6.1 Example 1: Investment Equation

For Grunfeld’s (1958) example considered in Chap. 2, the investment equation is
estimated using a two-way error component model. Table 3.1 gives OLS, Within,
three feasible GLS estimates, and the iterative MLE for the slope coefficients. The
Within estimator yields a β̃1 estimate at 0.118 (0.014) and β̃2 estimate at 0.358
(0.023). In fact, Table 3.2 gives the EViews output for the two-way fixed effects
estimator. This is performed under the panel option with fixed individual and fixed
time effects. For the random effects estimators, both the SWAR andWALHUS report
negative estimates of σ2

λ and this is replaced by zero. Table 3.3 gives the EViews
output for the random effects estimator of the two-way error component model for
the Wallace and Hussain (1969) option. Table 3.4 gives the EViews output for the
Amemiya (1971) estimator. In this case, the estimate of σλ is 15.8, the estimate of
σμ is 89.3, and the estimate of σν is 51.7. This means that the variance of the time
effects is only 2.3% of the total variance, while the variance of the firm effects is
73.1% of the total variance, and the variance of the remainder effects is 24.6% of the
total variance. Table 3.5 gives the EViews output for the Swamy and Arora (1972)
estimator. The iterative maximum likelihood method yields β̂1 at 0.110 (0.010) and
β̂2 estimate at 0.309 (0.020). This was performed using TSP.
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Table 3.1 Grunfeld’s data: Two-way error component results

β1 β2 σμ σλ σν

OLS 0.116
(0.006)a

0.231
(0.025)a

Within 0.118
(0.014)

0.358
(0.023)

WALHUS 0.110
(0.010)

0.308
(0.017)

87.31 0 55.33

AMEMIYA 0.111
(0.011)

0.324
(0.019)

89.26 15.78 51.72

SWAR 0.110
(0.011)

0.308
(0.017)

84.23 0 51.72

IMLE 0.110
(0.010)

0.309
(0.020)

80.41 3.87 52.35

aThese are biased standard errors when the true model has error component disturbances (see
Moulton 1986)

Table 3.2 Grunfeld’s data. Two-way Within estimator

Dependent Variable: I
Method: Panel Least Squares

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200

Variable Coefficient Std. Error t-Statistic Prob.

C -80.16380 14.84402 -5.400409 0.0000
F 0.117716 0.013751 8.560354 0.0000
K 0.357916 0.022719 15.75404 0.0000

Effects Specification

Cross-section fixed (dummy variables)
Period fixed (dummy variables)

R-squared 0.951693 Mean dependent var 145.9582
Adjusted R-squared 0.943118 S.D. dependent var 216.8753
S.E. of regression 51.72452 Akaike info criterion 10.87132
Sum squared resid 452147.1 Schwarz criterion 11.38256
Log likelihood -1056.132 F-statistic 110.9829
Durbin-Watson stat 0.719087 Prob(F-statistic) 0.000000
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Table 3.3 Grunfeld’s data. Two-way Wallace and Hussain estimator

Dependent Variable: I
Method: Panel EGLS (Two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wallace and Hussain estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -57.81705 28.63258 -2.019275 0.0448
F 0.109776 0.010473 10.48183 0.0000
K 0.308069 0.017186 17.92575 0.0000

Effects Specification

Cross-section random S.D. / Rho 87.31428 0.7135
Period random S.D. / Rho 0.000000 0.0000
Idiosyncratic random S.D. / Rho 55.33298 0.2865

Weighted Statistics

R-squared 0.769560 Mean dependent var 20.47837
Adjusted R-squared 0.767221 S.D. dependent var 109.4624
S.E. of regression 52.81254 Sum squared resid 549465.3
F-statistic 328.9438 Durbin-Watson stat 0.681973
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803316 Mean dependent var 145.9582
Sum squared resid 1840949. Durbin-Watson stat 0.203548

3.6.2 Example 2:Gasoline Demand Equation

For the motor gasoline data in Baltagi and Griffin (1983) considered in Chap. 2,
the gasoline demand equation is estimated using a two-way error component model.
Table 3.6 gives OLS, Within, three feasible GLS estimates, and iterative MLE for
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Table 3.4 Grunfeld’s data. Two-way Amemiya/Wansbeek and Kapteyn estimator

Dependent Variable: I
Method: Panel EGLS (Two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Wansbeek and Kapteyn estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -63.89217 30.53284 -2.092573 0.0377
F 0.111447 0.010963 10.16577 0.0000
K 0.323533 0.018767 17.23947 0.0000

Effects Specification

Cross-section random S.D. / Rho 89.26257 0.7315
Period random S.D. / Rho 15.77783 0.0229
Idiosyncratic random S.D. / Rho 51.72452 0.2456

Weighted Statistics

R-squared 0.748982 Mean dependent var 18.61292
Adjusted R-squared 0.746433 S.D. dependent var 101.7143
S.E. of regression 51.21864 Sum squared resid 516799.9
F-statistic 293.9017 Durbin-Watson stat 0.675336
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.798309 Mean dependent var 145.9582
Sum squared resid 1887813. Durbin-Watson stat 0.199923

the slope coefficients. The Within estimator is drastically different from OLS. The
WALHUS and SWAR methods yield negative estimates of σ2

λ and this is replaced
by zero. IMLE is obtained using TSP.
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Table 3.5 Grunfeld’s data. Two-way Swamy and Arora estimator

Dependent Variable: I
Method: Panel EGLS (Two-way random effects)

Sample: 1935 1954
Cross-sections included: 10
Total panel (balanced) observations: 200
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob.

C -57.86538 29.39336 -1.968655 0.0504
F 0.109790 0.010528 10.42853 0.0000
K 0.308190 0.017171 17.94833 0.0000

Effects Specification

Cross-section random S.D. / Rho 84.23332 0.7262
Period random S.D. / Rho 0.000000 0.0000
Idiosyncratic random S.D. / Rho 51.72452 0.2738

Weighted Statistics

R-squared 0.769400 Mean dependent var 19.85502
Adjusted R-squared 0.767059 S.D. dependent var 109.2695
S.E. of regression 52.73776 Sum squared resid 547910.4
F-statistic 328.6473 Durbin-Watson stat 0.683945
Prob(F-statistic) 0.000000

Unweighted Statistics

R-squared 0.803283 Mean dependent var 145.9582
Sum squared resid 1841262. Durbin-Watson stat 0.203524

3.6.3 Example 3: Public Capital Productivity

For the Munnell (1990) public capital data considered by Baltagi and Pinnoi (1995)
in Chap. 2, the Cobb–Douglas production function is estimated using a two-way
error component model. Table 3.7 gives OLS, Within, three feasible GLS estimates,
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Table 3.6 Gasoline demand data. Two-way error component results

β1 β2 β3 σμ σλ σν

OLS 0.889
(0.036)a

−0.892
(0.030)a

−0.763
(0.019)a

Within 0.051
(0.091)

−0.193
(0.043)

−0.593
(0.028)

WALHUS 0.545
(0.056)

−0.450
(0.039)

−0.605
(0.025)

0.197 0 0.115

AMEMIYA 0.170
(0.080)

−0.233
(0.041)

-0.602
(0.026)

0.423 0.131 0.081

SWAR 0.565
(0.061)

−0.405
(0.040)

−0.609
(0.026)

0.196 0 0.081

IMLE 0.231
(0.091)

−0.254
(0.045)

−0.606
(0.026)

0.361 0.095 0.082

aThese are biased standard errors when the true model has error component disturbances (see
Moulton 1986)

Table 3.7 Public capital data. Two-way error component results

β1 β2 β3 β4 σμ σλ σν

OLS 0.155
(0.017)a

0.309
(0.010)a

0.594
(0.014)a

-0.007
(0.001)a

Within -0.030
(0.027)

0.169
(0.028)

0.769
(0.028)

−0.004
(0.001)

WALHUS 0.026
(0.023)

0.258
(0.021)

0.742
(0.024)

−0.005
(0.001)

0.082 0.016 0.036

AMEMIYA 0.002
(0.025)

0.217
(0.024)

0.770
(0.026)

−0.004
(0.001)

0.154 0.026 0.034

SWAR 0.018
(0.023)

0.266
(0.021)

0.745
(0.024)

−0.005
(0.001)

0.083 0.010 0.034

IMLE 0.020
(0.024)

0.250
(0.023)

0.750
(0.025)

−0.004
(0.001)

0.091 0.017 0.035

aThese are biased standard errors when the true model has error component disturbances (see
Moulton 1986)
and iterativeMLE for the slope coefficients. With the exception of OLS, estimates of
the public capital coefficient are insignificant in this production function. Also, none
of the feasible GLS estimators yield negative estimates of the variance components.

3.7 Computational Note

EViews allows easy estimation of two-way random effects error component models
using two drop down windows for period and cross-section effects which can be
chosen as fixed or random. The two-way random effects specification can be done
with Wallace and Hussain (1969), Amemiya (1971) or Swamy and Arora (1972)
estimation as illustrated in this chapter. When one effect is random and the other is
fixed, this is denoted as a mixed model; see problem 3.16. For an extension to the
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three-way error componentmodel, see problem3.15. For thenested error components
models, see problem 3.14. These extensions are taken up again in Chap. 9 when we
deal with unbalanced panel data. The reader is referred to Mátyás (2017) for insight
into the econometrics of multi-dimensional panels.

3.8 Notes

1. These characteristic roots and eigenprojectors were first derived by Nerlove
(1971b) for the two-way error component model. More details are given in
Appendix 1 of Baltagi (1995).

2. Alternatively, one can maximize LC over φ2
3, given β and φ2

2. The results are
symmetric and are left as an exercise. In fact, one can show (see problem 3.6)
thatφ2

3 will satisfy a quadratic equation like (3.35)withN exchanging placeswith
T , φ2

2 replacingφ2
3, andQ2 exchanging places withQ3 in a, b, and c, respectively.

3. The casewhereφ2
3 = 1 corresponds toσ2

λ = 0, i.e., the one-way error component
model where Breusch’s (1987) results apply.

4. There will be no local maximum interior to 0 < φ2
2 � 1, if starting from β̂BW we

violate the nonnegative variance component requirement, φ2
2 � 1. In this case,

one should set φ2
2 = 1.

3.9 Problems

3.1 Two-way fixed effects regression.

(a) Prove that the Within estimator β̃ = (X ′QX )−1X ′Qy with Q defined in
(3.3) can be obtained from OLS on the panel regression model (2.3) with
disturbances defined in (3.2). Hint: Use the Frisch–Waugh–Lovell theorem
of Davidson andMacKinnon (1993, p. 19), and also the generalized inverse
matrix result given in problem 9.6. See the complete solution in Chap. 3 of
the companion, Baltagi (2009).

(b) Within two-way is equivalent to two Withins one-way. This is based on
problem 98.5.2 in Econometric Theory by Baltagi (1998). Show that the
Within two-way estimator of β can be obtained by applying two Within
(one-way) transformations. The first is the Within transformation ignoring
the time effects followed by the Within transformation ignoring the indi-
vidual effects. Show that the order of these two Within (one-way) transfor-
mations is unimportant. Give an intuitive explanation for this result. See
solution 98.5.2 in Econometric Theory by Li (1999).
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3.2 OLS and GLS are equivalent for the two-way Within transformed model.

(a) Using generalized inverse, show that OLS or GLS on (2.6) with Q defined
in (3.3) yields β̃, the Within estimator.

(b) Show that (2.6) withQ defined in (3.3) satisfies the necessary and sufficient
condition for OLS to be equivalent to GLS (see Baltagi 1989).

3.3 Fuller and Battese (1973) transformation for the two-way random effects
model.

(a) Verify (3.10) and (3.13) and check that �−1� = I using (3.14).
(b) Verify that �−1/2�−1/2 = �−1 using (3.14).
(c) Premultiply y by σν�

−1/2 from (3.15) and show that the typical element
is given by (3.16).

3.4 System estimation of the two-way model: OLS versus GLS.

(a) Perform OLS on the system of equations given in (3.22) and show that the
resulting estimate is β̂OLS = (X (INT − J̄NT )X )−1X ′(INT − J̄NT )y.

(b) Perform GLS on this system of equations and show that β̂GLS reduces to
the expression given by (3.23).

3.5 Unbiased estimates of the variance components: The two-way model. Show
that the Swamy and Arora (1972) estimators of λ1, λ2 and λ3 given by (3.19),
(3.20), and (3.21) are unbiased for σ2

ν , λ2, and λ3, respectively.
3.6 Maximum likelihood estimation of the two-way random effects model.

(a) Using the concentrated likelihood function in (3.32), solve ∂LC/∂β = 0,
given φ2

2 and φ2
3, and verify (3.33).

(b) Solve ∂LC/∂φ2
2 = 0, given φ2

3 and β, and verify (3.34).
(c) Solve ∂LC/∂φ2

3 = 0, given φ2
2 and β, and show that the solutionφ2

3 satisfies

aφ4
3 + bφ2

3 + c = 0

where

a = −[T (N − 1) + 1](1 − φ2
2)(d

′Q3d)

b = (1 − φ2
2)(T − 1)d ′[Q1 + φ2

2Q2]d − φ2
2T (N − 1)d ′Q3d

and
c = Tφ2

2d
′(Q1 + φ2

2Q2)d

Note that this is analogous to (3.35), with φ2
2 replacing φ2

3, N replacing T ,
and Q2 replacing Q3 and vice versa, wherever they occur.
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3.7 Prediction in the two-way random effects model.

(a) For the two-way error component model in (3.1), verify (3.39) and (3.42).
(b) Also, show that if there is a constant in the regression ι′NT�−1̂uGLS = 0,

and û..,GLS = 0.

3.8 UsingGrunfeld’s data given on the Springer website as Grunfeld.fil, reproduce
Table 3.1.

3.9 Using the gasoline data of Baltagi and Griffin (1983), given as Gasoline.dat on
the Springer website, reproduce Table 3.6.

3.10 Using the public capital data of Munnell (1990) given as Produc.prn on the
Springer website, reproduce Table 3.7.

3.11 Using the Monte Carlo setup for the two-way error component model given
in (3.27) and (3.28) (see Baltagi 1981), compare the various estimators of the
variance components and regression coefficients studied in this chapter.

3.12 Variance component estimation under misspecification. This is based on prob-
lem 91.3.3 in Econometric Theory by Baltagi and Li (1991). This problem
investigates the consequences of under- or overspecifying the error component
model on the variance components estimates. Since the one-way and two-way
error component models are popular in economics, we focus on the following
two cases:

(1) Underspecification: In this case, the true model is two-way; see (3.1):

uit = μi + λt + νit i = 1, . . . ,N t = 1, . . . ,T

while the estimated model is one-way; see (2.2):

uit = μi + νit

μi ∼ IID(0, σ2
μ), λt ∼ IID(0,σ2

λ), and νit ∼ IID(0,σ2
ν) independent of each

other and among themselves.

(a) Knowing the true disturbances (uit), show that the BQUE of σ2
ν for the

misspecified one-way model is biased upwards, while the BQUE of σ2
μ

remains unbiased.
(b) Show that if the uit are replaced by the one-way least squares dummy

variables (LSDV) residuals, the variance component estimate ofσ2
ν given

in part (a) is inconsistent, while that of σ2
μ is consistent.

(2) Overspecification: In this case, the true model is one-way, given by (2.2),
while the estimated model is two-way, given by (3.1).

(c) Knowing the true disturbances (uit), show that the BQUE of σ2
μ, σ2

λ and
σ2

ν for the misspecified two-way model remain unbiased.
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(d) Show that if the uit are replaced by the two-way (LSDV) residuals, the
variance components estimates given in part (c) remain consistent. Hint:
see solution 91.3.3 in Econometric Theory by Baltagi and Li (1992b).

3.13 Bounds for s2 in a two-way randomeffectsmodel. For the random two-way error
component model described by (2.1) and (3.1), consider the OLS estimator of
var(uit) = σ2, which is given by s2 = û′

OLS ûOLS/(n − K ′) where n = NT and
K ′ = K + 1.

(a) Show that

E(s2) = σ2 − σ2
μ[tr(IN ⊗ JT )Px − K ′]/(n − K ′)

−σ2
λ[tr(JN ⊗ IT )Px − K ′]/(n − K ′)

(b) Consider the inequalities given by Kiviet and Krämer (1992) which are
reproduced in problem 2.14, part (b). Show that for the two-way error
component model, these bounds are given by the following two cases:

(1) For Tσ2
μ < Nσ2

λ:

0 � σ2
ν + σ2

μ(n − T )/(n − K ′) + σ2
λ(n − NK ′)/(n − K ′) � E(s2)

� σ2
ν + σ2

μ[n/(n − K ′)] + σ2
λ[n/(n − K ′)] � σ2(n/n − K ′)

(2) For Tσ2
μ > Nσ2

λ:

0 � σ2
ν + σ2

μ(n − TK ′)/(n − K ′) + σ2
λ(n − N )/(n − K ′) � E(s2)

� σ2
ν + σ2

μ[n/(n − K ′)] + σ2
λ[n/(n − K ′)] � σ2(n/n − K ′)

In either case, as n → ∞, both bounds tend to σ2 and s2 is asymptoti-
cally unbiased, irrespective of the particular evolution of X . See Baltagi
and Krämer (1994) for a proof of this result.

3.14 Nested effects. This is based on problem 93.4.2 in Econometric Theory by
Baltagi (1993). In many economic applications, the data may contain nested
groupings. For example, data on firms may be grouped by industry and data
on states by region and data on individuals by profession. In this case, one can
control for unobserved industry and firm effects using a nested error component
model. Consider the regression equation

yijt = x′
ijtβ + uijt for i = 1, . . . ,M ; j = 1, . . . ,N and t = 1, 2, . . . ,T

where yijt could denote the output of the jth firm in the ith industry for the tth
time period. xijt denotes a vector of k inputs, and the disturbance is given by

uijt = μi + νij + εijt

where μi ∼ IID(0,σ2
μ), νij ∼ IID(0, σ2

ν), and εijt ∼ IID(0, σ2
ε ), independent of

each other and among themselves. This assumes that there are M industries
with N firms in each industry observed over T periods.
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(1) Derive � = E(uu′) and obtain �−1and �−1/2.
(2) Show that y∗ = σε�

−1/2y has a typical element

y∗
ijt = (yijt − θ1ȳij. + θ2ȳi..)

whereθ1 = 1 − (σε/σ1)withσ2
1 = (Tσ2

ν + σ2
ε );θ2 = −(σε/σ1) + (σε/σ2)

with σ2
2 = (NTσ2

μ + Tσ2
ν + σ2

ε ); ȳij. = ∑T
t=1 yijt/T and ȳi.. = ∑N

j=1∑T
t=1 yijt/NT . See solution 93.4.2 inEconometric Theory byXiong (1995).

3.15 Three-way error component model. Ghosh (1976) considered the following
error component model:

uitq = μi + λt + ηq + νitq

where i = 1, . . . ,N ; T = 1, . . . ,T ; and q = 1, . . . ,M . Ghosh (1976) argued
that in international or interregional studies, there might be two rather than one
cross-sectional component; for example, i might denote countries and q might
be regions within that country. These four independent error components are
assumed to be random with μi ∼ IID(0, σ2

μ),λt ∼ IID(0,σ2
λ), ηq ∼ IID(0,σ2

η)

and νitq ∼ IID(0,σ2
ν). Order the observations such that the faster index is q,

while the slowest index is t, so that

u′ = (u111, . . . , u11M , u121, . . . , u12M , . . . , u1N1, . . . ,

u1NM , . . . , uT11, . . . , uT1M , . . . , uTN1, . . . , uTNM )

(a) Show that the error has mean zero and variance–covariance matrix

� = E(uu′) = σ2
ν(IT ⊗ IN ⊗ IM ) + σ2

λ(IT ⊗ JN ⊗ JM )

+σ2
μ(JT ⊗ IN ⊗ JM ) + σ2

η(JT ⊗ JN ⊗ IM )

(b) Using the Wansbeek and Kapteyn (1982b) trick, show that � = ∑5
j=1 ξjVj

where ξ1 = σ2
ν, ξ2 = NMσ2

λ + σ2
ν, ξ3 = TMσ2

μ + σ2
ν, ξ4 = NTσ2

η + σ2
ν , and

ξ5 = NMσ2
λ + TMσ2

μ + NTσ2
η + σ2

ν . Also

V1 = IT ⊗ IN ⊗ IM − IT ⊗ J̄N ⊗ J̄M − J̄T ⊗ IN ⊗ J̄M
−J̄T ⊗ J̄N ⊗ IM + 2J̄T ⊗ J̄N ⊗ J̄M

V2 = ET ⊗ J̄N ⊗ J̄M where ET = IT − J̄T
V3 = J̄T ⊗ EN ⊗ J̄M
V4 = J̄T ⊗ J̄N ⊗ EM andV5 = J̄T ⊗ J̄N ⊗ J̄M

all symmetric and idempotent and sum to the identity matrix.
(c) Conclude that �−1 = ∑5

j=1(1/ξj)Vj and σν�
−1/2 = ∑5

j=1(σν/
√

ξj)Vj
with the typical element of σν�

−1/2y being

ytiq − θ1ȳt.. − θ2ȳ.i. − θ3ȳ..q − θ4ȳ...

where the dot indicates a sum over that index and a bar means an average.
Here, θj = 1 − σν/

√
ξj+1 for j = 1, 2, 3 while θ4 = θ1 + θ2 + θ3 − 1 +

(σν/
√

ξ5).
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(d) Show that theBQUestimator of ξj is given by u′Vju/tr(Vj) for j = 1, 2, 3, 4.
Show that BQU estimators of σ2

ν, σ
2
μ,σ2

η , and σ2
λ can be obtained using the

one-to-one correspondence between the ξj and σ2.
This problem is based on Baltagi (1987). For a generalization of this four-
component model as well as an alternative class of decompositions of the
variance–covariance matrix, see Wansbeek and Kapteyn (1982a), and also
Davis (2002) who gives an elegant generalization to the multi-way unbal-
anced error component model; see Chap. 9.

3.16 A mixed-error component model. This is based on problem 95.1.4 in Econo-
metric Theory by Baltagi and Krämer (1995). Consider the panel data regres-
sion equation with a two-way mixed error component model described by
(3.1) where the individual specific effects are assumed to be random, with μi

∼ (0, σ2
μ) and νit ∼ (0, σ2

ν) independent of each other and among themselves.
The time-specific effects, i.e., the λt’s are assumed to be fixed parameters to be
estimated. In vector form, this can be written as

y = Xβ + Zλλ + w (1)

where Zλ = ιN ⊗ IT , and
w = Zμμ + ν (2)

with Zμ = IN ⊗ ιT . By applying the Frisch–Waugh–Lovell (FWL) theorem,
one gets

Qλy = QλXβ + Qλw (3)

whereQλ = EN ⊗ IT withEN = IN − J̄N and J̄N = ιN ι′N /N . This is the famil-
iar Within time-effects transformation, with the typical element of Qλy being
yit − ȳ.t and ȳ.t = ∑N

i=1 yit/N . Let � = E(ww′), this is the familiar one-way
error component variance–covariance matrix given in (2.17).

(a) Show that GLS estimator of β obtained from (1) by premultiplying by
�−1/2 first and then applying the FWL theorem yields the same estimator
as GLS on (3) using the generalized inverse of Qλ�Qλ. This is a special
case of a more general result proved by Fiebig, Bartels and Krämer (1996).

(b) Show that pseudo-GLS on (3) using � rather than Qλ�Qλ for the variance
of the disturbances yields the same estimator of β as found in part (a). In
general, pseudo-GLS may not be the same as GLS, but Fiebig, Bartels and
Krämer (1996) provided a necessary and sufficient condition for this equiv-
alence that is easy to check in this case. In fact, this amounts to checking
whether X ′Qλ�−1Zλ = 0. See solution 95.1.4 in Econometric Theory by
Xiong (1996).

For computational purposes, these results imply that one can perform theWithin
time-effects transformation to wipe out the matrix of time dummies and then
do the usual Fuller and Battese (1974) transformation without worrying about
the loss in efficiency of not using the proper variance–covariance matrix of the
transformed disturbances.
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3.17 Openness, country size, and government size. Ram (2009) questions the body
of influential research that suggests that there is a negative association between
country size (as measured by logarithm of population) and government size
(as proxied by government consumption as percent of GDP). Also, between
country size and trade openness (asmeasured by the sum of imports and exports
as percent of GDP). Ram uses a 41-year panel data (1960–2000) for over 150
countries from the Penn World Tables 6.1. The pooled OLS results support
the foregoing scenario, whereas the two-way fixed-effects results find little
evidence of a negative association of country size with either government size
or trade openness. You are asked to replicate Tables 1, 2, and 3 of Ram (2009;
pp. 215–216). Also, test for the significance of time and country dummies.

3.18 Air pollution levels and left-wing party strength. Neumayer (2003a) inves-
tigates the effect of left-wing party strength on air pollution levels using a
panel of 21 OECD countries observed over the period 1980–1999. Neumayer
reports the two-way fixed-effects estimates of several measures of air pollution
levels (like carbon dioxide emissions) regressed on measures of scale: (GDP
and vehicle use); measures of composition (share of manufacturing and fossil
fuels); and a measure of efficiency, as well as three measures of left-wing party
strength, and one indicator of corporatism. The results find that parliamentary
green/left-libertarian party strength is associated with lower pollution levels.
The data set and Stata code are provided on the author’s university webpage.
(http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neum
ayer/replicationdatasets2.aspx).

(a) Replicate Table 2 of Neumayer (2003a; p. 213) which reports the fixed
and random effects estimates for carbon dioxide emissions for the period
1980–1999 as well as 1990–1999. Report the tests for country and time
effects.

(b) Replicate Tables 3, 4, 5, and 6 of Neumayer (2003a; pp. 214–215) which
report the fixed and random effects estimates for sulfur dioxide, nitro-
gen dioxide, carbon monoxide, and volatile organic compound emissions,
respectively.

3.19 Political governance, economicpolicies, andhomicide rates.Neumayer (2003b)
provides empirical evidence that good political governance and good economic
policies can lower homicide rates. This is based on two-way fixed-effects esti-
mates using a panel of homicide data from up to 117 countries over the period
1980–97. The results suggest that economic growth, higher income levels,
respect for human rights, and the abolition of the death penalty are all associated
with lower homicide rates. The same is true for democracy but only at high levels
of democracy. The data set and Stata code are provided on the author’s univer-
sity webpage. (http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/
profiles/neumayer/replicationdatasets2.aspx).

http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
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(a) Replicate Table I ofNeumayer (2003b; p. 629)which reports the descriptive
statistics.

(b) Replicate Table II of Neumayer (2003b; p. 630) which reports the correla-
tion coefficients matrix of the variables after the Within transformation.

(c) Replicate columns 1, 2, 4, and 5 of Table III of Neumayer (2003b; p. 632)
which report the two-way fixed effects estimates using different homicide
measures and regressors.
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4Test ofHypotheseswith PanelData

4.1 Tests for Poolability

The question of whether to pool the data or not naturally arises with panel data.
The restricted model is the pooled model given by (2.3) representing a behavioral
equation with the same parameters over time and across regions. The unrestricted
model, however, is the same behavioral equation but with different parameters across
time or across regions. For example, Cornwell and Rupert (1988) estimate a mincer
wage equation based on a panel of 595 individuals drawn from the Panel Study
of Income Dynamics (PSID) and observed over the period 1976–82. In this case,
the question of whether to pool or not boils down to the question of whether the
parameters of this mincer wage equation vary from one year to the other over the
seven years of available data. One can have a behavioral equation whose parameters
may vary across countries. For example, Baltagi and Griffin (1983) considered panel
data on motor gasoline demand for 18 OECD countries. In this case, one is interested
in testing whether the behavioral relationship predicting demand is the same across
the 18 OECD countries, i.e., the parameters of the prediction equation do not vary
from one country to the other.

These are but two examples of many economic applications where time-series
and cross-section data may be pooled. Generally, most economic applications tend
to be of the first type, i.e., with a large number of observations on individuals,
firms, economic sectors, regions, industries, and countries but only over a few time
periods. In what follows, we study the tests for the poolability of the data for the case
of pooling across regions keeping in mind that the other case of pooling over time
can be obtained in a similar fashion.

For the unrestricted model, we have a regression equation for each region given
by

yi = Ziδi + ui for i = 1, 2, . . . ,N (4.1)
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where y′
i = (yi1, . . . , yiT ), Zi = [ιT ,Xi], and Xi is (T × K). δ′

i is 1 × (K + 1) and
ui is T × 1. The important thing to notice is that δi is different for every regional
equation. We want to test the hypothesis H0 : δi = δ for all i, so that under H0 we
can write the restricted model given in (4.1) as

y = Zδ + u (4.2)

whereZ ′ = (Z ′
1, Z

′
2, . . . , Z

′
N ) and u′ = (u′

1, u
′
2, . . . , u

′
N ) . The unrestrictedmodel can

also be written as

y =

⎛
⎜⎜⎜⎝

Z1 0 . . . 0
0 Z2 . . . 0
...

. . .
...

0 0 . . . ZN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

δ1
δ2
...

δN

⎞
⎟⎟⎟⎠+ u = Z∗δ∗ + u (4.3)

where δ∗′ = (δ′
1, δ

′
2, . . . , δ

′
N ) and Z = Z∗I∗ with I∗ = (ιN ⊗ IK ′), an NK ′ × K ′

matrix, with K ′ = K + 1. Hence the variables in Z are all linear combinations of
the variables in Z∗.

4.1.1 Test for Poolability Under u ∼ N(0,σ2INT)

Assumption 4.1 u ∼ N(0,σ2INT).
Under Assumption 4.1, the minimum variance unbiased (MVU) estimator for δ in
Eq. (4.2) is

δ̂OLS = δ̂mle = (Z ′Z)−1Z ′y (4.4)

and therefore
y = Z δ̂OLS + e (4.5)

implying that e = (INT − Z(Z ′Z)−1Z ′)y = My = M (Zδ + u) = Mu sinceMZ = 0.
Similarly, under Assumption 4.1, the MVU for δi is given by

δ̂i,OLS = δ̂i,mle = (Z ′
i Zi)

−1Z ′
i yi (4.6)

and therefore
yi = Zîδi,OLS + ei (4.7)

implying that ei = (IT − Zi(Z ′
i Zi)

−1Z ′
i )yi = Miyi = Mi(Ziδi + ui) = Miui since

MiZi = 0, and this is true for i = 1, 2, . . . ,N . Also, let

M ∗ = INT − Z∗(Z∗′Z∗)−1Z∗′ =

⎛
⎜⎜⎜⎝

M1 0 . . . 0
0 M2 . . . 0
...

. . .
...

0 0 . . . MN

⎞
⎟⎟⎟⎠

One can easily deduce that y = Z ∗̂δ∗ + e∗ with e∗ = M ∗y = M ∗u and δ̂∗ =
(Z∗′Z∗)−1Z∗′y. Note that both M and M ∗ are symmetric and idempotent with
MM ∗ = M ∗. This easily follows since

Z(Z ′Z)−1Z ′Z∗(Z∗′Z∗)−1Z∗′ = Z(Z ′Z)−1I∗′Z∗′Z∗(Z∗′Z∗)−1Z∗′

= Z(Z ′Z)−1Z ′
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This uses the fact that Z = Z∗I∗. Under Assumption 4.1, e′e − e∗′e∗ = u′(M −
M ∗)u and e∗′e∗ = u′M ∗u are independent since (M − M ∗)M ∗ = 0. Also, both
quadratic forms when divided by σ2 are distributed as χ2 since (M − M ∗) and
M ∗ are idempotent. Dividing these quadratic forms by their respective degrees of
freedom, and taking their ratio leads to the following test statistic:1

Fobs = (e′e − e∗′e∗)/(tr(M ) − tr(M ∗))
e∗′e∗/tr(M ∗)

Fobs = (e′e − e′
1e1 − e′

2e2 − · · · − e′
N eN )/(N − 1)K ′

(e′
1e1 + e′

2e2 + · · · + e′
NeN )/N (T − K ′)

(4.8)

Under H0,Fobs is distributed as an F((N − 1)K ′,N (T − K ′)). Hence the critical
region for this test is defined as

{Fobs > F((N − 1)K ′,NT − NK ′; α0)}
where α0 denotes the level of significance of the test. This is exactly the Chow test
presented by Chow (1960) extended to the case of N linear regressions. Therefore, if
an economist has a reason to believe that Assumption 4.1 is true, and wants to pool
his data across regions, then it is recommended that he or she test for the poolability
of the data using the Chow test given in (4.8). However, for the variance component
model, u ∼ (0,�) and not (0,σ2INT ). Therefore, even if we assume normality on the
disturbances, two questions remain: (1) Is the Chow test still the right test to perform
when u ∼ N (0, �)? and (2) does the Chow statistic still have an F-distribution when
u ∼ N (0,�)? The answer to the first question is no, the Chow test given in (4.8) is
not the right test to perform. However, as will be shown later, a generalized Chow
test will be the right test to perform. As for the second question, it is still relevant to
ask because it highlights the problem of economists using the Chow test assuming
erroneously that u is N (0, σ2INT ) when in fact it is not.

Having posed the two questions above, we can proceed along two lines: the first is
to find the approximate distribution of the Chow statistic (4.8) in case u ∼ N (0, �)

and therefore show how erroneous it is to use the Chow test in this case (this is not
pursued in this book). The second route, and the more fruitful, is to derive the right
test to perform for pooling the data in case u ∼ N (0, �). This is done in the next
subsection.

4.1.2 Test for Poolability Under the General Assumption
u ∼ N(0, �)

Assumption 4.2 u ∼ N(0,�).
In case� is known up to a scalar factor, the test statistic employed for the poolability
of the datawould be simple to derive. All we need to do is transform ourmodel (under
both the null and alternative hypotheses) such that the transformed disturbances have
a variance ofσ2INT , then apply theChow test on the transformedmodel. The later step
is legitimate because the transformed disturbances have homoskedastic variances and
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the analysis of the previous section applies in full. Given � = σ2�, we premultiply
the restricted model given in (4.2) by �−1/2 and we call �−1/2y = ẏ, �−1/2Z = Ż ,
and �−1/2u = u̇. Hence

ẏ = Żδ + u̇ (4.9)

with E(u̇u̇′) = �−1/2E(uu′)�−1/2′ = σ2INT . Similarly, we premultiply the unre-
stricted model given in (4.3) by �−1/2, and we call �−1/2Z∗ = Ż∗. Therefore

ẏ = Ż∗δ∗ + u̇ (4.10)

with E(u̇u̇′) = σ2INT .
At this stage, we can test H0; δi = δ for every i = 1, 2, . . . ,N , simply by using

the Chow statistic, only now on the transformed models (4.9) and (4.10) since they
satisfy Assumption 4.1 of homoskedasticity of the normal disturbances. Note that
Ż = Ż∗I∗ which is simply obtained from Z = Z∗I∗ by premultiplying by �−1/2.
Defining Ṁ = INT − Ż(Ż ′Ż)−1Ż ′ and Ṁ ∗ = INT − Ż∗(Ż∗′Ż∗)−1Ż∗′, it is easy to
show that Ṁ and Ṁ ∗ are both symmetric and idempotent such that Ṁ Ṁ ∗ = Ṁ ∗.
Once again the conditions for lemma 2.2 of Fisher (1970) are satisfied, and the test
statistic

Ḟobs = (ė′ė − ė∗′ė∗)/(tr(Ṁ ) − tr(Ṁ ∗))
ė∗′ė∗/tr(Ṁ ∗)

∼ F((N − 1)K ′,N (T − K ′)) (4.11)

where ė = ẏ − Ż δ̇OLS and̂̇δOLS = (Ż ′Ż)−1Ż ′ẏ implying that ė = Ṁ ẏ = Ṁ u̇. Simi-

larly, ė∗ = ẏ − Ż ∗̂δ̇
∗
OLS and

̂̇δ∗
OLS = (Ż∗′Ż∗)−1Ż∗′ẏ implying that ė∗ = Ṁ ∗ẏ = Ṁ ∗u̇.

Using the fact that Ṁ and Ṁ ∗ are symmetric and idempotent, we can rewrite (4.11)
as

Ḟobs = (ẏ′Ṁ ẏ − ẏ′Ṁ ∗ẏ)/(N − 1)K ′

ẏ′Ṁ ∗ẏ/N (T − K ′)

= (y′�−1/2Ṁ�−1/2y − y′�−1/2Ṁ ∗�−1/2y)/(N − 1)K ′

y′�−1/2Ṁ ∗�−1/2y/N (T − K ′)
(4.12)

But
Ṁ = INT − �−1/2Z(Z ′�−1Z)−1Z ′�−1/2′

(4.13)

and
Ṁ ∗ = INT − �−1/2Z∗(Z∗′�−1Z∗)−1Z∗′�−1/2′

so that
�−1/2Ṁ�−1/2 = �−1 − �−1Z(Z ′�−1Z)−1Z ′�−1

and
�−1/2Ṁ ∗�−1/2 = �−1 − �−1Z∗(Z∗′�−1Z∗)−1Z∗′�−1

Hence we can write (4.12) in the form

Ḟobs = y′[�−1(Z∗(Z∗′�−1Z∗)−1Z∗′ − Z(Z ′�−1Z)−1Z ′)�−1]y/(N − 1)K ′

(y′�−1y − y′�−1Z∗(Z∗′�−1Z∗)−1Z∗′�−1y)/N (T − K ′)
(4.14)

and Ḟobs has an F-distribution with ((N − 1)K ′,N (T − K ′)) degrees of freedom.
It is important to emphasize that (4.14) is operational only when � is known. This
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test is a special application of a general test for linear restrictions described in Roy
(1957) and used by Zellner (1962) to test for aggregation bias in a set of seemingly
unrelated regressions. In case � is unknown, we replace � in (4.14) by a consistent
estimator (say �̂ ) and call the resulting test statistics F̂obs.

One of the main motivations behind pooling a time-series of cross-sections is to
widen our database in order to get better andmore reliable estimates of the parameters
of our model. Using the Chow test, the question of whether “to pool or not” reduced
to a test of the validity of the null hypothesis H0; δi = δ for all i. Imposing these
restrictions (true or false) will reduce the variance of the pooled estimator, but may
introduce bias if these restrictions are false. This motivated Toro-Vizcarrondo and
Wallace (1968, p. 560) to write, “if one is willing to accept some bias in trade for a
reduction in variance, then even if the restriction is not true one might still prefer the
restricted estimator.” Baltagi (1995b, pp. 54–58) discusses three mean square error
(MSE) criteria used in the literature to test whether the pooled estimator restricted
by H0 is better than the unrestricted estimator of δ∗. It is important to emphasize
that these MSE criteria do not test whether H0 is true or false, but help us to choose
on “pragmatic grounds” between two sets of estimators of δ∗ and hence achieve,
in a sense, one of the main motivations behind pooling. A summary table of these
MSE criteria is given byWallace (1972, p. 697). McElroy (1977) extends theseMSE
criteria to the case where u ∼ N (0,σ2�).

Monte Carlo Evidence
In the Monte Carlo study by Baltagi (1981), the Chow test is performed given that
the data are poolable and the model is generated as a two-way error component
model. This test gave a high frequency of rejecting the null hypothesis when true.
The reason for the poor performance of the Chow test is that it is applicable only
under Assumption 4.1 on the disturbances. This is violated under a random effects
model with large variance components. For example, in testing the stability of cross-
section regressions over time, the high frequency of type I error occurred whenever
the variance components due to the time effects are not relatively small. Similarly,
in testing the stability of time-series regressions across regions, the high frequency
of type I error occurred whenever the variance components due to the cross-section
effects are not relatively small.

Under this case of nonspherical disturbances, the proper test to perform is theRoy–
Zellner test given by (4.14). Applying this test knowing the true variance components
or using the Amemiya (1971) and the Wallace and Hussain (1969) type estimates
of the variance components leads to low frequencies of committing a type I error.
Therefore, if pooling is contemplated using an error component model, then the
Roy–Zellner test should be used rather than the Chow test.

The alternativeMSE criteria, developed by Toro-Vizcarrondo andWallace (1968)
and Wallace (1972), were applied to the error component model in order to choose
between the pooled and the unpooled estimators. These weaker criteria gave a lower
frequency of committing a type I error than the Chow test, but their performance was
still poor when compared to the Roy–Zellner test. McElroy’s (1977) extension of
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these weaker MSE criteria to the case of nonspherical disturbances performed well
when compared with the Roy–Zellner test, and is recommended.

4.1.3 Examples

Example 1 For the Grunfeld data, Chow’s test for poolability across firms as in
(4.1) gives an observed F-statistic of 27.75 and is distributed as F(27, 170) under
H0; δi = δ for i = 1, . . . ,N . TheRRSS= 1755850.48 is obtained frompooledOLS,
and the URSS = 324728.47 is obtained from summing the RSS from 10 individual
firm OLS regressions, each with 17 degrees of freedom. There are 27 restrictions
and the test rejects poolability across firms for all coefficients. One can test for
poolability of slopes only, allowing for varying intercepts. The restrictedmodel is the
Within regression with firm dummies. The RRSS = 523478, while the unrestricted
regression is the same as above. The observed F-statistic is 5.78 which is distributed
as F(18, 170) under H0; βi = β for i = 1, . . . ,N . This again is significant at the
5% level and rejects poolability of the slopes across firms. Note that one could have
tested poolability across time. The Chow test gives an observed value of 1.12 which
is distributed as F(57, 140). This does not reject poolability across time, but the
unrestrictedmodel is based on 20 regressions eachwith only 7 degrees of freedom.As
clear from the numerator degrees of freedom, thisF-statistic tests 57 restrictions. The
Roy–Zellner test for poolability across firms, allowing for one-way error component
disturbances, yields an observed F-value of 4.35 which is distributed as F(27, 170)
under H0; δi = δ for i = 1, . . . ,N . This still rejects poolability across firms even
after allowing for one-way error component disturbances. The Roy–Zellner test for
poolability over time, allowing for a one-way error component model, yields an F-
value of 2.72 which is distributed as F(57, 140) under H0; δt = δ for t = 1, . . . ,T .

Example 2 For the gasoline demand data in Baltagi and Griffin (1983), Chow’s
test for poolability across countries yields an observed F-statistic of 129.38 and is
distributed as F(68, 270) under H0; δi = δ for i = 1, . . . ,N . This tests the stability
of four time-series regression coefficients across 18 countries. The unrestricted SSE
is based upon 18 OLS time-series regressions, one for each country. For the stability
of the slope coefficients only, H0; βi = β, an observed F-value of 27.33 is obtained
which is distributed as F(51, 270) under the null. Chow’s test for poolability across
time yields an F-value of 0.276 which is distributed as F(72, 266) under H0; δt = δ
for t = 1, . . . , T . This tests the stability of four cross-section regression coefficients
across 19 time periods. The unrestricted SSE is based upon 19 OLS cross-section
regressions, one for each year. This does not reject poolability across time periods.
The Roy–Zellner test for poolability across countries, allowing for a one-way error
component model, yields an F-value of 21.64 which is distributed as F(68, 270)
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under H0; δi = δ for i = 1, . . . ,N . The Roy–Zellner test for poolability across time
yields an F-value of 1.66 which is distributed as F(72, 266) under H0; δt = δ for
t = 1, . . . ,T . This rejects H0 at the 5% level.

4.2 Tests for Individual andTime Effects

4.2.1 The Breusch–PaganTest

For the random two-way error component model, Breusch and Pagan (1980) derived
aLagrangemultiplier (LM) test to testH0;σ2

μ = σ2
λ = 0.The log-likelihood function

under normality of the disturbances is given by (3.29) as

L(δ, θ) = constant − 1

2
log | � | −1

2
u′�−1u (4.15)

where θ′ = (σ2
μ,σ2

λ,σ2
ν) and � is given by (3.10) as

� = σ2
μ(IN ⊗ JT ) + σ2

λ(JN ⊗ IT ) + σ2
νINT (4.16)

The information matrix is block-diagonal between θ and δ. Since H0 involves only
θ, the part of the information matrix due to δ is ignored. In order to reconstruct the
Breusch and Pagan (1980) LM statistic, we need the score D(̃θ) = (∂L/∂θ) |̃θmle ,
the first derivative of the likelihood with respect to θ, evaluated at the restrictedMLE
of θ under H0, which is denoted by θ̃mle. Hartley and Rao (1967) or Hemmerle and
Hartley (1973) give a useful general formula to obtain D(θ):

∂L/∂θr = 1

2
tr[�−1(∂�/∂θr)] + 1

2
[u′�−1(∂�/∂θr)�

−1u] (4.17)

for r = 1, 2, 3. Also, from (4.16), (∂�/∂θr) = (IN ⊗ JT ) for r = 1, (JN ⊗ IT ) for
r = 2, and INT for r = 3. The restricted MLE of � under H0 is �̃ = σ̃2

νINT where
σ̃2

ν = ũ′̃u/NT and ũ are the OLS residuals. Using tr(IN ⊗ JT ) = tr(JN ⊗ IT ) =
tr(INT ) = NT , one gets

D(̃θ) =
⎡
⎢⎣

− 1
2 tr[(IN ⊗ JT )/σ̃2

ν] + 1
2 [̃u′(IN ⊗ JT )̃u/σ̃4

ν]
− 1

2 tr[(JN ⊗ IT )/σ̃2
ν] + 1

2 [̃u′(JN ⊗ IT )̃u/σ̃4
ν]

− 1
2 tr[INT /σ̃2

ν] + 1
2 [̃u′̃u/σ̃4

ν]

⎤
⎥⎦

= −NT

2σ̃2
ν

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ũ′(IN ⊗ JT )̃u

ũ′̃u

1 − ũ′(JN ⊗ IT )̃u

ũ′̃u
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.18)

The information matrix for this model is

J (θ) = E

[
∂2L

∂θ∂θ′

]
= [Jrs] for r, s = 1, 2, 3
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where

Jrs = E[−∂2L/∂θr∂θs] = 1

2
tr[�−1(∂�/∂θr)�

−1(∂�/∂θs)] (4.19)

(see Harville (1977). Using �̃−1 = (1/σ̃2
ν)INT and tr[(IN ⊗ JT )(JN ⊗ IT )] =

tr(JNT ) = NT , tr(IN ⊗ JT )2 = NT 2, and tr(JN ⊗ IT )2 = N 2T , one gets

J̃ = 1

2σ̃4
ν

⎡
⎣
tr(IN ⊗ JT )2 tr(JNT ) tr(IN ⊗ JT )

tr(JNT ) tr(JN ⊗ IT )2 tr(JN ⊗ IT )

tr(IN ⊗ JT ) tr(JN ⊗ IT ) tr(INT )

⎤
⎦

= NT

2σ̃4
ν

⎡
⎣
T 1 1
1 N 1
1 1 1

⎤
⎦ (4.20)

with

J̃−1 = 2σ̃4
ν

NT (N − 1)(T − 1)

⎡
⎣

(N − 1) 0 (1 − N )

0 (T − 1) (1 − T )

(1 − N ) (1 − T ) (NT − 1)

⎤
⎦ (4.21)

Therefore

LM = D̃′̃J−1D̃

= NT

2(N − 1)(T − 1)

[
(N − 1)

[
1 − ũ′(IN ⊗ JT )̃u

ũ′̃u

]2

+(T − 1)

[
1 − ũ′(JN ⊗ IT )̃u

ũ′̃u

]2]

LM = LM1 + LM2 (4.22)

where

LM1 = NT

2(T − 1)

[
1 − ũ′(IN ⊗ JT )̃u

ũ′̃u

]2
(4.23)

and

LM2 = NT

2(N − 1)

[
1 − ũ′(JN ⊗ IT )̃u

ũ′̃u

]2
(4.24)

UnderH0, LM is asymptotically distributed as a χ2
2. This LM test requires only OLS

residuals and is easy to compute. This may explain its popularity. In addition, if
one wants to test Ha

0 ;σ2
μ = 0, following the derivation given above, one gets LM1

which is asymptotically distributed under Ha
0 as χ2

1. Similarly, if one wants to test
Hb
0 ;σ2

λ = 0, by symmetry, one gets LM2 which is asymptotically distributed as χ2
1

underHb
0 . This LM test performed well in Monte Carlo studies (see Baltagi (1981)),

except for small values of σ2
μ and σ2

λ close to zero. These are precisely the cases
where negative estimates of the variance components are most likely to occur.
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4.2.2 Honda,King andWu,and the Standardized Lagrange
Multiplier Tests

One problem with the Breusch–Pagan test is that it assumes that the alternative
hypothesis is two-sided when we know that the variance components are nonnega-
tive. This means that the alternative hypotheses should be one-sided. Honda (1985)
suggests a uniformly most powerful test for Ha

0 ; σ2
μ = 0 which is based upon

HO ≡ A =
√

NT

2(T − 1)

[
ũ′(IN ⊗ JT )̃u

ũ′̃u
− 1

]
Ha
0→ N (0, 1) (4.25)

Note that the square of this N (0, 1) statistic is the Breusch and Pagan (1980) LM1
test statistic given in (4.23). Honda (1985) finds that this test statistic is robust to
nonnormality. Moulton and Randolph (1989) showed that the asymptotic N (0, 1)
approximation for this one-sided LM statistic can be poor even in large samples.
This occurs when the number of regressors is large or the intra-class correlation of
some of the regressors is high. They suggest an alternative standardized Lagrange
multiplier (SLM) test whose asymptotic critical values are generally closer to the
exact critical values than those of the LM test. This SLM test statistic centers and
scales the one-sided LM statistic so that its mean is zero and its variance is one:

SLM = HO − E(HO)√
var(HO)

= d − E(d)√
var(d)

(4.26)

where d = ũ′Dũ/̃u′̃u andD = (IN ⊗ JT ). Using the results on moments of quadratic
forms in regression residuals (see, e.g., Evans and King (1985)), we get

E(d) = tr(DP̄Z )/p (4.27)

and
var(d) = 2{p tr(DP̄Z )2 − [tr(DP̄Z )]2}/p2(p + 2) (4.28)

where p = n − (K + 1) and P̄Z = In − Z(Z ′Z)−1Z ′. Under the null hypothesis Ha
0 ,

SLM has an asymptotic N (0, 1) distribution. King and Wu (1997) suggest a locally
mean most powerful (LMMP) one-sided test, which for Ha

0 coincides with Honda’s
(1985) uniformly most powerful test (see Baltagi, Chang and Li (1992)).

Similarly, for Hb
0 ;σ2

λ = 0, the one-sided Honda-type LM test statistic is

B =
√

NT

2(N − 1)

[
ũ′(JN ⊗ IT )̃u

ũ′̃u
− 1

]
(4.29)

which is asymptotically distributed asN (0, 1). Note that the square of this statistic is
the corresponding two-sided LM test given by LM2 in (4.24). This can be standard-
ized as in (4.26) with D = (JN ⊗ IT ). Also, the King and Wu (1997) LMMP test for
Hb
0 coincides with Honda’s uniformly most powerful test given in (4.29).
ForHc

0 ; σ2
μ = σ2

λ = 0, the two-sidedLM test, given byBreusch and Pagan (1980),
is A2 + B2

∼ χ2(2). Honda (1985) does not derive a uniformly most powerful one-
sided test for Hc

0 , but he suggests a “handy” one-sided test given by (A + B)/
√
2
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which is distributed as N (0, 1) under Hc
0 . Following King and Wu (1997), Baltagi,

Chang and Li (1992) derived the LMMP one-sided test for Hc
0 . This is given by

KW =
√
T − 1√

N + T − 2
A +

√
N − 1√

N + T − 2
B (4.30)

which is distributed as N (0, 1) under Hc
0 . See problem 4.6.

Following the Moulton and Randolph (1989) standardization of the LM test
for the one-way error component model, Honda (1991) suggested a standardization
of his “handy” one-sided test for the two-way error component model. In fact, for
HO = (A + B)/

√
2, the SLM test is given by (4.26) with d = ũ′Dũ/̃u′̃u, and

D = 1

2

√
NT

(T − 1)
(IN ⊗ JT ) + 1

2

√
NT

(N − 1)
(JN ⊗ IT ) (4.31)

Also, one can similarly standardize the KW test given in (4.30) by subtracting its
mean and dividing by its standard deviation, as in (4.26), with d = ũ′Dũ/̃u′̃u and

D =
√
NT√

2
√
N + T − 2

[(IN ⊗ JT ) + (JN ⊗ IT )] (4.32)

With this new D matrix, E(d) and var(d) can be computed using (4.27) and (4.28).
UnderHc

0 ;= σ2
μ = σ2

λ = 0, theseSLMstatistics are asymptoticallyN (0, 1) and their
asymptotic critical values should be closer to the exact critical values than those of
the corresponding unstandardized tests.

4.2.3 Gourieroux,Holly andMonfort Test

Note that A or B can be negative for a specific application, especially when one or
both variance components are small and close to zero. Following Gourieroux, Holly
and Monfort (1982), hereafter GHM, Baltagi, Chang and Li (1992) proposed the
following test for Hc

0 :

χ2
m =

⎧⎪⎪⎨
⎪⎪⎩

A2 + B2 if A > 0,B > 0
A2 if A > 0,B � 0
B2 if A � 0,B > 0
0 if A � 0,B � 0

(4.33)

χ2
m denotes the mixed χ2 distribution. Under the null hypothesis,

χ2
m ∼

(
1

4

)
χ2(0) +

(
1

2

)
χ2(1) +

(
1

4

)
χ2(2)

whereχ2(0) equals zerowith probability one.2 Theweights
( 1
4

)
,
( 1
2

)
, and
( 1
4

)
follow

from the fact thatA andB are asymptotically independent of each other and the results
in Gourieroux, Holly and Monfort (1982). This proposed test has the advantage over
the Honda and KW tests in that it is immune to the possible negative values of A and
B.
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4.2.4 Conditional LMTests

When one uses HO given in (4.25) to test Ha
0 ;σ2

μ = 0, one implicitly assumes that
the time-specific effects do not exist. This may lead to incorrect decisions especially
when the variance of the time effects (assumed to be zero) is large. To overcome
this problem, Baltagi, Chang and Li (1992) suggest testing the individual effects
conditional on the time-specific effects (i.e., allowing σ2

λ > 0). The corresponding
LMtest for testingHd

0 ; σ2
μ = 0 (allowingσ2

λ > 0) is derived inAppendix 2ofBaltagi,
Chang and Li (1992) and is given by

LMμ =
√
2σ̃2

2 σ̃
2
ν√

T (T − 1)[̃σ4
ν + (N − 1)̃σ4

2]
D̃μ (4.34)

where

D̃μ = T

2

{
1

σ̃2
2

[
ũ′(J̄N ⊗ J̄T )̃u

σ̃2
2

− 1

]
+ (N − 1)

σ̃2
ν

[
ũ′(EN ⊗ J̄T )̃u

(N − 1)̃σ2
ν

− 1

]}
(4.35)

with σ̃2
2 = ũ′(J̄N ⊗ IT )̃u/T and σ̃2

ν = ũ′(EN ⊗ IT )̃u/T (N − 1). LMμ is asymptot-
ically distributed as N (0, 1) under Hd

0 . The estimated disturbances ũ denote the
one-way GLS residuals using the maximum likelihood estimates σ̃2

ν and σ̃2
2. One

can easily check that if σ̃2
λ → 0, then σ̃2

2 → σ̃2
ν and LMμ given in (4.34) tends to the

one-sided Honda test given in (4.25).
Similarly, the alternative LM test statistic for testing He

0 ;σ2
λ = 0 (allowing

σ2
μ > 0) can be obtained as follows:

LMλ =
√
2σ̃2

1 σ̃
2
ν√

N (N − 1)[̃σ4
ν + (T − 1)̃σ4

1]
D̃λ (4.36)

where

D̃λ = N

2

{
1

σ̃2
1

[
ũ′(J̄N ⊗ J̄T )̃u

σ̃2
1

− 1

]
+ (T − 1)

σ̃2
ν

[
ũ′(J̄N ⊗ ET )̃u

(T − 1)̃σ2
ν

− 1

]}
(4.37)

with σ̃2
1 = ũ′(IN ⊗ J̄T )̃u/N and σ̃2

ν = ũ′(IN ⊗ ET )̃u/N (T − 1). The test statistic
LMλ is asymptotically distributed as N (0, 1) under He

0 .

4.2.5 ANOVA F and the Likelihood Ratio Tests

Moulton and Randolph (1989) found that the ANOVA F-test which tests the signif-
icance of the fixed effects performs well for the one-way error component model.
The ANOVA F-test statistics have the following familiar general form:

F = y′MD(D′MD)−D′My/(p − r)

y′Gy/[NT − (̃k + p − r)] (4.38)

Under the null hypothesis, this statistic has a central F-distribution with p − r
and NT − (̃k + p − r) degrees of freedom. For Ha

0 ;σ2
μ = 0,D = IN ⊗ ιT ,M =
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P̄Z , k̃ = K ′, p = N , r = K ′ + N− rank(Z,D), and G = P̄(Z,D) where P̄Z = I − PZ

and PZ = Z(Z ′Z)−1Z ′. For details regarding other hypotheses, see Baltagi, Chang
and Li (1992).

The one-sided likelihood ratio (LR) tests all have the following form:

LR = −2 log
l(res)

l(unres)
(4.39)

where l(res) denotes the restricted maximum likelihood value (under the null
hypothesis), while l(unres) denotes the unrestricted maximum likelihood value.
The LR tests require MLE estimators of the one-way and the two-way mod-
els and are comparatively more expensive than their LM counterparts. Under the
null hypotheses considered, the LR test statistics have the same asymptotic dis-
tributions as their LM counterparts (see Gourieroux, Holly and Monfort (1982)).
More specifically, for Ha

0 ,Hb
0 , H

d
0 , and He

0 ,LR ∼ ( 12 )χ
2(0) + ( 12 )χ

2(1) and for
Hc
0 ,LR ∼ ( 14 )χ

2(0) + ( 12 )χ
2(1) + ( 14 )χ

2(2).

4.2.6 Monte Carlo Results

Baltagi, Chang and Li (1992) compared the performance of the above tests using
Monte Carlo experiments on the two-way error component model described in
Baltagi (1981). Each experiment involved 1000 replications. For each replication,
the following test statistics were computed: BP, Honda, KW, SLM, LR, GHM, and
the F-test statistics. The results can be summarized as follows: when Ha

0 ;σ2
μ = 0 is

true but σ2
λ is large, all the usual tests for Ha

0 perform badly since they ignore the
fact that σ2

λ > 0. In fact, the two-sided BP test performs the worst, over-rejecting the
null, while HO, SLM, LR, and F underestimate the nominal size. As σ2

μ gets large,
all the tests perform well in rejecting the null hypothesis Ha

0 . But, for small σ2
μ > 0,

the power of all the tests considered deteriorates as σ2
λ increases.

For testing Hd
0 ;σ2

μ = 0 (allowing σ2
λ > 0), LMμ, LR, and F perform well with

their estimated size not significantly different from their nominal size. Also, for
large σ2

μ all these tests have high power rejecting the null hypothesis in 98–100% of
the cases. The results also suggest that overspecifying the model, i.e., assuming the
model is two-way (σ2

λ > 0) when in fact it is one-way (σ2
λ = 0) does not seem to hurt

the power of these tests. Finally, the power of all tests improves as σ2
λ increases. This

is in sharp contrast to the performance of the tests that ignore the fact that σ2
λ > 0.

The Monte Carlo results strongly support the fact that one should not ignore the
possibility that σ2

λ > 0 when testing σ2
μ = 0. In fact, it may be better to overspecify

the model rather than underspecify it in testing the variance components.
For the joint testHc

0 ; σ2
μ = σ2

λ = 0, the BP, HO, KW, and LR significantly under-
estimate the nominal size, while GHM and the F-test have estimated sizes that are
not significantly different from the nominal size. Negative values of A and B make
the estimated size for HO and KW underestimate the nominal size. For these cases,
the GHM test is immune to negative values of A and B, and performs well in the
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Monte Carlo experiments. Finally, the ANOVA F-tests perform reasonably well
when compared to the LR and LM tests, for both the one-way and two-way models
and are recommended. This confirms similar results on the F-statistic by Moulton
and Randolph (1989).

4.2.7 An Illustrative Example

The Monte Carlo results show that the test statistics A and/or B take on large neg-
ative values quite often under some designs. A natural question is whether a large
negative A and/or B is possible for real data. In this subsection, we apply the tests
considered above to the Grunfeld (1958) investment equation. Table4.1 gives the
observed test statistics. The null hypothesesHc

0 ;σ2
μ = σ2

λ = 0, aswell asHa
0 ; σ2

μ = 0

and Hd
0 ;σ2

μ = 0 (allowing σ2
λ > 0), are rejected by all tests considered. Clearly, all

the tests strongly suggest that there are individual specific effects. However, for
testing time-specific effects, except for the two-sided LM (BP) test which rejects
Hb
0 ;σ2

λ = 0, all the tests suggest that there are no time-specific effects for this data.
The conflict occurs because B takes on a large negative value (−2.540) for this data
set. This means that the two-sided LM test is B2 = 6.454 which is larger than the
χ2
1 critical value (3.841) whereas, the one-sided LM, SLM, LR, and F-tests for this

hypothesis do not rejectHb
0 . In fact, the LMλ test proposed by Baltagi, Chang and Li

(1992) for testing He
0 ; σ2

λ = 0 (allowing σ2
μ > 0) as well as the LR and F-tests for

this hypothesis do not reject He
0 . These data clearly support the use of the one-sided

test in empirical applications. Stata reports the LM (BP) test for Ha
0 ; σ2

μ = 0 using
the command (xttest0) after running the random effects specification. This computes
the A2 term in (4.23) which is 798.16 for the Grunfeld data as reported in Table4.1.
Using EViews, one can replicate the first 5 rows of Table4.1 after running OLS. The
results are given in Table4.2.

Table 4.1 Test results for the grunfeld example

Null Hypothesis Ha
0 Hb

0 Hc
0 Hd

0 He
0

BP 798.162 (3.841) 6.454 (3.841) 804.615 (5.991) – –

HO 28.252 (1.645) – 2.540 (1.645) 18.181 (1.645) – –

KW 28.252 (1.645) – 2.540 (1.645) 21.832 (1.645) – –

SLM 32.661 (1.645) – 2.433 (1.645) – – –

GHM – – 798.162 (4.231) – –

F 49.177 (1.930) 0.235 (1.645) 17.403 (1.543) 52.362 (1.648) 1.403 (1.935)

LR 193.091 (2.706) 0 (2.706) 193.108 (4.231) 193.108 (2.706) 0.017 (2.706)

LMμ – – – 28.252 (2.706) –

LMλ – – – – 0.110 (2.706)

Numbers in parentheses are asymptotic critical values at the 5% level
Source Baltagi, Chang and Li (1992). Reproduced by permission of Elsevier Science Publishers
B.V. (North Holland)
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Table 4.2 Grunfeld’s data: Lagrangian multiplier tests

Lagrange Multiplier Tests for Random Effects
Null hypotheses: No effects
Alternative hypotheses: Two-sided (Breusch-Pagan) and one-sided
(all others) alternatives

Test Hypothesis
Cross-section Time Both

Breusch-Pagan  798.1615  6.453882  804.6154
(0.0000) (0.0111) (0.0000)

Honda  28.25175 -2.540449  18.18064
(0.0000) (0.9945) (0.0000)

King-Wu  28.25175 -2.540449  21.83221
(0.0000) (0.9945) (0.0000)

Standardized Honda  32.66605 -2.432565  16.29814
(0.0000) (0.9925) (0.0000)

Standardized King-Wu  32.66605 -2.432565  20.96591
(0.0000) (0.9925) (0.0000)

Gourieroux, et al.* -- --  798.1615
(0.0000)

Stata reports the LR test for Ha
0 at the bottom of the MLE results using (xtreg,

mle). This replicates the observed LR test statistic of 193.04 in Table4.1. The Stata
output is not reproduced here but one can refer to the Stata results in Table 2.10where
we reported the MLE for the public capital productivity data. The bottom of Table
2.10 reports the observed LR test statistic of 1149.84. This shows that the random
state effects are significant and their variance is not 0. Also note that the fixed effects
Stata output (xtreg, fe) reports the F-test for the significance of the fixed individual
effects. For the Grunfeld data, this replicates the F (9,188) value of 49.18 which is
reported in Table4.1. The Stata output is not reproduced here, but one can refer to the
Stata results in Table 2.8 where we reported the fixed effects estimates for the public
capital productivity data. The bottom of Table 2.8 reports the observed F (47,764)
value of 75.82. This shows that the fixed state effects are significant.

EViews computes the F-tests for redundant fixed effects after performing one-way
or two-way fixed effects. Table4.3 reports these results for the Grunfeld data where
the observed F-statistics of 52.362, 1.403, and 17.403 replicate those in Table4.1.
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Table 4.3 Grunfeld’s data: F-tests for redundant fixed effects

Redundant Fixed Effects Tests
Equation: EQFE
Test cross-section and period fixed effects

Effects Test Statistic d.f. Prob.

Cross-section F 52.362355 (9,169) 0.0000

Cross-section Chi-square 266.395500 9 0.0000

Period F 1.403241 (19,169) 0.1309

Period Chi-square 29.297556 19 0.0614

Cross-Section/Period F 17.403146 (28,169) 0.0000

Cross-Section/Period Chi-square 271.340224 28 0.0000

In fact, the F-statistic given in (3.8) which tests the null hypothesis Hc′
0 ; μ1 = . . . =

μN−1 = 0 and λ1 = . . . = λT−1 = 0 yields 17.403. Since EViews already ran the
unrestricted model with both time period and individual fixed effects, it reports the
restricted regression for this hypothesis which is OLS. Also, the F-statistic for the
null hypothesis Hd ′

0 ; μ1 = . . . = μN−1 = 0 allowing λt �= 0 for t = 1, . . . ,T − 1,
described below (3.8), yields 52.362. EViews reports the restricted regression for
this hypothesis which is a one-way time period fixed effects model. Finally, the F-
statistic for the null hypothesis He′

0 ; λ1 = . . . = λT−1 = 0 allowing μi �= 0 for i =
1, . . . , (N − 1), described below (3.9), yields 1.403. EViews reports the restricted
regression for this hypothesis which is a one-way individual fixed effects model.

4.3 Hausman’s Specification Test

A critical assumption in the error component regressionmodel is thatE(uit/Xit) = 0.
This is important given that the disturbances contain individual effects (the μi) which
are unobserved and may be correlated with the Xit . For example, in an earnings
equation these μi may denote unobservable ability of the individual, and this may
be correlated with the schooling variable included on the right-hand side of this
equation. In this case, E(uit/Xit) �= 0 and the GLS estimator β̂GLS becomes biased
and inconsistent for β. However, the Within transformation wipes out these μi and
leaves the Within estimator β̃Within unbiased and consistent for β. Hausman (1978)
suggests comparing β̂GLS and β̃Within, both of which are consistent under the null
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hypothesis H0; E(uit/Xit) = 0, but will have different probability limits if H0 is not
true. In fact, β̃Within is consistent whether H0 is true or not, while β̂GLS is BLUE,
consistent, and asymptotically efficient under H0 , but is inconsistent when H0 is
false. A natural test statistic would be based on q̂1 = β̂GLS − β̃Within. Under H0,

plim q̂1 = 0, and cov(̂q1, β̂GLS) = 0.
Using the fact that β̂GLS − β = (X ′�−1X )−1X ′�−1u and β̃Within − β =

(X ′QX )−1X ′Qu, one gets E(̂q1) = 0 and

cov(̂βGLS , q̂1) = var(̂βGLS) − cov(̂βGLS , β̃Within)

= (X ′�−1X )−1 − (X ′�−1X )−1X ′�−1E(uu′)QX (X ′QX )−1

= (X ′�−1X )−1 − (X ′�−1X )−1 = 0

Using the fact that β̃Within = β̂GLS − q̂1, one gets

var(̃βWithin) = var(̂βGLS) + var(̂q1)

since cov(̂βGLS , q̂1) = 0. Therefore

var(̂q1) = var(̃βWithin) − var(̂βGLS) = σ2
ν(X

′QX )−1 − (X ′�−1X )−1 (4.40)

Hence, the Hausman test statistic is given by

m1 = q̂′
1[var(̂q1)]−1̂q1 (4.41)

and under H0, it is asymptotically distributed as χ2
K where K denotes the dimension

of slope vector β. In order to make this test operational,� is replaced by a consistent
estimator �̂, and GLS by its corresponding feasible GLS.

An alternative asymptotically equivalent test can be obtained from the augmented
regression

y∗ = X ∗β + X̃ γ + w (4.42)

where y∗ = σν�
−1/2y,X ∗ = σν�

−1/2X , and X̃ = QX . Hausman’s test is now
equivalent to testing whether γ = 0. This is a standard Wald test for the omission of
the variables X̃ from (4.42).3 It is worthwhile to rederive this test. In fact, performing
OLS on (4.42) yields

(
β̂
γ̂

)
=
[
X ′(Q + φ2P)X X ′QX

X ′QX X ′QX

]−1 (
X ′(Q + φ2P)y

X ′Qy

)
(4.43)

where σν�
−1/2 = Q + φP and φ = σν/σ1 (see (2.20)). Using partitioned inverse

formulas, one can show that
(

β̂
γ̂

)
=
[

E −E
−E (X ′QX )−1 + E

](
X ′(Q + φ2P)y

X ′Qy

)
(4.44)

where E = (X ′PX )−1/φ2. This reduces to

β̂ = β̂Between = (X ′PX )−1X ′Py (4.45)

and
γ̂ = β̃Within − β̂Between (4.46)
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Substituting the Within and Between estimators of β into (4.46), one gets

γ̂ = (X ′QX )−1X ′Qν − (X ′PX )−1X ′Pu (4.47)

It is easy to show that E(̂γ) = 0 and

var(̂γ) = E(̂γγ̂′) = σ2
ν(X

′QX )−1 + σ2
1(X

′PX )−1

= var(̃βWithin) + var(̂βBetween) (4.48)

since the cross-product terms are zero. The test for γ = 0 is based on γ̂ = β̃Within −
β̂Between = 0 and the corresponding test statistic would therefore be γ̂′(var(̂γ))−1γ̂,
which looks different from the Hausman m1 statistic given in (4.41). These tests are
numerically exactly identical (see Hausman and Taylor (1981)). In fact, Hausman
and Taylor (1981) showed that H0 can be tested using any of the following three
paired differences: q̂1 = β̂GLS − β̃Within, q̂2 = β̂GLS − β̂Between, or q̂3 = β̃Within −
β̂Between. The corresponding test statistics can be computed as mi = q̂′

iV
−1
i q̂i, where

Vi = var(̂qi). These are asymptotically distributed as χ2
K for i = 1, 2, 3 under H0.

4

Hausman and Taylor (1981) proved that these three tests differ from each other by
nonsingular matrices. This easily follows from the fact that

β̂GLS = W1β̃Within + (I − W1)̂βBetween

derived in (2.31). So q̂1 = β̂GLS − β̃Within = (I − W1)(̂βBetween − β̃Within) = �q̂3,
where � = W1 − I . Also, var(̂q1) = �var(̂q3)�′ and

m1 = q̂′
1[var(̂q1)]−1̂q1 = q̂′

3�
′[�var(̂q3)�′]−1�q̂3

= q̂′
3[var(̂q3)]−1̂q3 = m3

This proves that m1 and m3 are numerically exactly identical. Similarly, one can
show that m2 is numerically exactly identical to m1 and m3. In fact, problem 4.13
shows that these mi are also exactly numerically identical to m4 = q̂′

4V
−1
4 q̂4 where

q̂4 = β̂GLS − β̂OLS and V4 = var(̂q4). In the Monte Carlo study by Baltagi (1981),
the Hausman test is performed given that the exogeneity assumption is true. This test
performed well with a low frequency of type I errors.

Arellano (1993) provided an alternative variable addition test to the Hausman
test which is robust to autocorrelation and heteroskedasticity of arbitrary form. In
particular, Arellano (1993) suggests constructing the following regression:

(
y+
i
ȳi

)
=
[
X+
i 0
X̄ ′
i X̄ ′

i

](
β
γ

)
+
(
u+
i
ūi

)
(4.49)

where y+
i = (y+

i1, . . . , y
+
iT )′ and X+

i = (X+
i1 , . . . ,X+

iT )′ is a T × K matrix and u+
i =

(u+
i1, . . . , u

+
iT )′. Also

y+
it =
[

T − t

T − t + 1

]1/2 [
yit − 1

(T − t)
(yi,t+1 + .. + yiT )

]
t = 1, 2, . . . , T − 1

defines the forward orthogonal deviations operator, ȳi = �T
t=1yit/T , X

+
it , X̄i, u

+
it , and

ūi are similarly defined. OLS on this model yields β̂ = β̃Within and γ̂ = β̂Between −
β̃Within. Therefore, Hausman’s test can be obtained from the artificial regression
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(4.49) by testing for γ = 0. If the disturbances are heteroskedastic and/or serially
correlated, then neither β̃Within nor β̂GLS are optimal under the null or alternative.
Also, the standard formulae for the asymptotic variances of these estimators are no
longer valid. Moreover, these estimators cannot be ranked in terms of efficiency so
the var(q) is not the difference of the two variances var(̃βW )− var(̂βGLS). Arellano
(1993) suggests usingWhite (1984) robust variance–covariance matrix fromOLS on
(4.49) and applying a standardWald test for γ = 0 using these robust standard errors.
This can be easily calculated using any standard regression package that computes
White robust standard errors. This test is asymptotically distributed as χ2

K under the
null. In fact, a simpler robust Hausman test can be obtained by testing for γ = 0 from
the artificial regression (4.42) using the robust variance–covariance matrix option;
see examples 2 and 3 below for illustrations.

Chamberlain (1982) showed that the fixed effects specification imposes testable
restrictions on the coefficients from regressions of all leads and lags of dependent
variables on all leads and lags of independent variables. Chamberlain specified the
relationship between the unobserved individual effects and Xit as follows:

μi = X ′
i1λ1 + .. + X ′

iTλT + εi (4.50)

where each λt is of dimensionK × 1 for t = 1, 2, . . . ,T . Let y′
i = (yi1, . . . , yiT ) and

X ′
i = (X ′

i1, . . . ,X
′
iT ) and denote the “reduced form” regression of y′

i on X
′
i by

y′
i = X ′

i π + ηi (4.51)

The restrictions between the reduced form and structural parameters are given by

π = (IT ⊗ β) + λι′T (4.52)

with λ′ = (λ′
1, . . . , λ

′
T ). Chamberlain (1982) suggested estimation and testing be

carried out using the minimum chi-square method where the minimand is a χ2

goodness-of-fit statistic for the restrictions on the reduced form. However, Angrist
and Newey (1991) showed that this minimand can be obtained as the sum of T terms.
Each term of this sum is simply the degrees of freedom times theR2 from a regression
of theWithin residuals for a particular period on all leads and lags of the independent
variables. Angrist and Newey (1991) illustrate this test using two examples. The first
example estimates and tests a number of models for the union wage effect using
five years of data from the National Longitudinal Survey of Youth (NLSY). They
find that the assumption of fixed effects in an equation for union wage effects is not
at odds with the data. The second example considers a conventional human capital
earnings function. They find that the fixed effects estimates of the return to schooling
in the NLSY are roughly twice those of ordinary least squares. However, the over-
identification test suggests that the fixed effects assumption may be inappropriate
for this model. Carey (1997) applies the Chamberlain minimum chi-square method
to the estimation of a multiple output hospital cost function using a panel of 1733
facilities over the period 1987–1991. OLS (year by year), fixed effects, seemingly
unrelated regressions, and Chamberlain’s minimum chi-square method are reported.
In this application, the minimum chi-squared test rejects the restrictions imposed by
the null hypothesis.
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Unfortunately, this careful testing of the FE restrictions has not been the usual
practice in empirical work. In fact, the standard practice has been to run a Hausman
(1978) test. Not rejecting this null, the applied researcher reports the RE estimator.
Otherwise, the researcher reports the FE estimator; see Owusu-Gyapong (1986) and
Cardellichio (1990) for two such applications. Rejecting the null of the Hausman test
implies that the RE estimator is not consistent. This does not necessarily mean that
the FE restrictions are satisfied. Therefore, a natural next step would be to test the
FE restrictions before settling on this estimator as the preferred one. In fact, Baltagi,
Bresson and Pirotte (2009) argue that one should run the Chamberlain (1982) test
or its Angrist–Newey (1991) alternative to check that the restrictions imposed by an
FE model are valid. Their Monte Carlo results show that these tests yield the same
decision and are in conflict at most 2.2 % of the time. One caveat is that like the
Sargan over-identification test for dynamic panels, (see Chap. 8), the MCS test tends
to understate the true variance of the test statistic as T gets large. This is because as
T gets large, the number of testable restrictions increase and the variance of the test
statistic is understated. They suggest careful examination of which regressors may or
may not be correlatedwith the individual effects. In this case, one should bewilling to
entertain a more restricted model where only a subset of the regressors are correlated
with the individual effects as proposed by Hausman and Taylor (1981); see Chap. 7.
This would impose less restrictions than the general Chamberlain model and is also
testable with a Hausman test. Alternatively, one could question the endogeneity
of the regressors with the disturbances, not only with the individual effects. This
endogeneity leads to inconsistency of the FE estimator and invalidates the Hausman
test performed based on the fixed effects versus the random effects estimator, (see
Chap. 7).

Modifying the set of additional variables in (4.49) so that the set of K additional
regressors are replaced by KT additional regressors, Arellano (1993) obtains

(
y+
i
ȳi

)
=
[
X+
i 0
X̄ ′
i X ′

i

](
β
λ

)
+
(
u+
i
ūi

)
(4.53)

where Xi = (X ′
i1, . . . ,X

′
iT )′ and λ is KT × 1. Chamberlain (1982) test of correlated

effects based on the reduced form approach turns out to be equivalent to testing for
λ = 0 in (4.53). Once again this can be made robust to an arbitrary form of serial
correlation and heteroskedasticity by using aWald test for λ = 0 usingWhite (1984)
robust standard errors. This test is asymptotically distributed as χ2

TK . Note that this
clarifies the relationship between the Hausman specification test and Chamberlain
omnibus goodness-of-fit test. In fact, both tests can be computed as Wald tests from
the artificial regressions in (4.49) and (4.53). Hausman’s test can be considered
as a special case of the Chamberlain test for λ1 = λ2 = .. = λT = γ/T . Arellano
(1993) extends this analysis to dynamic models and to the case where some of the
explanatory variables are known to be uncorrelated or weakly correlated with the
individual effects.

Ahn and Low (1996) showed that Hausman’s test statistic can be obtained from
the artificial regression of the GLS residuals (y∗

it − X ∗′
it β̂GLS) on X̃ and X̄ , where X̃

has typical element X̃it,k and X̄ is the matrix of regressors averaged over time. The



94 4 Test of Hypotheses with Panel Data

test statistic is NT times the R2 of this regression. Using (4.42), one can test H0;
γ = 0 by running the Gauss–Newton regression (GNR) evaluated at the restricted
estimators under the null. Knowing θ, the restricted estimates yield β̂ = β̂GLS and
γ̂ = 0. Therefore, the GNR on (4.42) regresses the GLS residuals (y∗

it − X ∗′
it β̂GLS)

on the derivatives of the regression function with respect to β and γ evaluated at
β̂GLS and γ̂ = 0. These regressors are X ∗

it and X̃it , respectively. But X ∗
it and X̃it span

the same space as X̃it and X̄i.. This follows immediately from the definition of X ∗
it

and X̃it given above. Hence, this GNR yields the same regression sums of squares
and therefore, the same Hausman test statistic as that proposed by Ahn and Low
(1996); see problem 97.4.1 in Econometric Theory by Baltagi (1997).

Ahn and Low (1996) argue that Hausman’s test can be generalized to test that each
Xit is uncorrelated with μi and not simply that X̄i is uncorrelated with μi. In this case,
one computes NT times R2 of the regression of GLS residuals (y∗

it − X ∗′
it β̂GLS) on

X̃it and [X ′
i1, . . . ,X

′
iT ]. This LM statistic is identical to Arellano (1993)Wald statistic

described earlier if the same estimates of the variance components are used. Ahn and
Low (1996) argue that this test is recommended for testing the joint hypothesis of
exogeneity of the regressors and the stability of the regression parameters over time.
When the regression parameters are nonstationary over time, both β̂GLS and β̃Within
are inconsistent even though the regressors are exogenous. Monte Carlo experiments
were performed that showed that both the Hausman test and the Ahn and Low (1996)
test have good power in detecting endogeneity of the regressors. However, the latter
test dominates if the coefficients of the regressors are nonstationary. For Ahn and
Low (1996), rejection of the null does not necessarily favor the Within estimator
since the latter estimator may be inconsistent. In this case, the authors recommend
performing Chamberlain (1982) test or the equivalent test proposed by Angrist and
Newey (1991).

Guggenberger (2010) shows that if one uses a Hausman pretest to decide between
randomandfixed effects inference in a panel data context, and then performs a second
stage test on H0; β = β0, the size of the resulting two-stage test will be distorted.
The paper recommends refraining from this pretesting in favor of inference based
on the fixed effects estimator.

4.3.1 Example 1: Investment Equation

For the Grunfeld data, the Within estimates are given by (̃β1, β̃2) = (0.1101238,
0.310065) with a variance–covariance matrix:

var(̃βWithin) =
[
0.14058 −0.077468

0.3011788

]
× 10−3

The Between estimates are given by (0.1346461, 0.03203147) with variance–
covariance matrix:

var(̂βBetween) =
[
0.82630142 −3.7002477

36.4572431

]
× 10−3
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The resulting Hausman test statistic based on (4.46) and (4.48) and labeled as m3
yields an observed χ2

2 statistic of 2.131. This is not significant at the 5% level, and
we do not reject the null hypothesis of no correlation between the individual effects
and the Xit . As a cautionary note, one should not use the Hausman command in Stata
to perform the Hausman test based on a contrast between the fixed effects (FE) and
Between (BE) estimators. This will automatically subtract the variance–covariance
matrices of the two estimators, rather than add them as required in (4.48). However,
the Hausman test statistic can be properly computed in Stata based upon the contrast
between the RE (feasible GLS) estimator and fixed effects (FE). This is the Hausman
statistic labeled as m1 in (4.41) based on the contrast q̂1 and var(̂q1) given in (4.40).
Table4.4 gives the Stata output using theHausman commandwhich computes (4.41).
This yields an m1 statistic of 2.33 which is distributed as χ2

2. This does not reject the
null hypothesis as obtained above using m3. Note that the feasible GLS estimator
in Stata is SWAR and is computed whenever the RE option is invoked. If one puts
the option sigmaless, in the Hausman command, one is using the same estimate of
σ2

ν (obtained from the consistent fixed effects estimates) in computing the variance–
covariance matrix of both the consistent and efficient estimators. This yields an m1
statistic of 2.13, which is exactly identical tom3. One can also computem2 based on
q̂2 which is the contrast between the SWAR feasible GLS estimator and the Between
estimator. Table4.5 gives the Stata output that replicates this Hausman test yielding
an m2 statistic of 2.13. Note that the Stata comment in Table4.5 that the Between
estimator is consistent under the alternative is not necessarily true. Under the null
however, the Between estimator is consistent, and this allows the computation of
the variance of the difference as the difference in variances, as explained above.
As expected, this statistic is not significant and does not reject the null hypothesis.
The same result is obtained using m1,m2, and m3. Hence, one does not reject the
null hypothesis that the RE estimator is efficient. The augmented regression, given
in (4.42) based on the SWAR feasible GLS estimate of θ, (̂θ = 0.861), yields the
following estimates β̂ = (0.135, 0.032) = β̂Between, as derived in (4.45) and γ̂ =
(−0.025, 0.278) = β̃Within − β̂Between, as derived in (4.46). The test for H0 : γ = 0
yields an F(2, 195) statistic of 1.07 with a p-value of 0.347. One can use the Stata
user-written command xtoverid after running xtreg, re. This yields a χ2

2 statistic of
2.131 which is identical to the Hausman test obtained from the three m statistics
reported above. One can also get a robust Hausman test by running the augmented
regression, given in (4.42) with the robust variance–covariance option and test for
γ = 0. This yields the robust F(2, 195) statistic of 1.58 with a p-value of 0.208. All
Hausman statistics lead to not rejecting H0.
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Table 4.4 Grunfeld’s data: Hausman test FE versus RE

. hausman fe re

---- Coefficients ----
|      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
|       fe           re         Difference          S.E.

-------------+----------------------------------------------------------------
F |    .1101238     .1097811        .0003427        .0055213
C |    .3100653      .308113        .0019524        .0024516

------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test:  Ho:  difference in coefficients not systematic

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
=        2.33

Prob>chi2 =      0.3119

Table 4.5 Grunfeld’s data: Hausman test Between versus RE

. hausman be re

---- Coefficients ----
|      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
|       be           re         Difference S.E.

-------------+----------------------------------------------------------------
F |    .1346461     .1097811        .0248649         .026762
C |    .0320315      .308113 -.2760815        .1901633

------------------------------------------------------------------------------
b = consistent under Ho and Ha; obtained from xtreg

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test:  Ho:  difference in coefficients not systematic

chi2(2) = (b-B)'[(V_b-V_B)^(-1)](b-B)
=        2.13

Prob>chi2 =      0.3445

4.3.2 Example 2:Gasoline Demand Equation

For the Baltagi and Griffin (1983) gasoline data, the Within estimates are given by
(̃β1, β̃2, β̃3) = (0.66128,−0.32130,−0.64015) with variance–covariance matrix

var(̃βWithin) =
⎡
⎣
0.539 0.029 −0.205

0.194 0.009
0.088

⎤
⎦× 10−2

TheBetween estimates are given by (0.96737, −0.96329,−0.79513)with variance–
covariance matrix

var(̂βBetween) =
⎡
⎣
2.422 −1.694 −1.056

1.766 0.883
0.680

⎤
⎦× 10−2

The resulting Hausman χ2
3 test statistic is m3 = 26.507 which is significant. Hence,

we reject the null hypothesis of no correlation between the individual effects and
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the Xit , and we conclude that the random effects estimator is not consistent. One can
similarly compute m2 = 27.45, based on the contrast between the SWAR feasible
GLS estimator and the between estimator, and m1 = 302.8 based on the contrast
between the SWAR feasible GLS estimator and the fixed effects estimator. These
were obtained using Stata. If one puts the option sigmaless, in the Hausman com-
mand, one is using the same estimate of σ2

ν (obtained from the consistent fixed effects
estimates) in computing the variance–covariance matrix of both the consistent and
efficient estimators. This yields an m1 statistic of 26.50, exactly identical to m3. All
three test statisticsm1,m2, andm3 lead to the same decision. The augmented regres-
sion, given in (4.42) based on the SWAR feasible GLS estimate of θ, (̂θ = 0.892),
yields the following estimates β̂ = (0.967,−0.963, −0.795) = β̂Between, as derived
in (4.45) and γ̂ = (−0.306, 0.642, 0.155) = β̃Within − β̂Between, as derived in (4.46).
The test for H0 : γ = 0 yields an F(3, 335) statistic of 8.83 with a p-value of 0.000.
One can use the Stata user-written command xtoverid after running xtreg, re. This
yields a χ2

3 statistic of 26.495 which is identical to the Hausman test obtained from
the three m statistics reported above. One can also get a robust Hausman test by run-
ning the augmented regression, given in (4.42) with the robust variance–covariance
option and test for γ = 0. This yields the robust F(3, 335) statistic of 14.91 with a
p-value of 0.000. All Hausman statistics lead to rejecting H0 and the RE estimator
is not consistent.

4.3.3 Example 3: CanadianManufacturing Industries

Owusu-Gyapong (1986) considered panel data on strike activity in 60 Canadian
manufacturing industries for the period 1967–79. A one-way error component model
is used and OLS, Within, and random effects GLS estimates are obtained. With
K ′ = 12 regressors, N = 60 and T = 13, an F-test for the significance of industry-
specific effects described in (2.12) yields an F-value of 5.56. This is distributed as
F59,709 under the null hypothesis of zero industry-specific effects. The null is soundly
rejected and theWithin estimator is preferred to theOLS estimator. Next,H0; σ2

μ = 0
is tested using the Breusch and Pagan (1980) two-sided LM test given as LM1 in
(4.23). This yields a χ2 value of 21.4, which is distributed as χ2

1 under the null
hypothesis of no random effects. The null is soundly rejected and the GLS estimator
is preferred to the OLS estimator. Finally, for a choice between the Within and GLS
estimator, the author performs a Hausman (1978) type test to testH0;E(μi/Xit) = 0.
This is based on the difference between the Within and GLS estimators as described
in (4.41) and yields a χ2 value equal to 3.84. This is distributed as χ2

11 under the null
and is not significant. The Hausman test was also run as an augmented regression-
type test described in (4.42). This also did not reject the null of no correlation between
theμi and the regressors. Based on these results, Owusu-Gyapong (1986) chose GLS
as the preferred estimator.
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4.3.4 Example 4: Sawmills inWashington State

Cardellichio (1990) estimated the production behavior of 1147 sawmills in the state
of Washington observed biennially over the period 1972–84. A one-way error com-
ponent model is used and OLS, Within, and random effects GLS estimates are pre-
sented. With K ′ = 21 regressors, N = 1147, and T = 7, an F-test for the stability
of the slope parameters over time was performed which was not significant at the
5% level. In addition, an F -test for the significance of sawmill effects described in
(2.12) was performed which rejected the null at the 1% significance level. Finally,
a Hausman test was performed and it rejected the null at the 1% significance level.
Cardellichio (1990) concluded that the regression slopes are stable over time, sawmill
dummies should be included, and theWithin estimator is preferable to OLS and GLS
since the orthogonality assumption between the regressors and the sawmill effects
is rejected.

4.3.5 Example 5:Mariage Premium

Cornwell and Rupert (1997) estimated the wage premium attributed to marriage
using the 1971, 1976, 1978, and 1980 waves of the NLSY. They find that the Within
estimates of the marriage premium are smaller than those obtained from feasible
random effects GLS. A Hausman test based on the difference between these two
estimators rejects the null hypothesis. This indicates the possibility of important
omitted individual specific characteristics which are correlated with both marriage
and the wage rate. They conclude that the marriage premium is purely an intercept
shift and nomore than 5–7%. They also cast doubt on the interpretation that marriage
enhances productivity through specialization.

4.3.6 Example 6: Currency Union

Glick and Rose (2002) consider the question of whether leaving a currency union
reduces international trade. Using annual data on bilateral trade among 217 countries
from 1948 through 1997, they estimate an augmented gravity model controlling for
several factors. These include real GDP, distance, land mass, common language,
sharing a land border, whether they belong to the same regional trade agreement,
land locked, island nations, common colonizer, current colony, ever a colony, and
whether they remained part of the same nation. The focus variable is a binary variable
which is unity if country i and country j use the same currency at time t. They apply
OLS, FE, RE, and their preferred estimator is FE based on the Hausman test. They
find that a pair of countries which joined/left a currency union experienced a near-
doubling/halving of bilateral trade. The data set alongwith the Stata logs are available
on Roses’ website; see Problem 4.19.



4.3 Hausman’s Specification Test 99

4.3.7 Hausman’s Test for the Two-WayModel

For the two-way error component model, Hausman (1978) test can still be based
on the difference between the fixed effects estimator (with both time and individ-
ual dummies) and the two-way random effects GLS estimator. Also, the augmented
regression, given in (4.42), can still be used as long as the Within and GLS transfor-
mations used are those for the two-way error component model. But, what about the
equivalent tests described for the one-way model? Do they extend to the two-way
model? Not quite. Kang (1985) showed that a similar equivalence for the Hausman
test does not hold for the two-way error component model, since there would be two
Between estimators, one Between time periods β̂T and one between cross-sections
β̂C . Also, β̂GLS is a weighted combination of β̂T , β̂C and the Within estimator β̃W .
Kang (1985) shows that the Hausman test based on (̂βW − β̂GLS) is not equivalent
to that based on (̂βC − β̂GLS) nor that based on (̂βT − β̂GLS). But there are other
types of equivalencies (see Kang’s Table2). More importantly, Kang classifies five
testable hypotheses:

(1) Assume that μi are fixed and test E(λt/Xit) = 0 based upon β̃W − β̂T ;
(2) Assume the μi are random and test E(λt/Xit) = 0 based upon β̂T − β̂GLS ;
(3) Assume the λt are fixed and test E(μi/Xit) = 0 based upon β̃W − β̂C ;
(4) Assume the λt are random and test E(μi/Xit) = 0 based upon β̂C − β̂GLS ;
(5) Compare two estimators, one which assumes both the μi and λT are fixed, and

another that assumes both are random such thatE(λt/Xit) = E(μi/Xit) = 0. This
test is based upon β̂GLS − β̃W .

EViews computes two-wayHausman tests after running a two-way randomeffects
model with both time period and individual effects. The two-way random effects
model is set up as the comparison model, i.e., under the null, it is the efficient
estimator. Table4.6 reports the results of a two-way Hausman test for the Grunfeld
data. Not shown is the two-way random effects model using the Wansbeek and
Kapteyn option. This was reported in Table 3.4. Recall that the Swamy andArora and
Wallace and Hussain options yielded negative estimates of the variance component
σ2

λ; see Tables 3.2 and 3.3. The Hausman test based on two-way random versus
two-way fixed yields a test statistic of 8.842 which is distributed as χ2

2 under the null
hypothesis. This has a p-value of .012 and is rejected at the 5% level. This is the
same test as described in (5) by Kang (1985). The backup run reported by EViews
is the two-way fixed effects model which was already given in Table3.2 and is not
reproduced here. This rejects the two-way random effects model estimator.

Note that EViews also reports two other Hausman tests. The first is based on the
contrast between the two-way RE model and a mixed model with λt random and μi

fixed. This assumes that under the null, the two-way RE model is efficient. The test
statistic reported is 0.715 which is distributed as χ2

2 under the null hypothesis and is
not significant. The second Hausman test is based on the contrast between the two-
way RE model and a mixed model with μi random and λt fixed. This again assumes
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Table 4.6 Grunfeld’s data: two-way Hausman tests

Correlated Random Effects - Hausman Test
Equation: EQFE
Test cross-section and period random effects

Test Summary
Chi-Sq.
Statistic Chi-Sq. d.f. Prob.

Cross-section random 0.715071 2 0.6994
Period random 7.208541 2 0.0272
Cross-section and period random 8.842195 2 0.0120

Correlated Random Effects - Hausman Test
Equation: EQFE
Test period random effects

Test Summary
Chi-Sq.
Statistic Chi-Sq. d.f. Prob.

Period random 8.291397 2 0.0158

Correlated Random Effects - Hausman Test
Equation: EQFE
Test cross-section random effects

Test Summary
Chi-Sq.
Statistic Chi-Sq. d.f. Prob.

Cross-section random 2.963565 2 0.2272

that under the null, the two-way RE model is efficient. The test statistic reported is
7.209 which is distributed as χ2

2 under the null hypothesis and is significant.
Having rejected the two-way RE model, one can check whether one effect is

random given that the other effect is fixed. In this case, the comparison model will
always be the two-way fixed effects model which is consistent rain or shine. The
first Hausman test is based upon the contrast between a two-way mixed model with
μi random and λt fixed versus a two-way fixed effects model. This yields a test
statistic value of 2.964. This is distributed as χ2

2 under the null hypothesis and is
not significant. This does not reject the possibility that μi is random given that λt is
fixed. Switching the mixed effects, one can run another Hausman test based upon the
contrast between a two-way fixed effects model versus λt random and μi fixed. This
yields a test statistic value of 8.291. This is distributed asχ2

2 under the null hypothesis
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and is significant. Hence, the null is rejected. Note however, that all diagnostics in
Table4.1 have been indicating that time effects are not present and one should not
employ a two-way random effects model, but rather a one-way random individual
effects model.

4.4 Further Reading

Other tests for poolability include Ziemer andWetzstein (1983)who suggest compar-
ing pooled estimators (like δ̂OLS ) with nonpooled estimators (like δ̂i,OLS ) according
to their forecast risk performance. Using a wilderness recreation demand model,
they show that a Stein rule estimator gives a better forecast risk performance than
the pooled or individual cross-section estimators. The Stein rule estimator for δi in
(4.1) is given by

δ̂∗
i = δ̂OLS +

(
1 − c

Fobs

) (̂
δi,OLS − δ̂OLS

)

where δ̂i,OLS is given in (4.6) and δ̂OLS is given in (4.4). Fobs is the F-statistic to
test H0; δi = δ, given in (4.8), and the constant c is given by c = ((N − 1)K ′ −
2)/(NT − NK ′ + 2). Note that δ̂∗

i shrinks δ̂i,OLS toward the pooled estimator δ̂OLS .
Maddala et al. (1997) argued that shrinkage estimators appear to be better than either
the pooled estimator or the individual cross-section estimators.

Baltagi, Hidalgo and Li (1996) derive a nonparametric test for poolability which is
robust to functional form misspecification. In particular, they consider the following
nonparametric panel data model

yit = gt(xit) + εit (i = 1, . . . ,N ; t = 1, . . . ,T )

where gt(.) is an unspecified functional form that may vary over time. xit is a k × 1
column vector of predetermined explanatory variables with (p ≥ 1) variables being
continuous and k − p(≥ 0). Poolability of the data over time is equivalent to testing
that gt(x) = gs(x) almost everywhere for all t and s = 1, 2, . . . ,T ; versus gt(x) �=
gs(x) for some t �= s with probability greater than zero. The test statistic is shown
to be consistent and asymptotically normal and is applied to an earnings equation
using data from the PSID.

For cases whereN > T , Pesaran, Smith and Im (1996) propose aHausman (1978)
type test for the poolability of the slopes based on the contrast of the FE estimator
of β and an average of the individual OLS estimates for each βi obtained in (4.6).
The latter is called the mean group estimator β̂MG =∑i β̂i,ols/N . Under the null
hypothesis, both estimators are consistent, but the FE estimator is more efficient than
β̂MG . However, Pesaran and Yamagata (2008) show that in case the model contains
only strictly exogenous regressors, this Hausman test for slope homogeneity lacks
power in all directions, if under the alternative hypothesis the slopes are randomdraws
from the same distribution, i.e., a random coefficient model; see Swamy (1970).

For cases where T > N , Phillips and Sul (2003) propose an alternative type of
Hausman test for slope homogeneity based on the difference between the individual
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OLS estimates β̂i,ols stacked as an NK vector and the FE estimator β̃FE repeated
N times, i.e., (ιN ⊗ β̃FE). Phillips and Sul consider a number of different consis-
tent estimators of the variance of this contrast, including Andrew’s (1993) median
unbiased estimator and its extension to panels. But, as they note, all such estimators
yield the same asymptotic covariance matrix as T → ∞. Assuming the null of slope
homogeneity holds, and some standard assumptions, Phillips and Sul show that the
asymptotic distribution of this test statistic, for N fixed and T → ∞, is χ2

2(NK), as
long as the variance of the contrast is a nonstochastic positive definite matrix.

For cases where T > N , Swamy (1970) suggest a test of slope homogeneity
based on the dispersion of individual slope estimates β̂i,ols from a weighted pooled
estimator allowing for cross-sectional heteroskedasticity. This is given by β̂S =
(
∑

i X
′
i ETXi/σ̂

2
i )

−1(
∑

i X
′
i ET yi/σ̂2

i ) where ET = (IT − J̄T ) and σ̂2
i =

(yi − Xiβ̂i,ols)
′ET (yi − Xiβ̂i,ols)/(T − K − 1). The test statistic is given by Ŝ =∑

i (̂βi,ols − β̂S)
′(X ′

i ETXi/σ̂
2
i )(̂βi,ols − β̂S), and this is asymptotically distributed as

χ2
2((N − 1)K) as T tends to infinity, with N fixed; see also Hsiao (2003, p. 149).

Pesaran and Yamagata (2008) also consider S̃ which replaces σ̂2
i everywhere by

σ̃2
i = (yi − Xiβ̃FE)′ET (yi − Xiβ̃FE)/(T − 1). They also standardize the test statis-

tics corresponding to Ŝ and S̃, denoting them by �̂ =
√

N
2K ( Ŝ

N − K) and �̃ =√
N
2K ( S̃

N − K). They show that under a set of albeit restrictive assumptions, �̂ and

�̃ are asymptotically N (0, 1) as N and T → ∞, as long as
√
N/T → 0 for �̂,

and
√
N/T 2 → 0 for �̃. Pesaran and Yamagata (2008) perform some Monte Carlo

experiments to study the size and power of these tests. They find that the Hausman
test has correct size, but no power irrespective of the sample size. On the other hand,
Swamy’s Ŝ test has power, but tends to over-reject when T is small relative to N ,
with the extent of over-rejection diminishing only as T is increased relative to N . By

contrast, the adjusted version of the dispersion test, �̃adj =
√

N (T+1)
2K(T−K−1) (

S̃
N − K),

has the correct size for all combinations of sample sizes, even when T is very small
relative to N .

The normality assumption on the error components disturbances may be unten-
able.Horowitz andMarkatou (1996) showhow to carry out nonparametric estimation
of the densities of the error components. Using data from the Current Population Sur-
vey, they estimate an earnings model and show that the probability that individuals
with low earnings will become high earners in the future is much lower than that
obtained under the assumption of normality. One drawback of this nonparametric
estimator is its slow convergence at a rate of 1/(logN ) where N is the number of
individuals. Monte Carlo results suggest that this estimator should be used for N
larger than 1000.

Blanchard and Mátyás (1996) perform Monte Carlo simulations to study the
robustness of several tests for individual effects with respect to nonnormality of
the disturbances. The alternative distributions considered are the exponential, log-
normal, t(5), and the Cauchy distributions. The main findings are that the F-test is
robust against nonnormality while the one-sided and two-sided LM and LR tests are
sensitive to nonnormality.



4.5 Notes 103

4.5 Notes

1. An elegant presentation of this F-statistic is given in Fisher (1970).
2. Critical values for the mixed χ2

m are 7.289, 4.231, and 2.952 for α = 0.01, 0.05,
and 0.1, respectively.

3. Hausman (1978) testsγ = 0 from (4.42) using anF-statistic. The restricted regres-
sion yields OLS of y∗ on X ∗. This is the Fuller and Battese (1973) regression
yielding GLS as described below (2.20). The unrestricted regression adds the
matrix of Within regressors X̃ as in (4.42). Baltagi and Liu (2007) showed that
Hausman’s test can be alternatively obtained by running the artificial regression
of y∗ on X ∗ and X , and testing that the latter coefficients are zero, or running the
artificial regression of y∗ on X ∗ and X , and testing that the latter coefficients are
zero; see problem 4.12.

4. For an important discussion of what null hypothesis is actually being tested using
the Hausman test; see Holly (1982).

4.6 Problems

4.1 Verify the relationship between M and M ∗, i.e., MM ∗ = M ∗, given below
(4.7). Hint: use the fact that Z = Z∗I∗ with I∗ = (ιN ⊗ IK ′).

4.2 Verify that Ṁ and Ṁ ∗ defined below (4.10) are both symmetric, idempotent,
and satisfy Ṁ Ṁ ∗ = Ṁ ∗.

4.3 For Grunfeld’s data given as Grunfeld.fil on the Springer website, verify the
testing for the poolability results given in example 1, Sect. 4.1.3.

4.4 For the gasoline data given as Gasoline.dat on the Springer website, verify the
testing for the poolability results given in example 2, Sect. 4.1.3.

4.5 Breusch and Pagan (1980) Lagrange multiplier test. Under normality of the
disturbances, show that for the likelihood function given in (4.15),
(a) The information matrix is block-diagonal between θ′ = (σ2

μ, σ2
λ, σ2

ν) and
δ.
(b) For Hc

0 ;σ2
μ = σ2

λ = 0, verify (4.18), (4.20), and (4.22).
4.6 Locally mean most powerful one-sided test. Using the results of Baltagi, Chang

andLi (1992), verify that theKing andWu (1997) LM test forHc
0 ;σ2

μ = σ2
λ = 0

is given by (4.30).
4.7 Standardized LM tests. For Hc

0 ;σ2
μ = σ2

λ = 0, (a) Verify that the standard-
ized Lagrange multiplier (SLM) test statistics derived by Honda (1991) is as
described by (4.26) and (4.31).
(b) Also, verify that the King and Wu (1997) standardized test statistic is as
described by (4.26) and (4.32).

4.8 Using theMonte Carlo setup for the two-way error componentmodel described
in Baltagi (1981),
(a) Compare the performance of the Chow F-test and the Roy–Zellner test for
various values of the variance components.
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(b) Compare the performance of the BP, KW, SLM, LR, GHM, and F-test
statistics as done in Baltagi, Chang and Li (1992).
(c) Perform Hausman’s specification test and discuss its size for the various
experiments conducted.

4.9 For the Grunfeld data, replicate Table4.1.
4.10 For the gasoline data, derive a similar table to test the hypotheses given in

Table4.1.
4.11 For the public capital data, derive a similar table to test the hypotheses given

in Table4.1.
4.12 Hausman (1978) test based on an artificial regression. Show that Hausman’s

test can be alternatively obtained from any one of the following artificial regres-
sions:

y∗ = X ∗β + X̃ γ + w1

y∗ = X ∗β + X̄ γ + w2

y∗ = X ∗β + X γ + w3

where y∗ = σν�
−1/2y,X ∗ = σν�

−1/2X , X̃ = QX , and X̄ = PX ; see (4.42).
Hausman’s test is equivalent to testing whether γ = 0 from any one of these
three OLS regressions; see Baltagi and Liu (2007).

4.13 Three contrasts yield the same Hausman test. (a) Verify that m2 is numerically
exactly identical to m1 and m3, where mi = q̂′

iV
−1
i q̂i defined below (4.48).

(b) Verify that these are also exactly numerically identical to m4 = q̂′
4V

−1
4 q̂4

where q̂4 = β̂GLS − β̂OLS andV4 = var(̂q4). Hint: see problem89.3.3 inEcono-
metric Theory by Baltagi (1989) and its solution by Koning (1990).

4.14 Testing for correlated effects in panels. This is based on problem 95.2.5 in
Econometric Theory by Baltagi (1995a). This problem asks the reader to show
that Hausman’s test, studied in Sect. 4.3, can be derived from Arellano (1993)
extended regression by using an alternative transformation of the data. In par-
ticular, consider the transformation given by H = (C ′, ιT /T )′ where C is the
first (T − 1) rows of theWithin transformation ET = IT − J̄T , IT is an identity
matrix of dimension T , and J̄T = ιT ι′T /T with ιT a vector of 1’s of dimension
T .
(a) Show that the matrix C satisfies the following properties: CιT = 0, C ′
(CC ′)−1C = IT − J̄T ; see Arellano and Bover (1995).
(b) For the transformed model y+

i = Hyi = (y∗′
i , ȳi)′, where y∗

i = Cyi and
ȳi = �T

t=1yit/T , the typical element of y∗
i is given by y∗

it = [yit − ȳi] for
t = 1, 2, . . . , T − 1. Consider the extended regression similar to (4.49)[

y∗
i
ȳi

]
=
[
X ∗′
i 0
X̄ ′
i X̄ ′

i

] [
β
γ

]
+
[
u∗
i
ūi

]

and show that GLS on this extended regression yields β̂ = β̂Within and γ̂ =
β̂Between − β̂Within, where β̂Within and β̂Between are the familiar panel data esti-
mators. Conclude that Hausman’s test for H0: E(μi/Xi) = 0 can be based on a
test forγ = 0, as shownbyArellano (1993). See solution 95.2.5 in Econometric
Theory by Xiong (1996).
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4.15 For the Grunfeld data, replicate the Hausman test results given in example 1
of Sect. 4.3.

4.16 For the gasoline data, replicate the Hausman test results given in example 2 of
Sect. 4.3.

4.17 Perform Hausman’s test for the public capital data.
4.18 The relative efficiency of the Between estimator with respect to the Within

estimator. This is based on problem 99.4.3 in Econometric Theory by Baltagi
(1999). Consider the simple panel data regression model

yit = α + βxit + uit i = 1, 2, . . . ,N ; t = 1, 2, . . . , T (1)

where α and β are scalars. Subtract the mean equation to get rid of the constant

yit − ȳ.. = β(xit − x̄..) + uit − ū.., (2)

where x̄.. = �N
i=1�

T
t=1xit/NT and ȳ.. and ū.. are similarly defined. Add and

subtract x̄i. from the regressor in parentheses and rearrange

yit − ȳ.. = β(xit − x̄i.) + β(x̄i. − x̄..) + uit − ū.. (3)

where x̄i. = �T
t=1xit/T . Now run the unrestricted least squares regression

yit − ȳ.. = βw(xit − x̄i.) + βb(x̄i. − x̄..) + uit − ū.. (4)

where βw is not necessarily equal to βb.
(a) Show that the least squares estimator of βw from (4) is the Within estimator
and that of βb is the Between estimator.
(b) Show that if uit = μi + νit where μi ∼ IID(0, σ2

μ) and νit ∼ IID(0, σ2
ν)

independent of each other and among themselves, then ordinary least squares
(OLS) is equivalent to generalized least squares (GLS) on (4).
(c) Show that for model (1), the relative efficiency of the Between estimator
with respect to the Within estimator is equal to (BXX /WXX )[(1 − ρ)/(Tρ +
(1 − ρ))], whereWXX = �N

i=1�
T
t=1(xit − x̄i.)2 denotes theWithin variation and

BXX = T�N
i=1(x̄i. − x̄..)

2 denotes the Between variation. Also, ρ = σ2
μ/(σ2

μ +
σ2

ν) denotes the equicorrelation coefficient.
(d) Show that the square of the t-statistic used to test H0; βw = βb in (4) yields
exactly Hausman (1978) specification test. See solution 99.4.3 in Econometric
Theory by Gurmu (2000).

4.19 Currency union and trade. Using the Glick and Rose (2002) data set, down-
loadable from Roses’ website at (http://haas.berkeley.edu)
(a) Replicate their results for the FE, RE, Between, and MLE estimators
reported in Table4 of their paper.
(b) Perform the Hausman test based on FE versus RE as well as Between versus
RE using Stata.
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4.20 Investment and Tobin’s q. Schaller (1990) uses data based on financial state-
ments of 188 large publicly traded US firms, over the period 1951–1985, to
estimate an investment equation based on Tobin’s q. The dependent variable
is the ratio of investment to the capital stock (I/K). q is the ratio of the market
value of the firm to the replacement cost of its assets. The data are available
from the Journal of Applied Econometrics data archives.
(a) Replicate the descriptive statistics given in Table I of Schaller
(1990, p. 313).
(b) Replicate the OLS, FE, and RE regressions for both the broad and narrow
definitions of capital given in Tables II and III of Schaller (1990, p. 313).
(c) Perform the Hausman test for FE versus RE for Tables II and III.
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5Heteroskedasticity andSerial
Correlation in the Error Component
Model

5.1 Heteroskedasticity

The standard error component model given by Eqs. (2.1) and (2.2) assumes that
the regression disturbances are homoskedastic with the same variance across time
and individuals. This may be a restrictive assumption for panels, where the cross-
sectional units may be of varying size and as a result may exhibit different variations.
For example, when dealing with gasoline demand across OECD countries, steam
electric generation across various size utilities, or estimating cost functions for vari-
ous US airline firms, one should expect to find heteroskedasticity in the disturbance
term. Assuming homoskedastic disturbances when heteroskedasticity is present will
still result in consistent estimates of the regression coefficients, but these estimates
will not be efficient. Also, the standard errors of these estimates will be biased and
one should compute robust standard errors correcting for the possible presence of
heteroskedasticity. In this section, we relax the assumption of homoskedasticity of
the disturbances and introduce heteroskedasticity through the μi as first suggested
by Mazodier and Trognon (1978). Next, we suggest an alternative heteroskedastic
error component specification, where only the νi t are heteroskedastic. We derive
the true GLS transformation for these two models. We also consider two adaptive
heteroskedastic estimators based on these models where the heteroskedasticity is of
unknown form. These adaptive heteroskedastic estimators were suggested by Li and
Stengos (1994) and Roy (2002).

Mazodier and Trognon (1978) generalized the homoskedastic error component
model to the case where the μi are heteroskedastic, i.e., μi ∼ (0, w2

i ) for i =
1, . . . , N , but νi t ∼ IID(0,σ2

ν). In vector form, μ ∼ (0, �μ) where �μ = diag[w2
i ]

is a diagonal matrix of dimension N × N , and ν ∼ (0,σ2
ν IN T ). Therefore, using

(2.4), one gets
� = E(uu′) = Zμ�μZ ′

μ + σ2
ν IN T (5.1)
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This can be written as

� = diag[w2
i ] ⊗ JT + diag[σ2

ν] ⊗ IT (5.2)

where diag[σ2
ν] is also of dimension N × N .Using theWansbeek andKapteyn (1982)

trick, Baltagi and Griffin (1988) derived the corresponding Fuller and Battese (1974)
transformation as follows:

� = diag[T w2
i + σ2

ν] ⊗ J̄T + diag[σ2
ν] ⊗ ET

Therefore
�r = diag[(τ2i )r ] ⊗ J̄T + diag[(σ2

ν)
r ] ⊗ ET (5.3)

with τ2i = T w2
i + σ2

ν , and r is any arbitrary scalar. TheFuller–Battese transformation
for the heteroskedastic case premultiplies the model by

σν�
−1/2 = diag[σν/τi ] ⊗ J̄T + (IN ⊗ ET ) (5.4)

Hence, y∗ = σν�
−1/2y has a typical element y∗

i t = yit − θi yi . where θi = 1 −
(σν/τi ) for i = 1, . . . , N .

Baltagi and Griffin (1988) provided feasible GLS estimators including Rao’s
(1971a, b)MINQUE estimators for this model. Phillips (2003) argues that this model
suffers from the incidental parameters problem and the variance estimates of μi (the
ω2

i ) cannot be estimated consistently, so there is no guarantee that feasible GLS and
true GLSwill have the same asymptotic distributions. Instead, he suggests a stratified
error component model where the variances change across strata and provide an EM
algorithm to estimate it. It is important to note that Mazodier and Trognon (1978)
had already suggested stratification in a two-way heteroskedastic error component
model, and also that one can specify parametric variance functions which avoid
the incidental parameter problem and then apply the GLS transformation described
above. As in the cross-section heteroskedastic case, one has to know the variables
that determine heteroskedasticity, but not necessarily the form. Adaptive estimation
of heteroskedasticity of unknown form has been suggested for this model by Roy
(2002). This follows a similar literature on adaptive estimation for cross-section
data.

Alternatively, one could keep the μi homoskedastic with μi ∼ IID(0, σ2
μ) and

impose the heteroskedasticity on the νi t , i.e., vi t ∼ (0, w2
i ) (see Problem 88.2.2 by

Baltagi (1988) and its solution by Wansbeek (1989) in Econometric Theory). In this
case, using (2.4) one obtains

� = E(uu′) = diag[σ2
μ] ⊗ JT + diag[w2

i ] ⊗ IT (5.5)

Replacing JT by T J̄T and IT by ET + J̄T , we get

� = diag[T σ2
μ + w2

i ] ⊗ J̄T + diag[w2
i ] ⊗ ET
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and
�r = diag[(τ2i )r ] ⊗ J̄T + diag[(w2

i )r ] ⊗ ET (5.6)

where τ2i = T σ2
μ + w2

i , and r is an arbitrary scalar. Therefore

�−1/2 = diag[1/τi ] ⊗ J̄T + diag[1/wi ] ⊗ ET (5.7)

and y∗ = �−1/2y has a typical element

y∗
i t = (ȳi ./τi ) + (yit − ȳi .)/wi

Upon rearranging terms, we get

y∗
i t = 1

wi
(yit − θi ȳi .) whereθi = 1 − (wi/τi )

One can argue that heteroskedasticity will contaminate both μi and νi t , and it is hard
to claim that it is in one component and not the other. Randolph (1988) gives the
GLS transformation for a more general heteroskedastic model where both the μi and
the νi t are assumed heteroskedastic in the context of an unbalanced panel. In this
case, the var(μi ) = σ2

i and E(νν ′) = diag[σ2
i t ] for i = 1, . . . , N and t = 1, . . . , Ti .

Li and Stengos (1994) considered the regression model given by (2.1) and (2.2) with

μi ∼ I I D
(
0,σ2

μ

)
and E

[
vi t |X ′

i t

] = 0 with V ar
[
vi t |X ′

i t

] = γ
(
X ′

i t

) ≡ γi t , so that

the heteroskedasticity is on the remainder error term and it is of an unknown form.
Thereforeσ2

i t = E
[
u2

i t |Xit
] = σ2

μ + γi t and the proposed estimator ofσ2
μ is given

by

σ̂2
μ =

N∑
i=1

T∑
t �=s

ûi t ûis

N T (T − 1)

where ûi t denotes the OLS residual. Also

γ̂i t =

N∑
j=1

T∑
s=1

û2
js Kit, js

N∑
j=1

T∑
s=1

Kit, js

− σ̂2
μ

where the kernel function is given by Kit, js = K

(
X ′

i t −X ′
js

h

)
and h is the smoothing

parameter. These estimators of the variance components are used to construct a fea-
sible adaptive GLS estimator of β which they denote by GLSAD. The computation
of their feasible GLS estimator is simplified into an OLS regression using a recursive
transformation that reduces the general heteroskedastic error component structure
into classical errors; see Li and Stengos (1994) for details.
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Roy (2002) considered the alternative heteroskedasticmodel E
[
μi |X ′

i .

]
= 0with

V ar
[
μi |X ′

i .

]
= ω

(
X

′
i .

)
≡ ωi

with X
′
i . =

T∑
t=1

X ′
i t/T and vi t ∼ I I D

(
0,σ2

v

)
, so that the heteroskedasticity is on the

individual specific error component and it is of an unknown form. Roy (2002) used
the usual estimator of σ2

v which is the MSE of the Within regression; see (2.24) and
this can be written as

σ̂2
v =

N∑
i=1

T∑
t=1

[(
yit − yi .

)− (Xit − Xi .
)′

β̃
]2

N (T − 1) − k

where β̃ is the fixed effects or Within estimator of β given in (2.7). Also

ω̂i =

N∑
j=1

T∑
t=1

û2
j t Ki ., j .

N∑
j=1

T∑
t=1

Ki ., j .

− σ̂2
v

where the kernel function is given by

Ki ., j . = K

(
X

′
i . − X

′
j .

h

)

Using these estimators of the variance components, Roy (2002) computed a feasible
GLS estimator using the transformation derived by Baltagi and Griffin (1988), see
(5.4). This was denoted by EGLS.

Both Li and Stengos (1994) and Roy (2002) performed Monte Carlo experiments
based on the simple regression model given in (2.8). They compared the following
estimators: (1) OLS; (2) Fixed effects or Within estimator (Within); (3) the con-
ventional GLS estimator for the one-way error component model that assumes the
error term uit is homoskedastic (GLSH); and (4) their own adaptive heteroskedas-
tic estimator denoted by (EGLS) for Roy (2002) and (GLSAD) for Li and Stengos
(1994). Li and Stengos (1994) found that their adaptive estimator outperforms all the
other estimators in terms of relative MSE with respect to true GLS for N = 50, 100,
and T = 3 and for moderate to severe degrees of heteroskedasticity. Roy (2002)
also found that her adaptive estimator performs well, although it was outperformed
by fixed effects in some cases where there were moderate and severe degrees of
heteroskedasticity. Baltagi, Bresson and Pirotte (2005) checked the sensitivity of
the two proposed adaptive heteroskedastic estimators under misspecification of the
form of heteroskedasticity. In particular, they ran Monte Carlo experiments using
the heteroskedasticity setup of Li and Stengos (1994) to see how the misspecified
Roy (2002) estimator performs. Next, they used the heteroskedasticity set up of Roy
(2002) to see how the misspecified Li and Stengos (1994) estimator performs. They
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also checked the sensitivity of these results to the choice of the smoothing param-
eters, the sample size, and the degree of heteroskedasticity. Baltagi, Bresson and
Pirotte (2005) found that in terms of loss in efficiency, misspecifying the adaptive
form of heteroskedasticity can be costly when the Li and Stengos (1994) model
is correct and the researcher performs the Roy (2002) estimator. This loss in effi-
ciency is smaller when the true model is that of Roy (2002) and one performs the
Li and Stengos (1994) estimator. The latter statement is true as long as the choice
of bandwidth is not too small. Both papers also reported the 5% size performance
of the estimated t-ratios of the slope coefficient. Li and Stengos (1994) found that
only GLSAD had the correct size while OLS, GLSH and Within over-rejected the
null hypothesis. Roy (2002) found that GLSH and EGLS had the correct size no
matter what choice of h was used. Baltagi, Bresson and Pirotte (2005) found that
OLS and GLSAD (small h) tend to over-reject the null when true no matter what
form of adaptive heteroskedasticity. In contrast, GLSH, EGLS, andWithin have size
not significantly different from 5% when the true model is that of Roy (2002) and
slightly over-reject (7–8%) when the true model is that of Li and Stengos (1994).

In Chap. 2, we pointed out that Arellano (1987) gave a neat way of obtaining
standard errors for the fixed effects estimator that are robust to heteroskedasticity
and serial correlation of arbitrary form; see Eq. (2.16). In Chap. 4, we discussed
how Arellano (1993) suggested a Hausman (1978) test as well as a Chamberlain
(1982) omnibus goodness of fit test that are robust to heteroskedasticity and serial
correlation of arbitrary form; see Eqs. (4.49) and (4.53). Li and Stengos (1994)
suggested amodifiedBreusch andPagan test for significanceof the random individual
effects, i.e., H0; σ2

μ = 0,which is robust to heteroskedasticity of unknown form in
the remainder error term.

5.1.1 Testing for Homoskedasticity in an Error Component Model

Verbon (1980) derived a Lagrange multiplier test for the null hypothesis of

homoskedasticity against the heteroskedastic alternative μi ∼
(
0,σ2

μi

)
and vi t

∼ (0, σ2
vi

)
. In Verbon’s model, however, σ2

μi
and σ2

vi
are, up to a multiplicative

constant, identical parametric functions of time-invariant exogenous variables
Zi , i.e., σ2

μi
= σ2

μ f (Ziθ2) and σ2
vi

= σ2
v f (Ziθ1) . Lejeune (2006), on the other

hand, dealt with maximum likelihood estimation and Lagrange multiplier testing
of a general heteroskedastic one-way error component regression model assum-

ing that μi ∼
(
0, σ2

μi

)
and vi t ∼ (0,σ2

vi t

)
where σ2

μi
and σ2

vi t
are distinct para-

metric functions of exogenous variables Zit and Fi , i.e., σ2
vi t

= σ2
vhv (Zitθ1) and

σ2
μi

= σ2
μhμ (Fiθ2). In the context of incomplete panels, Lejeune (2006) derived

two joint LM tests for no individual effects and homoskedasticity in the remainder
error term. The first LM test considers a random effects one-way error component
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model with μi ∼ I I N
(
0,σ2

μ

)
and a remainder error term that is heteroskedastic,

vi t ∼ N
(
0,σ2

vi t

)
with σ2

vi t
= σ2

vhv (Zitθ1) . The joint hypothesis H0; θ1 = σ2
μ = 0

renders OLS the restricted MLE. Lejeune argued that there is no need to consider a
variance function forμi since one is testingσ2

μ equal to zero.While the computationof

the LM test statistic is simplified under this assumption, i.e.,μi ∼ I I N
(
0,σ2

μ

)
, this

is not in the original spirit of Lejeune’sMLestimationwhere bothμi and vi t have gen-
eral variance functions. Lejeune’s second LM test considers a fixed effects one-way
error componentmodel whereμi is a fixed parameter to be estimated, and the remain-
der error term is heteroskedastic with vi t ∼ N

(
0,σ2

vi t

)
and σ2

vi t
= σ2

vhv (Zitθ1). The
joint hypothesis is H0;μi = θ1 = 0 for all i = 1, 2, . . . , N . This renders OLS the
restricted MLE.

Holly and Gardiol (2000) derived a score test for homoskedasticity in a one-way
error component model where the alternative model is that the μi ’s are independent
and distributed as N (0,σ2

μi
) where σ2

μi
= σ2

μhμ (Fiθ2). Here, Fi is a vector of p
explanatory variables such that Fiθ2 does not contain a constant term and hμ is a
strictly positive twice differentiable function satisfying hμ(0) = 1 with h′

μ(0) �= 0
and h′′

μ(0) �= 0. The score test statistic for H0; θ2 = 0 turns out to be one half the
explained sumof squares of theOLS regression of (ŝ/s̄) − ιN against the p regressors
in F as in the Breusch and Pagan test for homoskedasticity. Here ŝi = û′

i J̄T ûi and

s =∑N
i=1 ŝi/N where û denote themaximum likelihood residuals from the restricted

model under H0; θ2 = 0. This is a one-way homoskedastic error component model
with μi ∼ N (0, σ2

μ). The reader is asked to verify this result in Problem 5.3.
In the spirit of the general heteroskedastic model of Randolph (1988) and Lejeune

(2006), Baltagi, Bresson and Pirotte (2006) derived a joint Lagrange multiplier test
for homoskedasticity, i.e., H0; θ1 = θ2 = 0. Under the null hypothesis, the model
is a homoskedastic one-way error component regression model. Note that this is
different from Lejeune (2006), where under his null, σ2

μ = 0, so that the restricted
MLE is OLS and not MLE on a one-way homoskedastic error component model.
Allowing for σ2

μ > 0 is more likely to be the case in panel data where heterogeneity
across the individuals is likely to be present even if heteroskedasticity is not. The
model under the null is exactly that of Holly and Gardiol (2000) but it is more general
under the alternative since it does not assume a homoskedastic remainder error term.
Next, Baltagi, Bresson and Pirotte (2006) derived an LM test for the null hypothesis
of homoskedasticity of the individual random effects assuming homoskedasticity of
the remainder error term, i.e., θ2 = 0 | θ1 = 0. Not surprisingly, they get the Holly
and Gardiol (2000) LM test. Last but not least, Baltagi, Bresson and Pirotte (2006)
derived an LM test for the null hypothesis of homoskedasticity of the remainder error
term assuming homoskedasticity of the individual effects, i.e., θ1 = 0 | θ2 = 0. The
details for the derivations and the resulting statistics are not provided here and the
reader is referred to their paper. Monte Carlo experiments showed that the joint
LM test performed well when both error components were heteroskedastic, and
performed second best when one of the components was homoskedastic while the
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other was not. In contrast, the marginal LM tests performed best when heteroskedas-
ticity was present in the right error component. They yielded misleading results if
heteroskedasticity was present in the wrong error component.

5.2 Serial Correlation

The classical error component disturbances given by (2.2) assume that the only cor-
relation over time is due to the presence of the same individual across the panel.
In Chap. 2, this equicorrelation coefficient was shown to be correl(uit , uis) =
σ2

μ/(σ2
μ + σ2

ν) for t �= s. Note that it is the same no matter how far t is from s.
This may be a restrictive assumption for economic relationships, like investment
or consumption, where an unobserved shock this period may affect the behavioral
relationship for at least the next few periods. This type of serial correlation is not
allowed for in the simple error component model. Ignoring serial correlation when it
is present results in consistent but inefficient estimates of the regression coefficients
and biased standard errors. This section introduces serial correlation in the νi t , first
as an autoregressive process of order one AR(1), as in the Lillard and Willis (1978)
study on earnings, next, as a second-order autoregressive process AR(2), also as a
special fourth-order autoregressive process AR(4) for quarterly data, and finally as
a first-order moving average MA(1) process. For all these serial correlation specifi-
cations, a simple generalization of the Fuller and Battese (1973) transformation is
derived and the implications for predictions are given. Testing for individual effects
and serial correlation is taken up in the last subsection.

5.2.1 The AR(1) Process

Lillard and Willis (1978) generalized the error component model to the serially
correlated case, by assuming that the remainder disturbances (the νi t ) follow an
AR(1) process. In this case μi ∼ IID(0,σ2

μ), whereas

νi t = ρνi,t−1 + εi t (5.8)

| ρ | < 1, and εi t ∼ IID(0, σ2
ε ). The μi are independent of the νi t and νi0 ∼

(0,σ2
ε /(1 − ρ2)). Baltagi and Li (1991a) derived the corresponding Fuller and Bat-

tese (1974) transformation for this model. First, one applies the Prais–Winsten (PM)
transformation matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 − ρ2)1/2 0 0 · · · 0 0 0
−ρ 1 0 · · · 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 0 · · · −ρ 1 0
0 0 0 · · · 0 −ρ 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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to transform the remainder AR(1) disturbances into serially uncorrelated classical
errors. For panel data, this has to be applied for N individuals. The transformed
regression disturbances are in vector form

u∗ = (IN ⊗ C)u = (IN ⊗ CιT )μ + (IN ⊗ C)ν (5.9)

Using the fact that CιT = (1 − ρ)ιαT , where ια′
T = (α, ι′T −1) and α =√

(1 + ρ)/(1 − ρ), one can rewrite (5.9) as

u∗ = (1 − ρ)(IN ⊗ ιαT )μ + (IN ⊗ C)ν (5.10)

Therefore, the variance–covariance matrix of the transformed disturbances is

�∗ = E(u∗u∗′) = σ2
μ(1 − ρ)2[IN ⊗ ιαT ια′

T ] + σ2
ε (IN ⊗ IT )

since (IN ⊗ C)E(νν ′)(IN ⊗ C ′) = σ2
ε (IN ⊗ IT ). Alternatively, this can be rewrit-

ten as
�∗ = d2σ2

μ(1 − ρ)2[IN ⊗ ιαT ια′
T /d2] + σ2

ε (IN ⊗ IT ) (5.11)

where d2 = ια′
T ιαT = α2 + (T − 1). This replaces Jα

T = ιαT ια′
T by d2 J̄α

T , its idempo-
tent counterpart, where J̄α

T = ιαT ια′
T /d2. Extending the Wansbeek and Kapteyn trick,

we replace IT by Eα
T + J̄α

T , where Eα
T = IT − J̄α

T . Collecting terms with the same
matrices, one obtains the spectral decomposition of �∗.

�∗ = σ2
α(IN ⊗ J̄α

T ) + σ2
ε (IN ⊗ Eα

T ) (5.12)

where σ2
α = d2σ2

μ(1 − ρ)2 + σ2
ε . Therefore

σε�
∗−1/2 = (σε/σα)(IN ⊗ J̄α

T ) + (IN ⊗ Eα
T ) = IN ⊗ IT − θα(IN ⊗ J̄α

T ) (5.13)

where θα = 1 − (σε/σα).
Premultiplying the PW transformed observations y∗ = (IN ⊗ C)y by σε�

∗−1/2,
one gets y∗∗ = σε�

∗−1/2y∗. The typical elements of y∗∗ = σε�
∗−1/2y∗ are given

by
(y∗

i1 − θααbi , y∗
i2 − θαbi , . . . , y∗

iT − θαbi )
′ (5.14)

where bi = [(αy∗
i1 +∑T

2 y∗
i t )/d2] for i = 1, . . . , N .1 The first observation gets spe-

cial attention in theAR(1) error componentmodel. First, the PW transformation gives
it a specialweight

√
1 − ρ2 in y∗. Second, the Fuller andBattese transformation gives

it a special weight α = √
(1 + ρ)/(1 − ρ) in computing the weighted average bi and

the pseudo-difference in (5.14). Note that (i) if ρ = 0, thenα = 1, d2 = T ,σ2
α = σ2

1,
and θα = θ. Therefore, the typical element of y∗∗

i t reverts to the familiar (yit − θ ȳi .)

transformation for the one-way error componentmodel with no serial correlation. (ii)
If σ2

μ = 0, then σ2
α = σ2

ε and θα = 0. Therefore, the typical element of y∗∗
i t reverts

to the PW transformation y∗
i t .



5.2 Serial Correlation 117

The BQU estimators of the variance components arise naturally from the spec-
tral decomposition of �∗. In fact, (IN ⊗ Eα

T )u∗
∼ (0,σ2

ε [IN ⊗ Eα
T ]) and (IN ⊗

J̄α
T )u∗

∼ (0,σ2
α[IN ⊗ J̄α

T ]) and
σ̂2

ε = u∗′(IN ⊗ Eα
T )u∗/N (T − 1) and σ̂2

α = u∗′(IN ⊗ J̄α
T )u∗/N (5.15)

provide the BQU estimators of σ2
ε and σ2

α, respectively. Baltagi and Li (1991a) sug-
gest estimating ρ from Within residuals ν̃i t as ρ̃ =∑N

i=1
∑T

t=1 ν̃i t ν̃i,t−1/∑N
i=1
∑T

t=2 ν̃2i,t−1. Then, σ̂2
ε and σ̂2

α are estimated from (5.15) by substituting
OLS residuals û∗ from the PW transformed equation using ρ̃. Using Monte Carlo
experiments, Baltagi and Li (1997) found that ρ̃ performs poorly for small T
and recommended an alternative estimator of ρ which is based on the autocovari-
ance function Qs = E(uit ui,t−s). For the AR(1) model given in (5.8), it is easy
to show that Qs = σ2

μ + σ2
νρ

s . From Q0, Q1, and Q2, one can easily show that
ρ + 1 = (Q0 − Q2)/(Q0 − Q1). Hence, a consistent estimator of ρ (for large N ) is
given by

ρ̂ = Q̃0 − Q̃2

Q̃0 − Q̃1
− 1 = Q̃1 − Q̃2

Q̃0 − Q̃1

where Q̃s =∑N
i=1
∑T

t=s+1 ûi t ûi,t−s/N (T − s) and ûi t denotes the OLS residuals
from (2.1). σ̂2

ε and σ̂2
α are estimated from (5.15) by substituting OLS residuals û∗

from the PW transformed equation using ρ̂ rather than ρ̃.
Therefore, the estimation of an AR(1) serially correlated error component model

is considerably simplified by (i) applying the PW transformation in the first step,
as is usually done in the time-series literature, and (ii) subtracting a pseudo-average
from these transformed data as in (5.14) in the second step.

5.2.2 The AR(2) Process

This simple transformation can be extended to allow for an AR(2) process on the
νi t , i.e.,

νi t = ρ1νi,t−1 + ρ2νi,t−2 + εi t (5.16)

where εi t ∼ IIN(0,σ2
ε ), | ρ2 | < 1 and | ρ1 | < (1 − ρ2). Let E(νiν

′
i ) = σ2

ε V , where
ν ′

i = (νi1, . . . , νiT ) and note that V is invariant to i = 1, . . . , N . The unique T × T
lower triangular matrix C with positive diagonal elements which satisfies CV C ′ =
IT is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ0 0 0 0 . . . 0 0 0 0
−γ2 γ1 0 0 . . . 0 0 0 0
−ρ2 −ρ1 1 0 . . . 0 0 0 0

· · · · · · · ·
· · · · · · · ·
0 0 0 0 . . . −ρ2 −ρ1 1 0
0 0 0 0 . . . 0 −ρ2 −ρ1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where γ0 = σε/σν , γ1 =
√
1 − ρ22, γ2 = γ1[ρ1/(1 − ρ2)], and σ2

ν = σ2
ε (1 − ρ2)/

(1 + ρ2)[(1 − ρ2)
2 − ρ21]. The transformed disturbances are given by

u∗ = (IN ⊗ C)u = (1 − ρ1 − ρ2)(IN ⊗ ιαT )μ + (IN ⊗ C)ν (5.17)

This uses the fact thatCιT = (1 − ρ1 − ρ2)× (the new ιαT )where ια′
T = (α1,α2, ι

′
T −2),

α1 = σε/σν(1 − ρ1 − ρ2), and α2 = √
(1 + ρ2)/(1 − ρ2).

Similarly, one can define

d2 = ια′
T ιαT = α2

1 + α2
2 + (T − 2), Jα

T ,E
α
T , etc.

as in Sect. 5.2.1, to obtain

�∗ = d2σ2
μ(1 − ρ1 − ρ2)

2[IN ⊗ J̄α
T ] + σ2

ε [IN ⊗ IT ] (5.18)

as in (5.11). The only difference is that (1 − ρ1 − ρ2) replaces (1 − ρ) and ιαT is
defined in terms of α1 and α2 rather than α. Similarly, one can obtain σε�

∗−1/2

as in (5.13) with σ2
α = d2σ2

μ(1 − ρ1 − ρ2)
2 + σ2

ε . The typical elements of y∗∗ =
σε�

∗−1/2y∗ are given by

(y∗
i1 − θαα1bi , y∗

i2 − θαα2bi , y∗
i3 − θαbi , . . . , y∗

iT − θαbi ) (5.19)

where bi = [(α1y∗
i1 + α2y∗

i2 +∑T
3 y∗

i t )/d2]. The first two observations get special
attention in the AR(2) error component model, first in the matrix C defined above
(5.17) and second in computing the average bi and the Fuller and Battese transfor-
mation in (5.19). Therefore, one can obtain GLS on this model by (i) transforming
the data as in the time-series literature by the C matrix defined above (5.17) and (ii)
subtracting a pseudo-average in the second step as in (5.19).

5.2.3 The AR(4) Process for Quarterly Data

Consider the specialized AR(4) process for quarterly data, i.e., νi t = ρνi,t−4 + εi t ,
where | ρ |< 1 and εi t ∼ IIN(0,σ2

ε ). The C matrix for this process can be defined as
follows: u∗

i = Cui where

u∗
i t =

√
1 − ρ2 uit for t = 1, 2, 3, 4

= uit − ρui,t−4 for t = 5, 6, . . . , T s (5.20)

This means that the μi component of uit gets transformed as
√
1 − ρ2 μi for t =

1, 2, 3, 4 and as (1 − ρ)μi for t = 5, 6, . . . , T . This can be rewritten as α(1 − ρ)μi

for t = 1, 2, 3, 4 where α = √
(1 + ρ)/(1 − ρ), and (1 − ρ)μi for t = 5, . . . , T ,

so that u∗ = (IN ⊗ C)u is given by (5.9) with a new C , the same α, but ια′
T =

(α,α, α,α, ι′T −4), d2 = ια′
T ιαT = 4α2 + (T − 4), and the derivations �∗ and

σε�
∗−1/2 in (5.12) and (5.13) are the same. The typical elements of y∗∗ = σε

�∗−1/2y∗ are given by
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(y∗
i1 − θααbi , . . . , y∗

i4 − θαbi , y∗
i5 − θαbi , . . . , y∗

iT − θαbi ) (5.21)

where bi = [(α(
∑4

t=1 y∗
i t ) +∑T

t=5 y∗
i t )/d2]. Once again, GLS can be easily com-

puted by applying (5.20) to the data in the first step and (5.21) in the second step.

5.2.4 TheMA(1) Process

For the MA(1) model, defined by

νi t = εi t + λεi,t−1 (5.22)

where εi t ∼ IIN(0,σ2
ε ) and | λ |< 1, Balestra (1980) gives the following C matrix,

C = D−1/2P where D = diag{at at−1} for t = 1, . . . , T ,

P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
λ a1 0 . . . 0
λ2 a1λ a2 . . . 0
...

...
...

...

λT −1 a1λT −2 a2λT −3 . . . aT −1

⎤
⎥⎥⎥⎥⎥⎦

and at = 1 + λ2 + . . . + λ2t with a0 = 1. For this C matrix, one can show that the
new ιαT = CιT = (α1,α2, . . . , αT )′ where these αt can be solved for recursively as
follows:

α1 = (a0/a1)
1/2 (5.23)

αt = λ(at−2/at )
1/2αt−1 + (at−1/at )

1/2t = 2, . . . , T

Therefore, d2 = ια′
T ιαT =∑T

t=1 α2
t , σ

2
α = d2σ2

μ + σ2
ε and the spectral decomposition

of�∗ is the same as that given in (5.12), with the newly defined ιαT andσ2
α. The typical

elements of y∗∗ = σε�
∗−1/2y∗ are given by

(y∗
i1 − θαα1bi , . . . , y∗

iT − θααT bi ) (5.24)

where bi = [∑T
t=1 αt y∗

i t/d2]. Therefore, for an MA(1) error component model, one
applies the recursive transformation given in (5.23) in the first step and subtracts a
pseudo-average described in (5.24) in the second step; see Baltagi and Li (1991a)
for more details. In order to implement the estimation of an error component model
with MA(1) remainder errors, Baltagi and Li (1997) proposed an alternative trans-
formation that is simple to compute and requires only least squares. This can be
summarized as follows.

Let γs = E(νi tνi,t−s) denote the autocovariance function of νi t and r = γ1/γ0.
Note that when νi t follows an MA(1) process; we have Qs = σ2

μ + γs for s = 0, 1
and Qs = σ2

μ for s > 1. Hence we have γτ = Qτ − Qs(τ = 0, 1) for some s > 1.
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Step 1: Compute y∗
i1 = yi1/

√
g1 and y∗

i t = [yit − (ry∗
i,t−1)/

√
gt−1]/√gt for t =

2, . . . , T , where g1 = 1 and gt = 1 − r2/gt−1 for t = 2, . . . , T . Note that this
transformation depends only on r , which can be estimated by r̂ = γ̂1/̂γ0 = (Q̃1 −
Q̃s)/(Q̃0 − Q̃s) for some s > 1.

Step 2: Compute y∗∗ using the result that ιαT = CιT = (α1, . . . , αT )′ with α1 = 1
and αt = [1 − r/

√
gt−1]/√gt for t = 2, . . . , T . Note that in this case σ2 = γ0.

The estimators of σ2
α and σ2 are simply given by σ̂2

α =
(
∑T

t=1 α̂2
t )̂σ

2
μ + σ̂2, and σ̂2 = γ̂0 = Q̃0 − Q̃s for some s > 1 with σ̂2

μ = Q̃s for

some s > 1. Finally δ̂ = 1 −√γ̂0/σ̂2
α. Again, the OLS estimator on the (∗∗) trans-

formed equation is equivalent to GLS on (2.1).

In summary, a simple transformation for the one-way error component model
with serial correlation, can be easily generalized to any error process generating the
remainder disturbances νi t as long as there exists a simple (T × T ) matrix C such
that the transformation (IN ⊗ C)ν has zero mean and variance σ2 IN T .

Step 1: Perform the C transformation on the observations of each individual y′
i =

(yi1, . . . , yiT ) to obtain y∗
i = Cyi free of serial correlation.

Step 2: Perform another transformation on the y∗
i t ’s, obtained in step 1, which sub-

tracts from y∗
i t a fraction of a weighted average of observations on y∗

i t , i.e.,

y∗∗
i t = y∗

i t − θααt (�
T
s=1αs y∗

is)/(�
T
s=1α

2
s )

where the αt ’s are the elements of ιαT = CιT ≡ (α1,α2, . . . , αT )′ and θα = 1 −
(σ/σα) with σ2

α = σ2
μ(�T

t=1α
2
t ) + σ2. See Baltagi and Li (1994) for an extension

to the MA(q) case and Galbraith and Zinde-Walsh (1995) for an extension to the
ARMA(p, q) case.

5.2.5 Unequally Spaced Panels with AR(1) Disturbances

Somepanel data sets cannot be collected in every period due to lack of resources or cut
in funding. Instead, these panels are collected over unequally spaced time intervals.
For example, a panel of households could be collected over unequally spaced years
rather than annually. This is also likely when collecting data on countries, states,
or firms where in certain years, the data are not recorded, are hard to obtain, or are
simply missing. Other common examples are panel data sets using daily data from
the stock market, including stock prices, commodity prices, futures, etc. These panel
data sets are unequally spaced when the market closes on weekends and holidays.
This is also common for housing resale data where the pattern of resales for each
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house occurs at different time periods, and the panel is unbalanced because we
observe different number of resales for each house. Baltagi and Wu (1999) extend
the Baltagi and Li (1991a) results to the estimation of an unequally spaced panel
data regression model with AR(1) remainder disturbances. A feasible generalized
least squares procedure is proposed as weighted least squares that can handle a wide
range of unequally spaced panel data patterns. This procedure is simple to compute
and provides natural estimates of the serial correlation and variance components
parameters. Baltagi andWu (1999) also provide a locally best invariant (LBI) test for
zero first-order serial correlation against positive or negative serial correlation in case
of unequally spaced panel data. Details are given in that paper. This is programmed
in Stata under the (xtregar, re lbi) command. Table 5.1 gives the Stata output for
Grunfeld’s investment equation, given in (2.40), with random effects and an AR(1)
remainder disturbance term. The bottom of Table 5.1 produces the Baltagi–Wu LBI
statistic of 0.956 and the Bhargava, Franzini and Narendranathan (1982) Durbin–
Watson statistic for zero first-order serial correlation described in (5.44) below. Both
tests reject the null hypothesis of no first-order serial correlation. The estimate of ρ for
the AR(1) remainder disturbances is 0.67 while σ̂μ = 74.52 and σ̂ν = 41.48. Note
that β̂1 in (2.41) drops from0.110 for a typical randomeffectsGLS estimator reported
in Table 2.1 to 0.095 for the random effects GLS estimator with AR(1) remainder
disturbances in Table 5.1. This is contrasted to an increase in β̂2 from 0.308 in Table
2.1 to 0.320 in Table 2.5. Note that if we have missing data on say 1951 and 1952,
Stata computes this unequally spaced panel estimation for the random effects with
AR(1) disturbances. Table 5.2 reproduces this output. Note that it is based on 180
observations, due to the loss of two years of data for all 10 firms. The Baltagi–Wu
LBI statistic is 1.139 and the Bhargava, Franzini andNarendranathan (1982)Durbin–
Watson statistic is 0.807, exactly as reported in Table1 of Baltagi and Wu (1999, p.
822). Both test statistics reject the null hypothesis of no first-order serial correlation.
Problem 5.19 asks the reader to replicate these results for other patterns of missing
observations.

5.2.6 Prediction

In Sect. 2.5, we derived Goldberger (1962) BLUP of yi,T +S for the one-way error
component model without serial correlation. For ease of reference, we reproduce Eq.
(2.37) for predicting one period ahead for the ith individual

ŷi,T +1 = Z ′
i,T +1̂δGL S + w′�−1ûGL S (5.25)

where ûGL S = y − Z δ̂GL S and w = E(ui,T +1u). For the AR(1) model with no
error components, a standard result is that the last term in (5.25) reduces to ρûi,T ,
where ûi,T is the T th GLS residual for the ith individual. For the one-way error
component model without serial correlation (see Taub 1979, or Sect. 2.5), the last
term of (5.25) reduces to [T σ2

μ/(T σ2
μ + σ2

ν)]̂ui ., where ûi . =∑T
t=1 ûi t/T is the

average of the ith individual’s GLS residuals. This section summarizes the Baltagi
and Li (1992) derivation of the last term of (5.25) when both error components and
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Table 5.1 Grunfeld’s data. Random effects and AR(1) remainder disturbances

. xtregar I F C , re lbi

RE GLS regression with AR(1) disturbances       Number of obs      =       200
Group variable (i): fn                          Number of groups   =  10

R-sq:  within  = 0.7649                         Obs per group: min =        20
       between = 0.8068                                        avg =      20.0
       overall = 0.7967                                        max =        20

                                   Wald chi2(3)       =    360.31
corr(u_i, Xb)      = 0 (assumed)                Prob > chi2        =    0.0000

           I |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
+

           F |   .0949215   .0082168    11.55   0.000     .0788168    .1110262
           C |   .3196589   .0258618    12.36   0.000     .2689707    .3703471
       _cons | -44.38123   26.97525 -1.65   0.100 -97.25175    8.489292

+
      rho_ar |  .67210608   (estimated autocorrelation coefficient)
    sigma_u |  74.517098
     sigma_e |  41.482494
     rho_fov |   .7634186   (fraction of variance due to u_i)
       theta |  .67315699

modified Bhargava et al. Durbin-Watson = .6844797
Baltagi-Wu LBI = .95635623

Table 5.2 Grunfeld’s data. Unequally spaced panel
.  xtregar I F C if yr!=1951 & yr!= 1952 , re lbi

RE GLS regression with AR(1) disturbances       Number of obs      =       180
Group variable (i): fn                          Number of groups   = 10

R-sq:  within  = 0.7766                         Obs per group: min =        18
between = 0.8112                                        avg =      18.0
overall = 0.8024                                        max =        18

Wald chi2(3)       =    341.38
corr(u_i, Xb)      = 0 (assumed)                Prob > chi2        =    0.0000

I |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
+

F |   .0919986   .0083459    11.02   0.000     .0756409    .1083563
C |   .3243706   .0266376    12.18   0.000     .2721618    .3765793

_cons | -43.01923   27.05662 -1.59   0.112 -96.04924    10.01077
+

rho_ar |  .68934342   (estimated autocorrelation coefficient)
sigma_u |  74.002133
sigma_e |  41.535675
rho_fov |  .76043802   (fraction of variance due to u_i)

theta |   .6551959

modified Bhargava et al. Durbin-Watson = .80652308
Baltagi-Wu LBI = 1.1394026
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serial correlation are present. This provides the applied researcher with a simple
way of augmenting the GLS predictions obtained from the Fuller and Battese (1973)
transformation described above.

For the one-way error component model with AR(1) remainder disturbances,
considered in Sect. 5.2.1, Baltagi and Li (1992) find that

w′�−1ûGL S = ρûi,T +
(

(1 − ρ)2σ2
μ

σ2
α

)[
αû∗

i1 +
T∑

t=2

û∗
i t

]
(5.26)

Note that the first PW-transformed GLS residual receives an α weight in averaging
across the ith individual’s residuals in (5.26). (i) If σ2

μ = 0, so that only serial corre-
lation is present, (5.26) reduces to ρûi,T . Similarly, (ii) if ρ = 0, so that only error
components are present, (5.26) reduces to [T σ2

μ/(T σ2
μ + σ2

ν)]̂ui ..

For the one-way error component model with remainder disturbances following
an AR(2) process, considered in Sect. 5.2.2, Baltagi and Li (1992) find that

w′�−1ûGL S = ρ1ûi,T −1 + ρ2ûi,T −2

+
[

(1 − ρ1 − ρ2)
2σ2

μ

σ2
α

][
α1û∗

i1 + α2û∗
i2 +

T∑
t=3

û∗
i t

]
(5.27)

where

α1 = σε/σν(1 − ρ1 − ρ2)α2 = √(1 + ρ2)/(1 − ρ2)

σ2
α = d2σ2

μ(1 − ρ1 − ρ2)
2 + σ2

ε

d2 = α2
1 + α2

2 + (T − 2)

and

û∗
i1 = (σε/σν )̂ui1

û∗
i2 =

√
1 − ρ22 [̂ui2 − (ρ1/(1 − ρ2))̂ui1]

û∗
i t = ûi t − ρ1ûi,t−1 − ρ2ûi,t−2 for t = 3, . . . , T

Note that if ρ2 = 0, this predictor reduces to (5.26). Also, note that for this predic-
tor, the first two residuals are weighted differently when averaging across the ith
individual’s residuals in (5.27).

For the one-way error component model with remainder disturbances following
the specialized AR(4) process for quarterly data, considered in Sect. 5.2.3, Baltagi
and Li (1992) find that

w′�−1ûGL S = ρûi,T −3 +
[

(1 − ρ)2σ2
μ

σ2
α

][
α

4∑
t=1

û∗
i t +

T∑
t=5

û∗
i t

]
(5.28)
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whereα = √
(1 + ρ)/(1 − ρ), σ2

α = d2(1 − ρ)2σ2
μ + σ2

ε , d2 = 4α2 + (T − 4), and

u∗
i t =

√
1 − ρ2 uit for t = 1, 2, 3, 4

= uit − ρui,t−4 for t = 5, 6, . . . , T

Note, for this predictor, that the first four quarterly residuals are weighted by αwhen
averaging across the ith individual’s residuals in (5.28).

Finally, for the one-way error component model with remainder disturbances
following an MA(1) process, considered in Sect. 5.2.4, Baltagi and Li (1992) find
that

w′�−1ûGL S = −λ

(
aT −1

aT

)1/2

û∗
iT

+
[
1 + λ

(
aT −1

aT

)1/2

αT

](
σ2

μ

σ2
α

)[
T∑

t=1

αt û
∗
i t

]
(5.29)

where the û∗
i t can be solved for recursively as follows:

û∗
i1 = (a0/a1)

1/2ûi1

û∗
i t = λ(at−2/at )

1/2û∗
i,t−1 + (at−1/at )

1/2ûi,t t = 2, . . . , T

If λ = 0, then from (5.23), at = αt = 1 for all t , and (5.29) reduces to the predictor
for the error component model with no serial correlation. If σ2

μ = 0, the second term
in (5.29) drops out and the predictor reduces to that of the MA(1) process.

Frees and Miller (2004) forecast the sale of state lottery tickets using panel data
from 50 postal (ZIP) codes in Wisconsin observed over 40weeks. The first 35weeks
of data are used to estimate the model and the remaining five weeks are used to
assess the validity of model forecasts. Using the mean absolute error criteria and the
mean absolute percentage error criteria, the best forecasts were given by the error
component model with AR(1) disturbances followed by the fixed effects model with
AR(1) disturbances.

5.2.7 Testing for Serial Correlation and Individual Effects

In this section, we address the problem of jointly testing for serial correlation and
individual effects. Baltagi and Li (1995) derived three LM statistics for an error
component model with first-order serially correlated errors. The first LM statistic
jointly tests for zero first-order serial correlation and random individual effects. The
second LM statistic tests for zero first-order serial correlation assuming fixed indi-
vidual effects, and the third LM statistic tests for zero first-order serial correlation
assuming random individual effects. In all three cases, Baltagi and Li (1995) showed
that the corresponding LM statistic is the same whether the alternative is AR(1) or
MA(1). Also, Baltagi and Li (1995) derived two extensions of the Burke, Godfrey
and Termayne (1990) AR(1) versusMA(1) test from the time-series to the panel data
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literature. The first extension tests the null of AR(1) disturbances against MA(1) dis-
turbances, and the second the null ofMA(1) disturbances against AR(1) disturbances
in an error component model. These tests are computationally simple requiring only
OLS or Within residuals. In what follows, we briefly review the basic ideas behind
these tests.

Consider the panel data regression given in (2.3)

yit = Z ′
i tδ + uit i = 1, 2, . . . , N and t = 1, 2, . . . , T (5.30)

where δ is a (K + 1) × 1 vector of regression coefficients including the intercept.
The disturbance follows a one-way error component model

uit = μi + νi t (5.31)

where μi ∼ IIN(0, σ2
μ) and the remainder disturbance follow a stationary AR(1)

process, νi t = ρνi,t−1 + εi t with | ρ |< 1, or an MA(1) Process, νi t = εi t + λεi,t−1
with | λ |< 1, and εi t ∼ IIN(0,σ2

ε ). In what follows, we will show that the joint LM
test statistic for Ha

1 : σ
2
μ = 0; λ = 0 is the same as that for Hb

1 : σ
2
μ = 0; ρ = 0.

A Joint LM Test for Serial Correlation and Random Individual Effects
Let us consider the joint LM test for the error component model where the remainder
disturbances follow an MA(1) process. In this case, the variance–covariance matrix
of the disturbances is given by

� = E(uu′) = σ2
μ IN ⊗ JT + σ2

ε IN ⊗ Vλ (5.32)

where

Vλ =

⎛
⎜⎜⎜⎝

1 + λ2 λ 0 . . . 0
λ 1 + λ2 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + λ2

⎞
⎟⎟⎟⎠ (5.33)

and the log-likelihood function is given by L(δ, θ) in (4.15) with θ = (λ, σ2
μ, σ2

ε )
′.

In order to construct the LM test statistic for Ha
1 : σ2

μ = 0;λ = 0, one needs
D(θ) = ∂L(θ)/∂θ and the information matrix J (θ) = E[∂2L(θ)/∂θ∂θ′] evaluated
at the restricted maximum likelihood estimator θ̂. Note that under the null hypothesis
�−1 = (1/σ2

ε )IN T . Using the general Hemmerle and Hartley (1973) formula given
in (4.17), one gets the scores

∂L(θ)/∂λ = N T
N∑

i=1

T∑
t=2

ûi t ûi,t−1/

N∑
i=1

T∑
t=2

û2
i t ≡ N T (̂u′û−1/û′û)

∂L(θ)/∂σ2
μ = −(N T /2σ̂2

ε )[1 − û′(IN ⊗ JT )̂u/(̂u′û)] (5.34)
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where û denotes the OLS residuals and σ̂2
ε = û′û/N T . Using (4.19), see Harville

(1977), one gets the information matrix

Ĵ = (N T /2σ̂4
ε )

⎛
⎝

T 2(T − 1)̂σ2
ε /T 1

2(T − 1)̂σ2
ε /T 2σ̂4

ε (T − 1)/T 0
1 0 1

⎞
⎠ (5.35)

Hence the LM statistic for the null hypothesis Ha
1 : σ

2
μ = 0; λ = 0 is given by

L M1 = D̂′ Ĵ−1 D̂ = N T 2

2(T − 1)(T − 2)
[A2 − 4AB + 2T B2] (5.36)

where A = [̂u′(IN ⊗ JT )̂u/(̂u′û)] − 1 and B = (̂u′û−1/û′û). This is asymptotically
distributed (for large N ) as χ2

2 under Ha
1 .

It remains to show that LM1 is exactly the same as the joint test statistic for
Hb
1 : σ2

μ = 0; ρ = 0, where the remainder disturbances follow an AR(1) process
(see Baltagi and Li 1991b). In fact, if we repeat the derivation given in (5.32)–(5.36),
the only difference is to replace the Vλ matrix by its AR(1) counterpart

Vρ =

⎛
⎜⎜⎜⎝

1 ρ . . . ρT −1

ρ 1 . . . ρT −2

...
...

. . .
...

ρT −1 ρT −2 . . . 1

⎞
⎟⎟⎟⎠

Note that under the null hypothesis, we have (Vρ)ρ=0 = IT = (Vλ)λ=0 and

(∂Vρ/∂ρ)ρ=0 = G = (∂Vλ/∂λ)λ=0

where G is the bidiagonal matrix with bidiagonal elements all equal to one. Using
these results, Problem 5.14 asks the reader to verify that the resulting joint LM
test statistic is the same whether the residual disturbances follow an AR(1) or an
MA(1) process. Hence, the joint LM test statistic for random individual effects and
first-order serial correlation is independent of the form of serial correlation, whether
it is AR(1) or MA(1). This extends the Breusch and Godfrey (1981) result from
time-series regression to a panel data regression using an error component model.

Note that the A2 term is the basis for the LM test statistic for H2: σ2
μ = 0 assum-

ing there is no serial correlation (see Breusch and Pagan 1980). In fact, LM2 =√
N T /2(T − 1)A is asymptotically distributed (for large N ) as N (0, 1) under H2

against the one-sided alternative H ′
2;σ2

μ > 0; see (4.25). Also, the B2 term is the
basis for the LM test statistic for H3 : ρ = 0 (or λ = 0) assuming there are no indi-
vidual effects (see Breusch and Godfrey 1981). In fact, LM3 = √N T 2/(T − 1)B is
asymptotically distributed (for large N ) as N (0, 1) under H3 against the one-sided
alternative H ′

3; ρ (or λ) > 0. The presence of an interaction term in the joint LM test
statistic, given in (5.36), emphasizes the importance of the joint test when both serial
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correlation and random individual effects are suspected. However, when T is large
the interaction term becomes negligible.

Note that all the LM tests considered assume that the underlying null hypothesis
is that of white noise disturbances. However, in panel data applications, especially
with large labor panels, one is concerned with individual effects and is guaranteed
their existence. In this case, it is inappropriate to test for serial correlation assuming
no individual effects as is done in H3. In fact, if one uses LM3 to test for serial
correlation, one is very likely to reject the null hypothesis of H3 even if the null is
true. This is because the μi are correlated for the same individual across time, and
this will contribute to rejecting the null of no serial correlation.

An LM Test for First-order Serial Correlation in a Random Effects Model
Baltagi and Li (1995) also derived a conditional LM test for first-order serial corre-
lation given the existence of random individual effects. In case of an AR(1) model,
the null hypothesis is Hb

4 : ρ = 0 (given σ2
μ > 0) versus Hb′

4 : ρ �= 0 (given σ2
μ > 0).

The variance–covariance matrix (under the alternative) is

�1 = σ2
μ(IN ⊗ JT ) + σ2

ν(IN ⊗ Vρ) (5.37)

Under the null hypothesis Hb
4 , we have

(�−1
1 )ρ=0 = (1/σ2

ε )IN ⊗ ET + (1/σ2
1)IN ⊗ J̄T

(∂�1/∂ρ) |ρ=0 = σ2
ε (IN ⊗ G)

(∂�1/∂σ2
μ) |ρ=0 = (IN ⊗ JT )

(∂�1/∂σ2
ε ) |ρ=0 = (IN ⊗ IT )

where J̄T = ιT ι′T /T , ET = IT − J̄T , G is a bidiagonal matrix with bidiagonal ele-
ments all equal to one, and σ2

1 = T σ2
μ + σ2

ε .
When the first-order serial correlation is of the MA(1) type, the null hypothesis

becomes Ha
4 , λ = 0 (given that σ2

μ > 0) versus Ha′
4 : λ �= 0 (given that σ2

μ > 0). In
this case, the variance–covariance matrix is

�2 = σ2
μ(IN ⊗ JT ) + σ2

ε (IN ⊗ Vλ) (5.38)

and under the null hypothesis Ha
4 ,

(�−1
2 )λ=0 = (1/σ2

ε )(IN ⊗ ET ) + (1/σ2
1)(IN ⊗ J̄T ) = (�−1

1 )ρ=0

(∂�2/∂λ) | λ=0 = σ2
ε (IN ⊗ G) = (∂�1/∂ρ) |ρ=0

(∂�2/∂σ2
μ) |λ=0 = (IN ⊗ JT ) = (∂�1/∂σ2

μ) |ρ=0

(∂�2/∂σ2
ε ) |λ=0 = (IN ⊗ IT ) = (∂�1/∂σ2

ε ) |ρ=0

Using these results, Problem 5.15 asks the reader to verify that the test statistic for
Ha
4 is the same as that for Hb

4 . This conditional LM statistic, call it LM4, is not given
here but is derived in Baltagi and Li (1995).
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To summarize, the conditional LM test statistics for testing first-order serial cor-
relation, assuming random individual effects, are invariant to the form of serial cor-
relation (i.e., whether it is AR(1) orMA(1)). Also, these conditional LM tests require
restricted mle of a one-way error component model with random individual effects
rather than OLS estimates as is usual with LM tests.

Bera, Sosa-Escudero and Yoon (2001) criticize this loss of simplicity in compu-
tation of LM tests that use OLS residuals and suggest an adjustment of these LM
tests that are robust to local misspecification. Instead of L Mμ = N T A2/2(T − 1) =
L M2

2 for testing H2;σ2
μ = 0which ignores the possible presence of serial correlation,

they suggest computing

L M∗
μ = N T (2B − A)2

2(T − 1)(1 − (2/T ))

This test essentially modifies L Mμ by correcting the mean and variance of the score
∂L/∂σ2

μ for its asymptotic correlation with ∂L/∂ρ. Under the null hypothesis, L M∗
μ

is asymptotically distributed as χ2
1. Under local misspecification, this adjusted test

statistic is equivalent to Neyman’s C(α) test and shares its optimality properties.
Similarly, they suggest computing

L M∗
ρ = N T 2[B − (A/T )]2

(T − 1)(1 − (2/T ))

instead of L Mρ = N T 2B2/(T − 1) = L M2
3 to test H3; ρ = 0, against the alternative

that ρ �= 0, ignoring the presence of random individual effects. They also show that

L M∗
μ + L Mρ = L M∗

ρ + L Mμ = L M1

whereLM1 is the joint LM test given in (5.36). In otherwords, the two-directional LM
test for σ2

μ and ρ can be decomposed into the sum of the adjusted one-directional
test of one type of alternative and the unadjusted form of the other hypothesis.
Bera, Sosa-Escudero and Yoon (2001) argue that these tests use only OLS residuals
and are easier to compute than the conditional LM tests derived by Baltagi and Li
(1995). Bera, Sosa-Escudero and Yoon (2001) perform Monte Carlo experiments
that show the usefulness of these modified Rao’s Score tests in guarding against
local misspecification.

For theGrunfeld data, we computed the Breusch and Pagan (1980) test for random
effects H2: σ2

μ = 0. This yielded L Mμ = 798.162 (in Table 4.2) using xttest0 after
running (xtreg, re). Using the Stata command xttest1 after performing (xtreg, re),
one can generate L Mρ = 143.523,to test for H3; ρ = 0. The joint L M1 statistic for
Hb
1 : σ2

μ = 0; ρ = 0 is 808.471. This is done in Table 5.3. The Bera, Sosa-Escudero
and Yoon (2001) LM tests that are robust to local misspecifications L M∗

μ and L M∗
ρ

are also reported. The joint test rejects the null of no first- order serial correlation and
no random firm effects. The one-directional tests L Mρ and L M∗

ρ reject the null of
no first-order serial correlation, while the one-directional tests L Mμ and L M∗

μ reject
the null of no random firm effects.



5.2 Serial Correlation 129

Table 5.3 Grunfeld’s data. Joint test for random effects and AR(1) remainder disturbances

. xttest1, unadjusted

Tests for the error component model:

I[fn,t] = Xb + u[fn] + v[fn,t]
v[fn,t] = lambda v[fn,(t-1)] + e[fn,t]

Estimated results:
|       Var     sd = sqrt(Var)

---------+-----------------------------
I |   47034.89       216.8753
e |   2784.458      52.767964
u |     7089.8      84.20095

Tests:
Random Effects, Two Sided:
LM(Var(u)=0)          =  798.16 Pr>chi2(1) =  0.0000
ALM(Var(u)=0)         =  664.95 Pr>chi2(1) =  0.0000

Random Effects, One Sided:
LM(Var(u)=0)          =   28.25 Pr>N(0,1)  =  0.0000
ALM(Var(u)=0)         =   25.79 Pr>N(0,1)  =  0.0000

Serial Correlation:
LM(lambda=0)          =  143.52 Pr>chi2(1) =  0.0000
ALM(lambda=0)         =   10.31 Pr>chi2(1) =  0.0013

Joint Test:
LM(Var(u)=0,lambda=0) =  808.47 Pr>chi2(2) =  0.0000

An LM Test for First-order Serial Correlation in a Fixed Effects Model
The model is the same as (5.30), and the null hypothesis is Hb

5 ; ρ = 0 given that the
μi are fixed parameters. Writing each individual’s variables in a T × 1 vector form,
we have

yi = Ziδ + μi ιT + νi (5.39)

where yi = (yi1, yi2, . . . , yiT )′, Zi is T × (K + 1) and νi is T × 1. νi ∼ N (0,�ρ)

where �ρ = σ2
ε Vρ for the AR(1) disturbances. The log-likelihood function is

L(δ, ρ,μ, σ2
ε ) = constant − 1

2
log | � | (5.40)

− 1

2σ2
ε

N∑
i=1

[(yi − Ziδ − μi ιT )′V −1
ρ (yi − Ziδ − μi ιT )]

where � = IN ⊗ �ρ is the variance–covariance matrix of ν ′ = (ν ′
1, . . . , ν

′
N ). One

can easily check that the maximum likelihood estimator of μi is given by μ̂i =
{(ι′T V −1

ρ ιT )−1[ι′T V −1
ρ (yi − Zi δ̂)]}ρ=0 = ȳi . − Z̄ ′

i .̂δ, where δ̂ is the maximum like-

lihood estimator of δ, ȳi . =∑T
t=1 yit/T , and Z̄i . is a (K + 1) × 1 vector of averages

of Zit across time.
Write the log-likelihood function in vector form of ν as

L(δ, μ, θ) = constant − 1

2
log | � | −1

2
ν ′�−1ν (5.41)
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where θ′ = (ρ, σ2
ε ). Now (5.41) has a similar form to (4.15). By following a similar

derivation as that given earlier, one can easily verify that the LM test statistic for
testing Hb

5 is
L M = [N T 2/(T − 1)](̂ν ′̂ν−1/̂ν

′̂ν)2 (5.42)

which is asymptotically distributed (for large T ) as χ2
1 under the null hypothe-

sis Hb
5 . Note that ν̂i t = yit − Z ′

i t δ̂ − μ̂i = (ỹi t − Z̃ ′
i t δ̂) + (ȳi . − Z̄ ′

i .̂δ − μ̂i ) where
ỹi t = yit − ȳi . is the usual Within transformation. Under the null of ρ = 0, the last
term in parentheses is zero since {̂μi }ρ=0 = ȳi . − Z̄ ′

i .̂δ and {̂vi t }ρ=0 = ỹi t − Z̃i t δ̂ =
ν̃i t . Therefore, the LM statistic given in (5.42) can be expressed in terms of the
usual Within residuals (the ν̃), and the one-sided test for Hb

5 (corresponding to the
alternative ρ > 0) is

L M5 =
√

N T 2/(T − 1)(̃ν ′̃ν−1/̃ν
′̃ν) (5.43)

This is asymptotically distributed (for large T ) as N (0, 1).
By a similar argument, one can show that the LM test statistic for Ha

5 : λ = 0, in
a fixed effects model with MA(1) residual disturbances, is identical to LM5.

Note also that LM5 differs from LM3 only by the fact that the Within residuals
ν̃ (in LM5) replace the OLS residuals û (in LM3). Since the Within transformation
wipes out the individual effects whether fixed or random, one can also use (5.43) to
test for serial correlation in the random effects models.

The Durbin–Watson Statistic for Panel Data
For the fixed effects model described in (5.39) with νi t following an AR(1) process,
Bhargava, Franzini and Narendranathan (1982), hereafter BFN, suggested testing
for H0; ρ = 0 against the alternative that | ρ |< 1, using the Durbin–Watson statistic
only based on the Within residuals (the ν̃i t ) rather than OLS residuals:

dp =
N∑

i=1

T∑
t=2

(̃νi t − ν̃i,t−1)
2/

N∑
i=1

T∑
t=1

ν̃2i t (5.44)

BFN showed that for arbitrary regressors, dp is a locally most powerful invari-
ant test in the neighborhood of ρ = 0. They argued that exact critical values
using the Imhof routine are both impractical and unnecessary for panel data since
they involve the computation of the nonzero eigenvalues of a large N T × N T
matrix. Instead, BFN tabulate upper and lower bounds of dp at the 5% levels
for N = 50, 100, 150, 250, 500, 1000, T = 6, 10, and k = 1, 3, 5, 7, 9, 11, 13, 15.
BFN remark that dp would be rarely inconclusive since the bounds will be very
tight even for moderate values of N . Also, for very large N , BFN argue that it is
not necessary to compute these bounds, but simply test whether dp is less than two
when testing against positive serial correlation. Stata computes this DW statistic
when using the xtregar command as demonstrated in Sect. 5.2.1 and Tables 5.1 and
5.2. However, no critical value or p-value is provided and these are not tabulated for
unbalanced panels.
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Inoue and Solon (2006) propose a portmanteau test for serially correlated errors in
a fixed effects model. This tests the null hypothesis of no serial correlation between
any two periods against a general alternative that at least some of the autocorrelations
are nonzero. This test is attractive for short T , but will lack power as T gets large
because the dimension of the null hypothesis is (T − 1)(T − 2)/2 which grows with
T 2. This test needs N to be much larger than T 2/2. This test can be implemented
with Stata with the command xtistest.

Testing AR(1) Against MA(1) in an Error Component Model
Testing AR(1) against MA(1) has been extensively studied in the time-series liter-
ature; see King and McAleer (1987) for a Monte Carlo comparison of non-nested,
approximate point optimal, as well as LM tests.3 In fact, King and McAleer (1987)
found that the non-nested tests perform poorly in small samples, while King (1983)
points optimal test performs the best. Burke, Godfrey and Termayne (1990) (here-
after BGT) derived a simple test to distinguish between AR(1) andMA(1) processes.
Baltagi andLi (1995) proposed two extensions of theBGT test to the error component
model. These tests are simple to implement requiring Within or OLS residuals.

The basic idea of the BGT test is as follows: under the null hypothesis of an AR(1)
process, the remainder error term vi t satisfies

Correl (νi t , νi,t−τ ) = ρτ = (ρ1)
τ τ = 1, 2, . . . (5.45)

Therefore, under the null hypothesis

ρ2 − (ρ1)
2 = 0 (5.46)

Under the alternative hypothesis of an MA(1) process on νi t , ρ2 = 0 and hence
ρ2 − (ρ1)

2 < 0. Therefore, BGT recommend a test statistic based on (5.46) using
estimates of ρ obtained from OLS residuals. One problem remains. King (1983)
suggests that any “good” test should have a size which tends to zero, asymptotically,
for ρ > 0.5. The test based on (5.46) does not guarantee this property. To remedy this,
BGT proposed supplementing (5.46) with the decision to accept the null hypothesis
of AR(1) if ρ̂1 > 1

2 + 1/
√

T .
In an error component model, the Within transformation wipes out the individual

effects, and one can use the Within residuals of ũi t (= ν̃i t ) instead of OLS residuals
ûi t to construct the BGT test. Let

(̃ρ1)i =
T∑

t=2

ũi t ũi,t−1/

T∑
t=1

ũ2
i t (5.47)

and

(̃ρ2)i =
T∑

t=3

ũi t ũi,t−2/

T∑
t=1

ũ2
i t for i = 1, . . . , N (5.48)
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The following test statistic, based on (5.48),

γ̃i = √
T [(̃ρ2)i − (̃ρ21)i ]/[1 − (̃ρ2)i ] (5.49)

is asymptotically distributed (for large T ) as N (0, 1) under the null hypothesis of an
AR(1). Using the data on all N individuals, we can construct a generalized BGT test
statistic for the error component model

γ̃ = √
N

(
N∑

i=1

γ̃i/N

)
= √

N T
N∑

i=1

[
(̃ρ2)i − (̃ρ21)i

1 − (̃ρ2)i

]
/N (5.50)

γ̃i are independent for different i since the ũi are independent. Hence γ̃ is also
asymptotically distributed (for large T ) as N (0, 1) under the null hypothesis of an
AR(1) process. The test statistic (5.50) is supplemented by

r̃1 =
N∑

i=1

(̃r1)i/N ≡ 1

N

N∑
i=1

[
T∑

t=2

ũi t ũi,t−1/

T∑
t=1

ũ2
i t

]
(5.51)

and the Baltagi and Li (1995) proposed BGT1 test can be summarized as follows:

(1) Use the Within residuals ũi t to calculate γ̃ and r̃1 from (5.50) and (5.51).
(2) Accept the AR(1) model if γ̃ > cα, or r̃1 > 1

2 + 1/
√

T , where Pr[N (0, 1) �
cα] = α.

The bias in estimating ρs(s = 1, 2) by using Within residuals is of O(1/T ) as
N → ∞ (see Nickell 1981). Therefore, BGT1 may not perform well for small T .
Since for typical labor panels, N is large and T is small, it would be desirable if an
alternative simple test can be derived which performs well for large N rather than
large T . In the next section we will give such a test.

An Alternative BGT Type Test for Testing AR(1) versus MA(1)
Let the null hypothesis be H7: νi t = εi t + λεi,t−1 and the alternative be H ′

7 : νi t =
ρνi,t−1 + εi t , where εi t ∼ N (0, σ2

ε ). Note that this test differs from the BGT1 test in
that the null hypothesis is MA(1) rather than AR(1). The alternative BGT type test
uses autocorrelation estimates derived from OLS residuals and can be motivated as
follows. Let

Q0 =
∑∑

u2
i t

N T
= u′u/N T and

Qs =
∑∑

uit ui,t−s

N (T − s)
= u′(IN ⊗ Gs)u/N (T − s) for s = 1, . . . , S
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where Gs = 1
2Toeplitz (ιs), ιs is a vector of zeros with the (s + 1)th element being

one. s = 1, . . . , S with S � (T − 1) and S is finite.2 Given the true residuals (the
u), and assuming [

u′ Au

n
− E

(
u′ Au

n

)]
P→ 0

where n = N T and A is an arbitrary symmetric matrix, Baltagi and Li (1995) proved
the following results, as N → ∞:
(1) For the MA(1) model

plim Q0 = σ2
μ + σ2

ν = σ2
μ + σ2

ε (1 + λ2)

plim Q1 = σ2
μ + λσ2

ε

plim Qs = σ2
μ for s = 2, . . . , S (5.52)

(2) For the AR(1) model

plim Q0 = σ2
μ + σ2

ν

plim Qs = σ2
μ + ρsσ2

ν for s = 1, . . . , S (5.53)

See Problem 5.17. Baltagi and Li (1995) showed that for large N , one can distinguish
the AR(1) process from the MA(1) process based on the information obtained from
Qs − Qs+l , for s � 2 and l � 1. To see this, note that plim(Qs − Qs+l) = 0 for the
MA(1) process and plim(Qs − Qs+l) = σ2

νρ
s(1 − ρl) > 0 for the AR(1) process.

Hence, Baltagi and Li (1995) suggest an asymptotic test of H7 against H ′
7 based

upon
γ = √N/V (Q2 − Q3) (5.54)

where V = 2tr{[(σ2
μ JT + σ2

ε Vλ)(G2/(T − 2) − G3/(T − 3))]2}. Under some reg-
ularity conditions, γ is asymptotically distributed (for large N ) as N (0, 1) under the
null hypothesis of an MA(1) process.3 In order to calculate V , we note that for the
MA(1) process, σ2

ν = σ2
ε (1 + λ2) and σ2

ε Vλ = σ2
v IT + σ2

ε λG. Therefore, we do not
need to estimate λ in order to compute the test statistic γ; all we need to get are some
consistent estimators for σ2

ν, λσ2
ε , and σ2

μ. These are obtained as follows:

σ̂2
v = Q̂0 − Q̂2

λσ̂2
ε = Q̂0 − Q̂1

σ̂2
μ = Q̂2

where Q̂s are obtained from Qs by replacing uit by the OLS residuals ûi t . Substi-
tuting these consistent estimators into V we get V̂ , and the test statistic γ becomes

γ̂ =
√

N/V̂ (Q̂2 − Q̂3) (5.55)
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where

(Q̂2 − Q̂3) =
N∑

i=1

N∑
t=3

ûi t ûi,t−2/N (T − 2) −
N∑

i=1

T∑
t=4

ûi t ûi,t−3/N (T − 3)

and
V̂ = 2tr{[(̂σ2

μ JT + σ̂2
ν IT + σ2

ε λ̂G)/(G2/(T − 2) + G3/(T − 3))]2}
γ̂ is asymptotically distributed (for large N ) as N (0, 1) under the null hypothesis H7
and is referred to as the BGT2 test.

Baltagi and Li (1995) perform extensive Monte Carlo experiments using the
regression model setup considered in Chap. 4. However, the remainder disturbances
are now allowed to follow the AR(1) or MA(1) process. Table 5.4 gives a summary
of all tests considered. Their main results can be summarized as follows.

(1) The joint LM1 test performs well in testing the null of H1: ρ = σ2
μ = 0. Its

estimated size is not statistically different from its nominal size. Let ω = σ2
μ/σ2

denote the proportion of the total variance that is due to individual effects. Baltagi
and Li (1995) find that in the presence of large individual effects (ω > 0.2), or
high serial correlation, ρ (or λ) > 0.2, LM1 has high power rejecting the null in
99 − 100% of the cases. It only has low power when ω = 0 and ρ (or λ) = 0.2, or
when ω = 0.2 and ρ (or λ) = 0.

(2) The test statistic LM2 for testing H2: σ2
μ = 0 implicitly assumes that ρ (or

λ) = 0.When ρ is indeed equal to zero, this test performs well. However, as ρmoves
away from zero and increases, this test tends to be biased in favor of rejecting the
null. This is because a large serial correlation coefficient (i.e., large ρ) contributes
to a large correlation among the individuals in the sample, even though σ2

μ = 0. For
example, when the null is true (σ2

μ = 0) but ρ = 0.9, LM2 rejects in 100% of the
cases. Similar results are obtained in case νi t follows an MA(1) process. In general,
the presence of positive serial correlation tends to bias the case in favor of finding
nonzero individual effects.

(3) Similarly, the LM3 test for testing H3: ρ = 0 implicitly assumes σ2
μ = 0.

This test performs well when σ2
μ = 0. However, as σ2

μ increases, the performance of
this test deteriorates. For example, when the null is true (ρ = 0) but ω = 0.9, LM3
rejects the null hypothesis in 100% of the cases. The large correlation among the μi

contributes to the rejection of null hypothesis of no serial correlation. These results
strongly indicate that one should not ignore the individual effects when testing for
serial correlation.

(4) In contrast to LM3, both LM4 and LM5 take into account the presence of
individual effects. For large values of ρ or λ (greater than 0.4), both LM4 and LM5
have high power, rejecting the nullmore than 99%of the time.However, the estimated
size of LM4 is closer to the 5% nominal value than that of LM5. In addition, Baltagi
and Li (1995) show that Bhargava, Franzini and Narendranathan (1982) modified
Durbin–Watson performs better than LM5 and is recommended.

(5) The BGT1 test, which uses Within residuals and tests the null of an AR(1)
against the alternative of an MA(1) performs well if T � 60 and T > N . However,
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Table 5.4 Testing for serial correlation and individual effects

Null hypothesis H0 Alternative
hypothesis HA

Test statistics Asymptotic
distribution
under H0

1a. Ha
1 : σ2

μ = 0; λ = 0 σ2
μ or λ �= 0 LM1 χ2

2

1b. Hb
1 : σ2

μ = 0; ρ = 0 σ2
μ or ρ �= 0 LM1 χ2

2

2. H2 : σ2
μ = 0 σ2

μ > 0 LM2 N (0, 1)

3a. Ha
3 : λ = 0 λ > 0 LM3 N (0, 1)

3b. Hb
3 : ρ = 0 ρ > 0 LM3 N (0, 1)

4a. Ha
4 : λ = 0 (σ2

μ > 0) λ > 0 (σ2
μ > 0) LM4 N (0, 1)

4b. Hb
4 : ρ = 0 (σ2

μ > 0) ρ > 0 (σ2
μ > 0) LM4 N (0, 1)

5a. Ha
5 : λ = 0 (μifixed) λ > 0 (μifixed) LM5 N (0, 1)

5b. Hb
5 : ρ = 0 (μi fixed) ρ > 0 (μi fixed) LM5 N (0, 1)

6 H6 : AR(1) MA(1) BGT1 N (0, 1)

7 H7 : MA(1) AR(1) BGT2 N (0, 1)

Source Baltagi and Li (1995). Reproduced by permission of Elsevier Science Publishers BN (North
Holland)

when T is small, or T is of moderate size but N is large, BGT1 will tend to over-
reject the null hypothesis. Therefore BGT1 is not recommended for these cases. For
typical labor panels, N is large and T is small. For these cases, Baltagi and Li (1995)
recommend the BGT2 test, which uses OLS residuals and tests the null of an MA(1)
against the alternative of an AR(1). This test performs well when N is large and does
not rely on T to achieve its asymptotic distribution. The Monte Carlo results show
that BGT2’s performance improves as either N or T increases.

Baltagi and Li (1997) perform Monte Carlo experiments to compare the finite
sample relative efficiency of a number of pure and pretest estimators for an error
component model with remainder disturbances that are generated by an AR(1) or
an MA(1) process. These estimators are (1) Ordinary Least Squares (OLS); (2) the
Within estimator; (3) Conventional GLS which ignores the serial correlation in the
remainder disturbances but accounts for the random error components structure.
This is denoted by CGLS. (4) GLS assuming random error components with the
remainder disturbances following an MA(1) process. This is denoted by GLSM. (5)
GLS assuming random error components with the remainder disturbances following
an AR(1) process. This is denoted by GLSA. (6) A pretest estimator which is based
on the results of two tests. This is denoted by PRE. The first test is LM4 which
tests for the presence of serial correlation given the existence of random individual
effects. If the null is not rejected, this estimator reduces to conventional GLS. In
case serial correlation is found, the BGT2 test is performed to distinguish between
the AR(1) and MA(1) process and GLSA or GLSM is performed. (7) A Generalized
Method of Moments (GMM) estimator, where the error component structure of the
disturbances is ignored and a general variance–covariance matrix is estimated across
the time dimension. Finally, (8) True GLS which is denoted by TGLS is obtained for
comparison purposes. In fact, the relative efficiency of each estimator is obtained by
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dividing its MSE by that of TGLS. It is important to emphasize that all the estimators
considered are consistent as long as the explanatory variables and the disturbances are
uncorrelated, as N → ∞, with T fixed. The primary concern here is with their small
sample properties. The results show that the correct GLS procedure is always the
best, but the researcher does not have perfect foresight on which one it is: GLSA for
an AR(1) process, or GLSM for an MA(1) process. In this case, the pretest estimator
is a viable alternative given that its performance is a close second to correct GLS
whether the true serial correlation process is AR(1) or MA(1).

5.3 Time-Wise Autocorrelated and Cross-Sectionally
Heteroskedastic Panel Regression

Analternativemethod for dealingwith time-wise autocorrelated and cross-sectionally
heteroskedastic disturbances in a panel regression model is described in Kmenta
(1986). The basic idea is to allow for first-order autoregressive disturbances in Eq.
(2.1) that follow a simple AR(1) process

uit = ρi ui,t−1 + εi t i = 1, . . . , N t = 1, . . . , T (5.56)

where the autoregressive parameter can vary across cross-sections with | ρi |< 1.
Also, the remainder error εi t is assumed to be normal with zero mean and a general
variance–covariance matrix that allows for possible heteroskedasticity as well as
correlation across cross-sections, i.e.,

E(εε′) = � ⊗ IT whereε′ = (ε11, . . . , ε1T , . . . , εN1, . . . , εN T ) (5.57)

and � is N × N . The initial values of the disturbances are assumed to have the
following properties:

ui0 ∼ N

(
0,

σi i

1 − ρ2i

)
and E(ui0u j0) = σi j

1 − ρiρ j
i, j = 1, 2, . . . , N

Two special cases of this general specification are also considered. The first special
case assumes that there is no correlation across different cross-sections (i.e., σi j = 0
for i �= j), but there is heteroskedasticity (i.e., � is diagonal). The second special
case assumes that � is diagonal but uses the additional restriction that all the ρi

are equal to ρ for i = 1, 2, . . . , N . The exogeneity assumption on the regressors
renders OLS unbiased and consistent for this model. Hence, the OLS estimates
can be used to estimate the ρi ’s and �. In fact, Beck and Katz (1995) use least
squares residuals to obtain robust estimates of the variance–covariance matrix of
OLS. This can be done using the xtpcse command in Stata. For the general variance–
covariance structure given in (5.57), Kmenta (1986) describes how to obtain feasible
GLS estimators of the regression coefficients. In the first step, OLS residuals are used
to get consistent estimates of the ρi . Next, a Prais–Winsten transformation is applied
using the estimated ρ̂i to get a consistent estimate of � from the resulting residuals.
In the last step, GLS is applied to the Prais–Winsten transformed model using the
consistent estimate of �. This can be done using the xtgls command in Stata. This
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Table 5.5 Common rho and heteroskedastic AR(1) for Grunfeld data
. xtgls I F C, corr(ar1) panels(heteroskedastic)

Cross-sectional time-series FGLS regression

Coefficients:  generalized least squares
Panels:        heteroskedastic
Correlation:   common AR(1) coefficient for all panels  (0.9261)

Estimated covariances      =        10          Number of obs      =       200
Estimated autocorrelations =         1          Number of groups   =        10
Estimated coefficients     =         3          Time periods       =        20

Wald chi2(2)       =    107.43
Prob > chi2        =    0.0000

-----
I |      Coef.   Std. Err. z    P>|z|     [95% Conf. Interval]

+
F |   .0715306   .0087269     8.20   0.000     .0544262     .088635
C |   .1405652   .0314945     4.46   0.000     .0788371    .2022933

_cons | -1.979683   6.781349 -0.29   0.770 -15.27088    11.31152

may be a suitable pooling method for N small and T very large, but for typical labor
or consumer panels where N is large and T is small it may be infeasible. In fact, for
N > T , estimate of � will be singular. Note that the number of extra parameters
to be estimated for this model is N (N + 1)/2 corresponding to the elements of
� plus N distinct ρi . This is in contrast to the simple one-way error component
model with N extra parameters to estimate for the fixed effects model or two extra
variance components to estimate for the random effects model. For example, even
for a small N = 50, the number of extra parameters to estimate for the Kmenta
technique is 1325 compared to 50 for fixed effects and two for the random effects
model. Baltagi (1986) discusses the advantages and disadvantages of the Kmenta
and the error components methods and compares their performance using Monte
Carlo experiments. For typical panels with N large and T small, the error component
model is parsimonious in its estimation of variance–covariance parameters compared
to the time-wise autocorrelated, cross-sectionally heteroskedastic specification and
is found to be more robust to misspecification.

Table 5.5 gives the estimation results for the Grunfeld investment equation given
in (2.40) using the command xtgls in Stata. This performs AR(1) estimation with
common rho, allowing for heteroskedasticity across firms, but no cross-firm correla-
tion. One common rho, and 10 different variances are estimated, one for each firm.
Table 5.6 performs AR(1) estimation with a different rho for each firm, allowing for
heteroskedasticity across firms, but no cross-firm correlation. Ten different rhos, and
10 different variances are estimated, one for each firm. Table 5.7 performs AR(1)
estimation with a different rho for each firm, allowing for heteroskedasticity across
firms, and cross-firm correlation. Ten different rhos, and 55 elements of the variance–
covariance matrix are estimated. This is not a parsimonious model and should only
be used if N is very small compared to T . The estimates and their standard errors
do change when compared to OLS in Table 2.1.
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Table 5.6 Varying rhos and heteroskedastic AR(1) for Grunfeld data
. xtgls I F C, corr(psar1) panels(heteroskedastic)

Cross-sectional time-series FGLS regression

Coefficients:  generalized least squares
Panels:        heteroskedastic
Correlation:   panel-specific AR(1)

Estimated covariances      =        10          Number of obs      =       200
Estimated autocorrelations =        10          Number of groups   =        10
Estimated coefficients     =         3          Time periods       =        20

Wald chi2(2)       =    100.13
Prob > chi2        =    0.0000

I | Coef.   Std. Err. z    P>|z|     [95% Conf. Interval]
+

F |    .071577     .00818     8.75   0.000     .0555444    .0876096
C |    .165713   .0336642 4.92   0.000     .0997325    .2316935

_cons |   5.663732   9.870044     0.57   0.566 -13.6812    25.00866

Table 5.7 Varying rhos and cross-section dependence AR(1) for Grunfeld data
. xtgls I F C, corr(psar1) panels(correlated)

Cross-sectional time-series FGLS regression

Coefficients:  generalized least squares
Panels:        heteroskedastic with cross-sectional correlation
Correlation:   panel-specific AR(1)

Estimated covariances      =        55          Number of obs      =       200
Estimated autocorrelations =        10          Number of groups   =        10
Estimated coefficients     =         3 Time periods       =        20

Wald chi2(2)       =    326.73
Prob > chi2        =    0.0000

I |      Coef.   Std. Err. z    P>|z|     [95% Conf. Interval]
+

F |   .0846195   .0056835    14.89   0.000       .07348     .095759
C |    .245775   .0214979    11.43   0.000       .20364    .2879101

_cons | -8.8195   6.304894 -1.40   0.162 -21.17686    3.537865

Empirical Example: Nickell, Nunziata and Ochel (2005) estimate a dynamic
unemployment rate equation using a panel of 20 OECD countries over the period
1961–95. Their results indicate that broad movements in unemployment across the
OECDcan be explained by shifts in labormarket institutions. The dependent variable
is urit , the unemployment rate in country i at time t. This is regressed on the lagged
unemployment rate uri,t−1 as well as measures of labor institutions, like the employ-
ment protection legislation index (ep), the unemployment benefit replacement rate
(br ), unemployment benefit duration (bd), labor union density (ud ), coordination
in wage setting (co), and the tax wedge (tw). Also, the economic shocks are rep-
resented by the labor demand shock (lds), the TFP shock (t f phpc), the import
price shock (t ts), the acceleration in money supply (d2ms), and the real interest rate
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(rirl).All regressions included year and country dummies aswell as country-specific
time trends. In addition, these regressions included interaction terms where the vari-
ables were expressed as deviations from their overall means. Table 5.8 replicates
column 1 of Table5 of Nickell, Nunziata and Ochel (2005, p. 14) using iterative
generalized least squares allowing for heteroskedastic errors and country-specific
first-order serial correlation. Strictly speaking, this approach applies to static panel
models with no lagged dependent variable. Yet the authors use it for the estimation
of a dynamic panel model with serial correlation. See Chap. 8 for the proper esti-
mation of a dynamic panel data model. The data set and variable definitions as well
as Stata program output are provided on the LSE website as an attached ZIP file for
an earlier working paper version of this paper (WP0502) http://cep.lse.ac.uk/_new/
publications/series.asp?prog=CEP.

5.4 Further Reading

Hansen (2007) suggests a GLS estimator for a fixed effects panel model where the
disturbances follow an AR(p) process. Baltagi and Li (1994) study the MA(q) case
on the remainder disturbances, while MaCurdy (1982) and Galbraith and Zinde-
Walsh (1995) study the autoregressive moving average ARMA(p, q) case. For an
extension to the two-way model with serially correlated disturbances, see Revankar
(1979)who considers the casewhere theλt follow anAR(1) process. Also, seeKarls-
son and Skoglund (2004) for the two-way error component model with an ARMA
process on the time-specific effects. They derive the maximum likelihood estimator
under normality of the disturbances and propose LM tests for serial correlation and
for the choice between the AR(1) and MA(1) specification for the time- specific
effects following Baltagi and Li (1995). Magnus and Woodland (1988) generalize
this Revankar (1979) model to the multivariate error component model case and
derive the corresponding maximum likelihood estimator. Chamberlain (1982, 1984)
allows for arbitrary serial correlation and heteroskedastic patterns by viewing each
time period as an equation and treating the panel as a multivariate setup. Baltagi,
Song and Jung (2010) derive a joint LM test for homoskedasticity and no first-order
serial correlation for a panel data error components regression model. In economet-
rics, when one tests for heteroskedasticity, serial correlation is ignored, and when
one tests for serial correlation, heteroskedasticity is ignored. Baltagi, Song and Jung
(2010) derive a conditional LM test for homoskedasticity given serial correlation, as
well as, a conditional LM test for no first-order serial correlation given heteroskedas-
ticity, all in the context of a random effects panel data model. Monte Carlo results
show that these tests along with their likelihood ratio alternatives have good size and
power under various forms of heteroskedasticity including exponential and quadratic
functional forms.

Drukker (2003) provides an alternative test for serial correlation for panel data
which one can find in Wooldridge (2010), using the xtserial command in Stata. The
basic idea is to difference the model and hence get rid of the individual effects, the
μi ’s, whether fixed or random, and test that the correlation of the resulting differenced

http://cep.lse.ac.uk/_new/publications/series.asp?prog=CEP
http://cep.lse.ac.uk/_new/publications/series.asp?prog=CEP
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Table 5.8 Explaining OECD unemployment, 1961–95

.xtgls ur ur1 ep br bd  gd_bd_br c_ud co gd_co_ud tw gd_co_tw lds  tfphpc  tts d2ms rirl

t66-t95 tre1-tre20 id2-id20 , p(hetero) corr(psar1) rhotype(theil) igls
Cross-sectional time-series FGLS regression

Coefficients:  generalized least squares

Panels:        heteroskedastic

Correlation:   panel-specific AR(1)

Estimated covariances      =        20          Number of obs      =       599

Estimated autocorrelations =        20          Number of groups   = 20

Estimated coefficients     =        85          Obs per group: min =        12

avg =     29.95

max =        33

Wald chi2(84)      =  47272.06

Prob > chi2        =    0.0000

ur |      Coef. Std. Err.      z    P>|z|     [95% Conf. Interval]

+

ur1 |   .8569874   .0177229    48.35   0.000     .8222511    .8917237

ep |   .1024391   .1615809     0.63 0.526 -.2142536    .4191317

br |   2.664894   .4153647     6.42   0.000     1.850795    3.478994

bd |    .865036   .2104416     4.11   0.000      .452578    1.277494

gd_bd_br |    3.97257   .9477118     4.19   0.000     2.115089    5.830051

c_ud |   7.378327   2.277199     3.24   0.001     2.915099    11.84155

co | -1.021815   .2968673 -3.44   0.001 -1.603664 -.4399658

gd_co_ud | -6.958332   1.172198 -5.94   0.000 -9.255797 -4.660867

tw |   .7077332   .8891361     0.80   0.426 -1.034942    2.450408

gd_co_tw | -3.605739   1.057825 -3.41   0.001 -5.679038 -1.532441

lds | -23.97486    2.25323 -10.64   0.000 -28.39111 -19.55861

tfphpc | -17.65527   1.270991 -13.89   0.000 -20.14637 -15.16417

tts |   6.616593   1.771568     3.73   0.000     3.144384     10.0888

d2ms |   .4200588   .2506539     1.68   0.094 -.0712139    .9113314

rirl |   2.052865   1.183245     1.73   0.083 -.2662521    4.371981

Time and country dummies as well as country specific time trends are not shown
to save space.

error (νi t − νi,t−1) one period apart is −0.5. This will be the case if the original
remainder error νi t is not serially correlated. Chapter 8 on dynamic panels will actu-
ally difference the model this way and the remainder error will be MA(1) unit root
with correlation−0.5. In fact Arellano andBond (1991) provide a test for the remain-
der error to be zero first-order serially correlated; see Chap. 8. For the Grunfeld data,
the differenced regression and theWooldridge test for serial correlation are shown in
Table5.9. Note that this runs the differenced regression, obtains the estimated resid-
uals, then runs these residuals on their lagged value, and tests that the coefficient is
−0.5 using robust standard errors, clustering on the firms. The test rejects zero first-
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Table 5.9 Wooldridge test for serial correlation using Grunfeld’s data
. xtserial I F C, output

Linear regression                                      Number of obs =     190
F(  2,     9) =   47.80
Prob > F      =  0.0000
R-squared     =  0.4288
Root MSE      =  42.896

(Std. Err. adjusted for 10 clusters in fn)

|               Robust
D.I |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

+
F |

D1. |   .0890628   .0145088     6.14   0.000     .0562416    .1218841
|

C |
D1. |    .278694    .138404     2.01   0.075 -.0343977    .5917856

Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation

F(  1,       9) =    263.592
Prob > F =      0.0000

order serial correlation in the remainder error νi t . Born and Breitung (2016) compare
the performance of thisWooldridge test for serial correlation with the LagrangeMul-
tiplier (LM) test suggested by Baltagi and Li (1995), see (5.43), and the Bhargava,
Franzini and Narendranathan (1982) modification of the classical Durbin–Watson
statistic for the fixed effects model given in (5.44). Under the null hypothesis of no
serial correlation, all tests possess a standard normal limiting distribution as N → ∞
and T is fixed. Analyzing the local power of the tests, they find that the LM statistic
of Baltagi and Li (1995) has superior power properties. Born and Breitung (2016)
also propose a generalization to test for autocorrelation up to some given lag order
and a test statistic that is robust against time- dependent heteroskedasticity. These
can be implemented with Stata using the commands xtqptest and xthrtest. In fact,
after performing (xtreg, fe) on the Grunfeld data, one issues the command (xtqptest,
lags(1)) which yields a χ2

1 statistic of 7.77 with a p-value of 0.005 rejecting no serial
correlation up to order 1. Similarly, issuing (xtqptest, lags(2)) yields a χ2

2 statistic
of 9.38 with a p-value of 0.009 rejecting no serial correlation up to order 2. On the
other hand, if one issues the command (xtqptest, order(1)) this yields an LM statistic
distributed as N (0, 1) of 2.79 with a p-value of 0.005 rejecting no serial correlation
of order 1. Similarly, issuing (xtqptest, order(2)) yields an LM statistic distributed
as N (0, 1) of 2.59 with a p-value of 0.010 rejecting no serial correlation of order
2. Finally, issuing the command xthrtest yields a heteroskedasticity robust N (0, 1)
statistic of 0.93 with a p-value of 0.351 not rejecting first-order serial correlation.
So except for the heteroskedasticity robust Born and Breitung (2016) test, serial
correlation is not rejected for the Grunfeld data.
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5.5 Notes

1. Bhargava, Franzini andNarendranathan (1982) derive the corresponding transfor-
mation for the one-way error component model with fixed effects and first-order
autoregressive disturbances.

2. Let a = (a1, a2, . . . , an)′ denote an arbitrary n × 1 vector, then Toeplitz (a) is
an n × n symmetric matrix generated from the n × 1 vector a with the diagonal
elements all equal to a1 second diagonal elements equal to a2, etc.

3. Obviously, there are many different ways to construct such a test. For example,
we can use Q2 + Q3 − 2Q4 instead of Q2 − Q3 to define the γ test. In this case,

V = 2tr{[(σ2
μ JT + σ2

ε Vλ)(G2/(T − 2) + G3/(T − 3) − 2G4/(T − 4))]2}

5.6 Problems

5.1 Heteroskedastic individual effects. (a) For the one-way error component model
with heteroskedastic μi , i.e., μi ∼ (0, w2

i ), verify that � = E(uu′) is given by
(5.1) and (5.2).
(b) Using the Wansbeek and Kapteyn (1982) trick show that � can also be
written as in (5.3).

5.2 (a) Using (5.3) and (5.4), verify that ��−1 = I and that �−1/2�−1/2 = �−1.
(b) Show that y∗ = σν�

−1/2y has a typical element y∗
i t = yit − θi ȳi . where

θi = 1 − (σν/τi ) and τ2i = T w2
i + σ2

ν for i = 1, . . . , N .

5.3 An LM test for heteroskedasticity in a one-way error component model. Holly
and Gardiol (2000) derived a score test for homoskedasticity in a one-way error
component model where the alternative model is that the μi ’s are independent
and distributed as N (0, σ2

μi
) where σ2

μi
= σ2

μhμ (Fiθ2). Here, Fi is a vector of
p explanatory variables such that Fiθ2 does not contain a constant term and
hμ is a strictly positive twice differentiable function satisfying hμ(0) = 1 with
h′

μ(0) �= 0 and h′′
μ(0) �= 0. Show that the score test statistic for H0; θ2 = 0 is

equal to one half of the explained sum of squares of the OLS regression of
(ŝ/s̄) − ιN against the p regressors in F as in the Breusch and Pagan test for
homoskedasticity. Here ŝi = û′

i J̄T ûi and s =∑N
i=1 ŝi/N where û denote the

maximum likelihood residuals from the restricted model under H0; θ2 = 0.
5.4 An alternative heteroskedastic error component model. (a) For the one-way

error componentmodel with heteroskedastic remainder disturbances, i.e., νi t ∼

(0, w2
i ), verify that � = E(uu′) is given by (5.5).

(b) Using the Wansbeek and Kapteyn (1982) trick show that � can also be
written as in (5.6).

5.5 (a) Using (5.6) and (5.7), verify that ��−1 = I and �−1/2�−1/2 = �−1.
(b) Show that y∗ = �−1/2y has a typical element y∗

i t = (yit − θi ȳi .)/wi where
θi = 1 − (wi/τi ) and τ2i = T σ2

μ + w2
i for i = 1, . . . , N .
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5.6 AR(1) process. (a) For the one-way error component model with remainder
disturbances νi t following a stationary AR(1) process as in (5.8), verify that
�∗ = E(u∗u∗′) is that given by (5.11).
(b) Using the Wansbeek and Kapteyn (1982) trick, show that �∗ can be written
as in (5.12).

5.7 (a) Using (5.12) and (5.13), verify that �∗�∗−1 = I and �∗−1/2�∗−1/2 =
�∗−1.
(b) Show that y∗∗ = σε�

∗−1/2y∗ has a typical element given by (5.14).
(c) Show that for ρ = 0, (5.14) reduces to (yit − θ ȳi .).
(d) Show that for σ2

μ = 0, (5.14) reduces to y∗
i t .

5.8 Unbiased estimates of the variance components under the AR(1) model. Prove
that σ̂2

ε and σ̂2
α given by (5.15) are unbiased for σ2

ε and σ2
α, respectively.

5.9 AR(2) process. (a) For the one-way error component model with remainder
disturbances νi t following a stationary AR(2) process as in (5.16), verify that
�∗ = E(u∗u∗′) is that given by (5.18).
(b) Show that y∗∗ = σε�

∗−1/2y∗ has a typical element given by (5.19).
5.10 AR(4) process for quarterly data. For the one-way error component model

with remainder disturbances νi t following a specialized AR(4) process νi t =
ρνi,t−4 + εi t with | ρ |< 1 and εi t ∼ IIN(0, σ2

ε ), verify that y∗∗ = σε�
−1/2y∗

is given by (5.21).
5.11 MA(1) process. For the one-way error component model with remainder dis-

turbances vi t following an MA(1) process given by (5.22), verify that y∗∗ =
σε�

−1/2y∗ is given by (5.24).
5.12 Prediction in the serially correlated error component model. For the BLU

predictor of yi,T +1 given in (5.25), show that when vi t follows
(a) the AR(1) process, the GLS predictor is corrected by the term in (5.26);
(b) the AR(2) process, the GLS predictor is corrected by the term given in
(5.27);
(c) the specialized AR(4) process, the GLS predictor is corrected by the term
given in (5.28);
(d) the MA(1) process, the GLS predictor is corrected by the term given in
(5.29).

5.13 A joint LM test for serial correlation and random individual effects. Using
(4.17) and (4.19), verify (5.34) and (5.35) and derive the LM1 statistic given in
(5.36).

5.14 (a) Verify that (∂Vρ/∂ρ)ρ=0 = G = (∂Vλ/∂λ)λ=0 where G is the bidiagonal
matrix with bidiagonal elements all equal to one.
(b) Using this result verify that the joint LM statistic given in (5.36) is the same
whether the residual disturbances follow an AR(1) or an MA(1) process, i.e.,
the joint LM test statistic for Ha

1 : σ2
μ = 0; λ = 0 is the same as that for Hb

1 :
σ2

μ = 0; ρ = 0.
5.15 Conditional LM test for serial correlation assuming random individual effects.

For Hb
4 : ρ = 0 (given σ2

μ > 0),

(a) Derive the score, the information matrix, and the LM statistic for Hb
4 .
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(b) Verify that for Ha
4 ;λ = 0 (given σ2

μ > 0), one obtains the same LM statistic
as in part (a).

5.16 An LM test for first-order serial correlation in a fixed effects model. For Hb
5 ; ρ =

0 (given the μi are fixed),
(a) Verify that the likelihood is given by (5.40) and derive the MLE of the μi .
(b) Using (5.34) and (5.35), verify that the LM statistic for Hb

5 is given by
(5.42).
(c) Verify that for Ha

5 ;λ = 0 (given the μi are fixed), one obtains the same LM
statistic as in (5.42).

5.17 (a) Verify (5.52) for the MA(1) model. Hint: Use the fact that limE(u′u)/

(N T ) = lim tr(�)/(N T ) for deriving plimQ0. Similarly, use the fact that

lim E(u′(IN ⊗ G1)u)/N (T − 1) = lim tr[�(IN ⊗ G1)]/N (T − 1)

for deriving plimQ1. Also,

lim E(u′(IN ⊗ Gs)u)/N (T − s) = lim tr[�(IN ⊗ Gs)]/N (T − s)

for deriving plimQs for s = 2, . . . , S.
(b) Verify (5.53) for the AR(1) model.

5.18 Using the Monte Carlo setup in Baltagi and Li (1995), study the performance
of the tests proposed in Table 5.4.

5.19 For the Grunfeld data,
(a) Perform the tests described in Table 5.4.
(b)Using the unbalancedpatterns described inTable1 ofBaltagi andWu (1999),
replicate the Baltagi–Wu LBI and Bhargava, Franzini and Narendranathan
(1982) Durbin–Watson test statistics reported in that table. This can be eas-
ily done using (xtregar, re lbi) command in Stata.

5.20 For the gasoline data given on the Springer website, perform the tests described
in Table 5.4.

5.21 For the public capital data, given on the Springer website, perform the tests
described in Table 5.4.

5.22 Using the Grunfeld investment equation in (2.40),
(a) Replicate Table 5.5 using the AR(1) estimation with common ρ and het-
eroskedastic variances.
(b) Replicate Table 5.6 using the AR(1) estimation with varying ρi and het-
eroskedastic variances across firms.
(c) Replicate Table 5.7 using the AR(1) estimation with varying ρi , het-
eroskedastic variances, and cross-firm dependence in the variance–covariance
matrix. Compare with the error component estimates obtained in Table 2.1.

5.23 Time-wise autocorrelated and cross-sectionally heteroskedastic disturbances.
Using the Nickell, Nunziata and Ochel (2005) data set which is the basis for
the empirical example in Sect. 5.3 explaining dynamic unemployment using a
panel of 20 OECD countries over the period 1961–95,
(a) Replicate Table 5.8 using iterative generalized least squares allowing for
heteroskedastic errors and country- specific first-order serial correlation.
(b) Replicate the rest of Table5 in Nickell, Nunziata and Ochel (2005, p. 14).
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6SeeminglyUnrelatedRegressionswith
Error Components

6.1 The One-WayModel

In several instances in economics, one is confronted with estimating a set of equa-
tions. This could be a set of demand equations across different sectors, industries, or
regions. Other examples include the estimation of a translog cost function along with
the corresponding cost share equations. In these cases, Zellner’s (1962) seemingly
unrelated regressions (SUR) approach is popular since it captures the efficiency due
to the correlation of the disturbances across equations. Applications of the SUR pro-
cedure with time-series or cross-section data are too numerous to cite. In this chapter,
we focus on the estimation of a set of SUR equations with panel data.

Avery (1977) seems to be thefirst to consider theSURmodelwith error component
disturbances. In this case, we have a set of M equations

y j = Z jδ j + u j ( j = 1, . . . , M) (6.1)

where y j is NT × 1, Z j is NT × k′
j , δ

′
j = (α j , β

′
j ),β j is k j × 1 and k′

j = k j + 1
with

u j = Zμμ j + ν j ( j = 1, . . . , M) (6.2)

where Zμ = (IN ⊗ ιT ) and μ′
j = (μ1 j ,μ2 j , . . . ,μN j ) and ν ′

j = (ν11 j , . . . ,
ν1T j , . . . , νN1 j , . . . , νNT j ) are random vectors with zero means and covariance
matrix

E

(
μ j

ν j

)
(μ′

l , ν
′
l ) =

[
σ2

μ jl
IN 0

0 σ2
ν jl

INT

]
(6.3)

for j, l = 1, 2, . . . , M . This can be justified as follows: μ ∼ (0, �μ ⊗ IN ) and ν ∼

(0, �ν ⊗ INT ) where μ′ = (μ′
1, μ

′
2, . . . ,μ

′
M ), ν ′ = (ν ′

1, ν
′
2, . . . , ν

′
M ), �μ = [σ2

μ jl
]

and �ν = [σ2
ν jl

] for j, l = 1, 2, . . . , M . In other words, each error component fol-
lows the same standard Zellner (1962) SUR assumptions imposed on classical dis-
turbances. Using (6.2), it follows that

� jl = E(u ju
′
l) = σ2

μ jl
(IN ⊗ JT ) + σ2

ν jl
(IN ⊗ IT ) (6.4)
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In this case, the covariance matrix between the disturbances of different equations
has the same one-way error component form. Except now, there are additional cross-
equations variance components to be estimated. The variance–covariance matrix for
the set of M equations is given by

� = E(uu′) = �μ ⊗ (IN ⊗ JT ) + �ν ⊗ (IN ⊗ IT ) (6.5)

where u′ = (u′
1, u

′
2, . . . , u

′
M ) is a 1 × MNT vector of disturbances with u j defined

in (6.2) for j = 1, 2, . . . , M .�μ = [σ2
μ jl

] and�ν = [σ2
ν jl

] are bothM × Mmatrices.

Replacing JT by T J̄T and IT by ET + J̄T , and collecting terms one gets

� = (T�μ + �ν) ⊗ (IN ⊗ J̄T ) + �ν ⊗ (IN ⊗ ET ) (6.6)

= �1 ⊗ P + �ν ⊗ Q

where �1 = T�μ + �ν . Also, P = IN ⊗ J̄T and Q = INT − P were defined (2.4)
(6.6) is the spectral decomposition of� derived by Baltagi (1980), which means that

�r = �r
1 ⊗ P + �r

ν ⊗ Q (6.7)

where r is an arbitrary scalar (see also Magnus 1982). For r = −1, one gets the
inverse �−1 and for r = − 1

2 one gets

�−1/2 = �
−1/2
1 ⊗ P + �−1/2

ν ⊗ Q (6.8)

Kinal and Lahiri (1990) suggest obtaining the Cholesky decomposition of �ν and
�1 in (6.8) to reduce the computation and simplify the transformation of the system.

One can estimate �ν by �̂ν = U ′QU/N (T − 1) and �1 by �̂1 = U ′PU/N
where U = [u1, . . . , uM ] is the NT × M matrix of disturbances for all M equa-
tions. Problem 6.7 asks the reader to verify that knowing U , �̂ν , and �̂1 are unbi-
ased estimates of�ν and�1, respectively. For feasible GLS estimates of the variance
components, Avery (1977) followingWallace and Hussain (1969) in the single equa-
tion case recommends replacingU byOLS residuals, while Baltagi (1980) following
Amemiya’s (1971) suggestion for the single equation case recommends replacingU
by Within-type residuals.

For this model, a block-diagonal � makes GLS on the whole system equivalent
to GLS on each equation separately; see Problem 6.3. However, when the same X
appear in each equation, GLS on the whole system is not equivalent to GLS on
each equation separately (see Avery 1977). As in the single equation case, if N and
T → ∞, then theWithin estimator of this system is asymptotically efficient and has
the same asymptotic variance–covariance matrix as the GLS estimator.

6.2 TheTwo-WayModel

It is easy to extend the analysis to a two-way error component structure across the
system of equations. In this case, (6.2) becomes

u j = Zμμ j + Zλλ j + ν j ( j = 1, . . . , M) (6.9)



6.2 The Two-Way Model 151

whereλ′
j = (λ1 j , . . . ,λT j ) is a randomvectorwith zeromean and covariancematrix

given by the following:

E

⎛
⎝μ j

λ j

ν j

⎞
⎠ (μ′

l ,λ
′
l , ν

′
l ) =

⎡
⎢⎣

σ2
μ jl

IN 0 0
0 σ2

λ jl
IT 0

0 0 σ2
ν jl

INT

⎤
⎥⎦ (6.10)

for j, l = 1, 2, . . . , M . In this case, λ ∼ (0, �λ ⊗ IT ) where λ′ = (λ1,λ2, . . . ,λT )

and �λ = [σ2
λ jl

] is M × M . Like μ and v, the λ follow a standard Zellner SUR-type
assumption. Therefore,

� jl = E(u ju
′
l) = σ2

μ jl
(IN ⊗ JT ) + σ2

λ jl
(JN ⊗ IT ) + σ2

ν jl
(IN ⊗ IT ) (6.11)

As in the one-way SUR model, the covariance between the disturbances of dif-
ferent equations has the same two-way error component form. Except now, there
are additional cross-equations variance components to be estimated. The variance–
covariance matrix of the system of M equations is given by

� = E(uu′) = �μ ⊗ (IN ⊗ JT ) + �λ ⊗ (JN ⊗ IT ) + �ν ⊗ (IN ⊗ IT ) (6.12)

where u′ = (u′
1, u

′
2, . . . , u

′
M ) with u j defined in (6.9). Using the Wansbeek and

Kapteyn (1982) trick, one gets (see Problem 6.5):

� =
4∑

i=1

�i ⊗ Qi (6.13)

where �1 = �ν, �2 = T�μ + �ν, �3 = N�λ + �ν , and �4 = T�μ + N�λ +
�ν, with Qi defined (3.13). This is the spectral decomposition of � (see Baltagi
1980), with

�r =
4∑

i=1

�r
i ⊗ Qi (6.14)

for r an arbitrary scalar. When r = −1 one gets the inverse �−1 and when r = − 1
2

one gets

�−1/2 =
4∑

i=1

�
−1/2
i ⊗ Qi (6.15)

Once again, the Cholesky decompositions of the �i can be obtained in (6.15) to
reduce the computation and simplify the transformation of the system (see Kinal and
Lahiri 1990). Knowing the true disturbances U , quadratic unbiased estimates of the
variance components are obtained from

�̂v = U ′Q1U

(N − 1)(T − 1)
�̂2 = U ′Q2U

(N − 1)
and �̂3 = U ′Q3U

(T − 1)
(6.16)

see Problem 6.7. Feasible estimates of (6.16) are obtained by replacing U by OLS
residuals or Within-type residuals. One should check for positive definite estimates
of �μ and �λ before proceeding. The Within estimator has the same asymptotic
variance–covariance matrix as GLS when N and T → ∞. Also, as long as the esti-
mate of�ν is consistent and the estimates of�μ and�λ have a finite positive definite
probability limit, the corresponding feasible SUR-GLS estimate of the regression
coefficients is asymptotically efficient.
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6.3 Applications and Extensions

Verbon (1980) applies the SUR procedure with one-way error components to a set
of four labor demand equations, using data from the Netherlands on 18 industries
over 10 semiannual periods covering the period 1972–79. Verbon (1980) extends the
above error component specification to allow for heteroskedasticity in the individual
effects modeled as a simple function of p time-invariant variables. He applies a
Breusch and Pagan (1979) LM test to check for the existence of heteroskedasticity.

Beierlein, Dunn and McConnon (1981) estimated the demand for electricity and
natural gas in the northeastern United States using an SURmodel with two-way error
component disturbances. The data were collected for nine states comprising the Cen-
sus Bureau’s northeastern region of the USA for the period 1967–77. Six equations
were considered corresponding to the various sectors considered. These were resi-
dential gas, residential electric, commercial gas, commercial electric, industrial gas,
and industrial electric. Comparison of the error components SUR estimates with
those obtained from OLS and single equation error component procedures showed
substantial improvement in the estimates and a sizable reduction in the empirical
standard errors.

Magnus (1982) derives the maximum likelihood estimator for the linear and non-
linear multivariate error component model under various assumptions on the errors.
Sickles (1985) applies Magnus’ multivariate nonlinear error components analysis
to model the technology and specific factor productivity growth in the US airline
industry.

Baltagi, Griffin and Rich (1995) estimate a SUR model consisting of a translog
variable cost function and its corresponding input share equations for labor, fuel, and
material. The panel data consists of 24 U.S. airlines over the period 1971–1986. Firm
and time dummies are included in the variable cost equation and symmetry as well
as adding-up restrictions on the share equations are imposed. A general Solow type
index of technical change is estimated and its determinants are in turn analyzed. One
of the main findings of this study is that despite the slowing of productivity growth
in the 1980s, deregulation does appear to have stimulated technical change due to
more efficient route structure.

Biorn (2004) considers the problemof estimating a system of regression equations
with random individual effects from unbalanced panel data. The unbalancedness
is due to random attrition. Biorn (2004) shows that GLS on this system can be
interpreted as a matrix weighted average of group specific GLS estimators with
weights equal to the inverse of their respective variance–covariance matrices. The
grouping of individuals in the panel is according to the number of times they are
observed (not necessarily the same period and not necessarily consecutive periods).
Biorn also derives a stepwise algorithm for obtaining the MLE under normality of
the disturbances.

Platoni, Sckokai and Moro (2012) extend Biorn’s (2004) estimation of the unbal-
anced seemingly unrelated regressions (SUR) from the one-way to the two-way
error components case. Once again, the GLS estimator can be interpreted as a matrix
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weighted average of the group specific GLS estimators with weights equal to the
inverse of their respective covariance matrices.

Baltagi and Rich (2005) utilize the National Bureau of Economic Research
(NBER) manufacturing productivity database file which provides annual data on
459 manufacturing industries at the SIC 4-digit level. They estimate a SUR model
consisting of a translog cost function and its corresponding input share equations for
production workers, nonproduction workers, energy, materials, and capital. Indus-
try and time dummies are included in the cost equation and symmetry as well as
adding-up restrictions on the share equations are imposed. Using the general index
approach of Baltagi and Griffin (1988), they establish an explicit and unconstrained
time path for nonneutral technical change between production and nonproduction
labor in USmanufacturing industries over the 1959–1996 period. Their findings con-
firm the prevailing interpretation in the labor economics literature that substantial
reductions in the relative share of production labor are attributable to a sustained
period of nonneutral technical change. However, they find that skill-biased technical
change effects are most evident prior to 1983. This predates the diffusion of personal
computer technologies in the workplace and the dramatic wage structure changes
associated with the 1980s. This confirms previous findings that historically, biased
technological change has been an important source of increased (relative) demand for
skilled labor, and that one should avoid exaggerating the uniqueness of the computer
revolution.

6.4 Problems

6.1 Seemingly unrelated regressions with one-way error component disturbances.
Using the one-way error component structure on the disturbances of the j th
equation given in (6.2) and (6.3), verify that� jl , the variance–covariancematrix
between the j th and lth equation disturbances, is given by (6.4).

6.2 Using (6.6) and (6.7), verify that ��−1 = I and �−1/2�−1/2 = �−1.
6.3 Special cases of the SUR model with error component disturbances. Consider

a set of two equations with one-way error components disturbances.
(a) Show that if the variance–covariance matrix between the equations is block-
diagonal, then GLS on the system is equivalent to GLS on each equation sep-
arately (see Avery 1977; Baltagi 1980).
(b) Show that if the explanatory variables are the same across the two equa-
tions, GLS on the system does not necessarily revert to GLS on each equation
separately (seeAvery 1977; Baltagi 1980).
(c) Does your answer to parts (a) and (b) change if the disturbances followed a
two-way error component model?
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6.4 Seemingly unrelated regressions with two-way error component disturbances.
Using the two-way error component structure on the disturbances of the j th
equation given in (6.9) and (6.10), verify that � jl , the variance–covariance
matrix between the j th and lth equation disturbances, is given by (6.11).

6.5 Using the form of� given in (6.12) and theWansbeek and Kapteyn (1982) trick
verify (6.13).

6.6 Using (6.13) and (6.14), verify that ��−1 = I and �−1/2�−1/2 = �−1.
6.7 Unbiased estimates of the variance components of the one-way SUR model.

(a) Using (6.6), verify that �̂ν = U ′QU/N (T − 1) and �̂1 = U ′PU/N yield
unbiased estimates of �ν and �1, respectively.
(b) Using (6.13), verify that (6.16) results in unbiased estimates of �ν , �2, and
�3, respectively.
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7Simultaneous Equationswith Error
Components

7.1 Single Equation Estimation

Endogeneity of the right-hand regressors is a serious problem in econometrics. By
endogeneity, we mean the correlation of the right-hand-side regressors and the dis-
turbances. This may be due to the omission of relevant variables, measurement error,
sample selectivity, self-selection, or other reasons. Endogeneity causes inconsis-
tency of the usual OLS estimates and requires instrumental variable (IV) methods
like two-stage least squares (2SLS) to obtain consistent parameter estimates. The
applied literature is full of examples of endogeneity: demand and supply equations
for labor, money, goods and commodities to mention a few. Also, behavioral rela-
tionships like consumption, production, investment, import, and export are just a
few more examples in economics where endogeneity is suspected. We assume that
the reader is familiar with the identification and estimation of a single equation and
a system of simultaneous equations. In this chapter, we focus on the estimation of
simultaneous equations using panel data.

Consider the following first structural equation of a simultaneous equation model

y1 = Z1δ1 + u1 (7.1)

where Z1 = [Y1, X1] and δ′
1 = (γ′

1,β
′
1). As in the standard simultaneous equation

literature, Y1 is the set of g1 right-hand-side endogenous variables, and X1 is the set
of k1 included exogenous variables. Let X = [X1, X2] be the set of all exogenous
variables in the system. This equation is identified with k2 the number of excluded
exogenous variables from the first equation (X2) being larger than or equal to g1.

Throughout this chapter, we will focus on the one-way error component model

u1 = Zμμ1 + ν1 (7.2)
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where Zμ = (IN ⊗ ιT ) and μ′
1 = (μ11, . . . ,μN1) and ν ′

1 = (ν111, . . . , νNT 1) are
random vectors with zero means and covariance matrix

E

(
μ1
ν1

)
(μ′

1, ν
′
1) =

[
σ2

μ11
IN 0

0 σ2
ν11

INT

]
(7.3)

This differs from the SUR setup in Chap. 6 only in the fact that there are right-hand-
side endogenous variables in Z1.

1 In this case,

E(u1u
′
1) = �11 = σ2

ν11
INT + σ2

μ11
(IN ⊗ JT ) (7.4)

In otherwords, the first structural equation has the typical variance–covariancematrix
of a one-way error component model described in Chap. 2. The only difference is
that now a double subscript (1, 1) is attached to the variance components to spec-
ify that this is the first equation. One can transform (7.1) by Q = INT − P with
P = IN ⊗ J̄T , to get

Qy1 = QZ1δ1 + Qu1 (7.5)

Let ỹ1 = Qy1 and Z̃1 = QZ1. Performing 2SLS on (7.5) with X̃ = QX as the set
of instruments, one gets Within 2SLS (or Fixed Effects 2SLS)

δ̃1,W2SLS = (Z̃ ′
1PX̃ Z̃1)

−1 Z̃ ′
1PX̃ ỹ1 (7.6)

with var(̂δ1,W2SLS) = σ2
ν11

(Z̃ ′
1PX̃ Z̃1)

−1. This can be obtained using the Stata com-
mand (xtivreg, fe) specifying the endogenous variables Y1 and the set of instruments
X . Within 2SLS can also be obtained as GLS on

X̃ ′ ỹ1 = X̃ ′ Z̃1δ1 + X̃ ′ũ1 (7.7)

see problem 7.1. Similarly, if we let ȳ1 = Py1 and Z̄1 = PZ1 , we can transform
(7.1) by P and perform 2SLS with X̄ = PX as the set of instruments. In this case,
we get the Between 2SLS estimator of δ1

δ̂1,B2SLS = (Z̄ ′
1PX̄ Z̄1)

−1 Z̄ ′
1PX̄ ȳ1 (7.8)

with var(̂δ1,B2SLS) = σ2
111

(Z̄ ′
1PX̄ Z̄1)

−1 where σ2
111

= Tσ2
μ11

+ σ2
ν11

. This can also
be obtained using the Stata command (xtivreg, be) specifying the endogenous vari-
ables Y1 and the set of instruments X . Between 2SLS can also be obtained as GLS
on

X̄ ′ ȳ1 = X̄ ′ Z̄1δ1 + X̄ ′ū1 (7.9)

Stacking these two transformed equations in (7.7) and (7.9) as a system, as in (2.28)
and noting that δ1 is the same for these two transformed equations, one gets(

X̃ ′ ỹ1
X̄ ′ ȳ1

)
=

(
X̃ ′ Z̃1

X̄ ′ Z̄1

)
δ1 +

(
X̃ ′ũ1
X̄ ′ū1

)
(7.10)

where

E

(
X̃ ′ũ1
X̄ ′ū1

)
= 0 and var

(
X̃ ′ũ1
X̄ ′ū1

)
=

[
σ2

v11
X̃ ′ X̃ 0

0 σ2
111

X̄ ′ X̄

]
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Performing GLS on (7.10) yields the error component two-stage least squares
(EC2SLS) estimator of δ1 derived by Baltagi (1981b)

δ̂1,EC2SLS =
[
Z̃ ′
1PX̃ Z̃1

σ2
ν11

+ Z̄ ′
1PX̄ Z̄1

σ2
111

]−1 [
Z̃ ′
1PX̃ ỹ1
σ2

ν11

+ Z̄ ′
1PX̄ ȳ1
σ2
111

]
(7.11)

with var(̂δ1,EC2SLS) given by the first inverted bracket in (7.11); see problem 7.2.
Note that δ̂1,EC2SLS can also be written as a matrix-weighted average of δ̃1,W2SLS
and δ̂1,B2SLS with the weights depending on their respective variance–covariance
matrices:

δ̂1,EC2SLS = W1̂δ1,W2SLS + W2̂δ1,B2SLS (7.12)

with

W1 =
[
Z̃ ′
1PX̃ Z̃1

σ2
ν11

+ Z̄ ′
1PX̄ Z̄1

σ2
111

]−1 [
Z̃ ′
1PX̃ Z̃1

σ2
ν11

]

and

W2 =
[
Z̃ ′
1PX̃ Z̃1

σ2
ν11

+ Z̄ ′
1PX̄ Z̄1

σ2
111

]−1 [
Z̄ ′
1PX̄ Z̄1

σ2
111

]

Consistent estimates of σ2
ν11

and σ2
111

can be obtained from W2SLS and B2SLS
residuals, respectively. In fact

σ̂2
ν11

= (y1 − Z 1̃δ1,W2SLS)
′Q(y1 − Z 1̃δ1,W2SLS)/N (T − 1) (7.13)

σ̂2
111 = (y1 − Z 1̂δ1,B2SLS)

′P(y1 − Z 1̂δ1,B2SLS)/N (7.14)

Substituting these variance-components estimates in (7.11), one gets a feasible esti-
mate of EC2SLS. Note that unlike the usual 2SLS procedure, EC2SLS requires
estimates of the variance components. One can correct for degrees of freedom in
(7.13) and (7.14) especially for small samples, but the panel is assumed to have large
N . Also, one should check that σ̂2

μ11
= (̂σ2

111
− σ̂2

ν11
)/T is positive.

Alternatively, one can premultiply (7.1) by �
−1/2
11 where �11 is given in (7.4), to

get
y∗
1 = Z∗

1δ1 + u∗
1 (7.15)

with y∗
1 = �

−1/2
11 y1, Z∗

1 = �
−1/2
11 Z1 and u∗

1 = �
−1/2
11 u1. In this case,�

−1/2
11 is given

by (2.20) with the additional subscripts (1, 1) for the variance components, i.e.,

�
−1/2
11 = (P/σ111) + (Q/σν11) (7.16)

Therefore, the typical element of y∗
1 is y∗

1i t
= (y1i t − θ1 ȳ1i . )/σv11 where

θ1 = 1 − (σν11/σ111) and ȳ1i . = ∑T
t=1 y1i t /T .

Given a set of instruments A, 2SLS on (7.15) using A gives

δ̂1,2SLS = (Z∗′
1 PAZ

∗
1)

−1Z∗′
1 PAy

∗
1 (7.17)

where PA = A(A′A)−1A′. Using the results in White (1986), the optimal set of
instrumental variables in (7.15) is

X∗ = �
−1/2
11 X = QX

σν11

+ PX

σ111
= X̃

σν11

+ X̄

σ111
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Using A = X∗, one gets the Balestra and Varadharajan-Krishnakumar (1987) gen-
eralized two-stage least squares (G2SLS):

δ̂1,G2SLS = (Z∗′
1 PX∗ Z∗

1)
−1Z∗′

1 PX∗ y∗
1 (7.18)

Cornwell, Schmidt and Wyhowski (1992) showed that Baltagi’s (1981b) EC2SLS
can be obtained from (7.17), i.e., using a 2SLS package on the transformed equa-
tion (7.15) with the set of instruments A = [QX , PX ] = [X̃ , X̄ ]. In fact, QX is
orthogonal to PX and PA = PX̃ + PX̄ . This also means that

PAZ
∗
1 = (PX̃ + PX̄ )[�−1/2

11 Z1] (7.19)

= (PX̃ + PX̄ )

[
Q

σν11

+ P

σ111

]
Z1 = PX̃ Z̃1

σν11

+ PX̄ Z̄1

σ111

with

Z∗′
1 PAZ

∗
1 =

(
Z̃ ′
1PX̃ Z̃1

σ2
ν11

+ Z̄ ′
1PX̄ Z̄1

σ2
111

)

and

Z∗′
1 PAy

∗
1 =

(
Z̃ ′
1PX̃ ỹ1
σ2

ν11

+ Z̄ ′
1PX̄ ȳ1
σ2
111

)

Therefore, δ̂1,EC2SLS given by (7.11) is the same as (7.17) with A = [X̃ , X̄ ].
So, how is Baltagi’s (1981b) EC2SLS given by (7.11) different from the Balestra

andVaradharajan-Krishnakumar (1987) G2SLS given by (7.18)? It should be clear to
the reader that the set of instruments used by Baltagi (1981b), i.e., A = [X̃ , X̄ ] spans
the set of instruments used by Balestra and Varadharajan-Krishnakumar (1987), i.e.,
X∗ = [X̃/σν11 + X̄/σ111 ]. In fact, one can show that A = [X̃ , X̄ ], B = [X∗, X̃ ] and
C = [X∗, X̄ ] yield the same projection, and therefore the same 2SLS estimator given
by EC2SLS (see problem 7.3). Without going into proofs, we note that Baltagi and
Li (1992) showed that δ̂1,G2SLS and δ̂1,EC2SLS yield the same asymptotic variance–
covariance matrix. Therefore, using White’s (1986) terminology, X̃ in B and X̄ in C
are redundant with respect to X∗. Redundant instruments can be interpreted loosely
as additional sets of instruments that do not yield extra gains in asymptotic efficiency;
see White (1986) for the strict definition and Baltagi and Li (1992) for the proof in
this context.

For applications, it is easy to obtain EC2SLS using a standard 2SLS package:

Step 1: Run W2SLS, and B2SLS using a standard 2SLS package, i.e., run 2SLS
of ỹ on Z̃ using X̃ as instruments, and run 2SLS of ȳ on Z̄ using X̄ as instruments.
This yields (7.6) and (7.8), respectively.2 Alternatively, this can be computed using
the (xtivreg, fe) and (xtivreg, be) commands in Stata, specifying the endogenous
variables and the set of instruments.



7.1 Single Equation Estimation 161

Step 2: Compute σ̂2
ν11

and σ̂2
111

from (7.13) and (7.14) and obtain y∗
1 , Z

∗
1 , and X∗

as described below (7.15). This transforms (7.1) by �̂
−1/2
11 as in (7.15).

Step 3: Run 2SLS on this transformed equation (7.15) using the instrument set
A = X∗ or A = [QX , PX ] as suggested above, i.e., run 2SLS of y∗

1 on Z∗
1 using

X∗ as instruments to get G2SLS, or [X̃ , X̄ ] as instruments to get EC2SLS. This
yields (7.18) and (7.11), respectively. These computations are easy. They involve
simple transformations on the data and the application of 2SLS three times. Alter-
natively, this can be donewith Stata using the (xtivreg, re) command to getG2SLS,
and (xtivreg, ec2sls) to get EC2SLS.

7.2 Empirical Example: Crime in North Carolina

Cornwell and Trumbull (1994), hereafter (CT), estimated an economic model of
crime using panel data on 90 counties in North Carolina over the period 1981–1987.
Table7.1 replicates the Between and fixed effects estimates of CT using Stata. The
empirical model relates the crime rate (which is an FBI index measuring the number
of crimes divided by the county population) to a set of explanatory variables which
include deterrent variables as well as variables measuring returns to legal oppor-
tunities. All variables are in logs except for the regional and time dummies. The
explanatory variables consist of the probability of arrest (which is measured by the
ratio of arrests to offenses), probability of conviction given arrest (which is measured
by the ratio of convictions to arrests), probability of a prison sentence given a convic-
tion (measured by the proportion of total convictions resulting in prison sentences);
average prison sentence in days as a proxy for sanction severity. The number of
police per capita as a measure of the county’s ability to detect crime, the population
densitywhich is the county population divided by county land area, a dummyvariable
indicating whether the county is in the SMSA with population larger than 50,000.
Percent minority, which is the proportion of the county’s population that is minority
or non-white. Percent youngmale which is the proportion of the county’s population
that is male and between the ages of 15 and 24. Regional dummies for western and
central counties. Opportunities in the legal sector are captured by the average weekly
wage in the county by industry. These industries are construction; transportation,
utilities and communication; wholesale and retail trade; finance, insurance and real
estate; services; manufacturing; and federal, state and local government.

Fixed effects results show that the probability of arrest, the probability of con-
viction given arrest, and the probability of imprisonment given conviction all have a
negative and significant effect on the crime ratewith estimated elasticities of−0.355,
−0.282, and−0.173, respectively. The sentence severity has a negative but insignif-
icant effect on the crime rate. The greater the number of police per capita, the greater
the number of reported crimes per capita. The estimated elasticity is 0.413 and it
is significant. This could be explained by the fact that the larger the police force,
the larger the reported crime. Alternatively, this could be an endogeneity problem
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Table 7.1 Economics of crime estimates for North Carolina, 1981–1987 (standard errors in paren-
theses)

lcrmrte Between

Fixed

Effects FE2SLS BE2SLS EC2SLS

lprbarr -0.648
(0.088)

-0.355
(0.032)

-0.576
(0.802)

-0.503
(0.241)

-0.413
(0.097)

lprbconv -0.528
(0.067)

-0.282
(0.021)

-0.423
(0.502)

-0.525
(0.100)

-0.323
(0.054)

lprbpris 0.297
(0.231)

-0.173
(0.032)

-0.250
(0.279)

0.187
(0.318)

-0.186
(0.042)

lavgsen -0.236
(0.174)

-0.002
(0.026)

0.009
(0.049)

-0.227
(0.179)

-0.010
(0.027)

lpolpc 0.364
(0.060)

0.413
(0.027)

0.658
(0.847)

0.408
(0.193)

0.435
(0.090)

ldensity 0.168
(0.077)

0.414
(0.283)

0.139
(1.021)

0.226
(0.102)

0.429
(0.055)

lwcon 0.195
(0.210)

-0.038
(0.039)

-0.029
(0.054)

0.314
(0.259)

-0.007
(0.040)

lwtuc -0.196
(0.170)

0.046
(0.019)

0.039
(0.031)

-0.199
(0.197)

0.045
(0.020)

lwtrd 0.129
(0.278)

-0.021
(0.040)

-0.018
(0.045)

0.054
(0.296)

-0.008
(0.041)

lwfir 0.113
(0.220)

-0.004
(0.028)

-0.009
(0.037)

0.042
(0.306)

-0.004
(0.029)

lwser -0.106
(0.163)

0.009
(0.019)

0.019
(0.039)

-0.135
(0.174)

0.006
(0.020)

lwmfg -0.025
(0.134)

-0.360
(0.112)

-0.243
(0.420)

-0.042
(0.156)

-0.204
(0.080)

lwfed 0.156
(0.287)

-0.309
(0.176)

-0.451
(0.527)

0.148
(0.326)

-0.164
(0.159)

lwsta -0.284
(0.256)

0.053
(0.114)

-0.019
(0.281)

-0.203
(0.298)

-0.054
(0.106)

lwloc 0.010
(0.463)

0.182
(0.118)

0.263
(0.312)

0.044
(0.494)

0.163
(0.120)

lpctmle -0.095
(0.158)

0.627
(0.364)

0.351
(1.011)

-0.095
(0.192)

-0.108
(0.140)

lpctmin 0.148
(0.049)

-- --
0.169

(0.053)
0.189

(0.041)

west -0.230
(0.108)

-- --
-0.205
(0.114)

-0.227
(0.100)

central -0.164
(0.064)

-- --
-0.173
(0.067)

-0.194
(0.060)

urban -0.035
(0.132)

-- --
-0.080
(0.144)

-0.225
(0.116)

_cons -2.097
(2.822)

-- --
-1.977
(4.001)

-0.954
(1.284)

Time dummies were included except for Between and BE2SLS. The number of observations
is 630.  The F-statistics for significance of county dummies in fixed effects is F(89,518) =
36.38.  The corresponding F-statistic using FE2SLS is 29.66.  Both are significant.

Hausman’s test for (fixed effects – random effects) is χ2
(22) = 49.4 with p-value of 0.0007.

The corresponding Hausman test for (FE2SLS – EC2SLS) is χ2
(22) = 19.5 with a p-value of

0.614.
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with more crime resulting in the hiring of more police. The higher the density of
the population the higher the crime rate, but this is insignificant. Returns to legal
activity are insignificant except for wages in the manufacturing sector and wages
in the transportation, utilities and communication sector. The manufacturing wage
has a negative and significant effect on crime with an estimated elasticity of -0.36,
while the transportation, utilities and communication sector wages have a positive
and significant effect on crime with an estimated elasticity of 0.046. Percent young
male is insignificant at the 5% level.

Cornwell and Trumbull (1994) argue that the Between estimates do not control
for county effects and yield much higher deterrent effects than the fixed effects
estimates. These Between estimates as well as the random effects estimates are
rejected as inconsistent by a Hausman (1978) test. CTworried about the endogeneity
of police per capita and the probability of arrest. They used as instruments two
additional variables. Offense mix which is the ratio of crimes involving face-to-
face contact (such as robbery, assault, and rape) to those that do not. The rationale
for using this variable is that arrest is facilitated by positive identification of the
offender. The second instrument is per capita tax revenue. This is justified on
the basis that counties with preferences for law enforcement will vote for higher
taxes to fund a larger police force. The fixed effects 2SLS estimates are reported in
Table7.1. These results are based on the replication by Baltagi (2006a) using Stata,
but they do notmatch those in Table3 of Cornwell and Trumbull (1994). All deterrent
variables had insignificant t-statistics. These include the probability of arrest, the
probability of conviction given arrest as well as the probability of imprisonment
given conviction. Also insignificant were sentence severity and police per capita.
Manufacturing wage, which was significant using the fixed effects 2SLS estimates
of Cornwell and Trumbull (1994), turn out to be insignificant in our replication. In
fact, CT find that all variables were insignificant using fixed effects 2SLS except for
the percent young male and the manufacturing wage. CT also report 2SLS estimates
ignoring the heterogeneity in the county effects for comparison. However, they warn
against using biased and inconsistent estimates that ignore county effects. In fact,
county effects were always significant; see the F-statisitcs reported in Table7.1.

An alternative to dealing with the endogeneity problem is to run a random effects
2SLS estimator that allows for the endogeneity of police per capita and the probabil-
ity of arrest. This estimator is a matrix-weighted average of Between 2SLS and fixed
effects 2SLS and was denoted by EC2SLS in (7.11). The Stata output for EC2SLS is
given in Table7.2 using (xtivreg, ec2sls) and the results are summarized in Table7.1.
All the deterrent variables are significant with slightly higher elasticities than fixed
effects. The sentence severity variable is still insignificant and police per capita is
still positive and significant. Manufacturing wage is negative and significant and
percent minority is positive and significant. Obtaining an estimate of the last coeffi-
cient is an advantage of EC2SLS over the fixed effects estimators, because it allows
us to recapture estimates of variables that were invariant across time and wiped
out by the fixed effects transformation; see also Hausman and Taylor (1981) and
Sect. 7.4. Table7.3 gives the random effects (G2SLS) estimator described in (7.18)
using (xtivreg, re). G2SLS gives basically the same results as EC2SLS but the stan-
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Table 7.2 EC2SLS estimates for the crime data
. xtivreg  lcrmrte lprbconv lprbpris lavgsen  ldensity lwcon lwtuc lwtrd lwfir lw
> ser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban d82 d83 d84 d85
>  d86  d87 ( lprbarr lpolpc= ltaxpc lmix), ec2sls

EC2SLS Random-effects regression                Number of obs      =       630
Group variable: county                          Number of groups   =        90

R-sq:  within  = 0.4521                         Obs per group: min =         7
       between = 0.8158                                        avg =       7.0
       overall = 0.7840                                        max =         7

                                                Wald chi2(26)      =    575.74
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000

------------------------------------------------------------------------------
     lcrmrte |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     lprbarr | -.4129261    .097402 -4.24   0.000 -.6038305 -.2220218
      lpolpc |   .4347492    .089695     4.85   0.000     .2589502    .6105482
    lprbconv | -.3228872   .0535517 -6.03   0.000 -.4278465 -.2179279
    lprbpris | -.1863195   .0419382 -4.44   0.000 -.2685169 -.1041222
     lavgsen | -.0101765   .0270231 -0.38   0.706 -.0631408    .0427877
    ldensity |   .4290282   .0548483     7.82   0.000     .3215275     .536529

  lwcon | -.0074751   .0395775 -0.19   0.850 -.0850455    .0700954
       lwtuc |    .045445   .0197926     2.30   0.022     .0066522    .0842379
       lwtrd | -.0081412   .0413828 -0.20   0.844 -.0892499    .0729676
       lwfir | -.0036395   .0289238 -0.13   0.900 -.0603292    .0530502
       lwser |   .0056098   .0201259     0.28   0.780 -.0338361    .0450557
       lwmfg | -.2041398   .0804393 -2.54   0.011 -.361798 -.0464816
       lwfed | -.1635108   .1594496 -1.03   0.305 -.4760263    .1490047
       lwsta | -.0540503   .1056769 -0.51   0.609 -.2611732    .1530727
       lwloc |   .1630523    .119638     1.36   0.173 -.0714339    .3975384
    lpctymle | -.1081057   .1396949 -0.77   0.439 -.3819026    .1656912
     lpctmin |    .189037   .0414988     4.56   0.000     .1077009    .2703731
        west | -.2268433   .0995913 -2.28   0.023 -.4220387 -.0316479
     central | -.1940428   .0598241 -3.24   0.001 -.3112958 -.0767898
     urban | -.2251539   .1156302 -1.95   0.052 -.4517851    .0014772

         d82 |   .0107452   .0257969     0.42   0.677 -.0398158    .0613062
         d83 | -.0837944   .0307088 -2.73   0.006 -.1439825 -.0236063
         d84 | -.1034997   .0370885 -2.79   0.005 -.1761918 -.0308076
         d85 | -.0957017   .0494502 -1.94   0.053 -.1926223    .0012189
         d86 | -.0688982   .0595956 -1.16   0.248 -.1857036    .0479071
         d87 | -.0314071   .0705197 -0.45   0.656 -.1696232    .1068091
       _cons | -.9538032   1.283966 -0.74   0.458 -3.470331    1.562725
-------------+----------------------------------------------------------------
     sigma_u |  .21455964
     sigma_e |  .14923892

rho |  .67394413   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented:   lprbarr lpolpc
Instruments:    lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd lwfir lwser

      lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban d82
                d83 d84 d85 d86 d87 ltaxpc lmix

dard errors are higher. Remember that EC2SLS uses more instruments than G2SLS.
Problem 04.1.1 in Econometric Theory by Baltagi (2004) suggests a Hausman test
based on the difference between fixed effects 2SLS and random effects 2SLS. For
the crime data, this yields a Hausman statistic of 19.50 which is distributed asχ2(22)
and is insignificant with a p-value of 0.614. This does not reject the null hypothesis
that EC2SLS yields a consistent estimator. This can be computed using the Hausman
command after storing the EC2SLS and FE2SLS estimates. Recall that the random
effects estimator was rejected by Cornwell and Trumbull (1994) based on the stan-
dard Hausman (1978) test. The latter was based on the contrast between fixed effects
and random effects assuming that the endogeneity comes entirely from the correla-
tion between the county effects and the explanatory variables. This does not account
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Table 7.3 Random effects 2SLS for crime data (G2SLS)
 . xtivreg  lcrmrte lprbconv lprbpris lavgsen  ldensity lwcon lwtuc lwtrd lwfir lw
> ser lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban d82 d83 d84 d85
>  d86  d87 ( lprbarr lpolpc= ltaxpc lmix), re

G2SLS Random-effects regression                 Number of obs      =       630
Group variable: county                          Number of groups   =        90

R-sq:  within  = 0.4521                         Obs per group: min =         7
 between = 0.8036                                        avg =       7.0

       overall = 0.7725                                        max =         7

                                                Wald chi2(26)      =    542.48
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000

------------------------------------------------------------------------------
     lcrmrte |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     lprbarr | -.4141383   .2210496 -1.87   0.061 -.8473875    .0191109
      lpolpc |   .5049461   .2277778     2.22   0.027     .0585098    .9513824
    lprbconv | -.3432506   .1324648 -2.59   0.010 -.6028768 -.0836244
    lprbpris | -.1900467   .0733392 -2.59   0.010 -.333789 -.0463045
     lavgsen | -.0064389   .0289407 -0.22   0.824 -.0631617    .0502838
    ldensity |   .4343449   .0711496     6.10   0.000     .2948943    .5737956
      lwcon | -.0042958   .0414226 -0.10   0.917 -.0854826    .0768911
       lwtuc |   .0444589   .0215448     2.06   0.039     .0022318    .0866859
       lwtrd | -.0085579   .0419829 -0.20   0.838 -.0908428     .073727
       lwfir | -.0040305   .0294569 -0.14   0.891 -.0617649    .0537038
       lwser |   .0105602   .0215823     0.49   0.625 -.0317403    .0528608
       lwmfg | -.201802   .0839373 -2.40   0.016 -.3663161 -.0372878
       lwfed | -.2134579   .2151046 -0.99   0.321 -.6350551    .2081393
       lwsta | -.0601232   .1203149 -0.50   0.617 -.295936    .1756896
       lwloc |   .1835363   .1396775     1.31   0.189 -.0902265    .4572992
    lpctymle | -.1458703   .2268086 -0.64   0.520 -.5904071    .2986664
     lpctmin |   .1948763   .0459385     4.24   0.000     .1048384    .2849141
        west | -.2281821    .101026 -2.26   0.024 -.4261894 -.0301747
     central | -.1987703   .0607475 -3.27   0.001 -.3178332 -.0797075
       urban | -.2595451   .1499718 -1.73   0.084 -.5534844    .0343942
         d82 |   .0132147   .0299924     0.44   0.660 -.0455692    .0719987
         d83 | -.0847693    .032001 -2.65   0.008 -.1474901 -.0220485
         d84 | -.1062027   .0387893 -2.74   0.006 -.1822284 -.0301769
         d85 | -.0977457   .0511681 -1.91   0.056 -.1980334     .002542
         d86 | -.0719451   .0605819 -1.19   0.235 -.1906835    .0467933
         d87 | -.0396595   .0758531 -0.52   0.601 -.1883289    .1090099
       _cons | -.4538501   1.702983 -0.27   0.790 -3.791636    2.883935
-------------+----------------------------------------------------------------
     sigma_u |  .21455964
     sigma_e |  .14923892

rho |  .67394413   (fraction of variance due to u_i)
------------------------------------------------------------------------------
Instrumented:   lprbarr lpolpc
Instruments:    lprbconv lprbpris lavgsen ldensity lwcon lwtuc lwtrd lwfir lwser

          lwmfg lwfed lwsta lwloc lpctymle lpctmin west central urban d82
                d83 d84 d85 d86 d87 ltaxpc lmix

for the endogeneity of the conventional simultaneous equation type between police
per capita and the probability of arrest and the crime rate. This alternative Haus-
man test based on the contrast between fixed effects 2SLS and EC2SLS failed to
reject the null hypothesis. Accounting for this endogeneity, the random effects 2SLS
becomes a viable estimator whose consistency cannot be rejected. We also ran the
first stage regressions to check for weak instruments. For the probability of arrest,
the F-statistic of the fixed effects first-stage regression was 15.6 as compared to
4.62 for the Between first-stage regression. Similarly, for the police per capita, the F-
statistic of the fixed effects first-stage regression was 9.27 as compared to 2.60 for the
Between first-stage regression. This indicates that these instruments may be weaker
in the Between first-stage regressions (for Between 2SLS) than in the fixed effects
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first stage regressions (for fixed effects 2SLS). This example confirms the Cornwell
and Trumbull (1994) conclusion that county effects cannot be ignored in estimating
an economic model of crime using panel data in North Carolina. It also shows that
the usual Hausman test based on the difference between fixed effects and random
effects may lead to misleading inference if there are endogenous regressors of the
conventional simultaneous equation type. An alternative Hausman test based on the
difference between fixed effects 2SLS and random effects 2SLS did not reject the
consistency of random effects 2SLS, an estimator which yields plausible estimates
of the crime equation.

7.3 System Estimation

Consider the system of identified equations:

y = Zδ + u (7.20)

where y′ = (y′
1, . . . , y

′
M ), Z =diag[Z j ], δ′ = (δ′

1, . . . , δ
′
M ), andu′ = (u′

1, . . . , u
′
M )

with Z j = [Y j , X j ] of dimension NT × (g j + k j ), for j = 1, . . . , M . In this case,
there are g j included right-hand side Y j and k j included right-hand side X j . This
differs from the SUR model only in the fact that there are right-hand-side endoge-
nous variables in the system of equations. For the one-way error component model,
the disturbance of the j th equation u j is given by (6.2) and � jl = E(u ju′

l) is given
by (6.4) as in the SUR case. Once again, the covariance matrix between the distur-
bances of different equations has the same error component form. Except now, there
are additional cross-equations variance components to be estimated. The variance–
covariance matrix of the set of M structural equations � = E(uu′) is given by (6.5)
and �−1/2 is given by (6.8). Premultiplying (7.20) by (IM ⊗ Q) yields

ỹ = Z̃δ + ũ (7.21)

where ỹ = (IM ⊗ Q)y, Z̃ = (IM ⊗ Q)Z and ũ = (IM ⊗ Q)u. Performing 3SLS on
(7.21) with (IM ⊗ X̃) as the set of instruments, where X̃ = QX , one gets theWithin
3SLS estimator:

δ̃W3SLS = [Z̃ ′(�−1
ν ⊗ PX̃ )Z̃ ]−1[Z̃ ′(�−1

ν ⊗ PX̃ )ỹ] (7.22)

Similarly, transforming (7.20) by(IM ⊗ P) yields

ȳ = Z̄δ + ū (7.23)

where ȳ = (IM ⊗ P)y, Z̄ = (IM ⊗ P)Z and ū = (IM ⊗ P)u. Performing 3SLS on
the transformed system (7.23) using (IM ⊗ X̄) as the set of instruments, where
X̄ = PX , one gets the Between 3SLS estimator:

δ̂B3SLS = [Z̄ ′(�−1
1 ⊗ PX̄ )Z̄ ]−1[Z̄ ′(�−1

1 ⊗ PX̄ )ȳ] (7.24)
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Next, we stack the two transformed systems given in (7.21) and (7.23) after premul-
tiplying by (IM ⊗ X̃ ′) and (IM ⊗ X̄ ′), respectively. Then, we perform GLS noting
that δ is the same for these two transformed systems (see problem 7.5). The resulting
estimator of δ is the error components three-stage least squares (EC3SLS) given by
Baltagi (1981b)

δ̂EC3SLS = [Z̃ ′(�−1
ν ⊗ PX̃ )Z̃ + Z̄ ′(�−1

1 ⊗ PX̄ )Z̄ ]−1

×[Z̃ ′(�−1
ν ⊗ PX̃ )ỹ + Z̄ ′(�−1

1 ⊗ PX̄ )ȳ] (7.25)

Note that δ̂EC3SLS can also be written as a matrix-weighted average of δ̂W3SLS and
δ̂B3SLS as follows:

δ̂EC3SLS = W1̂δW3SLS + W2̂δB3SLS (7.26)

with

W1 = [Z̃ ′(�−1
ν ⊗ PX̃ )Z̃ + Z̄ ′(�−1

1 ⊗ PX̄ )Z̄ ]−1[Z̃ ′(�−1
ν ⊗ PX̃ )Z̃ ]

and
W2 = [Z̃ ′(�−1

ν ⊗ PX̃ )Z̃ + Z̄ ′(�−1
1 ⊗ PX̄ )Z̄ ]−1[Z̄ ′(�−1

1 ⊗ PX̄ )Z̄ ]
Consistent estimates of �ν and �1 can be obtained as in (7.13) and (7.14) using
W2SLS and B2SLS residuals with

σ̂2
v jl

= (y j − Z j δ̃ j,W2SLS)
′Q(yl − Zl δ̃l,W2SLS)/N (T − 1) (7.27)

σ̂2
1 jl

= (y j − Z j δ̂ j,B2SLS)
′P(yl − Zl δ̂l,B2SLS)/N (7.28)

One should check whether �̂μ = (�̂1 − �̂ν)/T is positive definite.
Using �−1/2 from (6.8), one can transform (7.20) to get

y∗ = Z∗δ + u∗ (7.29)

with y∗ = �−1/2y, Z∗ = �−1/2Z and u∗ = �−1/2u. For an arbitrary set of instru-
ments A, the 3SLS estimator of (7.29) becomes

δ̂3SLS = (Z∗′PAZ
∗)−1Z∗′PAy

∗ (7.30)

Using the results of White (1986), the optimal set of instruments is

X∗ = �−1/2(IM ⊗ X) = (�−1/2
ν ⊗ QX) + (�

−1/2
1 ⊗ PX)

Substituting A = X∗ in (7.30), one gets the efficient three-stage least squares
(E3SLS) estimator:

δ̂E3SLS = (Z∗′PX∗ Z∗)−1Z∗′PX∗ y∗ (7.31)

This is not the G3SLS estimator suggested by Balestra and Varadharajan-
Krishnakumar (1987). In fact, Balestra and Varadharajan-Krishnakumar (1987) sug-
gest using

A = �1/2 diag[�−1
j j ](IM ⊗ X)

= �1/2
ν diag

(
1

σ2
ν j j

)
⊗ X̃ + �

1/2
1 diag

(
1

σ2
1 j j

)
⊗ X̄ (7.32)
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Substituting this A in (7.30) yields the G3SLS estimator of δ. So, how are G3SLS,
EC3SLS, and E3SLS related? Baltagi and Li (1992) show that Baltagi’s (1981b)
EC3SLS estimator can be obtained from (7.30) with A = [IM ⊗ X̃ , IM ⊗ X̄ ]. From
this it is clear that the set of instruments [IM ⊗ X̃ , IM ⊗ X̄ ] used by Baltagi (1981b)
spans the set of instruments [�−1/2

ν ⊗ X̃ + �
−1/2
1 ⊗ X̄ ] needed for E3SLS. In addi-

tion, we note without proof that Baltagi and Li (1992) show that δ̂EC3SLS and δ̂E3SLS
yield the same asymptotic variance–covariance matrix. Problem 7.6 shows that Bal-
tagi’s (1981b) EC3SLS estimator has redundant instruments with respect to those
used by the E3SLS estimator. Therefore, using White’s (1984) terminology, the
extra instruments used by Baltagi (1981b) do not yield extra gains in asymptotic
efficiency. However, Baltagi and Li (1992) also show that both EC3SLS and E3SLS
are asymptotically more efficient than the G3SLS estimator corresponding to the set
of instruments given by (7.32). In applications, it is easy to obtain EC3SLS using a
standard 3SLS package:

Step 1: Obtain W2SLS and B2SLS estimates of each structural equation as
described in the first step of computing EC2SLS.
Step 2: Compute estimates of �̂1 and �̂ν as described in (7.27) and (7.28).
Step 3: Obtain the Cholesky decomposition of �̂−1

1 and �̂−1
ν and use those instead

of �̂
−1/2
1 and �̂

−1/2
ν in the transformation described in (7.29), i.e., obtain y∗, Z∗,

and X∗ as described below (7.30).
Step 4: Apply 3SLS to this transformed system (7.29) using as a set of instru-
ments A = X∗ or A = [IM ⊗ X̃ , IM ⊗ X̄ ] , i.e., run 3SLS of y∗ on Z∗ using as
instruments X∗ or [IM ⊗ X̃ , IM ⊗ X̄ ]. These yield (7.31) and (7.25), respectively.
The computations are again easy, requiring simple transformations and a 3SLS
package.

Baltagi (1981b) shows that EC3SLS reduces to EC2SLSwhen the disturbances of
the different structural equations are uncorrelated with each other, but not necessarily
when all the structural equations are just-identified. This is different from the anal-
ogous conditions between 2SLS and 3SLS in the classical simultaneous equations
model (see problem 7.7).

Baltagi (1984) also performsMonteCarlo experiments on a two-equation simulta-
neousmodel with error components and demonstrates the efficiency gains in terms of
mean squared error in performingEC2SLS andEC3SLSover the standard simultane-
ous equation counterparts, 2SLS and 3SLS. EC2SLS and EC3SLS also performed
better than a two- or three-stage variance-components method where right-hand-
side endogenous variables are replaced by their predicted values from the reduced
form and the standard error component GLS is performed in the second step. Also,
Baltagi (1984) demonstrates that better estimates of the variance components do not
necessarily imply better estimates of the structural or reduced form parameters.3

Baltagi and Blien (1998) use FE-2SLS to estimate wage curves for Germany
using data for 142 labor market regions over the period 1981-90. Briefly, the wage
curve describes the negative relationship between the local unemployment rate and
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the level of wages. Baltagi and Blien (1998) find that ignoring endogeneity of the
local employment rate yields results in favor of the wage curve only for younger and
less qualified workers. Accounting for endogeneity of the unemployment rate yields
evidence in favor of the wage curve across all types of workers. In particular, the
wages of less qualified workers are more responsive to local unemployment rates
than the wages of more qualified workers. Also, the wages of men are slightly more
responsive to local unemployment rates than the wages of women. Applications
of EC2SLS and EC3SLS include (i) an econometric rational-expectations macro-
economic model for developing countries with capital controls (see Haque, Lahiri
and Montiel 1993), and (ii) an econometric model measuring income and price
elasticities of foreign trade for developing countries (see Kinal and Lahiri 1990).

Empirical Example: Economic growth and foreign aid. Bruckner (2013) inves-
tigates the simultaneity problem between per capita GDP growth and foreign aid.
He utilizes an unbalanced panel of 47 least developed countries (LDCs) observed
over the period 1960–2000. Using fixed effects 2sls with time and country effects,
Bruckner shows that a 1% point increase in GDP per capita growth decreased for-
eign aid by over 4%. The endogenous variables are the change in log GDP (D_lgdp)
and the change in log foreign aid (D_laid). The instrumental variables used for this
equation were the change in log rainfall (D_rain), its square (D_rain_sq), and the
log-changes in the commodity price index (p_index). The data can be downloaded
from the Journal of Applied Econometrics website. Accounting for the endogeneity
of foreign aid, Bruckner then estimates that a 1% increase in foreign aid increased
real per capita GDP growth by around 0.1% points. Problem 7.16 asks the reader
to replicate Table I of Bruckner (2013) relating the effect of economic growth on
foreign aid. Here, in the spirit of Bruckner, we estimate a system of two equations

Table 7.4 Fixed Effects 3SLS for Economic Growth and Foreign Aid
. reg3 (D.lgdp D.laid p_index D.rain D.rain_sq time* Iccode*) (D.laid D.lgdp
D.polity2 war time* Iccode*)
Three-stage least-squares regression

|      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
+

D_lgdp       |
laid |
D1. |   .1196744   .1493232 0.80   0.423 -.1729936    .4123425

|
p_index |   .4760824   .2910518     1.64   0.102 -.0943686    1.046533

|
rain |
D1. |   .2732289   .1245043     2.19   0.028      .029205    .5172529

|
rain_sq |

D1. | -.0187174   .0086531 -2.16   0.031 -.0356772 -.0017576
|

_cons | -.011686    .027273 -0.43   0.668 -.0651401     .041768
+

D_laid       |
lgdp |
D1. | -3.800951   1.900492 -2.00   0.046 -7.525848 -.0760546

|
polity2 |

D1. |    .016687   .0083164     2.01   0.045     .0003871     .032987
|

war | -.0735758   .0778736 -0.94   0.345 -.2262053    .0790536
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with FE-3SLS. The first equation relates the change in log GDP per capita to the
change in log foreign aid, the log-changes in the commodity price index, log rain and
its square, time and country fixed effects. The second equation relates the change in
log foreign aid to the change in log GDP, changes in political institutions (D.polity2),
the incidence of civil war (war) along with time and country fixed effects. Table7.4
shows these results using reg3 in Stata. This is 3SLSwith dummy variables for coun-
tries and time. The results corroborate the significant negative effect of 1% change
in log GDP per capita on log of foreign aid, although this effect is smaller 3.8%.
Also, it corroborates the effect of 1% in log of foreign aid on economic growth is
0.1%, but this is insignificant. Note that the time and country dummy variables are
not shown to conserve space.

7.4 The Hausman andTaylor Estimator

Let us reconsider the single equation estimation case but now focus on endogeneity
occurring through the unobserved individual effects. Examples where μi and the
explanatory variables may be correlated include an earnings equation, where the
unobserved individual ability may be correlated with schooling and experience; also
a production function, where managerial ability may be correlated with the inputs.
Mundlak (1978) considered the one-way error component regression model in (2.5)
but with the additional auxiliary regression:

μi = X̄ ′
i .π + εi (7.33)

where εi ∼ IIN(0,σ2
ε ) and X̄ ′

i . is 1 × K vector of observations on the explanatory
variables averaged over time. In other words, Mundlak assumed that the individual
effects are a linear function of the averages of all the explanatory variables across
time. These effects are uncorrelated with the explanatory variables if and only if
π = 0.Mundlak (1978) assumed, without loss of generality, that the X are deviations
from their sample mean. In vector form, one can write (7.33) as

μ = Z ′
μXπ/T + ε (7.34)

where μ′ = (μ1, . . . ,μN ), Zμ = IN ⊗ ιT and ε′ = (ε1, . . . , εN ). Substituting (7.34)
in (2.5), with no constant, one gets

y = Xβ + PXπ + (Zμε + ν) (7.35)

where P = IN ⊗ J̄T . Using the fact that the ε and the v are uncorrelated, the new
error in (7.35) has zero mean and variance–covariance matrix

V = E(Zμε + ν)(Zμε + ν)′ = σ2
ε (IN ⊗ JT ) + σ2

ν INT (7.36)

Using partitioned inverse, one can verify (see problem 7.8) that GLS on (7.35) yields

β̂GLS = β̃Within = (X ′QX)−1X ′Qy (7.37)
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and

π̂GLS = β̂Between − β̃Within = (X ′PX)−1X ′Py − (X ′QX)−1X ′Qy (7.38)

with

var(̂πGLS) = var(̂βBetween) + var(̃βWithin)

= (Tσ2
ε + σ2

ν)(X
′PX)−1 + σ2

ν(X
′QX)−1 (7.39)

Problem 7.8 also shows that OLS and GLS on (7.35) are equivalent. Therefore,
Mundlak (1978) showed that the best linear unbiased estimator of (2.5) becomes the
fixed effects (Within) estimator once these individual effects are modeled as a linear
function of all the Xit as in (7.33). The random effects estimator on the other hand
is biased because it ignores (7.33). Note that Hausman’s test based on the Between
minus Within estimators is basically a test for H0;π = 0 and this turns out to be
another natural derivation for the test considered in Chap. 4, namely,

π̂′
GLS(var(̂π

′
GLS))

−1π̂GLS
H0→ χ2

K

Mundlak’s (1978) formulation in (7.35) assumes that all the explanatory variables are
related to the individual effects. The random effects model on the other hand assumes
no correlation between the explanatory variables and the individual effects. The
random effects model generates the GLS estimator, whereas Mundlak’s formulation
produces the Within estimator. Instead of this “ all or nothing” correlation among
the X and the μi , Hausman and Taylor (1981) consider a model where some of the
explanatory variables are related to the μi . In particular, they consider the following
model:

yit = Xitβ + Ziγ + μi + νi t (7.40)

where the Zi are cross-sectional time-invariant variables. Hausman and Taylor
(1981), hereafter HT, split X and Z into two sets of variables: X = [X1; X2] and
Z = [Z1; Z2] where X1 is n × k1, X2 is n × k2, Z1 is n × g1, Z2 is n × g2 and
n = NT . X1 and Z1 are assumed exogenous in that they are not correlated with μi ,

and νi t while X2 and Z2 are endogenous because they are correlated with the μi , but
not the νi t .TheWithin transformationwould sweep theμi and remove the bias, but in
the process it would also remove the Zi and hence the Within estimator will not give
an estimate of γ. To get around that HT suggest premultiplying the model by �−1/2

and using the following set of instruments; A0 = [Q, X1, Z1], where Q = INT − P
and P = (IN ⊗ J̄T ). Breusch, Mizon and Schmidt (1989), hereafter BMS, show
that this set of instruments yields the same projection and is therefore equivalent to
another set, namely AHT = [QX1, QX2, PX1, Z1]. The latter set of instruments
AHT is feasible, whereas A0 is not. The order condition for identification gives the
result that k1 the number of variables in X1 must be at least as large as g2 the number
of variables in Z2. Note that X̃1 = QX1, X̃2 = QX2, X̄1 = PX1 and Z1 are used
as instruments. Therefore, X1 is used twice, once as averages and another time as
deviations from these averages. This is an advantage of panel data allowing instru-
ments from within the model. Note that the Within transformation wipes out the Zi
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and does not allow the estimation of γ. In order to get consistent estimates of γ, HT
propose obtaining the Within residuals and averaging them over time

d̂i = ȳi . − X̄ ′
i .β̃W (7.41)

Then, (7.40) averaged over time can be estimated by running 2SLS of d̂i on Zi with
the set of instruments A = [X1, Z1]. This yields

γ̂2SLS = (Z ′PAZ)−1Z ′PAd̂ (7.42)

where PA = A(A′A)−1A′. It is clear that the order condition has to hold (k1 � g2) for
(Z ′PAZ) to be nonsingular. Next, the variance-components estimates are obtained
as follows:

σ̃2
ν = ỹ′ P̄X̃ ỹ/N (T − 1) (7.43)

where ỹ = Qy, X̃ = QX , P̄A = I − PA and

σ̃2
1 = (yit − Xit β̃W − Zi γ̂2SLS)

′P(yit − Xit β̃W − Zi γ̂2SLS)

N
(7.44)

This last estimate is based upon an NT vector of residuals. Once the variance-
components estimates are obtained, the model in (7.40) is transformed using �̂−1/2

as follows:
�̂−1/2yit = �̂−1/2Xitβ + �̂−1/2Ziγ + �̂−1/2uit (7.45)

The HT estimator is basically 2SLS on (7.45) using AHT = [X̃ , X̄1, Z1] as a set of
instruments.

(1) If k1 < g2, then the equation is under-identified. In this case, β̂HT = β̃W and
γ̂HT does not exist.

(2) If k1 = g2, then the equation is just-identified. In this case, β̂HT = β̃W and
γ̂HT = γ̂2SLS given by (7.42).

(3) If k1 > g2, then the equation is over-identified and the HT estimator obtained
from (7.45) is more efficient than the Within estimator.

A test for over-identification is obtained by computing

m̂ = q̂ ′[var(̃βW ) − var(̂βHT )]−q̂ (7.46)

with q̂ = β̂HT − β̃W and σ̂2
νm̂

H0→ χ2
l where l = min[k1 − g2, NT − K ].

Note that y∗ = σ̂ν�̂
−1/2y has a typical element y∗

i t = yit − θ̂ ȳi . where θ̂ = 1 −
σ̂ν/σ̂1 and similar terms exist for X∗

i t and Z∗
i . In this case, 2SLS on (7.45) yields

(
β̂
γ̂

)
=

[(
X∗′
Z∗′

)
PA(X∗, Z∗)

]−1 (
X∗′
Z∗′

)
PAy

∗ (7.47)

where PA is the projection matrix on AHT = [X̃ , X̄1, Z1].
Amemiya and MaCurdy (1986), hereafter AM, suggest a more efficient set of

instruments AAM = [QX1, QX2, X∗
1, Z1] where X∗

1 = X0
1 ⊗ ιT and
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X0
1 =

⎡
⎢⎣

X11 X12 . . . X1T
...

... . . .
...

XN1 XN2 . . . XNT

⎤
⎥⎦ (7.48)

is an N × k1T matrix. So X1 is used (T + 1) times, once as X̃1 and T times as X∗
1 .

The order condition for identification is now more likely to be satisfied (T k1 > g2).
However, this set of instruments requires a stronger exogeneity assumption than that
of Hausman and Taylor (1981). The latter requires only uncorrelatedness of themean
of X1 from the μi , i.e.,

plim

(
1

N

N∑
i=1

X̄1i .μi

)
= 0

while Hausman and Taylor (1981) require

plim

(
1

N

N∑
i=1

X1i tμi

)
= 0 for t = 1, . . . , T

i.e., uncorrelatedness at each point in time. Breusch, Mizon and Schmidt (1989)
suggest yet a more efficient set of instruments

ABMS = [X̃ , X̄1, (X̃)∗, Z1]
so that X1 is used (T + 1) times and X2 is used T times. This requires even more
exogeneity assumptions, i.e., X̃2 = QX2 should be uncorrelated with the μi effects.
The BMS order condition becomes T k1 + (T − 1)k2 � g2.

Computational Note: The number of instruments used by the AM and BMS pro-
cedures can increase rapidly as T and the number of variables in the equation get
large. For large N panels, small T and reasonable k, this should not be a problem.
However, even for T = 7, k1 = 4, and k2 = 5 as in the empirical illustration used in
the next section, the number of additional instruments used by HT are 4 as compared
to 28 for AM and 58 for BMS.4

7.5 Empirical Example: Earnings Equation Using PSID Data

Cornwell and Rupert (1988) apply these three instrumental variable (IV) methods
to a returns to schooling example based on a panel of 595 individuals observed over
the period 1976-82 and drawn from the Panel Study of Income Dynamics (PSID).
A description of the data is given in Cornwell and Rupert (1988) and is put on
the Springer website as Wage.xls. In particular, log wage is regressed on years of
education (ED), weeks worked (WKS), years of full-time work experience (EXP),
occupation (OCC = 1, if the individual is in a blue-collar occupation), residence



174 7 Simultaneous Equations with Error Components

Table 7.5 Mincer Wage Equation. Dependent Variable: Log Wage∗

GLS Within HT AM

Constant
4.264

(0.098)
− 2.913

(0.284)

2.927

(0.275)

WKS
0.0010

(0.0008)

0.0008

(0.0006)

0.0008

(0.0006)

0.0008

(0.0006)

SOUTH
−0.017

(0.027)

−0.002

(0.034)

0.007

(0.032)

0.007

(0.032)

SMSA
−0.014

(0.020)

−0.042

(0.019)

−0.042

(0.019)

−0.042

(0.019)

MS
−0.075

(0.023)

−0.030

(0.019)

−0.030

(0.019)

−0.030

(0.019

EXP
0.082

(0.003)

0.113

(0.002)

0.113

(0.002)

0.113

(0.002)

EXP2
−0.0008

(0.00006)

−0.0004

(0.00005)

−0.0004

(0.00005)

−0.0004

(0.00005)

OCC
−0.050

(0.017)

−0.021

(0.014)

−0.021

(0.014)

−0.021

(0.014)

IND
0.004

(0.017)

0.019

(0.015)

0.014

(0.015)

0.014

(0.015)

UNION
0.063

(0.017)

0.033

(0.015)

0.033

(0.015)

0.032

(0.015)

FEM
−0.339

(0.051)
− −0.131

(0.127)

−0.132

(0.127)

BLK
−0.210

(0.058)
− −0.286

(0.156)

−0.286

(0.155)

ED
0.100

(0.006)
− 0.138

(0.021)

0.137

(0.021)

χ2
9 = 5075 χ2

3 = 5.26 χ2
13 = 14.74

∗X2 = (OCC, SOUTH, SMSA, IND), Z1 = (FEM, BLK)
Source Baltagi and Khanti-Akom (1990). Reproduced by permission of John Wiley & Sons Ltd

(SOUTH = 1, SMSA = 1, if the individual resides in the South, or in a standard
metropolitan statistical area), industry (IND = 1, if the individual works in a manu-
facturing industry), marital status (MS = 1, if the individual is married), sex and race
(FEM = 1, BLK = 1, if the individual is female or black), union coverage (UNION
= 1, if the individual’s wage is set by a union contract) and time dummies to capture
productivity and price level effects. Baltagi and Khanti-Akom (1990) replicate this
study, and some of their results in Table II are reproduced in Table7.5. The conven-
tional GLS indicates that an additional year of schooling produces a 10% wage gain.
But conventional GLS does not account for the possible correlation of the explana-
tory variables with the individual effects. The Within transformation eliminates the
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Table 7.6 Hausman and Taylor estimates of a mincer wage equation
. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed, endog (exp exp2
wks ms union ed)

Hausman-Taylor estimation                       Number of obs      =      4165
Group variable (i): id                          Number of groups   =       595

Obs per group: min =         7
avg =         7
max =         7

Random effects u_i ~ i.i.d.                     Wald chi2(12)      =   6891.87
Prob > chi2        =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
TVexogenous  |

occ | -.0207047   .0137809 -1.50 0.133 -.0477149    .0063055
south |   .0074398    .031955     0.23   0.816 -.0551908    .0700705
smsa | -.0418334   .0189581 -2.21   0.027 -.0789906 -.0046761
ind |   .0136039   .0152374     0.89   0.372 -.0162608    .0434686

TVendogenous |
exp |   .1131328    .002471    45.79   0.000     .1082898    .1179758

exp2 | -.0004189   .0000546 -7.67   0.000 -.0005259 -.0003119
wks |   .0008374   .0005997     1.40   0.163 -.0003381 .0020129
ms | -.0298508     .01898 -1.57   0.116 -.0670508    .0073493

union |   .0327714   .0149084     2.20   0.028     .0035514    .0619914
TIexogenous  |

fem | -.1309236    .126659 -1.03   0.301 -.3791707    .1173234
blk | -.2857479   .1557019 -1.84   0.066 -.5909179    .0194221

TIendogenous |
ed |    .137944   .0212485     6.49   0.000     .0962977    .1795902

|
_cons |   2.912726   .2836522    10.27   0.000     2.356778    3.468674

-------------+----------------------------------------------------------------
sigma_u |  .94180304
sigma_e |  .15180273

rho |  .97467788   (fraction of variance due to u_i)
------------------------------------------------------------------------------
note:  TV refers to time-varying; TI refers to time-invariant.

individual effects and all the Zi variables, and the resulting Within estimator is con-
sistent even if the individual effects are correlatedwith the explanatory variables. The
Within estimates are quite different from those of GLS, and the Hausman test based
on the difference between these two estimates yields χ2

9 = 5075 which is significant.
This rejects the hypothesis of no correlation between the individual effects and the
explanatory variables. This justifies the use of the IV methods represented as HT
and AM in Table7.5. We let X1 = (OCC, SOUTH, SMSA, IND), X2 = (EXP, EXP2,
WKS, MS, UNION), Z1 = (FEM, BLK), and Z2 = (ED). Table7.6 reproduces the
Hausman and Taylor (1981) estimates using the (xthtaylor) command in Stata. The
coefficient of ED is estimated as 13.8%, thirty-eight percent higher than the estimate
obtained using GLS (10%). A Hausman test based on the difference between HT
and the Within estimator yields χ2

3 = 5.26 which is not significant at the 5% level.
There are three degrees of freedom since there are three over-identifying conditions
(the number of X1 variables minus the number of Z2 variables).

Therefore, we cannot reject that the set of instruments X1 and Z1 chosen are
legitimate. Table7.7 reproduces the Amemiya and MaCurdy (1986) estimates using
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Table 7.7 Amemiya and MaCurdy estimates of a mincer wage equation
. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed, endog
(exp exp2 wks ms union ed) amacurdy

Amemiya-MaCurdy estimation                      Number of obs      = 4165
Group variable (i): id                          Number of groups   =       595

Obs per group: min =         7
avg =         7
max =         7

Random effects u_i ~ i.i.d.                     Wald chi2(12)      =   6879.20
Prob > chi2        =    0.0000

------------------------------------------------------------------------------
lwage |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
TVexogenous  |

occ | -.0208498   .0137653 -1.51   0.130 -.0478292    .0061297
south |   .0072818   .0319365     0.23   0.820 -.0553126    .0698761
smsa | -.0419507   .0189471 -2.21   0.027 -.0790864 -.0048149
ind |   .0136289    .015229     0.89   0.371 -.0162194    .0434771

TVendogenous |
exp |   .1129704   .0024688    45.76   0.000     .1081316    .1178093

exp2 | -.0004214   .0000546 -7.72   0.000 -.0005283 -.0003145
wks |   .0008381   .0005995     1.40   0.162 -.0003368     .002013
ms | -.0300894   .0189674 -1.59   0.113 -.0672649    .0070861

union |   .0324752   .0148939     2.18   0.029     .0032837    .0616667
TIexogenous  |

fem | -.132008   .1266039 -1.04   0.297 -.380147    .1161311
blk | -.2859004   .1554857 -1.84   0.066 -.5906468    .0188459

TIendogenous |
ed |   .1372049   .0205695     6.67   0.000     .0968894    .1775205

|
_cons |   2.927338   .2751274    10.64   0.000     2.388098    3.466578

-------------+----------------------------------------------------------------
sigma_u |  .94180304
sigma_e |  .15180273

rho |  .97467788   (fraction of variance due to u_i)
------------------------------------------------------------------------------
note:  TV refers to time-varying; TI refers to time-invariant.

the (xthtaylor) command in Stata with the (amacurdy) option. These estimates are
close to the HT estimates. The additional exogeneity assumptions needed for the AM
estimator are not rejected using a Hausman test based on the difference between the
HTandAMestimators. This yieldsχ2

13 = 14.74which is not significant at the 5 level.
The BMS estimates (not reported here but available in Baltagi and Khanti-Akom
(1990)) are similar to those of AM. Again, the additional exogeneity assumptions
needed for the BMS estimator are not rejected using a Hausman test based on the
difference between the AM and BMS estimators. This yields a χ2

13 = 9.59 which is
not significant at the 5% level.

Other applications of the Hausman–Taylor estimator include the following:
(1) Contoyannis and Rice (2001) for a study of the impact of health on wages.

In particular, this paper considers the effect of self-assessed general and psycho-
logical health on hourly wages using longitudinal data from the six waves of the
British Household Panel Survey. Contoyannis and Rice show that reduced psycho-
logical health reduces the hourly wage formales, while excellent self-assessed health
increases the hourly wage for females.

(2) Egger andPfaffermayr (2004) for a study of the effects of distance as a common
determinant of exports and foreign direct investment (FDI) in a three-factor New
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Trade Theory model. They used industry-level data of bilateral outward FDI stocks
and exports of the U.S. and Germany to other countries between 1989 and 1999.
They find that distance exerts a positive and significant impact on bilateral stocks
of outward FDI of both the U.S. and Germany. However, the effect of distance on
exports is much smaller in absolute size and significantly negative for the U.S. but
insignificant for Germany. Problem 7.17 asks the reader to replicate the results of
this paper.

(3) Serlenga and Shin (2007) who apply the Hausman–Taylor estimation method-
ology to the gravity equation of bilateral trade flows among 15 European countries
over the period 1960–2001. Among their findings is that the impact of country-
specific variables, like distance, common language and common border can be recov-
ered using this approach in addition to allowing such variables to be endogenous.
In particular, they argue that common language is a proxy for cultural, historical,
and linguistic proximity, and this in turn is highly correlated with country-specific
effects. Problem 7.15 asks the reader to replicate the results of this paper.

7.6 Further Reading

Cornwell, Schmidt and Wyhowski (1992) consider a simultaneous equation model
with error components that distinguishes between two types of exogenous variables,
namely singly exogenous and doubly exogenous variables. A singly exogenous vari-
able is correlated with the individual effects but not with the remainder noise. These
are given the subscript (2). On the other hand, a doubly exogenous variable is uncor-
related with both the effects and the remainder disturbance term. These are given the
subscript (1). Cornwell, Schmidt and Wyhowski extend the results of HT, AM, and
BMS by transforming each structural equation by its �−1/2 and applying 2SLS on
the transformed equation using A = [QX , PB] as the set of instruments in (7.47).
B is defined as follows:

(1) BHT = [X(1), Z(1)] for the Hausman and Taylor (1981) type estimator. This
BHT is the set of all doubly exogenous variables in the system.

(2) BAM = [X∗
(1), Z(1)] for the Amemiya and MaCurdy (1986) type estimator. The

(∗) notation has been defined in (7.48).
(3) BBMS = [X∗

(1), Z(1), (QX(2))
∗] for theBreusch,Mizon andSchmidt (1989) type

estimator. Cornwell, Schmidt and Wyhowski (1992) also derive a similar set of
instruments for the 3SLS analogue and give a generalized method of moments
interpretation to these estimators. Finally, they consider the possibility of a dif-
ferent set of instruments for each equation, say A j = [QX , PBj ] for the j th
equation, where for the HT type estimator, Bj consists of all doubly exogenous
variables of equation j (i.e., exogenous variables that are uncorrelated with the
individual effects in equation j). Wyhowski (1994) extends the HT, AM, and
BMS approaches to the two-way error component model and gives the appro-
priate set of instruments.
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Baltagi and Chang (2000) compare the performance of several single and system
estimators of a two-equation simultaneous model with unbalanced panel data. The
Monte Carlo design varies the degree of unbalancedness in the data and the vari-
ance components ratio due to the individual effects. Many of the results obtained
for the simultaneous equation error component model with balanced data carry over
to the unbalanced case. For example, both feasible EC2SLS estimators considered
performed reasonably well and it is hard to choose between them. Simple ANOVA
methods can still be used to obtain good estimates of the structural and reduced form
parameters even in the unbalanced panel data case. Replacing negative estimates
of the variance components by zero did not seriously affect the performance of the
corresponding structural or reduced form estimates. Better estimates of the struc-
tural variance components do not necessarily imply better estimates of the structural
coefficients. Finally, do not make the data balanced to simplify the computations.
The loss in root mean squared error can be huge.

Most applied work in economics have made the choice between the RE and FE
estimators based upon the standard Hausman (1978) test. This is based upon a con-
trast between the FE and RE estimators. If this standard Hausman test rejects the
null hypothesis that the conditional mean of the disturbances given the regressors
is zero, the applied researcher reports the FE estimator. Otherwise, the researcher
reports the RE estimator; see the discussion in Chap. 4 and the two empirical appli-
cations by Owusu-Gyapong (1986) and Cardellichio (1990). Baltagi, Bresson and
Pirotte (2003) suggest an alternative pretest estimator based on the Hausman and
Taylor (1981)model. This pretest estimator reverts to the RE estimator if the standard
Hausman test based on the FE versus theRE estimators is not rejected. It reverts to the
HT estimator if the choice of strictly exogenous regressors is not rejected by a second
Hausman test based on the difference between the FE and HT estimators. Otherwise,
this pretest estimator reverts to the FE estimator. In other words, this pretest alterna-
tive suggests that the researcher consider a Hausman–Taylor model where some of
the variables, but not all, may be correlated with the individual effects. Monte Carlo
experiments were performed to compare the performance of this pretest estimator
with the standard panel data estimators under various designs. The estimators con-
sidered were ordinary least squares (OLS), fixed effects (FE), random effects (RE),
and the Hausman–Taylor (HT) estimators. In one-design, some regressors were cor-
related with the individual effects, i.e., a Hausman–Taylor world. In another design,
the regressors were not allowed to be correlated with the individual effects, i.e., a RE
world. Results showed that the pretest estimator is a viable estimator and is always
second best to the efficient estimator. It is second in RMSE performance to the RE
estimator in a RE world and second to the HT estimator in an HTworld. The FE esti-
mator is a consistent estimator under both designs but its disadvantage is that it does
not allow the estimation of the coefficients of the time-invariant regressors. When
there is endogeneity among the regressors, Baltagi, Bresson and Pirotte (2003) show
that there is substantial bias in OLS and the RE estimators and both yield misleading
inference. Even when there is no correlation between the individual effects and the
regressors, i.e., in a RE world, inference based on OLS can be seriously misleading.
This last result was emphasized by Moulton (1986).
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Baltagi and Liu (2012) extend the HT estimator to allow for serial correlation
of the AR(1) type in the remainder disturbances. They demonstrate the gains in
efficiency of this estimator versus the standard panel data estimators that ignore
serial correlation using Monte Carlo experiments. This estimator computes a fixed
effects Prais–Winsten (PW) GLS estimator in the first step, rather than the usual FE
estimator used by Hausman and Taylor (1981) in the absence of serial correlation.
Averaging the residuals from this regression over time as in HT but now weighting
the initial period differently from the rest as in Baltagi and Li (1991), one performs
2sls as in the second step of the HT estimator to retrieve consistent estimates of the
time-invariant coefficients. With consistent estimates of the residuals, new estimates
of the variance components are computed as in HT and the final IV-GLS step is
performed on the PW transformed model.

Baltagi and Bresson (2012) apply the useful robust panel data methods suggested
byBramati andCroux (2007) andWagenvoort andWaldmann (2002) to theHausman
and Taylor (1981) estimator. They demonstrate using Monte Carlo experiments the
substantial gains in efficiency as measured by MSE of this robust HT estimator over
its classical counterpart. Themagnitude of the gains inMSEdepend upon the type and
degree of contamination of the observations. They illustrate this robust HT method
by applying it to the classical Mincer wage equation using the empirical study of
Cornwell and Rupert (1988). For this empirical study, the returns to education seem
to be robust to outliers, while themagnitude and significance of the female coefficient
is sensitive to robustification of the HT estimator.

7.7 Notes

1. The analysis in this chapter can be easily extended to the two-way error component
model; see the problems at the end of this chapter and Baltagi (1981b).

2. As in the classical regression case, the variances of W2SLS have to be adjusted
by the factor (NT − k1 − g1 + 1)/[N (T − 1) − k1 − g1 + 1], whenever 2SLS
is performed on the Within transformed equation. Note also that the set of instru-
ments is X̃ and not X as emphasized in (7.6).

3. This is analogous to the result found in the single equation error component
literature by Taylor (1980) and Baltagi (1981a).

4. Im et al. (1999) point out that for panel data models, the exogeneity assumptions
imply many more moment conditions than the standard random and fixed effects
estimators use. Im et al. (1999) provide the assumptions under which the efficient
GMM estimator based on the entire set of available moment conditions reduces
to these simpler estimators. In other words, the efficiency of the simple estimators
is established by showing the redundancy of the moment conditions that they do
not use.
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7.8 Problems

7.1 Within 2SLS and Between 2SLS. Verify that GLS on (7.7) yields (7.6) and GLS
on (7.9) yields (7.8), the Within 2SLS and Between 2SLS estimators of δ1,
respectively.

7.2 Error component two-stage least squares. Verify that GLS on (7.10) yields the
EC2SLS estimator of δ1 given in (7.11) (see Baltagi (1981b)).

7.3 Equivalence of several EC2SLS estimators. (a) Show that A = [X̃ , X̄ ]; B =
[X∗, X̃ ] and C = [X∗, X̄ ] yield the same projection, i.e., PA = PB = PC and
hence the same EC2SLS estimator given by (7.11) (see Baltagi and Li (1992)).
(b) Show that PAPX∗ = PX∗ , and that PA − PX∗ is idempotent. Use this result
to prove that the avar

(√
nβ̂G2SLS

) − avar
(√

nβ̂EC2SLS
)
is positive semi-

definite, where avar denotes asymptotic variance and n = NT . While this result
may not be of consequence asymptotically since both estimators are asymptot-
ically efficient. It may lead to smaller standard errors in finite samples. The
intuition comes from the fact that extra instruments will in general lead to more
efficient estimators, and in small samples, to lower standard errors. See problem
7.11 for an empirical illustration.

7.4 Within 3SLS and Between 3SLS. Verify that 3SLS on (7.21) with (IM ⊗ X̃) as
the set of instruments yields (7.22). Similarly, verify that 3SLS on (7.23) with
(IM ⊗ X̄) as the set of instruments yields (7.24). These are the Within 3SLS and
Between 3SLS estimators of δ1, respectively.

7.5 Error component three-stage least squares. Verify that GLS on the stacked sys-
tem (7.21) and (7.23) each premultiplied by (IM ⊗ X̃ ′) and (IM ⊗ X̄ ′), respec-
tively, yields the EC3SLS estimator of δ given in (7.25) (see Baltagi (1981b)).

7.6 Equivalence of several EC3SLS estimators. (a) Prove that A = (IM ⊗ X̃ , IM ⊗
X̄)yields the sameprojection as B = (H ⊗ X̃ ,G ⊗ X̄)orC = [(H ⊗ X̃ + G ⊗
X̄), H ⊗ X̃ ] or D = [H ⊗ X̃ + G ⊗ X̄),G ⊗ X̄ ] where H and G are nonsin-
gular M ×M matrices (see Baltagi and Li 1992). Conclude that these sets of
instruments yield the same EC3SLS estimator of δ given by (7.25).
(b) Let H = �

−1/2
ν and G = �

−1/2
1 , and note that A is the set of instruments

proposed byBaltagi (1981b)while B = (�
−1/2
ν ⊗ X̃ , �

−1/2
1 ⊗ X̄) is the optimal

set of instruments X∗ defined (7.30). Conclude that H ⊗ X̃ is redundant in C
and G ⊗ X̄ is redundant in D with respect to the optimal set of instruments X∗.
(c) Show that PA = PIM⊗X̃ + PIM⊗X̄ , and that PAPB = PB where B = (�

−1/2
ν

⊗ X̃ , �
−1/2
1 ⊗ X̄). Use this result to prove that the avar

(√
nδ̂E3SLS

)
−

avar
(√

nδ̂EC3SLS

)
is positive semi-definite.

7.7 Special cases of the simultaneous equations model with one-way error com-
ponent disturbances. (a) Consider a system of two structural equations with
one-way error component disturbances. Show that if the disturbances between
the two equations are uncorrelated, then EC3SLS is equivalent to EC2SLS (see
Baltagi (1981b)).
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(b) Show that if this system of two equations with one-way error component dis-
turbances is just-identified, then EC3SLS does not necessarily reduce to EC2SLS
(see Baltagi (1981b)).

7.8 Mundlak’s fixed effects result. (a) Using partitioned inverse, show that GLS on
(7.35) yields β̂GLS = β̃Within and π̂GLS = β̂Between − β̃Within as given in (7.37)
and (7.38).
(b) Verify that var(̂πGLS) = var(̂βBetween)+ var(̃βWithin) as given in (7.39).
(c) Show that Mundlak’s result can also be obtained using system estimation
without invoking partitioned inversion. Premultiply (7.35) by P

Py = PX(β + π) + Pη

Here, we define η = Zμε + ν, and we use the fact that P2 = P and PZμ = Zμ.

Note that OLS or GLS on this equation yields ̂(β + π) = (X ′PX)−1X ′Py which is
the Between estimator. Similarly, premultiplying (7.35) by Q one gets

Qy = QXβ + Qν

since QP = 0. OLS or GLS on this equation yields β̃Within = (X ′QX)−1X ′Qy
which is the usualWithin orFixedEffects estimator. Stacking the systemof equations,
we get (

Py
Qy

)
=

(
PX
QX

)
β +

(
PX
0

)
π +

(
Pη
Qν

)

and the system error vector has mean 0 and variance–covariance matrix given by

� =
(

σ2
1P 0
0 σ2

νQ

)

Show that OLS or GLS on this system yields the same results that Mundlak found
by applying GLS to (7.35).

(d) Prove that the Zyskind (1967) necessary and sufficient condition for OLS to be
equivalent to GLS on the system of equations given in part (c) is satisfied. This calls

for PZ� = �PZ , where Z =
(
PX PX
QX 0

)
is the matrix of regressors and � is the

variance–covariance matrix of its disturbances. See the solution in Baltagi (2006b).
(e) Show that Mundlak’s (1978) result could have been obtained with OLS rather

than GLS on (7.35). Prove that Zyskind’s (1967) necessary and sufficient condition
for OLS to be equivalent to GLS holds for (7.35). (Hint: rewrite X as (P + Q)X in
(7.35) and collect like terms before applying OLS).

7.9 EC2SLS and EC3SLS for the two-way error component Model. Consider the
two-way error component model given in (6.9) and the covariance matrix � jl

between the jth and lth equation disturbances given in (6.11):
(a) Derive the EC2SLS estimator for δ1 in (7.1).
(b) Derive the EC3SLS estimator for δ in (7.20) (Hint: See Baltagi (1981b).
(c) Repeat problem 7.7 parts (a) and (b) for the two-way error component
EC2SLS and EC3SLS.
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7.10 Using the Monte Carlo setup for a two-equation simultaneous model with
error component disturbances, given in Baltagi (1984), compare EC2SLS and
EC3SLS with the usual 2SLS and 3SLS estimators that ignore the error com-
ponent structure.

7.11 Crime in North Carolina. Using the Cornwell and Trumbull (1994) panel data
set described in the empirical example in Sect. 7.1 and given on the Springer
website as crime.dat, replicate Table7.1 and the associated test statistics. See
also the replication byBaltagi (2006a). Note that the standard errors of EC2SLS
are smaller than those of G2SLS.

7.12 Mincer wage equation. Using the Cornwell and Rupert (1988) panel data set
described in the empirical example inSect. 7.4 andgivenon theSpringerwebsite
as wage.xls, replicate Table7.6 and the associated test statistics.

7.13 A Hausman test based on the difference between fixed effects two-stage least
squares and error components two-stage least squares. This is based on Prob-
lem 04.1.1 in Econometric Theory by Baltagi (2004). Consider the first struc-
tural equation of a simultaneous equation panel data model given in (7.1).
Hausman (1978) suggests comparing the FE and RE estimators in the clas-
sic panel data regression. With endogenous right-hand-side regressors like
Y1 this test can be generalized to test H0; E(u1 | Z1) = 0 based on q̂1 =
δ̃1,FE2SLS − δ̂1,EC2SLS where δ̃1,FE2SLS is defined in (7.6) and δ̂1,EC2SLS is
defined in (7.11).
(a) Show that under H0: E(u1 | Z1) = 0, plimq̂1 = 0 and the asymptotic cov

(̂q1, δ̂1,EC2SLS) = 0.
(b) Conclude that var(̂q1) =var(̃δ1,FE2SLS)−var(̂δ1,EC2SLS),wherevar denotes

the asymptotic variance. This is used in computing theHausman test statistic
given bym1 = q̂ ′

1[var(̂q1)]−1q̂1.Under H0,m1 is asymptotically distributed
as χ2

r , where r denotes the dimension of the slope vector of the time varying
variables in Z1. This can be easily implemented using Stata.

(c) Compute the usual Hausman test based on FE and RE and this alternative
Hausman test based on FE2SLS and EC2SLS for the crime data considered
in problem 7.11. What do you conclude?

(d) Show that Hausman’s test based on the contrast between FE2SLS and
EC2SLS can be alternatively obtained from any one of the following arti-

ficial 2SLS regressions with instruments A =
[
X̃ , X̄

]
:

y∗
1 = Z∗

1δ1 + Z̃1γ1 + ω1

y∗
1 = Z∗

1δ1 + Z̄1γ1 + ω2

y∗
1 = Z∗

1δ1 + Z1γ1 + ω3

Here, Z∗
1 = �

−1/2
11 Z1, Z̃1 = QZ1, and Z̄1 = PZ1,where�

−1/2
11 is defined

in (7.16). X̃ , X̄ and y∗ are similarly defined; see (7.15). Show that Haus-
man’s test is equivalent to testing whether γ1 = 0 in any one of these three
2SLS regressions; see Baltagi and Liu (2007).
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7.14 Fixed Effects v.s. Omission of time-invariant variables. This is based on
Oaxaca and Geisler (2003). Consider the case where the fixed effects μi =
Z ′
iπ are just omitted time-invariant variables made up of Z ′

i s which are
of dimension 1xg. Note that this may include a constant, but unlike the
Hausman and Taylor (1981) or Mundlak (1978) reduced form model, this
does not include an error term. The true regression model in this case is
yit = X ′

i tβ + Z ′
iπ + ν with ν ∼ IIN(0, σ2

ν INT ). For this model, pooled
OLS is BLUE, but the researcher omits the Z ′

i s, and runs instead fixed
effects to estimate β. Oaxaca and Geisler (2003) show that the pooled
OLS estimate of π can be obtained as a GLS of fixed effects residuals
averaged over time (as in the Hausman–Taylor procedure, see (7.41)), i.e.,
d̂i = ȳi . − X̄ ′

i .β̃FE on Zi .
(a) Prove this result, and show that the resulting standard errors from the two

regressions will be different due to the different estimates of the remainder
variance σ2

ν .

(b) Oaxaca and Geisler (2003) suggest a Chow F-test based on the differ-
ence between the restricted sum of squares from pooled OLS imposing
the restriction Ha

0 ; μi = Z ′
iπ, versus the unrestricted sum of squares resid-

uals obtained from the fixed effects regression. Note that this is different
from the test for Hb

0 ;π = 0,which can also be obtained from a Chow F-test
based on the difference between the restricted OLS residual sum of squares
of y on X , versus the unrestricted OLS residual sum of squares of y on
X and Z . It is also different from the usual F-test for fixed effects, i.e.,
Hc
0 ;μi = 0 which was introduced in Chap. 2. The latter is based on the

difference between the restricted sum of squares residuals from OLS of y
on X ,versus the unrestricted sum of squares residuals obtained from the
fixed effects regression.
Comment: The crucial assumption here is that μi is a known function of the
Z ′
i s,which is restrictive, and unlike the Hausman–Taylor model, μi can not

be a function of some of the time varying variables, the X ′
i t s, nor can it have

a stochastic error term. This is why the second step in the Hausman–Taylor
procedure is 2SLS and not GLS. In the HT model, the Z ′

i s are correlated
with the individual effects, i.e., the μ′

i s, because both of them appear in
the regression model; see (7.40). Here, GLS is performed in the second
step because it is assumed that the μ′

i s have been replaced by their known
functional form Z ′

iπ.

7.15 Gravity models of intra-EU trade. Using the Serlenga and Shin (2007) panel
data set, which can be downloaded from the Journal of Applied Economet-
rics website, replicate Tables II and III of that paper and the associated test
statistics. In particular, you are asked to apply the Hausman–Taylor estima-
tion methodology to the gravity equation of bilateral trade flows among
15 European countries over the period 1960–2001. The general model
regresses bilateral trade (Trade) on GDP, similarity in relative size (Sim),
differences in relative factor endowments between trading partners (Rlf),
real exchange rate (Rer), a dummy variable which is 1 when both countries
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belong to the European community (Cee), a dummy variable which is 1
when both countries adopt a common currency (Emu); distance between
capital cities (Dist); common border (Bor); and common language (Lan).
(a) replicate the FE results in Table II for the full model; (b) replicate the
HT estimation results in Table II; (c) perform the Hausman test for over-
identification when GDP, RLF, and RER are used as instruments for Lan
in the HT estimation; (d) What happens if you perform the Amemiya and
MaCurdy (1986) estimator?

7.16 Economic growth and foreign aid. This is the empirical example in Sect. 7.3
based on Bruckner (2013) who investigates the simultaneity problem
between per capita GDP growth and foreign aid. The data can be down-
loaded from the Journal of Applied Econometrics website.
(a) Replicate Table I of Bruckner (2013) relating the effect of economic
growth on foreign aid.
(b) For the FE-2SLS with both country and time dummies. Show that for
this differenced model, the country dummies are jointly insignificant, while
the time dummies are jointly significant.
(c) Replicate Table7.4 in this chapter applying FE-3SLS using reg3 with
time and country dummies in both equations.

7.17 Distance, Trade, andFDI. Egger and Pfaffermayr (2004) study the effects of
distance as a common determinant of exports and foreign direct investment
(FDI) in a three-factor New Trade Theory model. They use industry-level
data of bilateral outward FDI stocks and exports of the U.S. and Germany
to other countries between 1989 and 1999. They find that distance exerts a
positive and significant impact on bilateral stocks of outward FDI of both
the U.S. and Germany. However, the effect of distance on exports is much
smaller in absolute size and significantly negative for the U.S. but insignif-
icant for Germany. Using the Egger and Pfaffermayr (2004) panel data set,
which can be downloaded from the Journal of Applied Econometrics web-
site, replicate Table II on pages 236–237 of that paper and the associated
test statistics. In particular replicate the Within and Hausman–Taylor esti-
mation for real bilateral exports and real bilateral FDI. Do that for US and
Germany.

7.18 Twin Crises. Hutchison and Noy (2005) investigate the output effects of
banking and currency crises in emerging markets, focusing on whether
“twin crises” entail large losses. Using a panel data set of 24 emerging
market economies over 1975–97, they find that currency (banking) crises
are very costly, reducing output by about 5–8% (8–10%) over a 2–4year
period. Theyfindmore than 51 currency and 33 banking crises episodes over
the past 25years in their emerging markets sample and 20 occurrences of
“twin crises”—currency and banking crises that occurred simultaneously.
(a)Replicate their Table5, column (1), p.743,which runs aHausman–Taylor
model regressing Real GDP growth (dlrgdp) on its lagged value (dlrgdpl),
the change in budget surplus to real GDP ratio at period (t-1) (dlbsurgd),
credit growth (dlcrdtl), external growth rate (fgrowth1), real exchange rate
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overvaluation (t-1) (rxrdev5), openness (open1), and banking crisis (cri-
sis). (b) Replicate Table5, column 3, page 743, which adds currency crisis
dummyat times (t) and (t-1) (xrp_n, xrp_nwl) aswell as a twin crisis dummy
(twin2).
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8Dynamic PanelDataModels

8.1 Introduction

Many economic relationships are dynamic in nature, and one of the advantages of
panel data is that they allow the researcher to better understand the dynamics of
adjustment. See, for example, Baltagi and Levin (1986) on dynamic demand for an
addictive commodity like cigarettes, Arellano and Bond (1991) on a dynamic model
of employment, Blundell et al. (1992) on a dynamic model of company investment,
Ziliak (1997) on a dynamic life cycle labor supply model, and Acemoglu et al.
(2005) on a dynamic model relating democracy to education. These dynamic rela-
tionships are characterized by the presence of a lagged dependent variable among
the regressors, i.e.,

yit = δyi,t−1 + x ′
i tβ + uit i = 1, . . . , N t = 1, . . . , T (8.1)

where δ is a scalar, x ′
i t is 1 × K and β is K × 1. We will assume that the uit follow

a one-way error component model

uit = μi + νi t (8.2)

where μi ∼ IID(0, σ2
μ) and νi t ∼ IID(0,σ2

ν) independent of each other and among
themselves. The dynamic panel data regression described in (8.1) and (8.2) is char-
acterized by two sources of persistence over time. Autocorrelation is due to the
presence of a lagged dependent variable among the regressors and individual effects
characterizing the heterogeneity among the individuals. In this chapter, we review
some of the econometric studies that propose estimation and testing procedures for
this model.

Let us start with some of the basic problems introduced by the inclusion of a
lagged dependent variable. Since yit is a function of μi , it immediately follows that
yi,t−1 is also a function of μi . Therefore, yi,t−1, a right-hand regressor in (8.1), is
correlatedwith the error term. This renders theOLS estimator biased and inconsistent
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even if the νi t are not serially correlated. For the fixed effects (FE) estimator, the
Within transformation wipes out the μi (see Chap. 2), but (yi,t−1 − ȳi .−1) where
ȳi .−1 = ∑T

t=2 yi,t−1/(T − 1) will still be correlated with (νi t − ν̄i .) even if the νi t
are not serially correlated. This is because yi,t−1 is correlatedwith ν̄i . by construction.
The latter average contains νi,t−1 which is obviously correlated with yi,t−1. Also,
νi t is correlated with ȳi .−1 because the latter average contains yit . These are the
leading terms causing the correlation and they are both of order (T − 1). This result
was discovered by Nickell (1981) who showed that the Within estimator is biased
of O(1/T ). This bias does not vanish as the number of individuals increase, so the
Within estimator is inconsistent for N large and T small. However, as T gets large the
fixed effects estimator becomes consistent. Several suggestions to correct for the bias
of the popular FE estimator have been proposed. Most notably, Kiviet (1995) who
derives an approximation for the bias of theWithin estimator in a dynamic panel data
model with serially uncorrelated disturbances and strongly exogenous regressors. He
then proposes a bias-corrected FE estimator that subtracts a consistent estimator of
this bias from the original FE estimator.

For typical micro-panels where N is large and T is short and fixed, the Within
estimator is biased and inconsistent, and it is worth emphasizing that only if T → ∞
will the Within estimator of δ and β be consistent for the dynamic error component
model. For macro-panels, studying, for example, long-run growth, the data covers a
large number of countries N over a moderate size T . In this case, T is not very small
relative to N . Hence, some researchers may still favor the Within estimator arguing
that its bias may not be large. Judson and Owen (1999) performed someMonte Carlo
experiments for N = 20 or 100 and T = 5, 10, 20 and 30 and found that the bias in
the Within estimator can be sizeable, even when T = 30. This bias increases with δ
and decreases with T . But even for T = 30, this bias could be as much as 20% of
the true value of the coefficient of interest.

An alternative transformation that wipes out the individual effects is the first
difference (FD) transformation. In this case, correlation between the predetermined
explanatory variables and the remainder error is easier to handle. In fact, Anderson
and Hsiao (1982) suggested first differencing the model to get rid of the μi and then
using �yi,t−2 = (yi,t−2 − yi,t−3) or simply yi,t−2 as an instrument for �yi,t−1 =
(yi,t−1 − yi,t−2). These instruments will not be correlatedwith�νi t = νi,t − νi,t−1,
as long as the νi t themselves are not serially correlated. This instrumental variable
(IV) estimation method leads to consistent but not necessarily efficient estimates
of the parameters in the model because it does not make use of all the available
moment conditions (see Ahn and Schmidt 1995), and it does not take into account
the differenced structure on the residual disturbances (�νi t ). Arellano (1989) finds
that for simple dynamic error components models, the estimator that uses differences
�yi,t−2 rather than levels yi,t−2 for instruments has a singularity point and very large
variances over a significant range of parameter values. In contrast, the estimator that
uses instruments in levels, i.e., yi,t−2, has no singularities andmuch smaller variances
and is therefore recommended.
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Dessi and Robertson (2003) estimate dynamic panel regressions relating debt and
Tobin’sQusing apanel of N = 557UKfirmsobservedover the period1967–89 (T =
23). Theyfind that firmfixed effects are highly significant concluding that unobserved
firm characteristics are important determinants of both capital structure and expected
performance (as measured by Tobin’s Q). Applying the Anderson and Hsiao (1982)
estimator, they find highly significant dynamic effects in the determination of debt
and Tobin’s Q. Hence, emphasizing the importance of capturing firm heterogeneity
and dynamics, two of the main advantages of applying panel data methods.

Arellano and Bond (1991) proposed a generalized method of moments (GMM)
procedure that is more efficient than the Anderson and Hsiao (1982) estimator.
While Ahn and Schmidt (1995) derived additional nonlinear moment restrictions not
exploited by the Arellano and Bond (1991) GMM estimator. This literature is gener-
alized and extended by Arellano and Bover (1995) and Blundell and Bond (1998) to
mention a few. In addition, an alternative method of estimation of the dynamic panel
data model is proposed by Keane and Runkle (1992). This is based on the forward
filtering idea in time-series analysis. We focus on these studies and describe their
respective contributions to the estimation and testing of dynamic panel data models.
This chapter concludes with some applications and suggested readings. 1

8.2 The Arellano and Bond Estimator

Arellano and Bond (1991) argue that additional instruments can be obtained in a
dynamic panel data model if one utilizes the orthogonality conditions that exist
between lagged values of yit and the disturbances νi t . Let us illustrate this with the
simple autoregressive model with no regressors:

yit = δyi,t−1 + uit i = 1, . . . , N t = 1, . . . , T (8.3)

whereuit = μi + νi t withμi ∼ IID(0, σ2
μ) andνi t ∼ IID(0, σ2

ν), independent of each
other and among themselves. In order to get a consistent estimate of δ as N → ∞
with T fixed, we first difference (8.3) to eliminate the individual effects

yit − yi,t−1 = δ(yi,t−1 − yi,t−2) + (νi t − νi,t−1) (8.4)

and note that (νi t − νi,t−1) is MA(1) with unit root. For t = 3, the first period we
observe this relationship, we have

yi3 − yi2 = δ(yi2 − yi1) + (vi3 − vi2)

In this case, yi1 is a valid instrument, since it is highly correlated with (yi2 − yi1)
and not correlated with (νi3 − νi2) as long as the νi t are not serially correlated. But
note what happens for t = 4, the second period we observe (8.4)

yi4 − yi3 = δ(yi3 − yi2) + (νi4 − νi3)
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In this case, yi2 as well as yi1 are valid instruments for (yi3 − yi2), since both yi2
and yi1 are not correlated with (νi4 − νi3). One can continue in this fashion, adding
an extra valid instrument with each forward period, so that for period T , the set of
valid instruments becomes (yi1, yi2, . . . , yi,T−2).

This instrumental variable procedure still does not account for the differenced
error term in (8.4). In fact,

E(�νi �ν ′
i ) = σ2

νG (8.5)

where �ν ′
i = (νi3 − νi2, . . . , νiT − νi,T−1) and

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...
. . .

...
...

...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is (T − 2) × (T − 2), since �νi is MA(1) with unit root. Define

Wi =

⎡

⎢
⎢
⎢
⎣

[yi1] 0
[yi1, yi2]

. . .

0 [yi1, . . . , yi,T−2]

⎤

⎥
⎥
⎥
⎦

(8.6)

Then, the matrix of instruments is W = [W ′
1, . . . ,W

′
N ]′ and the moment equations

described above are given by E(W ′
i�νi ) = 0. These moment conditions have also

been pointed out by Holtz-Eakin, Newey and Rosen (1988) and Ahn and Schmidt
(1995). Premultiplying the differenced equation (8.4) in vector form byW ′, one gets

W ′�y = W ′(�y−1)δ + W ′�ν (8.7)

PerformingGLSon (8.7) one gets theArellano andBond (1991) preliminary one-step
consistent estimator

δ̂1 = [(�y−1)
′W (W ′(IN ⊗ G)W )−1W ′(�y−1)]−1 (8.8)

×[(�y−1)
′W (W ′(IN ⊗ G)W )−1W ′(�y)]

The optimal generalized method of moments (GMM) estimator of δ à la Hansen
(1982) for N → ∞ and T fixed using only the above moment restrictions yields the
same expression as in (8.8) except that

W ′(IN ⊗ G)W =
N∑

i=1

W ′
i GWi
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is replaced by

VN =
N∑

i=1

W ′
i (�νi )(�νi )

′Wi

This GMM estimator requires no knowledge concerning the initial conditions or
the distributions of νi and μi . To operationalize this estimator, �ν is replaced by
differenced residuals obtained from the preliminary consistent estimator δ̂1. The
resulting estimator is the two-step Arellano and Bond (1991) GMM estimator:

δ̂2 = [(�y−1)
′WV̂−1

N W ′(�y−1)]−1[(�y−1)
′WV̂−1

N W ′(�y)] (8.9)

A consistent estimate of the asymptotic var(̂δ2) is given by the first term in (8.9),

v̂ar(̂δ2) = [(�y−1)
′WV̂−1

N W ′(�y−1)]−1 (8.10)

Note that δ̂1 and δ̂2 are asymptotically equivalent if the νi t are IID(0, σ2
ν). The one-

step Arellano and Bond estimator, given in (8.8), is the default option in Stata’s
command xtabond. The option two-step gives the estimator in (8.9).

8.2.1 Testing for Over-Identification Restrictions and Serial
Correlation in Dynamic Panel Models

The basic idea of the test for over-identification restrictions can be explained using
the simple autoregressive model given in (8.3). Assume there are only four periods,
i.e., T = 4. Then Arellano and Bond (1991) give us three moment conditions to
identify one parameter:

E[(yi,1(ui,3 − ui,2)] = 0 (8.11a)

E[(yi,1(ui,4 − ui,3)] = 0 (8.11b)

E[(yi,2(ui,4 − ui,3)] = 0 (8.11c)

Any of these moment conditions can be used to estimate δ. The remainig two are
over-identification restrictions. For the general case, given by the moment conditions
E(W ′

i�νi ) = 0 with Wi defined by (8.6), Arellano and Bond (1991) suggest the
following Sargan test for over-identifying restrictions:

m = �ν̂ ′W
[

N∑

i=1

W ′
i (�ν̂i )(�ν̂i )

′Wi

]−1

W ′(�ν̂) ∼ χ2
p−K−1

where p refers to the number of columns ofW and �ν̂ denote the residuals from the
two-step Arellano and Bond estimator. This statistic can be obtained with Stata using
the command estat sargan. Other tests suggested are Sargan’s difference statistic to
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test nested hypotheses concerning serial correlation in a sequentialway, or aGriliches
and Hausman (1986) type test based on the difference between the two-step GMM
estimators assuming the disturbances in levels are MA(0) and MA(1), respectively.
These are described in more detail in Arellano and Bond (1991) (p. 283).

Using Monte Carlo experiments, Bowsher (2002) finds that the use of too many
moment conditions causes the Sargan test for over-identifying restrictions to be
undersized and have extremely low power. Fixing N at 100, and letting T increase
over the range (5, 7, 9, 11, 13, 15), the performance of the Sargan’s test using the
full set of Arellano–Bond moment conditions is examined for δ = 0.4. For T = 5,
the Monte Carlo mean of the Sargan χ2

5 statistic is 5.12 when it should be 5, and its
Monte Carlo variance is 9.84 when it should be 10. The size of the test is 0.052 at
the 5% level and the power under the alternative is 0.742. For T = 15, the Sargan χ2

90
statistic has a Monte Carlo mean of 91.3 when its theoretical mean is 90. However,
its Monte Carlo variance is 13.7 when it should be 180. This underestimation of the
theoretical variance results in zero rejection rate under the null and alternative. In
general, the Monte Carlo mean is a good estimator of the mean of the asymptotic
χ2 statistic. However, the Monte Carlo variance is much smaller than its asymptotic
counterpart when T is large. The Sargan test never rejects when T is too large for a
given N. Zero rejection rates under the null and alternative were also observed for
the following (N, T) pairs (125, 16), (85, 13), and (40, 10). This is attributed to poor
estimates of the weighting matrix in GMM rather than to weak instruments.

Additionally,Arellano andBond (1991) propose a test for the hypothesis that there
is no second-order serial correlation for the disturbances of the first-differenced
equation. This test is important because the consistency of the GMM estimator relies
upon the fact that E[�νi t�νi,t−2] = 0. The test statistic is given in equation (8) of
Arellano and Bond (1991) (p. 282) and will not be reproduced here, This hypothesis
is true if the νi t are not serially correlated or follow a random walk. Under the latter
situation, both OLS and GMMof the first-differenced version of (8.1) are consistent,
and Arellano and Bond (1991) suggest a Hausman-type test based on the difference
between the two estimators. A test for first-order and second-order serial correlation
can be obtained with Stata using the command estat abond.2

To summarize, dynamic panel data estimation of equations (8.1) and (8.2) with
fixed effects suffers from the Nickell (1981) bias which disappears only if T tends to
infinity. For fixed T and large N , the recommended estimator in this case is GMM
suggested by Arellano and Bond (1991) which basically differences the model to get
rid of the individual specific effects and along with it any time-invariant regressor.
This also gets rid of any endogeneity that may be due to the correlation of these
individual effects and the right-hand side regressors. The moment conditions utilize
the orthogonality conditions between the differenced errors and lagged values of the
dependent variable. This assumes that the original disturbances in (8.1) and (8.2)
are serially uncorrelated and that the differenced error is MA(1) with unit root. In
fact, two diagnostics are computed using the Arellano and Bond GMM procedure
to test for first-order and second-order serial correlation in the disturbances. One
should reject the null of the absence of first-order serial correlation and not reject
the absence of second-order serial correlation. A special feature of dynamic panel
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data GMM estimation is that the number of moment conditions increases with T .
Therefore, a Sargan test is performed to test the over-identification restrictions. The
next two subsections discuss two weaknesses of the Arellano and Bond two-step
estimator. Section8.2.2 argues that poor estimation of the weight matrix leads to
biased asymptotic standard errors and weak inference, while Sect. 8.2.3 discusses
the bias/efficiency trade-off in using a subset rather than all the moment conditions
available.

8.2.2 Downward Bias of the Estimated Asymptotic Standard Errors

A limited Monte Carlo study was performed by Arellano and Bond (1991) based
on 100 replications from a simple autoregressive model with one regressor and
no constant, i.e., yit = δyi,t−1 + βxit + μi + νi t with N = 100 and T = 7. The
results showed that the GMM estimators have negligible finite sample biases and
substantially smaller variances than those associated with simpler IV estimators à la
Anderson and Hsiao (1982). However, the estimated standard error of the two-step
GMM estimator was found to be downward biased. The tests proposed above also
performed reasonably well. These estimation and testing methods were applied to
a model of employment using a panel of 140 quoted UK companies for the period
1979–84. This is the benchmark data set used in Stata and EViews to obtain the
one-step and two-step estimators described in (8.8) and (8.9); see Problem 8.8.

Windmeijer (2005) attributes the small sample downward bias of the estimated
asymptotic standard errors of the two-step efficient GMM estimator to the estima-
tion of the weight matrix. He suggests a correction term based on a Taylor series
expansion that accounts for the estimation of this weight matrix. He shows that this
correction term provides a more accurate approximation in finite samples when all
the moment conditions are linear. These corrected standard errors are available using
Stata commands with the option vce (robust).

The asymptotic standard errors of the two-step GMM estimator in dynamic panel
data models underestimate the variability of this estimator in small samples. This in
turn renders the Wald tests for parameter restrictions oversized. Bond, Bowsher and
Windmeijer (2001) suggest using criterion-based inference for test of hypotheses in
dynamic panel data models rather than Wald tests based on two-step GMM. This
criterion-based statistic is computed as the difference between the standard GMM
tests of over-identifying restrictions in the restricted and unrestricted models. Monte
Carlo experiments show that this outperforms conventional Wald tests. It also has
similar size and power properties as the computationally burdensome alternatives
based on continuously updated GMM or exponential tilting.
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8.2.3 TooManyMoment Conditions and the Bias Efficiency
Trade-Off

Ziliak (1997) asked the question whether the bias/efficiency trade-off for the GMM
estimator considered by Tauchen (1986) for the time-series case is still binding in
panel data where the sample size is normally larger than 500. For time-series data,
Tauchen (1986) showed that even for T = 50 or 75 there is a bias/efficiency trade-
off as the number of moment conditions increase. Therefore, Tauchen recommended
the use of sub-optimal instruments in small samples. This problem becomes more
pronounced with panel data since the number of moment conditions increases dra-
matically as the number of strictly exogenous variables and the number of time-series
observations increase. Even though it is desirable from an asymptotic efficiency point
of view to include as many moment conditions as possible, it may be infeasible or
impractical to do so in many cases. For example, for T = 10 and five strictly exoge-
nous regressors, this generates 500 moment conditions for GMM. Ziliak (1997) per-
formed an extensive set of Monte Carlo experiments for a dynamic panel data model
and found that the same trade-off between bias and efficiency exists for GMM as the
number of moment conditions increases, and that one is better off with sub-optimal
instruments. In fact, Ziliak found that GMMperformedwell with sub-optimal instru-
ments, but is not recommended when all the moments are exploited for estimation.
Ziliak demonstrated this with a life cycle labor supplymodel under uncertainty based
on 532men observed over 10 years of data (1978–87) from the panel study of income
dynamics. The sample was restricted to continuously married, continuously working
prime age men aged 22–51 in 1978. These men were paid an hourly wage or salaried
and could not be piece-rate workers or self-employed. Ziliak found that the down-
ward bias of GMMwas quite severe as the number of moment conditions increased,
outweighing the gains in efficiency. Ziliak reported estimates of the intertemporal
substitution elasticity. This measures the intertemporal changes in hours of work due
to an anticipated change in the real wage. For GMM, this estimate changed from
0.519 to 0.093 when the number of moment conditions used in GMMwas increased
from 9 to 212. The standard error of this estimate dropped from 0.36 to 0.07. Ziliak
attributed this bias to the correlation between the sample moments used in estima-
tion and the estimated weight matrix. Roodman (2009) discusses the problem of
too many instruments and develops xtabond2 in Stata that has many advantages in
implementing the Arellano and Bond (1991) GMM estimator including a collapse
option that reduces the number of moments conditions by collapsing the Wi matrix
in (8.6). This is in the spirit of Ziliak’s call for not using all moments to trade-off
bias for efficiency. We will use xtabond2 in the empirical examples.

8.3 The Arellano and Bover Estimator

Arellano and Bover (1995) develop a unifying GMM framework for looking at
efficient IV estimators for dynamic panel data models. They do that in the context
of the Hausman and Taylor (1981) model given in (7.40), which in static form is
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reproduced here for convenience:

yit = x ′
i tβ + Z ′

iγ + uit (8.12)

where β is K × 1 and γ is g × 1. The Zi are time-invariant variables, whereas the
xit vary over individuals and time. In vector form, (8.12) can be written as

yi = Wiη + ui (8.13)

with the disturbances following a one-way error component model

ui = μi ιT + νi (8.14)

where yi = (yi1, . . . , yiT )′, ui = (ui1, . . . , uiT )′, η′ = (β′, γ′),Wi = [Xi , ιT Z ′
i ],

Xi = (xi1, . . . , xiT )′ and ιT is a vector of ones of dimension T . In general,
E(uiu′

i/wi ) will be unrestricted depending on wi = (x ′
i , Z

′
i )

′ where xi = (x ′
i1, . . . ,

x ′
iT )′.However, the literature emphasizes twocaseswith cross-sectional homoskedas-
ticity.

Case 1 E(uiu′
i ) = � independent ofwi , but general to allow for arbitrary� as long

as it is the same across individuals, i.e., � is the same for i = 1, . . . , N .

Case 2 the traditional error component model where � = σ2
ν IT + σ2

μιT ι′T .

Arellano and Bover transform the system of T equations in (8.13) using the
nonsingular transformation

H =
[

C
ι′T /T

]

(8.15)

whereC is any (T − 1) × T matrix of rank (T − 1) such thatCιT = 0. For example,
C could be the first (T − 1) rows of the Within group operator or the first difference
operator.3 Note that the transformed disturbances

u+
i = Hui =

[
Cui
ūi

]

(8.16)

have the first (T − 1) transformed errors free of μi . Hence, all exogenous variables
are valid instruments for these first (T − 1) equations. Let mi denote the subset
of variables of wi assumed to be uncorrelated in levels with μi and such that the
dimension of mi is greater than or equal to the dimension of η. In the Hausman
and Taylor study, X = [X1, X2] and Z = [Z1, Z2] where X1 and Z1 are exogenous
of dimension NT × k1 and N × g1. X2 and Z2 are correlated with the individual
effects and are of dimension NT × k2 and N × g2. In this case, mi includes the set
of X1 and Z1 variables andmi would be based on (Z ′

1,i , x
′
1,i1, . . . , x

′
1iT )′. Therefore,

a valid IV matrix for the complete transformed system is
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Mi =

⎡

⎢
⎢
⎢
⎣

w′
i 0

. . .

w′
i

0 m′
i

⎤

⎥
⎥
⎥
⎦

(8.17)

and the moment conditions are given by

E(M ′
i Hui ) = 0 (8.18)

DefiningW=(W ′
1, . . . ,W

′
N )′, y = (y′

1, . . . , y
′
N )′, M = (M ′

1, . . . , M
′
N )′, H̄ = IN ⊗

H and �̄ = IN ⊗ �, and premultiplying (8.13) in vector form by M ′ H̄ one gets

M ′ H̄ y = M ′ H̄Wη + M ′ H̄u (8.19)

Performing GLS on (8.19) one gets the Arellano and Bover (1995) estimator

η̂ = [W ′ H̄ ′M(M ′ H̄�̄H̄ ′M)−1M ′ H̄W ]−1W ′ H̄ ′M(M ′ H̄�̄H̄ ′M)−1M ′ H̄ y
(8.20)

In practice, the covariancematrix of the transformed system�+ = H�H ′ is replaced
by a consistent estimator, usually

�̂+ =
N∑

i=1

û+
i û

+′
i /N (8.21)

where û+
i are residuals based on consistent preliminary estimates. The resulting η̂ is

the optimal GMMestimator of η with constant� based on the abovemoment restric-
tions. Further, efficiency can be achieved usingChamberlain (1982) orHansen (1982)
GMM type estimator which replaces (

∑
i M

′
i�

+Mi ) in (8.20) by (
∑

i M
′
i û

+
i û

+′
i Mi ).

For the error component model, �̃+ = H�̃H ′ with �̃ = σ̃2
ν IT + σ̃2

μιT ι′T , where σ̃2
ν

and σ̃2
μ denote consistent estimates σ2

ν and σ2
μ.

The Hausman and Taylor (1981) (HT) estimator, given in Sect. 7.3, is η̂ with
�̃+ and mi = (Z ′

1,i , x̄
′
1,i )

′ where x̄ ′
i = ι′T Xi/T = (x̄ ′

1,i , x̄
′
2,i ). The Amemiya and

MaCurdy (1986) (AM) estimator is η̂with �̃+ andmi = (Z ′
1i , x

′
1,i1, . . . , x

′
1,iT )′. The

Breusch,Mizon andSchmidt (1989) (BMS) estimator exploits the additionalmoment
restrictions that the correlation between x2,i t , and μi is constant over time. In this
case, x̃2,i t = x2,i t − x̄2,i are valid instruments for the last equation of the transformed
system.Hence, BMS is η̂with �̃+ andmi=(Z ′

1,i , x
′
1,i1, . . . , x

′
1,iT , x̃ ′

2,i1, . . . , x̃
′
2,iT )′.

Because the set of instruments Mi is block-diagonal, Arellano and Bover show
that η̂ is invariant to the choice ofC . Another advantage of their representation is that
the form of�−1/2 need not be known. Hence, this approach generalizes the HT, AM,
BMS type estimators to a more general form of � than that of error components,
and it easily extends to the dynamic panel data case as can be seen next.
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Let us now introduce a lagged dependent variable into the right-hand side of
(8.12):

yit = δyi,t−1 + x ′
i tβ + Z ′

iγ + uit (8.22)

Assuming that t=0 is observed,we redefine η′=(δ, β′, γ′) andWi=[yi(−1), Xi,ιT Z ′
i ]

with yi(−1) = (yi,0, . . . , yi,T−1)
′. Provided there are enough valid instruments to

ensure identification, the GMM estimator defined in (8.20) remains consistent for
this model. The matrix of instruments Mi is the same as before adjusting for the
fact that t = 0 is now the first period observed, so that wi = [x ′

i0, ..., x
′
iT , Z ′

i ]′. In
this case yi(−1) is excluded despite its presence in Wi . The same range of choices
for mi are available, for example, mi = (Z ′

1i , x
′
1i , x̃

′
2,i1, ...̃x

′
2,iT ) is the BMS-type

estimator. However, for this choice of mi the rows of CXi are linear combinations
of mi . This means that the same instrument set is valid for all equations, and we
can use Mi = IT ⊗ m′

i without altering the estimator. The consequence is that the
transformation is unnecessary and the estimator can be obtained by applying 3SLS
to the original system of equations using mi as the vector of instruments for all
equations:

η̂ =
[
∑

i
(Wi ⊗ mi )

′
(

�̂ ⊗ ∑

i
mim′

i

)−1 ∑

i
(Wi ⊗ mi )

]−1
∑

i
(Wi ⊗ mi )

′

×
(

�̂ ⊗ ∑

i
mim′

i

)−1 ∑

i
(yi ⊗ mi )

(8.23)

Arellano and Bover (1995) prove that this 3SLS estimator is asymptotically equiv-
alent to the limited information maximum likelihood procedure with � unrestricted
developed by Bhargava and Sargan (1983). The latter estimator can be applied to
short T linear dynamic panel data models using Stata’s xtdpdqml command; see
Kripfganz (2016). In fact, the xtdpdqml command also performs quasi–maximum
likelihood (QML) estimation of linear dynamic short T panel data models sugested
by Hsiao, Pesaran and Tahmiscioglu (2002). Bhargava and Sargan (1983) assume a
random effects dynamic panel, while Hsiao, Pesaran and Tahmiscioglu (2002) esti-
mate a differenced model. Both estimators condition on an endogenous initial yi0
and specify its functional form. Kripfganz (2016) illustrates this using the Arellano
and Bond (1991) dynamic employment empirical application. This is restricted to
one lag on the dependent variable whenArellano and Bond (1991) used two lags, and
no distributed lag on the exogenous variables when Arellano and Bond (1991) used
up to two lags on the exogenous variables. The illustration also omits the industry
output variable arguing that Arellano and Bond (1991) found it insignificant. You
are asked to replicate these results in Problem 8.13.

Kripfganz and Schwarz (2018) proposed a two-step estimation procedure a la
Hausman and Taylor (1981) to identify the coefficients of time-invariant regressors
in a dynamic panel data model. In the first step, they estimate the coefficients of the
time-varying regressors using GMM or QML. Subsequently, they regress the first-
stage residuals on the time-invariant regressors and adjust the second-step standard
errors to account for the first-step estimation error. This can be done using xtseqreg



198 8 Dynamic Panel Data Models

in Stata. One advantage of the two-step approach is the invariance of the first-step
estimates to incorrect assumptions needed to identify the coefficients of the time-
invariant regressors. They illustrate their two-step estimator using a dynamic version
of the gravity model for the foreign direct investment (FDI) study by Egger and
Pfaffermayr (2004) which is considered in Problem 7.17. Kripfganz and Schwarz
(2018) find that the lagged real bilateral stock of US outward FDI is significant.
This suggests that neglecting the dynamic nature of the model results in a sizable
overestimation of the effect of the time-invariant geographical distance variable. You
are asked to replicate these results in Problem 8.14. Note that this two-step procedure
is an alternative to the system estimation procedure of Arellano and Bover (1995)
that allows one to obtain estimates of time-invariant variables in a dynamic panel
data model.

8.4 The Ahn and Schmidt Moment Conditions

Ahn and Schmidt (1995) show that under the standard assumptions used in a dynamic
panel datamodel, there are additionalnonlinearmoment conditions thatwere ignored
by the Arellano and Bond (1991) estimator. In this section, we explain how these
additional restrictions arise for the simple dynamic model and show how they can
be utilized in a GMM framework.

Consider the simple dynamic model with no regressors given in (8.3), and assume
that yi0, ..., yiT are observable. In vector form, this is given by

yi = δyi−1 + ui (8.24)

where y′
i = (yi1, . . . , yiT ), y′

i−1 = (yi0, . . . , yi,T−1) and u′
i = (ui1, . . . , uiT ). The

standard assumptions on the dynamic model (8.24) are that
(A.1) For all i, νi t is uncorrelated with yi0 for all t .
(A.2) For all i, νi t is uncorrelated with μi for all t .
(A.3) For all i, the νi t are mutually uncorrelated.
Ahn and Schmidt (1995) argue that these assumptions on the initial value yi0 are
weaker than those often made in the literature (see Bhargava and Sargan 1983).

Under these assumptions, one obtains the following T (T − 1)/2 moment condi-
tions:

E(yis�uit ) = 0 t = 2, . . . , T s = 0, . . . , t − 2 (8.25)

These are the same moment restrictions given below (8.6) and exploited by Arellano
and Bond (1991). However, Ahn and Schmidt (1995) find T − 2 additional moment
conditions not implied by (8.25). These are given by

E(uiT�uit ) = 0 t = 2, . . . , T − 1 (8.26)

Therefore, (8.25) and (8.26) imply a set of T (T − 1)/2 + (T − 2)moment condi-
tions which represent all of the moment conditions implied by the assumptions that
the vi t are mutually uncorrelated among themselves and with μi and yi0. More
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formally, the standard assumptions impose restrictions on the following covari-
ance matrix:

� = cov

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

νi1
νi1
...

νiT
yi0
μi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11 σ12 . . . σ1T σ10 σ1μ
σ21 σ22 . . . σ2T σ20 σ2μ
...

...
...

...
...

σT 1 σT 2 . . . σT T σT 0 σTμ

σ01 σ02 . . . σ0T σ00 σ0μ
σμ1 σμ2 . . . σμT σμ0 σμμ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.27)

But, we do not observeμi and νi t , only their sum uit = μi + νi t which can bewritten
in terms of the data and δ. Hence to get observable moment restrictions, we have to
look at the following covariance matrix:

� = cov

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μi + vi1
μi + vi2

...

μi + viT
yi0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ11 λ12 . . . λ1T λ10
λ21 λ22 . . . λ2T λ20
...

...
...

...

λT 1 λT 2 . . . λT T λT 0
λ01 λ02 . . . λ0T λ00

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(σμμ + σ11 + 2σμ1) (σμμ + σ12 + σμ1 + σμ2) . . .

(σμμ + σ12 + σμ1 + σμ2) (σμμ + σ22 + 2σμ2) . . .
...

... . . .

(σμμ + σ1T + σμ1 + σμT ) (σμμ + σ2T + σμ2 + σμT ) . . .

(σ0μ + σ01) (σ0μ + μ02) . . .

(8.28)

(σμμ + σ1T + σμ1 + σμT ) (σ0μ + σ01)

(σμμ + σ2T + σμ2 + σμT ) (σ0μ + σ02)
...

...

(σμμ + σT T + 2σμT ) (σ0μ + σ0T )

(σ0μ + σ0T ) σ00

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Under the standard assumptions (A.1)–(A.3), we have σts = 0 for all t �= s, and
σμt = σ0t = 0 for all t . Then � simplifies as follows:

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(σμμ + σ11) σμμ . . . σμμ σ0μ
σμμ (σμμ + σ22) . . . σμμ σ0μ
...

...
...

...

σμμ σμμ . . . (σμμ + σT T ) σ0μ
σ0μ σ0μ . . . σ0μ σ00

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8.29)

There are T − 1 restrictions, that λ0t = E(yi0uit ) is the same for t = 1, . . . , T ; and
[T (T − 1)/2] − 1 restrictions, that λts = E(uisuit ) is the same for t, s = 1, . . . , T ,
t �= s. Adding the number of restrictions, we get T (T − 1)/2 + (T − 2).
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In order to see how these additional moment restrictions are utilized, consider our
simple dynamic model in differenced form along with the last period’s observation
in levels:

�yit = δ�yi,t−1 + �uit t = 2, 3, . . . .T (8.30)

yiT = δyi,T−1 + uiT (8.31)

The usual IV estimator, utilizing the restrictions in (8.25), amounts to estimating
the first-differenced equations (8.30) using three-stage least squares, imposing the
restriction that δ is the same in every equation, where the instrument set is yi0 for t =
2; (yi0, yi1) for t = 3; . . . ; (yi0, . . . , yi,T−2) for t = T (see Sect. 8.2). Even though
there are no legitimate observable instruments for the levels equation (8.31), Ahn
and Schmidt argue that (8.31) is still useful in estimation because of the additional
covariance restrictions implied by (8.26), i.e., that uiT is uncorrelated with �uit for
t = 2, ..., T − 1. Ahn and Schmidt show that any additional covariance restrictions
besides (8.26) are redundant and implied by the basic moment conditions given
by (8.25). Ahn and Schmidt also point out that the moment conditions (8.25) and
(8.26) hold under weaker conditions than those implied by the standard assumptions
(A.1)–(A.3). In fact, one only needs
(B.1) cov(νi t , yi0) is the same for all i and t instead of cov(νi t , yi0) = 0, as in (A.1);
(B.2) cov(νi t , μi ) is the same for all i and t instead of cov(νi t ,μi ) = 0, as in (A.2);
(B.3) cov(νi t , vis) is the same for all i and t �= s, instead of cov(νi t , νis) = 0, as in
(A.3).

Ahn and Schmidt (1995) show that GMM based on (8.25) and (8.26) is asymptot-
ically equivalent to Chamberlain (1982, 1984) optimal minimum distance estima-
tor, and that it reaches the semiparametric efficiency bound. Ahn and Schmidt also
explore additional moment restrictions obtained from assuming the νi t homoskedas-
tic for all i and t and the stationarity assumption of Arellano and Bover (1995) that
E(yitμi ) is the same for all t . The reader is referred to their paper formore details. For
specific parameter values, Ahn and Schmidt compute asymptotic covariance matri-
ces and show that the extra moment conditions lead to substantial gains in asymptotic
efficiency.

Ahn and Schmidt also consider the dynamic version of the Hausman and Taylor
(1981) model studied in Sect. 8.3 and show how one can make efficient use of exoge-
nous variables as instruments. In particular, they show that the strong exogeneity
assumption implies more orthogonality conditions which lie in the deviations from
mean space. These are irrelevant in the static Hausman–Taylor model but are rele-
vant for the dynamic version of that model. For more details on these conditions;
see Schmidt, Ahn and Wyhowski (1992) and Ahn and Schmidt (1995). In a follow-
up paper, Ahn and Schmidt (1997) proposed a linearized GMM estimator that is
asymptotically as efficient as the nonlinear GMM estimator. They also provided
simple moment tests for the validity of these nonlinear restrictions. In addition, they
investigated the circumstances underwhich the optimalGMMestimator is equivalent
to a linear instrumental variable estimator. They found that these circumstances were
quite restrictive and go beyond uncorrelatedness and homoskedasticity of the errors.



8.4 The Ahn and Schmidt Moment Conditions 201

Ahn and Schmidt (1995) provided some evidence on the efficiency gains from the
nonlinear moment conditions which in turn provided support for their use in practice.
By employing all these conditions, the resulting GMM estimator is asymptotically
efficient and has the same asymptotic variance as the MLE under normality.

8.5 The Blundell and Bond SystemGMM Estimator

Blundell and Bond (1998) revisit the importance of exploiting the initial condition
in generating efficient estimators of the dynamic panel data model when T is small.
They consider a simple autoregressive panel datamodelwith no exogenous regressors

yit = δyi,t−1 + μi + νi t (8.32)

with E(μi )=0; E(νi t ) = 0; and E(μiνi t ) = 0 for i = 1, 2, . . . , N ; t = 1, 2, . . . , T .
Blundell and Bond (1998) focus on the case where T = 3 and therefore there is only
one orthogonality condition given by E(yi1�νi3) = 0, so that δ is just-identified.
In this case, the first-stage IV regression is obtained by running �yi2 on yi1. Note
that this regression can be obtained from (8.32) evaluated at t = 2 by subtracting yi1
from both sides of this equation, i.e.,

�yi2 = (δ − 1)yi,1 + μi + νi2 (8.33)

Since we expect E(yi1μi ) > 0, (δ − 1) will be biased upwards with

plim(̂δ − 1) = (δ − 1)
c

c + (σ2
μ/σ2

u)
(8.34)

where c = (1 − δ)/(1 + δ).The bias term effectively scales the estimated coefficient
on the instrumental variable yi1 toward zero. They also find that the F-statistic of
the first-stage IV regression converges to χ2

1 with noncentrality parameter

τ = (σ2
uc)

2

σ2
μ + σ2

uc
→ 0 as δ → 1 (8.35)

As τ → 0, the instrumental variable estimator performs poorly. Hence, Blundell and
Bond attribute the bias and the poor precision of the first difference GMM estima-
tor to the problem of weak instruments and characterize this by its concentration
parameter τ .

Next, Blundell and Bond (1998) show that an additionalmild stationarity restric-
tion on the initial conditions process allows the use of an extended system GMM
estimator that uses lagged differences of yit as instruments for equations in levels,
in addition to lagged levels of yit as instruments for equations in first differences.
More specifically, this stationarity condition on yi1 requires

E[(yi1 − μi

1 − δ
)μi ] = 0, (8.36)
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so that yit converges toward its mean μi
1−δ for each individual from period t = 2

onwards. This in turn yields the condition E[�yi,t−1μi ] = 0 for i = 1, 2, .., N .

Using the usual mild assumption that E[�νi tμi ] = 0 for i = 1, 2, .., N and t =
3, 4, . . . , T , we get the additional T − 2 non-redundant linear moment conditions
E[�yi,t−1(μi + νi t )] = 0 for t = 3, 4, . . . , T , see also Ahn and Schmidt (1995).
Together with the Arellano and Bond (1991) conditions on the first differenced
equation, these moment conditions on equations in levels yield the system GMM
estimator. This can be applied in Stata using xtabond2 and xtdpd. Blundell and Bond
(1998) show that this system GMM estimator produces dramatic efficiency gains
over the basic first difference GMM as δ → 1 and (σ2

μ/σ2
u) increases. In fact, for

T = 4 and (σ2
μ/σ2

u) = 1, the asymptotic variance ratio of the first difference GMM
estimator to this system GMM estimator is 1.75 for δ = 0 and increases to 3.26
for δ = 0.5 and 55.4 for δ = 0.9. This clearly demonstrates that the levels restric-
tions remain informative in cases where first differenced instruments become weak.
Things improve for first difference GMM as T increases. However, with short T and
persistent series, the Blundell and Bond findings support the use of the extra moment
conditions. Blundell and Bond (2000) revisit the estimates of the capital and labor
coefficients in a Cobb–Douglas production function considered by Griliches and
Mairesse (1998). Using data on 509 R&D performing US manufacturing companies
observed over 8 years (1982–89), the standard GMM estimator that uses moment
conditions on the first differenced model finds a low estimate of the capital coeffi-
cient and low precision for all coefficients estimated. However, the system GMM
estimator gives reasonable and more precise estimates of the capital coefficient and
constant returns to scale is not rejected. They conclude that “a careful examination
of the original series and consideration of the system GMM estimator can usefully
overcome many of the disappointing features of the standard GMM estimator for
dynamic panel models”.

Bun and Windmeijer (2010) show that there is still a weak instrument problem
for the system GMM estimator for the covariance stationary panel data AR(1) model
when the variances of the individual heterogeneity and idiosyncratic errors are the
same. In fact, they show that the Blundell and Bond (1998) SYS GMM estimator has
indeed a smaller bias and rmse than the Arellano and Bond (1991) DIF GMMwhen
the series are persistent, but that this bias increases with increasing variance ratio of
heterogeneity to idiosyncratic error and can become substantial. The Wald test can
be severely size distorted for both DIF and SYS GMM with persistent data, but the
SYS Wald test size properties deteriorate further with increasing variance ratio.

It is important to note that the initial condition assumption is very important in
dynamic models. This is emphasized by Anderson and Hsiao (1982) and Hayakawa
(2009). The latter paper shows that if the initial condition renders the dependent vari-
able mean nonstationary, and the variance of the individual effects is significantly
larger than that of the remainder disturbances, the FD-GMM estimator performs
quite well. In fact, it does not suffer from a weak instrument problem as the correla-
tion between the lagged dependent variable and instruments gets large owing to the
unremoved individual effects even if the data is persistent. This is in contrast to the
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Blundell and Bond (1998) result pointing out the weak instruments problem of the
FD-GMM estimator under the assumption of mean-stationarity. The Blundell and
Bond (1998) estimator is implemented with Stata using xtabond2 or xtdpd. This is
illustrated in the empirical example in Sect. 8.8.

8.6 The Keane and Runkle Estimator

Let y = Xβ + u be our panel data model with X containing a lagged dependent
variable. We consider the case where E(uit/Xit ) �= 0, and there exists a set of pre-
determined instrumentsW such that E(uit/Wis) = 0 for s � t , but E(uit/Wis) �= 0
for s > t . In other words, W may contain lagged values of yit . For this model, the
2SLS estimator will provide a consistent estimator for β. Now consider the random
effects model or any other kind of serial correlation which is invariant across indi-
viduals,�T S = E(uu′) = IN ⊗ �T S . In this case, 2SLS will not be efficient. Keane
and Runkle (1992), henceforth KR, suggest an alternative more efficient algorithm
that takes into account this more general variance–covariance structure for the distur-
bances based on the forward filtering idea from the time-series literature. Thismethod
of estimation eliminates the general serial correlation pattern in the data, while pre-
serving the use of predetermined instruments in obtaining consistent parameter esti-
mates. First, one gets a consistent estimate of �−1

T S and its corresponding Cholesky’s
decomposition P̂T S . Next, one premultiplies the model by Q̂T S = (IN ⊗ P̂T S) and
estimates the model by 2SLS using the original instruments. In this case

β̂K R = [X ′ Q̂′
T S PW Q̂T S X ]−1X ′ Q̂′

T S PW Q̂T S y (8.37)

where PW = W (W ′W )−1W ′ is the projection matrix for the set of instruments W .
Note that this allows for a general covariance matrix �T S , and its distinct elements
T (T + 1)/2 have to be much smaller than N . This is usually the case for large
consumer or labor panels where N is very large and T is very small. Using the
consistent 2SLS residuals, say ûi for the i th individual, where ûi is of dimension
(T × 1), one can form

�̂T S = Û ′Û/N =
N∑

i=1

ûi û
′
i/N

where Û ′ = [̂u1, û2, . . . , ûN ] is of dimension (T × N ).4

First differencing is also used in dynamic panel datamodels to get rid of individual
specific effects. The resulting first-differenced errors are serially correlated of an
MA(1) type with unit root if the original νi t are classical errors. In this case, there
will be gain in efficiency in performing the KR procedure on the first-differenced
(FD) model. Get �̂FD from FD-2SLS residuals and obtain Q̂FD = IN ⊗ P̂FD , then
estimate the transformed equation by 2SLS using the original instruments.

Underlying this estimation procedure are two important hypotheses that are
testable. The first is HA; the set of instruments W are strictly exogenous. In order to
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test HA, KR propose a test based on the difference between fixed effects 2SLS (FE-
2SLS) andfirst-difference 2SLS (FD-2SLS). FE-2SLS is consistent only if HA is true.
In fact if theW are predetermined rather than strictly exogenous, then E(Wit ν̄i .) �= 0
and our estimatorwould not be consistent. In contrast, FD-2SLS is consistentwhether
HA is true or not, i.e., E(Wit�νi t ) = 0 rain or shine. An example of this is when
yi,t−2 is a member ofWit, then yi,t−2 is predetermined and not correlated with �νi t
as long as the νi t are not serially correlated. However, yi,t−2 is correlated with ν̄i .
because this last average contains νi,t−2. If HA is not rejected, one should check
whether the individual effects are correlated with the set of instruments. In this case,
the usual Hausman (1978) test applies. This is based on the difference between the
FE andGLS estimator of the regressionmodel. The FE estimator would be consistent
rain or shine since it wipes out the individual effects. However, the GLS estimator
would be consistent and efficient only if E(μi/Wit ) = 0, and inconsistent otherwise.
If HA is rejected, the instruments are predetermined and the Hausman test is inappro-
priate. The test for HB; E(μi/Wit ) = 0 will now be based on the difference between
FD-2SLS and 2SLS. Under HB , both estimators are consistent, but if HB is not true,
FD-2SLS remains consistent while 2SLS does not.

These tests are Hausman (1978) type tests except that

var(̂βFE−2SLS − β̂FD−2SLS) = (X̃ ′PW X̃)−1(X̃ ′PW �̃FE−2SLS PW X̃)(X̃ ′PW X̃)−1

−(X̃ ′PW X̃)−1(X̃ ′PW �̃FEFD PW XFD)(X ′
FD PW XFD)−1

−(X ′
FD PW XFD)−1(X ′

FD PW �̃FEFD PW X̃)(X̃ ′PW X̃)−1

+(X ′
FD PW XFD)−1(X ′

FD PW �̂FD−2SLS PW XFD) (8.38)

×(X ′
FD PW XFD)−1

where �̃FE−2SLS = Ũ ′
FEŨFE/N , �̂FD−2SLS = Û ′

FDÛFD/N and �̂FEFD = Ũ ′
FE

ÛFD/N . As described above, Ũ ′
FE = [̃u1, . . . , ũN ]FE denotes the FE-2SLS residu-

als and Ũ ′
FD = [̃u1, . . . , ũN ]FD denotes the FD-2SLS residuals. Recall that for the

Keane–Runkle approach, � = IN ⊗ �.

Similarly, the var(̂β2SLS − β̂FD−2SLS) is computed as above with X̃ being
replaced by X , �̃FE−2SLS by �̂2SLS and �̃FEFD by �̂2SLSFD . Also, �̂2SLS =
Û ′
2SLSÛ2SLS/N and �̂2SLSFD = Û ′

2SLSÛFD/N .
The variances are complicated because KR do not use the efficient estimator

under the null as required by a Hausman-type test (see Schmidt, Ahn andWyhowski
(1992)). Keane and Runkle (1992) apply their testing and estimation procedures to
a simple version of the rational expectations life-cycle consumption model. Based
on a sample of 627 households surveyed between 1972 and 1982 by the Michigan
Panel Study on Income Dynamics (PSID), KR reject the strong exogeneity of the
instruments. This means that the Within estimator is inconsistent and the standard
Hausman test based on the difference between the standard Within and GLS esti-
mators is inappropriate. KR also fail to reject the null hypothesis of no correlation
between the individual effects and the instruments. Thismeans that there is no need to
first difference to get rid of the individual effects. Based on the KR-2SLS estimates,
the authors cannot reject the simple life-cycle model. However, they show that if
one uses the inconsistent Within estimates for inference one would get misleading
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evidence against the life-cycle model.
In the Monte Carlo experiments performed by Ziliak (1997), he recommended

the Keane and Runkle (1992) estimator which performed better in terms of the
bias/efficiency trade-off than the Arellano and Bond estimator. Forward filtering
eliminates all forms of serial correlation while still maintaining orthogonality with
the initial instrument set. Schmidt, Ahn and Wyhowski (1992) argued that filtering
is irrelevant if one exploits all sample moments during estimation. However, in prac-
tice, the number of moment conditions increases with the number of time periods
T and the number of regressors K and can become computationally intractable.
In fact for T = 15 and K = 10, the number of moment conditions for Schmidt,
Ahn and Wyhowski (1992) is T (T − 1)K/2 which is 1040 restrictions, highlight-
ing the computational burden of this approach. In addition, Ziliak argued that the
over-identifying restrictions are less likely to be satisfied possibly due to the weak
correlation between the instruments and the endogenous regressors. In this case, the
Keane and Runkle (1992) estimator is desirable yielding less bias than GMM and
sizeable gains in efficiency. In fact, for the life cycle labor example, the Keane and
Runkle estimate of the intertemporal substitution elasticity was 0.135 for 9 moment
conditions compared to 0.296 for 212 moment conditions. The standard error of
these estimates dropped from 0.32 to 0.09. Keane and Neal (2016) programmed
the Keane and Runkle (1992) estimator Stata using the command xtkr. This will be
illustrated for the empirical example on Cigarette demand in Sect. 8.8.1.

8.7 Limited InformationMaximum Likelihood

The dynamic panelmodel generatesmany over-identifying restrictions even formod-
erate values of T . Also, the number of instruments increases with T , but the quality of
these instruments is often poor because they tend to be only weakly correlated with
first-differenced endogenous variables that appear in the equation. Limited informa-
tion maximum likelihood (LIML) is strongly preferred to 2SLS if the number of
instruments gets large as the sample size tends to infinity. Alternative normalization
rules adopted by LIML and 2SLS are at the root of their different sampling behav-
ior. Alonso-Borrego and Arellano (1999) derive a symmetrically normalized GMM
(SNM) and compare it with ordinary GMM and LIML analogues by means of simu-
lations. Monte Carlo and empirical results show that GMM can exhibit large biases
when the instruments are poor, while LIML and SNM remain essentially unbiased.
However, LIML and SNM always had a larger interquartile range than GMM. For
T = 4, N = 100, σ2

μ = 0.2 and σ2
ν = 1, the bias for δ = 0.5 was 6.9% for GMM,

1.7% for SNM and 1.7% for LIML. This bias increases to 17.8% for GMM, 3.7%
for SNM, and 4.1% for LIML for δ = 0.8.

Alvarez and Arellano (2003) studied the asymptotic properties of FE, one-step
GMM and non-robust LIML for a first-order autoregressive model when both N and
T tend to infinity with (N/T ) → c for 0 ≤ c < 2. For this autoregressive model, the
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FE estimator is inconsistent for T fixed and N large, but becomes consistent as T gets
large. GMM is consistent for fixed T , but the number of orthogonality conditions
increases with T . GMM estimators that use the full set of moments available can be
severely biased, especiallywhen the instruments areweak and the number ofmoment
conditions is large relative to N . Alvarez and Arellano show that for T < N , GMM
bias is always smaller than FE bias and LIML bias is smaller than the other two.
In fixed T framework, GMM and LIML are asymptotically equivalent, but as T
increases, LIML has a smaller asymptotic bias than GMM. These results provide
some theoretical support for LIML over GMM.5 Alvarez and Arellano (2003) derive
the asymptotic properties of the FE, GMM, and LIML estimators of a dynamicmodel
with random effects. When both T and N → ∞. GMM and LIML are consistent
and asymptotically equivalent to the FE estimator. When (T/N → 0), the fixed T
results for GMM and LIML remain valid, but FE, although consistent, still exhibits
an asymptotic bias term in its asymptotic distribution. When T/N → c, where 0 <

c ≤ 2, all three estimators are consistent. The basic intuition behind this result is
that contrary to the structural equation setting where too many instruments produce
over-fitting and undesirable closeness to OLS; here, a larger number of instruments
is associated with larger values of T and closeness to FE is desirable since the
endogeneity bias → 0 as T→ ∞. Nevertheless, FE, GMM, and LIML exhibit a bias
term in their asymptotic distributions; the biases are of order 1/T, 1/N, and 1/(2N-T),
respectively. Provided T<N, the asymptotic bias of GMM is always smaller than the
FE bias, and the LIML bias is smaller than the other two.When T =N, the asymptotic
bias is the same for all three estimators.

Alvarez and Arellano (2003) also consider a random effects MLE that leaves
the mean and variance of the initial conditions unrestricted but enforces time-
series homoskedasticity. This estimator has no asymptotic bias because it does not
entail incidental parameters in the N and T dimensions, and it becomes robust to
heteroskedasticity as T→ ∞. For the simple autoregressive model in (8.32) with
| δ |< 1, νi t being iid across time and individuals and independent of μi and yi0.
Alvarez and Arellano (2003) find that as T→ ∞, regardless of whether N is fixed or
tends to ∞, provided N/T3 →0,

√
NT

[

δ̃FE − (δ − 1

T
(1 + δ))

]

→ N (0, 1 − δ2) (8.39)

Also, as N, T→ ∞ such that (logT2)/N → 0, δ̂GMM → δ. Moreover, provided
T/N→ c, 0 < c < ∞,

√
NT

[

δ̂GMM − (δ − 1

N
(1 + δ))

]

→ N (0, 1 − δ2) (8.40)

when T→ ∞, the number of GMM orthogonality conditions T(T-1)/2 → ∞. In
spite of this fact, δ̂GMM → δ. Also, as N, T→ ∞ provided T/N→ c, 0 ≤ c ≤
2, δ̂L I ML → δ. Moreover,

√
NT

[

δ̂L I ML − (δ − 1

2N − T
(1 + δ))

]

→ N (0, 1 − δ2) (8.41)
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LIML like GMM is consistent for δ despite T→ ∞ and T/N→ c. Provided T<N,
the bias of LIML< bias of GMM<bias of FE. In fact, for δ = 0.2, T = 11, N = 100,
the median of 1000 Monte Carlo replications yield 0.063 for FE, 0.188 for GMM
and 0.196 for LIML. For δ = 0.8, T = 11, N = 100, the median of 1000 Monte Carlo
replications yield 0.554 for FE, 0.763 for GMM and 0.792 for LIML. When we
increase T to 51, N = 100, and δ = 0.8, the median of 1000Monte Carlo replications
yield 0.760 for FE, 0.779 for GMM and 0.789 for LIML.

Wansbeek and Knapp (1999) consider a simple dynamic panel data model with
heterogeneous coefficients on the lagged dependent variable and the time trend, i.e.,

yit = δi yi,t−1 + ξi t + μi + uit . (8.42)

They show that double differencing gets rid of the individual country effects (μi ) on
the first round of differencing and the heterogeneous coefficient on the time trend
(ξi ) on the second round of differencing. Modified OLS, IV, and GMM methods
are adapted to this model, and LIML is suggested as a viable alternative to GMM
to guard against the small sample bias of GMM. Simulations show that LIML is
the superior estimator for T � 10 and N � 50. Macro-economic data are subject
to measurement error, and Wansbeek and Knapp (1999) show how these estimators
can be modified to account for measurement error that is white noise. For example,
GMM is modified so that it discards the orthogonality conditions that rely on the
absence of measurement error.

8.8 Empirical Examples

8.8.1 Example 1:Dynamic Demand for Cigarettes

Baltagi and Levin (1986) estimate a dynamic demand model for cigarettes based on
panel data from 46 American states. This data, updated from 1963–92, is available
on the Springer web site as cigar.txt. The estimated equation is

lnCit = α + β1 lnCi,t−1 + β2 ln Pi,t + β3 ln Yit + β4 ln Pnit + uit (8.43)

where the subscript i denotes the i th state (i = 1, . . . , 46), and the subscript t denotes
the t th year (t = 1, . . . , 30). Cit is real per capita sales of cigarettes by persons of
smoking age (16 years and older). This is measured in packs of cigarettes per head.
Pit is the average retail price of a pack of cigarettes measured in real terms. Yit is
real per capita disposable income. Pnit denotes the minimum real price of cigarettes
in any neighboring state. This last variable is a proxy for the casual smuggling effect
across state borders. It acts as a substitute price attracting consumers from high-tax
states like Massachusetts with 26/c per pack to cross over to New Hampshire where
the tax is only 12/c per pack. The disturbance term is specified as a two-way error
component model:

uit = μi + λt + νi t i = 1, . . . , 46 t = 1, . . . , 30 (8.44)
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where μi denotes a state-specific effect, and λt denotes a year-specific effect. The
time-period effects (the λt ) are assumed fixed parameters to be estimated as coef-
ficients of time dummies for each year in the sample. This can be justified given
the numerous policy interventions as well as health warnings and Surgeon General’s
reports. For example:

(1) the imposition of warning labels by the Federal Trade Commission effective
January 1965;

(2) the application of the Fairness Doctrine Act to cigarette advertising in June 1967,
which subsidized antismoking messages from 1968 to 1970;

(3) the Congressional ban on broadcast advertising of cigarettes effective January
1971.

The μi are state-specific effects which can represent any state-specific characteristic
including the following:

(1) States with Indian reservations like Montana, New Mexico, and Arizona are
among the biggest losers in tax revenues from non-Indians purchasing tax-
exempt cigarettes from the reservations.

(2) Florida,Texas,Washington, andGeorgia are among the biggest losers of revenues
due to the purchasing of cigarettes from tax-exemptmilitary bases in these states.

(3) Utah, which has a high percentage of Mormon population (a religion which
forbids smoking), has a per capita sales of cigarettes in 1988 of 55 packs, a little
less than half the national average of 113 packs.

(4) Nevada, which is a highly touristic state, has a per capita sales of cigarettes of
142 packs in 1988, 29 more packs than the national average.

These state-specific effects may be assumed fixed, in which case one includes state
dummy variables in equation (8.43). The resulting estimator is the Within estimator
reported in Table8.1. Note that OLS, which ignores the state and time effects, yields
a low short-run price elasticity of −0.09. However, the coefficient of lagged con-
sumption is 0.97 which implies a high long-run price elasticity of−2.98. TheWithin
estimator with both state and time effects yields a higher short-run price elasticity of
−0.30, but a lower long-run price elasticity of −1.79. Both state and time dummies
were jointly significant with an observed F-statistic of 7.39 and a p-value of 0.0001.
The observed F-statistic for the significance of state dummies (given the existence
of time dummies) is 4.16 with a p-value of 0.0001. The observed F-statistic for the
significance of time dummies (given the existence of state dummies) is 16.05 with
a p-value of 0.0001. These results emphasize the importance of including state and
time effects in the cigarette demand equation. This is a dynamic equation and the
OLS and Within estimators do not take into account the endogeneity of the lagged
dependent variable. Hence, we report 2SLS and Within-2SLS using as instruments
the lagged exogenous regressors. These give lower estimates of lagged consumption
and higher estimates of own price elasticities. The Hausman-type test based on the
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Table 8.1 Pooled estimation results. ∗Cigarette Demand

lnCi,t−1 lnPit lnPnit lnYit

OLS 0.97
(157.7)

−0.090
(6.2)

0.024
(1.8)

−0.03
(5.1)

Within 0.83
(66.3)

−0.299
(12.7)

0.034
(1.2)

0.10
(4.2)

2SLS 0.85
(25.3)

−0.205
(5.8)

0.052
(3.1)

−0.02
(2.2)

2SLS-KR 0.71
(22.7)

−0.311
(13.9)

0.071
(3.7)

−0.02
(1.5)

Within-2SLS 0.60
(17.0)

−0.496
(13.0)

−0.106
(0.5)

0.19
(6.4)

FD-2SLS 0.51
(9.5)

−0.348
(12.3)

0.112
(3.5)

0.10
(2.9)

FD-2SLS-KR 0.40
(13.3)

−0.341
(18.4)

0.083
(4.2)

0.21
(10.0)

GMM-two-step 0.70
(10.2)

−0.396
(6.0)

−0.105
(1.3)

0.13
(3.5)

System GMM 0.70
(8.8)

−0.415
(4.3)

−0.003
(1.0)

0.09
(3.4)

∗Numbers in parentheses are t-statistics. All regressions except OLS and 2SLS include time
dummies
Source Some of the results in this table are reported in Baltagi, Griffin and Xiong (2000)

difference between Within-2SLS and FD-2SLS and discussed in Sect. 8.6, yields a
χ2
4 statistic = 118.6. This rejects the consistency of the Within-2SLS estimator. The

Hausman-type test based on the difference between 2SLS and FD-2SLS yields a χ2
4

statistic = 96.6. This rejects the consistency of 2SLS. The FD-2SLS-KR estimator
yields the lowest coefficient estimate of lagged consumption (0.40). The own price
elasticity is−0.34 and significant. The income effect is small 0.21 but significant and
the bootlegging effect is small 0.083 and significant. The Arellano and Bond (1991)
GMM two-step estimator yields a lagged consumption coefficient estimate of 0.70
and an own price elasticity of−0.40, both highly significant. Table8.2 gives the Stata
output replicating the two-step Arellano and Bond estimator using the (xtabond2,
twostep). This gives the robust standard errors proposed byWindmeijer (2005). This
could have been obtained with xtabond, robust. Note that the two-step Sargan test
for over-identification does not reject the null, but this could be due to the bad power
of this test for N = 46 and T = 28. Not all the moment conditions are used and in
fact the collapse option was invoked to reduce these moment conditions. The test
for first-order serial correlation rejects the null of no first-order serial correlation,
but it does not reject the null that there is no second-order serial correlation. This
is what one expects in a first differenced equation with the original untransformed
disturbances assumed to be not serially correlated. Table8.3 gives the Stata output
for the system GMM Blundell and Bond (1998) estimator using the xtabond2 com-
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Table 8.2 Robust Arellano and Bond GMM estimates of cigarette demand

mand developed by Roodman (2009). The moment conditions on equations in levels
in addition to the moment conditions on the first differenced equation are used as
described in Sect. 8.5. Once again the collapse option was used to reduce the number
of moment conditions. Sargan test for over-identification does not reject the null, and
the tests for first-order and second-order serial correlation yield the expected diag-
nostics. System GMM yields a lagged consumption coefficient estimate of 0.70 and
an own price elasticity of −0.42, both highly significant, but with higher standard
errors than the corresponding Arellano and Bond estimators reported in Table8.2.

Table8.4 applies the Keane and Runkle (1992) estimator to the cigarette demand
example assuming the regressors are strictly exogenous using the xtkr command
in Stata. This is the 2sls Keane–Runkle estimator for cigarette demand. The lagged
dependent variable is 0.71 and significant. The short-run price elasticity is−0.31 and
significant. Table8.5 applies the Keane and Runkle (1992) estimator to the differ-
enced cigarette demand regression assuming the regressors are strictly exogenous.
The lagged dependent variable is 0.40 and significant. The short-run price elasticity
is −0.34 and significant.

8.8.2 Example 2:Democracy and Education

Acemoglu et al. (2005) revisited the argument that education promotes democracy
both because it enables a ‘culture of democracy’ to develop and because it leads to
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Table 8.3 System GMM estimates of cigarette demand

Table 8.4 Keane and Runkle estimates of cigarette demand in levels
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Table 8.5 Keane and Runkle estimates of cigarette demand in differences

greater prosperity, which is also thought to cause political development. There is
a rich literature that argues that education broadens men’s outlooks, increases their
norms of tolerance, restrains them from adhering to extremist andmonistic doctrines,
and increases their capacity tomake rational electoral choices. In fact, some argue that
if we cannot say that a high level of education is a sufficient condition for democracy,
the available evidence does suggest that it comes close to being a necessary condition.
Acemoglu et al. (2005) show that the cross-sectional relationship between schooling
and democracy disappears when country fixed effects are included in the regression.
Democracy is measured using the Freedom House Political Rights Index (from 1 to
7). These are transformed to lie between 0 and 1, with 1 corresponding to the most
democratic set of institutions. The data is a 5 yearly panel (1960–2000). Education
is measured by the average years of schooling in the total population of age 25 and
above. This varied between 0.04 and 12.18 with an average of 4.44. Acemoglu et al.
(2005) also estimated their dynamic democracy equation using the two-step robust
Arellano and Bond (1991) estimator, see their Table8.1, column (iv).6 Table8.6
replicates their results using Stata with the (xtabond2, twostep) command. Note
that lagged education is negative and insignificant using the robust standard errors.
The diagnostics are fine, with the Sargan test not rejecting the over-identification
conditions and the tests for serial correlation finding first order but not second-order
serial correlation. However, Table8.7 shows that applying system GMM to the same
equation yields proper diagnostics and over turns the result on education. In fact, the
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Table 8.6 Robust Arellano and Bond estimates of the democracy equation

lagged education coefficient estimate is now positive and significant. This result was
reported by Bobba and Coviello (2007).

8.9 Selected Applications

There are hundreds of applications of the dynamic error component model. Here are
a few of them:

(1) Holtz-Eakin, Newey and Rosen (1988) formulate a coherent set of proce-
dures for estimating and testing vector autoregressions (VAR) with panel data. The
model builds upon Chamberlain (1984) study and allows for nonstationary individ-
ual effects. It is applied to the study of dynamic relationships between wages and
hours worked in two samples of American males. The data are based on a sample of
898 males from the PSID covering the period 1968–81. Two variables are consid-
ered for each individual, log of annual average hourly earnings, and log of annual
hours of work. Some of the results are checked using data from the National Longi-
tudinal Survey of Men 45–59. Tests for parameter stationarity, minimum lag length,
and causality are performed. Holtz-Eakin, Newey and Rosen (1988) emphasize the
importance of testing for the appropriate lag length before testing for causality, espe-
cially in short panels. Otherwise, misleading results on causality can be obtained.
They suggest a simple method of estimating VAR equations with panel data that
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Table 8.7 System GMM estimates of the democracy equation

has a straightforward GLS interpretation. This is based on applying instrumental
variables to the quasi-differenced autoregressive equations. They demonstrate how
inappropriate methods that deal with individual effects in a VAR context can yield
misleading results. Another application of these VAR methods with panel data is
Holtz-Eakin, Newey andRosen (1989) who study the dynamic relationships between
local government revenues and expenditures. The data are based on 171 municipal
governments over the period 1972–80. It is drawn from the Annual Survey of Gov-
ernments between 1973 and 1980 and the Census of Governments conducted in 1972
and 1977. The main findings include the following:

(1) Lags of one or two years are sufficient to summarize the dynamic inter-
relationships in local public finance.

(2) There are important intertemporal linkages among expenditures, taxes, and
grants.

(3) Results of the stationarity test cast doubt over the stability of parameters over
time.

(4) Contrary to previous studies, this study finds that past revenues help predict cur-
rent expenditures, but past expenditures do not alter the future path of revenues.
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(2) Blundell et al. (1992) apply the Arellano and Bond estimator to a panel of 532
UK manufacturing companies over the period 1975–86. They study the importance
of Tobin’s Q in the determination of investment decisions. Tobin’s Q is allowed to
be endogenous and possibly correlated with the firm-specific effects. Utilizing past
variables as instruments, Tobin’s Q effect is found to be small but significant. These
results are sensitive to the choice of dynamic specification, exogeneity assumptions,
and measurement error in Q.

(3) Becker, Grossman and Murphy (1994) estimate a rational addiction model
for cigarettes using a panel of 50 states (and the District of Columbia) over the
period 1955–85. They apply fixed effects 2SLS to estimate a second-order difference
equation in consumption of cigarettes, finding support for forward looking consumers
and rejecting myopic behavior. Their long-run price elasticity estimate is −0.78 as
compared to−0.44 for the short-run. Baltagi and Griffin (2001) apply the FD-2SLS,
FE-2SLS, and GMM dynamic panel estimation methods studied in this chapter to
the Becker, Grossman andMurphy rational addiction model for cigarettes. Although
the results are in general supportive of rational addiction, the estimates of the implied
discount rate are not precise. Baltagi and Griffin (1995) estimate a dynamic demand
for liquor across 43 states over the period 1960–82. Fixed effects 2SLS as well as
FD-2SLS-KR are performed. A short-run price elasticity of −0.20 and a long-run
price elasticity of−0.69 are reported. Their findings support strong habit persistence,
a small positive income elasticity and weak evidence of bootlegging from adjoining
states.

(4) Bond et al. (2003) estimate dynamic investment equations using company
panel data for manufacturing firms in Belgium, France, Germany, and the United
Kingdom, covering the period 1978–1989. Using GMM first difference estimation
methods, they find that cash flow and profits appear to be both statistically and
quantitatively more significant in the United Kingdom than in the three continental
European countries. This is consistent with the suggestion that financial constraints
on investment may be relatively severe in the more market-oriented U.K. financial
system.

(5) Acemoglu et al. (2008) challenge the literature that finds income per capita is
strongly correlatedwith the level of democracy across countries.Using anunbalanced
panel for 150 countries over the period 1960–2000 at five-year intervals, and after
controlling for country and time specific effects, Acemoglu et al. (2008) find that this
positive association vanishes. Acemoglu et al. (2008) also find an insignificant effect
of income on democracy by estimating a dynamic democracy equation using the
two-step robust Arellano and Bond (1991) estimator; see their Table8.2, column (2).
However, Heid, Langer and Larch (2012) over turn this result by finding a significant
positive relation between income and democracy using system GMM.

(6) Baltagi, Demetriades and Law (2009) use panel data of 42 developing coun-
tries over the period 1980–2003 to address the empirical question of whether trade
and financial openness can help explain the pace in financial development, as well as
its variation across countries. Using Arellano and Bond (1991) GMMdynamic panel
estimation, they show that both types of openness are statistically significant deter-
minants of banking sector development. They also show that the marginal effects
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of trade (financial) openness are negatively related to the degree of financial (trade)
openness, indicating that relatively closed economies stand to benefit most from
opening up their trade and/or capital accounts. Although these economies may be
able to accomplishmore by taking steps to open both their trade and capital accounts,
opening up one without the other could still generate gains in terms of banking sector
development.

8.10 Further Reading

The literature ondynamic panel datamodels continues to exhibit phenomenal growth.
This is understandable given that most of our economic models are implicitly or
explicitly dynamic in nature. This section suggests some additional readings not
covered in this chapter.

Hsiao (2003) shows that for the random effects dynamic model, the consistency
property of MLE and GLS depends upon various assumptions on the initial obser-
vations and on the way in which and T tend to infinity. Read also the Arellano and
Honoré (2001) chapter in the Handbook of Econometrics. Arellano’s (2003) book is
dedicated to the study of dynamic panel data models.

Chamberlain (1984) considers the panel data model as a multivariate regression
of T equations subject to restrictions and derives an efficient minimum distance esti-
mator that is robust to residual autocorrelation of arbitrary form. Chamberlain (1984)
also first differences these equations to get rid of the individual effects and derives
an asymptotically equivalent estimator to his efficient minimum distance estimator
based on 3SLS of the (T − 2) differenced equations. Building on Chamberlain’s
work, Arellano (1990) develops minimum chi-square tests for various covariance
restrictions. These tests are based on 3SLS residuals of the dynamic error compo-
nent model and can be calculated from a generalized linear regression involving
the sample autocovariance and dummy variables. The asymptotic distribution of
the unrestricted autocovariance estimates is derived without imposing the normality
assumption. In particular, Arellano (1990) considers testing covariance restrictions
for error components or first-difference structures with white noise, moving average
or autoregressive schemes. If these covariance restrictions are true, 3SLS is inefficient
and Arellano (1990) proposes a GLS estimator which achieves asymptotic efficiency
in the sense that it has the same limiting distribution as the optimalminimumdistance
estimator.

Kruiniger (2007) considered the GMM estimation of a simple dynamic panel
data model with no exogenous regressors. He suggests a two-step optimal linear
GMM estimator that is asymptotically equivalent to the optimal nonlinear GMM
estimator of Ahn and Schmidt (1997) when the data are covariance stationary. When
the model has a unit root, see Chap. 12, it is shown that in most cases this optimal
linear GMM estimator is superconsistent, under a variety of assumptions about the
initial observations and the initial estimator.
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Wansbeek and Bekker (1996) considered a simple dynamic panel data model
with no exogenous regressors and disturbances uit and random effects μi that are
independent and normally distributed. They derived an expression for the optimal
instrumental variable estimator, i.e., one with minimal asymptotic variance. A strik-
ing result is the difference in efficiency between the IV and ML estimators. They
find that for regions of the autoregressive parameter δ which are likely in practice,
ML is superior. The gap between IV (or GMM) and ML can be narrowed down
by adding moment restrictions of the type considered by Ahn and Schmidt (1995).
Hence,Wansbeek andBekker (1996) find support for adding these nonlinearmoment
restrictions andwarn against the loss in efficiency as comparedwithMLEby ignoring
them.

Bun and Kiviet (2006) analyze the finite sample behavior of the FE, GLS, and
a range of GMM estimators in dynamic panel data models with individual effects
and an additional regressor. The additional regressor may be correlated with the
individual effects and is predetermined. Asymptotic expansions indicate how the
order of magnitude of bias of these estimators depend on N and T . For example,
they show that FE and GLS are biased of O(1/T ) irrespective of the value of N ,
while the GMM estimators are biased of the order O(1/N ), assuming T fixed. They
also reveal how the bias of the GMM estimators tends to increase with the number of
moment conditions exploited. They study both GMM based on the levels equation
and those based on the forward orthogonalization procedure. They provide analytic
evidence on how the bias of the various estimators depends on the feedbacks and on
other model characteristics such as prominence of individual effects and correlation
between observed and unobserved heterogeneity. Simulation results show that none
of the techniques examined dominates regarding bias and mean squared error over
all parametrizations examined. For N and T of moderate size, all estimators show
substantial bias and poor RMSE performance leading the authors to conclude that
“..standard first-order asymptotic theory is of little use indeed to establish and rank
the qualities of the estimators”.

Andrews and Lu (2001) develop consistent model and moment selection criteria
and downward testing procedures for GMM estimation that are able to select the
correct model and moments with probability that goes to one as the sample size goes
to infinity. This is applied to dynamic panel data models with unobserved individ-
ual effects. The selection criteria can be used to select the lag length for the lagged
dependent variables, to determine the exogeneity of the regressors, and/or to deter-
mine the existence of correlation between some regressors and the individual effects.
Monte Carlo experiments are performed to study the small sample performance of
the selection criteria and the testing procedures and their impact on parameter esti-
mation.

Hahn and Kuersteiner (2002) consider the simple autoregressive model given
in (8.32) with νi t ∼ N (0,�) iid across i, 0 < lim(N/T ) = c < ∞, | δ |< 1 and∑N

i=1 y
2
i0/N = O(1) and

∑N
i=1 μ2

i /N = O(1). The MLE of δ is the FE estimator
which is inconsistent for fixedT andN→ ∞.For large T, largeN, as in cross-country
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studies, such that lim(N/T) = c is finite, Hahn and Kuersteiner derive a bias corrected
estimator which reduces to

δ̂c = (
T + 1

T
)̃δFE + 1

T
(8.45)

with
√
NT (̂δc − δ) → N (0, 1 − δ2). Under the assumption of normality of the dis-

turbances, δ̂c is assymptotically efficient as N, T→ ∞ at the same rate. Monte Carlo
results for T = 5, 10, 20 andN= 100, 200 show that this bias-correctedMLE has com-
parable bias properties to the Arellano and Bover (1995) GMM estimator and often
dominates in terms of RMSE for T = 10, 20 and N = 100, 200. Kiviet (1995) showed
that a bias-corrected MLE (knowing δ) has much more desirable finite sample prop-
erties than various instrumental variable estimators. However, in order to make this
estimator feasible, an initial instrumental variable for δ is used and its asymptotic
properties are not derived. In contrast, Hahn and Kuersteiner (2002) correction does
not require a preliminary estimate of δ and its asymptotic properties are well derived.
They also showed that this bias corrected MLE is not expected to be asymptotically
unbiased under a unit root (δ = 1). Hahn and Moon (2006) showed that this result
can be extended to dynamic linear panel data models with both individual and time
effects. They find that the asymptotic bias of the fixed effects estimator is the same in
the two way as in the one-way dynamic linear panel model without the time effect.
Hence, the same higher order bias correction approach as in Hahn and Kuersteiner
(2002) can be adopted even when time effects are present. They stress that such
robustness is limited only to linear models.

Hahn, Hausman and Kuersteiner (2007) consider the simple autoregressive panel
data model in (8.32) with the following strong assumptions: (i) νi t ∼ I I N (0,σ2

ν)

over i and t, (ii) stationarity conditions (yi0/μi )∼N (
μi
1−δ ,

σ2
ν

1−δ2
) and μi ∼ N (0,σ2

μ).

They show that the Arellano and Bover (1995) GMMestimator, based on the forward
demeaning transformation described in Problem 8.4, can be represented as a linear
combination of 2SLS estimators and therefore may be subject to a substantial finite
sample bias. Based on 5000 Monte Carlo replication, they show that this indeed the
case for T = 5, 10; N = 100, 500 and δ = 0.1, 0.3, 0.5, 0.8 and 0.9. For example,
for T = 5, N = 100 and δ = 0.1, the %bias of the GMM estimator is −16%. For
δ = 0.8,this %bias is −28%, and for δ = 0.9,this %bias is −51%. Hahn, Hausman
and Kuersteiner attempt to eliminate this bias using two different approaches. The
first is a second-order Taylor series type approximation and the second is a long
difference estimator. The Monte Carlo results show that the second-order Taylor
series type approximation does a reasonably good job except when δ is close to 1
and N is small. Based on this, the bias corrected (second-order theory) should be
relatively free of bias. Monte Carlo results show that this is the case unless δ is
close 1. For T = 5, N = 100 and δ = 0.1, 0.8, 0.9, the %bias for this bias-corrected
estimator is 0.25%, −11% and −42%, respectively.

The second-order asymptotics fails to be a good approximation around δ = 1.This
is due to the weak instrument problem; see Blundell and Bond (1998) in Sect. 8.5. In
fact, the latter paper argued that the weak IV problem can be alleviated by assuming
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stationarity on the initial observation yi0. The stationarity condition turns out to be
a predominant source of information around δ = 1. The stationarity condition may
or may not be appropriate for particular applications, and substantial finite sample
biases due to inconsistencywill result under violation of stationarity. Hahn, Hausman
and Kuersteiner turn to the long difference estimator to deal with weak IV around
the unit circle avoiding the stationarity assumption:

yit − yi1 = δ(yit − yi0) + νi t − νi1

Here, yi0 is a valid instrument. The residuals (yi,T−1 − δyi,T−2), …, (yi,2 − δyi,1)
are also valid instruments. To make it operational, they suggest using the Arellano
andBover estimator for the first step and iterating using the long difference estimator.
The bias of the 2SLS (GMM) estimator depends on four factors, the sample size,
the number of instruments, the covariance between the stochastic disturbance of the
structural equation and the reduced form equation, and the explained variance of the
first stage reduced form.The long difference estimator increases the R2, but decreases
the covariance between the stochastic disturbance of the structural equation and the
reduced form equation. This alleviates the weak instruments problem. Further, the
number of instruments is smaller for the long difference specification than for the first
difference GMM and therefore one should expect smaller bias. The actual properties
of the long difference estimator turn out to be much better than those predicted by
higher order theory especially around the unit circle. Monte Carlo results show that
the long difference estimator does better than the other estimators for large δ and not
significantly different for moderate δ.

Hahn, Hausman andKuersteiner analyze the class of GMMestimators that exploit
the Ahn and Schmidt (1997) complete set of moment conditions and show that
a strict subset of the full set of moment restrictions should be used in estimation
in order to minimize bias. They show that the long difference estimator is a good
approximation to the bias minimal procedure. They report the numerical values of
the biases of the Arellano and Bond, Arellano and Bover and Ahn and Schmidt
estimators under near unit root asymptotics and compare them with biases for the
long difference estimator as well as the bias minimal estimator. Despite the fact that
the longdifference estimator does not achieve small bias reduction as the fully optimal
estimator it has significantly less bias than themore commonly used implementations
of the GMM estimator.

Evereart (2013) suggests transforming the dynamic panel data model into orthog-
onal deviations from its individual backward mean. In this case, the transformed
lagged dependent variable is contemporaneously uncorrelated with the idiosyncratic
error term. The estimators based on this orthogonal to backwardmean transformation
are referred to as WGob estimators. First, in a model with no additional exogenous
regressors, the WGob estimator is obtained as the LS estimator after transforming
the model in orthogonal deviations from the backward mean of the lagged depen-
dent variable. Equivalently, it is obtained by (i) adding the backward mean of the
lagged dependent variable as a regressor to the model, which then serves as a proxy
for the individual effects, or (ii) instrumenting the lagged dependent variable by the
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orthogonal deviations from its backward mean, which is similar to the Hausman and
Taylor (1981) representation of the WG estimator. Second, this Hausman–Taylor
representation of the WGob estimator makes it very easy to add exogenous explana-
tory variables to the model which (a) serve as their own instruments when they are
not correlated with the individual effect or (b) can be instrumented by the deviations
from their sample mean when they are correlated with the individual effect. The
WGob estimator is shown to be consistent for T → ∞ but inconsistent for N → ∞
and T fixed. Monte Carlo experiments further show that overall, the small sample
properties of the WGob estimator are superior to those of conventional dynamic
panel data estimators, i.e., it considerably outperforms conventional estimators in
terms of bias, dispersion, and inference in the cases where these estimators fail while
not performing much worse in all other cases.

Read Chap. 2 on dynamic panel data models in the Oxford Handbook of Panel
Data by Bun and Sarafidis (2015), especially for the sensitivity of GMM estimators
to the assumptions on the initial condition. Also, Chap. 4 on the incidental parameter
problem in dynamic panel models byMoon, Perron and Phillips (2015) and its effect
on the bias and inconsistency of dynamic panel estimators as well as model selection
criteria.

8.11 Notes

1. Other methods of estimating dynamic panel data models include quasi–maximum
likelihood (QML) methods conditioning on the initial observation; see Bhargava
and Sargan (1983) and Hsiao, Pesaran and Tahmiscioglu (2002).

2. Arellano and Bond (1991) warn about circumstances where their proposed serial
correlation test is not defined, but where Sargan’s over-identification test can
still be computed. This is evident for T = 4 where no differenced residuals two
periods apart are available to compute the serial correlation test. However, for
the simple autoregressive model given in (8.3), Sargan’s statistic tests two linear
combinations of the three moment restrictions available, i.e., E[(νi3 − νi2)yi1] =
E[(νi4 − νi3)yi1] = E[(νi4 − νi3)yi2] = 0.

3. Arellano and Bover (1995) also discuss a forward orthogonal deviations operator
as another example of C which is useful in the context of models with prede-
termined variables. This transformation essentially subtracts the mean of future
observations available in the sample; see Problem 8.4.

4. It may be worth emphasizing that if T > N , this procedure will fail since �T S

will be singular with rank N . Also, the estimation of an unrestricted PT S matrix
will be difficult with missing data.

5. An alternative one-step method that achieves the same asymptotic efficiency as
robust GMM or LIML estimators is the maximum empirical likelihood estima-
tionmethod; see Imbens (1997). Thismaximizes amultinomial pseudo-likelihood
function subject to the orthogonality restrictions. These are invariant to normal-
ization because they are maximum likelihood estimators. See also Newey and
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Smith (2004) who give general analytical bias-corrected versions of GMM and
generalized empirical likelihood estimators.

6. The data set and Stata programs were kindly provided by Pierre Yared and Daron
Acemoglu.

8.12 Problems

8.1 Arellano and Bond estimator. For the simple autoregressive model with no
regressors given in (8.3)

(a) Write the first-differenced form of this equation for t = 5 and t = 6 and list
the set of valid instruments for these two periods.

(b) Show that variance–covariance matrix of the first difference disturbances is
given by (8.5).

(c) Verify that (8.8) is the GLS estimator of (8.7).

8.2 Consider the Monte Carlo setup given in Arellano and Bond (1991) (p. 283) for
a simple autoregressive equation with one regressor with N = 100 and T = 7.

(a) Compute the bias and mean squared error based on 100 replications of the
following estimators: OLS, Within, one-step and two-step Arellano and Bond
GMM estimators, two Anderson and Hsiao type estimators that use �yi,t−2
and yi,t−2 as an instrument for �yi,t−1, respectively. Compare with Table8.1,
p. 284 of Arellano and Bond (1991).

(b) Compute Sargan’s test of over-identifying restrictions given below (8.11) and
count the number of rejections out of 100 replications. Compare with Table8.2
of Arellano and Bond (1991).

8.3 Sargan’s test of over-identifying restrictions. For T = 5, list themoment restric-
tions available for the simple autoregressive model given in (8.3). What over-
identifying restrictions are being tested by Sargan’s statistic given below (8.11)?

8.4 Alternative transformations that wipe out the individual effects. Consider three
(T − 1) × T matrices defined in (8.15) as follows: C1 = the first (T − 1) rows
of (IT − J̄T ),C2 = the first-difference operator, C3 = the forward orthogonal
deviations operator which subtracts the mean of future observations from the
first (T − 1) observations. This last matrix is given by Arellano and Bover
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(1995) as

C3 = diag

[
T − 1

T
, . . . ,

1

2

]1/2

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 1
(T−1) − 1

(T−1) . . . − 1
(T−1) − 1

(T−1) − 1
(T−1)

0 1 − 1
(T−2) . . . − 1

(T−2) − 1
(T−2) − 1

(T−2)
...

...
...

...
...

...

0 0 0 . . . 1 − 1
2 − 1

2
0 0 0 . . . 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Verify that each one of these C matrices satisfies

(a) C j ιT = 0 for j = 1, 2, 3.
(b) C ′

j (C jC ′
j )

−1C j = IT − J̄T , the Within transformation, for j = 1, 2, 3.

(c) ForC3, show thatC3C ′
3=IT−1 andC ′

3C3=IT − J̄T . HenceC3 = (C ′C)−1/2C
for any upper triangular C such that CιT = 0.

8.5 Arellano and Bover estimator.

(a) Verify that GLS on (8.19) yields (8.20).
(b) For the error component model with �̃ = σ̃2

ν IT + σ̃2
μ JT and σ̃2

ν and σ̃2
μ denot-

ing consistent estimates of σ2
v and σ2

μ, respectively, show that η̂ in (8.20) can
be written as

η̂ =
⎡

⎣
N∑

i=1

W ′
i (IT − J̄T )Wi + θ̃2T

N∑

i=1

w̄im
′
i

(
N∑

i=1

mim
′
i

)−1 N∑

i=1

mi w̄
′
i

⎤

⎦

−1

×
⎡

⎣
N∑

i=1

W ′
i (IT − J̄T )yi + θ̃2T

N∑

i=1

w̄im
′
i

(
N∑

i=1

mim
′
i

)−1 N∑

i=1

mi ȳi

⎤

⎦

where w̄i = W ′
i ιT /T and θ̃2 = σ̃2

ν/(T σ̃2
μ + σ̃2

ν). These are the familiar expres-
sions for the HT, AM, and BMS estimators for the corresponding choices of
mi . (Hint: see the proof in the Appendix of Arellano and Bover (1995)).

8.6 For T = 4 and the simple autoregressive model considered in (8.3)

(a) What are the moment restrictions given by (8.25)? Compare with Problem 8.3.
(b) What are the additional moment restrictions given by (8.26)?
(c) Write down the system of equations to be estimated by 3SLS using these

additional restrictions and list the matrix of instruments for each equation.
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8.7 Dynamic demand for cigarettes. Consider theBaltagi andLevin (1986) cigarette
demand example for 46 states described in Sect. 8.9. This data, updated from
1963–92, is available on the Springer web site as cigar.txt.

(a) Estimate equation (8.43) using 2SLS, FD-2SLS and their Keane and Runkle
(1992) version. (Assume only lnCi,t−1 is endogenous).

(b) Estimate question (8.43) using the Within and FE-2SLS and perform the
Hausman-type test based on FE-2SLS versus FD-2SLS.

(c) Perform the Hausman-type test based on 2SLS versus FD-2SLS.
(d) Perform the Anderson and Hsiao (1982) estimator for equation (8.43).
(e) Replicate the two-step robust Arellano and Bond (1991) GMM estimator for

equation (8.43) given in Table8.2.
(f) Replicate the System GMM estimator for equation (8.43) given in Table8.3.

Hint: Some of the results are available in Table1 of Baltagi, Griffin and Xiong
(2000).

8.8 Consider the Arellano and Bond (1991) dynamic employment equation for 140
UK companies over the period 1979–1984. Stata has this data set as abdata1.
Replicate Table4 of Arellano and Bond (1991) (p. 290) columns (a) and (b)
using xtabond. Perform the serial correlation test using estat abond and the
Sargan test for overidentification using estat sargan.

8.9 Democracy and Education. Consider the Acemoglu et al. (2005) dynamic
democracy equation described in Sect. 8.8. Replicate all the estimation results
in Table1 of Acemoglu et al. (2005, p. 46). Check the sensitivity of these results
to running system GMM rather than Arellano and Bond GMM using xtabond2,
see Bobba and Coviello (2007)? Does the use of robust standard errors using
theWindmeijer (2005) small sample correction change the significance of these
coefficients?

8.10 Homicide rates. In Chap. 3, Problem 3.18, we replicated Neumayer (2003)’s
two-way fixed effects estimates using a panel of homicide data from up to
117 countries over the period 1980–97. Neumayer (2003) also ran dynamic
panel data estimation using Arellano and Bond GMM; see column 3 of his
Table III on p. 632. He found insignificant lagged effects of homicide. How-
ever, zero first-order serial correlation was not rejected. This renders the use
of lagged homicide rates as instruments invalid. The data set and Stata code
are provided on the author’s university web page. (http://www2.lse.ac.uk/
geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.
aspx).

(a) Replicate column 3 of Table III of Neumayer (2003) (p. 629) which reports
Arellano and BondGMM. Perform the Sargan over-identification test and zero
first and second-order tests for serial correlation. What do you conclude?

(b) Perform system GMM rather than Arellano and Bond GMM using xtdpdsys
and the corresponding diagnostics. What do you conclude?

http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
http://www2.lse.ac.uk/geographyAndEnvironment/whosWho/profiles/neumayer/replicationdatasets2.aspx
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8.11 Dynamic Investment andTobin’s q. For the investment equationbasedonTobin’s
q described in Problem 4.20, perform the dynamic regressions given in Table
IV of Schaller (1990) (p. 317), only do that using the Arellano and Bond (1991)
estimation procedure. Report the diagnostics on serial correlation and Sargan
over-identification test.

8.12 Democracy Does Cause Growth. Acemoglu et al. (2019) provide evidence that
democracy has a significant and robust positive effect on log GDP per capita.
They estimate a dynamic panel data model of log GDP per capita for 175 coun-
tries over the period 1960–2010 using 4 lags on the dependent variable. They
introduce a new dichotomousmeasure of democracy that consolidates the infor-
mation from several sources. Their results show that democratizations increase
GDPper capita by about 20% in the long run. The data set andStata programs are
available onAcemoglu’sweb site https://economics.mit.edu/faculty/acemoglu/
data.

(a) Replicate the first 4 columns of Table2 of Acemoglu et al. (2019) which run
the FE dynamic panel model with one, two, four, and eight lags of log (GDP
per capita) and democracy. Both country and time dummies are included. In
particular, verify that their preferred specification of 4 lags, reported in column
3, yields a positive and significant effect of democracy on log (GDP per capita)
with a long-run effect of 21.24 and standard error of (7.22).

(b) Replicate the next 4 columns of Table2 of Acemoglu et al. (2019) which run
the Arellano and Bond (1991) one-step dynamic panel model with one, two,
four, and eight lags of log (GDP per capita) and democracy. Time dummies
are included. In particular, verify that their preferred specification of 4 lags,
reported in column 7, yields a long-run effect of democracy on log (GDP per
capita) of 16.45 with a standard error of (8.43).

8.13 Quasi–Maximum Likelihood (QML) estimator. Using Kripfganz (2016) xtd-
pdqml command in Stata, replicate his illustration using the Arellano and Bond
(1991) dynamic employment empirical application in Problem 8.8. Unlike the
original study, the dynamics is restricted to one lag on the dependent variable
while Arellano and Bond (1991) used two lags, and there are no distributed lag
on the exogenous variables whenArellano and Bond (1991) used up to two lags.
The illustration also omits the industry output variable arguing that Arellano
and Bond (1991) found it insignificant. This applies QML of Hsiao, Pesaran
and Tahmiscioglu (2002) as an alternative to the GMM estimator of Arellano
and Bond (1991).

8.14 Dynamic Hausman–Taylor Two-Stage Estimator. Using the gravity model for
foreign direct investment (FDI) of Egger and Pfaffermayr (2004) considered in
Problem7.17where they applied a staticHausman andTaylor (1981)model, you
are asked to replicate the results reported in Table4 of Kripfganz and Schwarz
(2018) (p. 538) now for a dynamic version of this gravity model using the

https://economics.mit.edu/faculty/acemoglu/data
https://economics.mit.edu/faculty/acemoglu/data
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xtseqreg command in Stata. Are the results sensitive to introducing dynamics?
8.15 Dynamic Earnings Equation. In Sect. 7.5, we considered a Hausman and Taylor

(1981) estimator for a static earnings equation using the study of Cornwell
and Rupert (1988); see Table7.5. This used data on 595 individuals drawn
from the PSID for the period 1976–1982. Using this data estimate a dynamic
version of this earnings equation using the Kripfganz and Schwarz (2018) two-
step estimator. (Hint: use the xtseqreg command). Are the results sensitive to
introducing dynamics? Is the lagged dependent variable significant?What is the
returns to schooling? Do females make less than males and is that significant?
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9UnbalancedPanelDataModels

9.1 Introduction

So far we have dealt only with “complete panels” or “balanced panels”, i.e., cases
where the individuals are observed over the entire sample period. Incomplete panels
are more likely to be the norm in typical economic empirical settings. For example,
in collecting data on US airlines over time, a researcher may find that some firms
have dropped out of the market while new entrants emerged over the sample period
observed. Similarly, while using labor or consumer panels on households, one may
find that some households moved and can no longer be included in the panel. Addi-
tionally, if one is collecting data on a set of countries over time, a researcher may find
that some countries can be traced back longer than others. These typical scenarios
lead to “unbalanced” or “incomplete” panels. This chapter deals with the economet-
ric problems associated with these incomplete panels and how they differ from the
complete panel data case. Throughout this chapter, the panel data are assumed to be
incomplete due to randomly missing observations. Nonrandomly missing data and
rotating panels will be considered in Chap. 10.1 Section 9.2 starts with the simple
one-way error component model case with unbalanced data and surveys the esti-
mation methods proposed in the literature. Section 9.4 treats the more complicated
two-way error component model with unbalanced data. Section 9.5 looks at how
some of the tests introduced earlier in the book are affected by the unbalanced panel,
while Sect. 9.6 gives some extensions of these unbalanced panel data methods to the
nested error component model.

9.2 The Unbalanced One-Way Error Component Model

To simplify the presentation, we analyze the case of two cross-sections with unequal
number of time-series observations. Then, we generalize the analysis to the case of
N cross-sections. Let n1 be the shorter time series observed for the first cross-section
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(i = 1), and n2 be the extra time-series observations available for the second cross-
section (i = 2).2 Stacking the n1 observations for the first individual on top of the
(n1 + n2) observations on the second individual, we get(

y1
y2

)
=

(
X1
X2

)
β +

(
u1
u2

)
(9.1)

where y1 and y2 are vectors of dimensions n1 and n1 + n2, respectively. X1 and
X2 are matrices of dimensions n1 × K and (n1 + n2) × K , respectively. In this
case, u′

1 = (u11, . . . , u1,n1), u′
2 = (u21, . . . , u2,n1 , . . . , u2,n1+n2) and the variance–

covariance matrix is given by

� =
⎡
⎣σ2

ν In1 + σ2
μ Jn1n1 0 0

0 σ2
ν In1 + σ2

μ Jn1n1 σ2
μ Jn1n2

0 σ2
μ Jn2n1 σ2

ν In2 + σ2
μ Jn2n2

⎤
⎦ (9.2)

where u′ = (u′
1, u′

2), Ini denotes an identity matrix of order ni , and Jni n j denotes a
matrix of ones of dimension ni × n j . Note that all the nonzero off-diagonal elements

of� are equal to σ2
μ. Therefore, if we let Tj = ∑ j

i=1 ni for j = 1, 2, then� is clearly
block-diagonal, with the j th block

� j = (Tjσ
2
μ + σ2

ν) J̄Tj + σ2
ν ETj (9.3)

where J̄Tj = JTj /Tj , ETj = ITj − J̄Tj and there is no need for the double subscript
anymore. Using theWansbeek and Kapteyn (1982) trick extended to the unbalanced
case, Baltagi (1985) derived

�r
j = (Tjσ

2
μ + σ2

ν)
r J̄Tj + (σ2

ν)
r ETj (9.4)

where r is any scalar. Let w2
j = Tjσ

2
μ + σ2

ν, then the Fuller and Battese (1974)
transformation for the unbalanced case is the following:

σν�
−1/2
j = (σν/w j ) J̄Tj + ETj = ITj − θ j J̄Tj (9.5)

where θ j = 1 − σν/w j , and σν�
−1/2
j y j has a typical element (y jt − θ j ȳ j .) with

ȳ j . = ∑Tj
t=1 y jt/Tj . Note that θ j varies for each cross-sectional unit j depending on

Tj . Hence, GLS can be obtained as a simple weighted least squares (WLS) as in the
complete panel data case. The basic difference, however, is that in the incomplete
panel data case, the weights are crucially dependent on the lengths of the time series
available for each cross-section.

The above results generalize in two directions: (i) the same analysis applies no
matter how the observations for the two firms overlap; (ii) the results extend from
the two cross-sections to the N cross-sections case. The proof is simple. Since the
off-diagonal elements of the covariance matrix are zero for observations belonging
to different firms, � remains block-diagonal as long as the observations are ordered
by firms. Also, the nonzero off-diagonal elements are all equal to σ2

μ. Hence, �
−1/2
j

can be derived along the same lines shown above.
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In general, the regression model with unbalanced one-way error component dis-
turbances is given by

yit = α + X ′
i tβ + uit i = 1, . . . , N t = 1, . . . , Ti (9.6)

uit = μi + νi t

where Xit is a (K − 1) × 1 vector of regressors, μi ∼ IIN(0, σ2
μ) and independent

of νi t ∼ IIN(0,σ2
ν). This model is unbalanced in the sense that there are N individ-

uals observed over varying time-period length (Ti for i = 1, . . . , N ). Writing this
equation in vector form, we have

y = αιn + Xβ + u = Zδ + u (9.7)

u = Zμμ + ν

where y and Z are of dimensions n × 1 and n × K , respectively, Z = (ιn, X), δ′ =
(α′,β′), n = ∑

Ti , Zμ = diag(ιTi ) and ιTi is a vector of ones of dimension Ti .

μ = (μ1,μ2, . . . ,μN )′ and ν = (ν11, . . . , ν1T1 , . . . , νN1, . . . , νN TN )′.
The ordinary least squares (OLS) on the unbalanced data is given by

δ̂O L S = (Z ′Z)−1Z ′y (9.8)

OLS is the best linear unbiased estimator when the variance component σ2
μ is equal

to zero. Even when σ2
μ is positive, OLS is still unbiased and consistent, but its

standard errors are biased (see Moulton 1986). The OLS residuals are denoted by
ûO L S = y − Z δ̂O L S .

TheWithin estimator can be obtained by first transforming the dependent variable
y and X , the exogenous regressors excluding the intercept, using the matrix Q =
diag(ETi ), and then applying OLS to the transformed data:

β̃ = (X̃ ′ X̃)−1 X̃ ′ ỹ (9.9)

where X̃ = Q X , ỹ = Qy. The estimate of the intercept can be retrieved as follows:
α̃ = (ȳ.. − X̄ ..β̃)where the dot indicates summation and the bar indicates averaging,
for example, ȳ.. = ∑ ∑

yit/n. Least squares dummy variables (LSDV) estimator
was shown to be equivalent to the Within estimator for balanced panels in Chap. 2.
This result remains true for unbalanced panels since Q is still the orthogonal pro-
jection on the matrix of individual dummy variables. See also Wooldridge (2010)
and Abrevaya (2013). Following Amemiya (1971), the Within residuals ũ for the
unbalanced panel are given by

ũ = y − α̃ιn − X β̃ (9.10)

The Between estimator δ̂Between is obtained as follows:

δ̂Between = (Z ′ P Z)−1Z ′ Py (9.11)

where P =diag[ J̄Ti ], and theBetween residuals are denotedby ûb = y − Z δ̂Between .
GLS using the true variance components is obtained as follows:

δ̂GL S = (Z ′�−1Z)−1Z ′�−1y (9.12)
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where � = σ2
ν� = E(uu′) with

� = In + ρZμZ ′
μ = diag(ETi ) + diag[(1 + ρTi ) J̄Ti ] (9.13)

and ρ = σ2
μ/σ2

ν . Note that (1 + ρTi ) = (w2
i /σ2

ν) where w2
i = (Tiσ

2
μ + σ2

ν) was
defined in (9.4). Therefore, GLS can be obtained by applying OLS on the trans-
formed variables y∗ and Z∗, i.e.,

δ̂ = (Z∗′Z∗)−1Z∗′y∗

where Z∗ = σν�
−1/2Z , y∗ = σν�

−1/2y and

σν�
−1/2 = diag(ETi ) + diag[(σν/wi ) J̄Ti ] (9.14)

as described in (9.5).
We now focus on methods of estimating the variance components, which are

described in more detail in Baltagi and Chang (1994).

9.2.1 ANOVAMethods

The ANOVA method is one of the most popular methods in the estimation of vari-
ance components. The ANOVA estimators are method of moments type estimators,
which equate quadratic sums of squares to their expectations and solve the resulting
linear system of equations. For the balanced model, ANOVA estimators are best
quadratic unbiased (BQU) estimators of the variance components (see Searle 1971).
Under normality of the disturbances, these ANOVA estimators are minimum vari-
ance unbiased. For the unbalanced one-way model, BQU estimators of the variance
components are a function of the variance components themselves. Still, unbalanced
ANOVA methods are available (see Searle 1987), but optimal properties beyond
unbiasedness are lost. In what follows, we generalize some of the ANOVA meth-
ods described in Chap. 2 to the unbalanced case. In particular, we consider the two
quadratic forms defining the Within and Between sums of squares:

q1 = u′Qu and q2 = u′ Pu (9.15)

where Q = diag[ETi ] and P = diag[ J̄Ti ]. Since the true disturbances are not known,
we follow the Wallace and Hussain (1969) suggestion by substituting OLS residuals
ûO L S for u in (9.15). Upon taking expectations, we get

E (̂q1) = E(û′
O L S QûO L S) = δ11σ

2
μ + δ12σ

2
ν

E (̂q2) = E(û′
O L S PûO L S) = δ21σ

2
μ + δ22σ

2
ν (9.16)

where δ11, δ12, δ21, δ22 are given by

δ11 = tr((Z ′Z)−1Z ′ZμZ ′
μZ) − tr((Z ′Z)−1Z ′ P Z(Z ′Z)−1Z ′ZμZ ′

μZ)

δ12 = n − N − K + tr((Z ′Z)−1Z ′ P Z)

δ21 = n − 2tr((Z ′Z)−1Z ′ZμZ ′
μZ) + tr((Z ′Z)−1Z ′ P Z(Z ′Z)−1Z ′ZμZ ′

μZ)

δ22 = N − tr((Z ′Z)−1Z ′ P Z)
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Equating q̂i to its expected value E (̂qi ) in (9.16) and solving the system of equations,
we get the Wallace and Hussain (WH) type estimators of the variance components.

Alternatively, we can substitute Within residuals in the quadratic forms given in
(9.15) to get q̃1 = ũ′Qũ and q̃2 = ũ′ Pũ as suggested by Amemiya (1971) for the
balanced case. The expected values of q̃1 and q̃2 are given by

E (̃q1) = (n − N − K + 1)σ2
v

E (̃q2) = (N − 1 + tr[(X ′Q X)−1X ′ P X ] − tr[(X ′Q X)−1X ′ J̄n X ])σ2
ν (9.17)

+
[

n −
(

N∑
i=1

T 2
i /n

)]
σ2

μ

Equating q̃i to its expected value E (̃qi ) in (9.17),weget theAmemiya-type estimators
of the variance components

σ̂2
ν = ũ′Qũ/(n − N − K + 1) (9.18)

σ̂2
μ = ũ′ Pũ − {N − 1 + tr[(X ′Q X)−1X ′ P X ] − tr[(X ′Q X)−1X ′ J̄n X ]}̂σ2

ν

n − ∑N
i=1 T 2

i /n

Next,we follow the Swamy andArora (1972) suggestion of using theBetween and
Within regression mean square errors to estimate the variance components. In fact,
their method amounts to substituting Within residuals in q1 and Between residuals
in q2, to get q̃1 = ũ′Qũ and q̂b

2 = ûb′ Pûb. Since q̃1 is exactly the same as that for
the Amemiya method, the Swamy and Arora (SA) type estimator of σ̂2

ν is the same
as that given in Eq. (9.18). The expected value of q̂b

2 is given by

E(q̂b
2 ) = [n − tr((Z ′ P Z)−1Z ′ZμZ ′

μZ)]σ2
μ + (N − K )σ2

ν (9.19)

Equating E(q̂b
2 ) to q̂b

2 one gets the following estimator of σ2
μ:

σ̂2
μ = ûb′ Pûb − (N − K )̂σ2

ν

n − tr((Z ′ P Z)−1Z ′ZμZ ′
μZ)

(9.20)

Note that ûb′
Pûb can be obtained as the OLS residual sum of squares from the

regression involving
√

Ti ȳi . on
√

Ti Z̄i ..
Finally, we consider Henderson’s method III (see Fuller and Battese 1974) which

will be denoted by HFB. This method utilizes the fitting constants method described
in Searle (1971, p. 489). Let

R(μ) = y′Zμ(Z ′
μZμ)−1Z ′

μy =
N∑

i=1

(y2i ./Ti ); R(δ | μ) = ỹ′ X̃(X̃ ′ X̃)−1 X̃ ′ ỹ

R(δ) = y′Z(Z ′Z)−1Z ′y and R(μ | δ) = R(δ | μ) + R(μ) − R(δ)

Then Henderson’s (1953) method III estimators are given by

σ̂2
ν = y′y − R(δ | μ) − R(μ)

n − K − N + 1

σ̂2
μ = R(μ | δ) − (N − 1)̂σ2

ν

n − tr(Z ′
μZ(Z ′Z)−1Z ′Zμ)

(9.21)
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9.3 Maximum Likelihood Estimators

Maximum likelihood (ML) estimates of the variance components and regression
coefficients are obtained by maximizing the following log-likelihood function:

log L = −(n/2) log(2π) − (n/2) logσ2
v − 1

2 log |�|
−(y − Zδ)′�−1(y − Zδ)/2σ2

ν (9.22)

where ρ and � are given in (9.13). The first-order conditions give closed-form solu-
tions for δ̂ and σ̂2

ν conditional on ρ̂:

δ̂ = (Z ′�̂−1Z)−1Z ′�̂−1y

σ̂2
ν = (y − Zδ)′�̂−1(y − Zδ)/n (9.23)

However, the first-order condition based on ρ is nonlinear in ρ even for known values
of δ and σ2

ν .

0 = ∂ log L

∂ρ
= 1

2
tr(Z ′�−1Z) + 1

2σ2
ν

(y − Zδ)′�−1ZμZ ′
μ�−1(y − Zδ) (9.24)

A numerical solution by means of iteration is necessary for ρ̂. The second derivative
of log L with respect to ρ is given by

∂2 log L

∂ρ∂ρ
= 1

2
tr{(Z ′

μ�−1Zμ)(Z ′
μ�−1Zμ)}

− 1

σ2
ν

{(y − Zδ)′�−1Zμ(Z ′
μ�−1Zμ)Z ′

μ�−1(y − Zδ)} (9.25)

Starting with an initial value of ρ0, one obtains �̂0 from (9.13) and δ̂0 and σ̂2
ν0 from

(9.23). The updated value ρ1 is given from the following formula:

ρ1 = ρ0 − s

[
∂2 log L

∂ρ∂ρ

]−1

0

[
∂ log L

∂ρ

]
0

(9.26)

where the subscript 0 means evaluated at �̂0, δ̂0, and σ̂2
ν0, and s is a step size which

is adjusted by step halving.3 For the computational advantage of this algorithm as
well as other algorithms like the Fisher scoring algorithm, see Jennrich and Sampson
(1976) and Harville (1977). Maximum likelihood estimators are functions of suffi-
cient statistics and are consistent and asymptotically efficient; see Harville (1977)
for a review of the properties, advantages and disadvantages of ML estimators.

TheML approach has been criticized on grounds that it does not take into account
the loss of degrees of freedom due to the regression coefficients in estimating the
variance components. Patterson and Thompson (1971) remedy this by partitioning
the likelihood function into two parts, one part depending only on the variance
components and is free of the regression coefficients. Maximizing this part yields the
restricted maximum likelihood estimator (REML). REML estimators of the variance
components are asymptotically equivalent to the ML estimators, however, little is
known about their finite sample properties, and they reduce to theANOVAestimators
under several balanced data cases.
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9.3.1 MinimumNorm andMinimumVariance Quadratic Unbiased
Estimators (MINQUE andMIVQUE)

Under normality of the disturbances, Rao’s (1971a) MINQUE and MIVQUE proce-
dures for estimating the variance components are identical. Since we assume normal-
ity, we will focus on MIVQUE. Basically, the MIVQUE of a linear combination of
the variance components, pμσ2

μ + pνσ
2
ν , is obtained by finding a symmetric matrix

G such that var(y′Gy) = 2 tr{σ2
μ(G ZμZ ′

μ) + σ2
νG}2 is minimized subject to the

conditions that y′Gy is an unbiased estimator of (pμσ2
μ + pνσ

2
ν) and is invariant to

any translation of the δ parameter. These yield the following constraints:

(1) GZ = 0;
(2) tr(G ZμZ ′

μ) = pμ and tr(G) = pν .

Rao (1971b) showed that the MIVQUE estimates of the variance components are
given by [

σ̂2
μ

σ̂2
ν

]
=

[
γ11 γ12
γ12 γ22

]−1 [
δ1
δ2

]

where γ11 = tr(ZμZ ′
μ RZμZ ′

μ R), γ12 = tr(ZμZ ′
μ R R), γ22 = tr(R R), δ1 = y′ RZμ

Z ′
μ Ry, δ2 = y′ R Ry, and R = (�−1 − �−1Z(Z ′�−1Z)−1Z ′�−1)/σ2

ν . It is clear
that MIVQUE requires a priori values of the variance components, and the resulting
estimators possess the minimum variance property only if these a priori values coin-
cide with the true values. Therefore, MIVQUE are only “locally best” and “locally
minimum variance”. If one iterates on the initial values of the variance compo-
nents, the iterative estimators (IMIVQUE) become biased after the first iteration
and MINQUE properties are not preserved. Two priors for the MINQUE estimator
used in practice are (i) the identity matrix, denoted by (MQ0) and (ii) the ANOVA
estimator of Swamy and Arora denoted by (MQA). Under normality, if one iterates
until convergence, IMINQUE, IMIVQUE, and REML will be identical.4

9.3.2 Monte Carlo Results

Baltagi and Chang (1994) performed an extensive Monte Carlo study using a simple
as well as a multiple regression with unbalanced one-way error component distur-
bances. The degree of unbalance in the sample as well as the variance component
ratio ρ were varied across the experiments. The total number of observations as well
as the total variance were fixed across the experiments to allow comparison of MSE
for the various estimators considered. Some of the basic results of the Monte Carlo
study suggest the following:

(1) As far as the estimation of regression coefficients is concerned, the simple
ANOVA type feasible GLS estimators compare well with the more compli-
cated estimators such as ML, REML, and MQA and are never more than 4%
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above the MSE of true GLS. However, MQ0 is not recommended for large ρ and
unbalanced designs.

(2) For the estimation of the remainder variance component σ2
ν the ANOVA,

MIVQUE(A), ML, and REML estimators show little difference in relative MSE
performance. However, for the individual specific variance component estima-
tion, σ2

μ, the ANOVA type estimators perform poorly relative to ML, REML,
and MQA when the variance component ratio ρ > 1 and the pattern is severely
unbalanced. MQ0 gives an extremely poor performance for severely unbalanced
patterns and large ρ and is not recommended for these cases.

(3) Better estimates of the variance components, in theMSEsense, do not necessarily
imply better estimates of the regression coefficients. This echoes similar findings
for the balanced panel data case.

(4) Negative estimates of the variance components occurred when the true value of
σ2

μ was zero or close to zero. In these cases, replacing these negative estimates
by zero did not lead to much loss in efficiency.

(5) Extracting a balanced panel out of an unbalanced panel by either maximizing
the number of households observed or the total number of observations in the
balanced panel leads in both cases to an enormous loss in efficiency and is not
recommended.5

9.4 Empirical Example:Hedonic Housing

Baltagi and Chang (1994) apply the various unbalanced variance components meth-
ods to the data set collected by Harrison and Rubinfeld (1978) for a study of hedonic
housing prices and the willingness to pay for clean air. This data is available on the
Springer website as Hedonic.xls. The total number of observations is 506 census
tracts in the Boston area in 1970, and the number of variables is 14. Belsley, Kuh
and Welsch (1980) identify 92 towns, consisting of 15 within Boston and 77 in its
surrounding area. Thus, it is possible to group these data and analyze them as an
unbalanced one-way model with random group effects. The group sizes range from
one to 30 observations. The dependent variable is the median value (MV) of owner-
occupied homes. The regressors include two structural variables, RM the average
number of rooms, and AGE representing the proportion of owner units built prior to
1940. In addition, there are eight neighborhood variables: B, the proportion of blacks
in the population; LSTAT, the proportion of population that is lower status; CRIM,
the crime rate; ZN, the proportion of 25000 square feet residential lots; INDUS,
the proportion of nonretail business acres; TAX, the full value property tax rate
($/$10000); PTRATIO, the pupil-teacher ratio; and CHAS represents the dummy
variable for Charles River: = 1 if a tract bounds the Charles. There are also two
accessibility variables, DIS the weighted distances to five employment centers in the
Boston region, and RAD the index of accessibility to radial highways. One more
regressor is an air pollution variable NOX, the annual average nitrogen oxide con-
centration in parts per hundred million.6 Moulton (1987) performed the Breusch and
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Table 9.1 One-way unbalanced variance components estimates for the Harrison–Rubinfeld hedo-
nic housing equation. Dependent variable: MV

OLS Within SA WH HFB ML REML MQ0 MQA

Intercept 9.76
(0.15)

− 9.68
(0.21)

9.68
(0.21)

9.67
(0.21)

9.68
(0.21)

9.67
(0.21)

9.68
(0.21)

9.67
(0.21)

CRIM −0.12
(0.12)

−0.63
(0.10)

−0.72
(0.10)

−0.74
(0.11)

−0.72
(0.10)

−0.72
(0.10)

−0.71
(0.10)

−0.73
(0.11)

−0.71
(0.10)

ZN 0.08
(0.51)

− 0.04
(0.69)

0.07
(0.68)

0.02
(0.70)

0.03
(0.69)

0.01
(0.71)

0.06
(0.69)

0.01
(0.71)

INDUS 0.02
(0.24)

− 0.21
(0.43)

0.16
(0.43)

0.24
(0.45)

0.22
(0.44)

0.24
(0.46)

0.18
(0.43)

0.24
(0.45)

CHAS 0.91
(0.33)

−0.45
(0.30)

−0.01
(0.29)

−0.06
(0.30)

−0.13
(0.29)

−0.12
(0.29)

−0.14
(0.29)

−0.08
(0.30)

−0.14
(0.29)

NOX −0.64
(0.11)

−0.56
(0.14)

−0.59
(0.12)

−0.58
(0.13)

−0.59
(0.12)

−0.59
(0.12)

−0.59
(0.12)

−0.59
(0.13)

−0.59
(0.12)

RM 0.63
(0.13)

0.93
(0.12)

0.92
(0.12)

0.91
(0.12)

0.92
(0.12)

0.92
(0.12)

0.92
(0.12)

0.91
(0.12)

0.92
(0.12)

AGE 0.09
(0.53)

−1.41
(0.49)

−0.93
(0.46)

−0.87
(0.49)

−0.96
(0.46)

−0.94
(0.46)

−0.97
(0.46)

−0.90
(0.48)

−0.96
(0.46)

DIS −1.91
(0.33)

0.80
(0.71)

−1.33
(0.46)

−1.42
(0.46)

−1.27
(0.46)

−1.30
(0.47)

−1.25
(0.47)

−1.38
(0.46)

−1.26
(0.47)

RAD 0.96
(0.19)

− 0.97
(0.28)

0.96
(0.28)

0.97
(0.29)

0.97
(0.28)

0.98
(0.30)

0.96
(0.28)

0.97
(0.29)

TAX −0.42
(0.12)

− −0.37
(0.19)

−0.38
(0.19)

−0.37
(0.19)

−0.37
(0.19)

−0.37
(0.20)

−0.38
(0.19)

−0.37
(0.20)

PTRATIO −3.11
(0.50)

− −2.97
(0.98)

−2.95
(0.96)

−2.99
(1.01)

−2.98
(0.98)

−2.99
(1.02)

−2.96
(0.97)

−2.99
(1.02)

B 0.36
(0.10)

0.66
(0.10)

0.58
(0.10)

0.57
(0.11)

0.58
(0.10)

0.58
(0.10)

0.58
(0.10)

0.57
(0.10)

0.58
(0.10)

LSTAT −3.71
(0.25)

−2.45
(0.26)

−2.85
(0.24)

−2.90
(0.25)

−2.82
(0.24)

−2.84
(0.24)

−2.82
(0.24)

−2.88
(0.25)

−2.82
(0.24)

σ̂2ν − − 0.017 0.020 0.017 0.017 0.017 0.019 0.017

σ̂2μ − − 0.017 0.016 0.019 0.018 0.020 0.017 0.020

*Approximate standard errors are given in parentheses. n = 506 observations for N = 92 towns.
Source Baltagi and Chang (1994), Reproduced by permission of Elsevier Science Publishers B.V.
(North Holland)

Pagan (1980) Lagrange multiplier (LM) test on this data set and found compelling
evidence against the exclusion of random group effects.7

Table 9.1 shows the OLS, Within, ANOVA, ML, REML, and MIVQUE type
estimates using the entire data set of 506 observations for 92 towns. Unlike the
drastic difference between OLS and the Within estimators which were analyzed in
Moulton (1987), the various ANOVA,MLE, andMIVQUE type estimators, reported
in Table 9.1, give similar estimates. Exceptions are ZN, INDUS, andCHAS estimates
which vary across methods, but are all statistically insignificant. For the statistically
significant variables, AGE varies from −0.87 for WH to −0.97 for REML, and
DIS varies from −1.25 for REML to −1.42 for WH.8 These results were verified
using Stata and TSP. The higher the crime rate, air pollution, tax rate, pupil-teacher
ratio, proportion of the population in lower status, the older the home and the greater
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Table 9.2 Hedonic housing equation: Maximum Likelihood Estimator
Random-effects ML regression                    Number of obs      =       506
Group variable (i) : town                       Number of groups   =        92

Random effects u_i ~ Gaussian                   Obs per group: min =         1
                                              avg =       5.5

                                                               max =        30

                                                LR chi2(13)        =    604.11
Log likelihood  =  236.26918              Prob > chi2        =    0.0000

------------------------------------------------------------------------------
          mv |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        crim | -.0071948   .0010277 -7.00   0.000 -.009209 -.0051806
          zn |   .0000286   .0006894     0.04   0.967 -.0013226    .0013799
       indus |   .0022167   .0043906     0.50   0.614 -.0063887    .0108221
        chas | -.0119739    .028971 -0.41   0.679 -.0687561    .0448083
         nox | -.0058672   .0012282 -4.78   0.000 -.0082744 -.00346
          rm |   .0092024   .0011643     7.90   0.000     .0069204    .0114843
         age | -.000943   .0004614 -2.04   0.041 -.0018473 -.0000387
         dis | -.1298569   .0469261 -2.77   0.006 -.2218304 -.0378834
         rad |   .0971024   .0284233     3.42   0.001     .0413938     .152811
         tax | -.0003741   .0001895 -1.97   0.048 -.0007456 -2.59e-06
          pt | -.0297989   .0097987 -3.04   0.002 -.0490041 -.0105938
           b |   .5778527   .0999609     5.78   0.000      .381933    .7737724
         lst | -.2837924     .02405 -11.80   0.000 -.3309295 -.2366552
       _cons |   9.675679   .2069417    46.76   0.000     9.270081    10.08128
-------------+----------------------------------------------------------------
    /sigma_u |   .1337509   .0132895    10.06   0.000      .107704  .1597979
    /sigma_e |   .1304801   .0045557    28.64   0.000     .1215512    .1394091
-------------+----------------------------------------------------------------
         rho |   .5123767   .0546929                      .4060176    .6178576
------------------------------------------------------------------------------
Likelihood ratio test of sigma_u=0: chibar2(01)=  172.71 Prob>=chibar2 = 0.000

the distance from employment centers in Boston, the lower is the median value
of the house. Similarly, the more rooms a house has and the more accessible to
radial highways the higher is the median value of that home. Table 9.2 produces
the maximum likelihood estimates using Stata. The likelihood ratio for H0; σ2

μ = 0
is 172.7. This is asymptotically distributed as χ2

1 and is significant. The Breusch
Pagan LM test for H0 is 240.8. This is asymptotically distributed as χ2

1 and is also
significant. The Hausman specification test based on the contrast between the fixed
effects and random effects estimators in Stata yields a χ2

8 statistic of 66.1 which is
statistically significant. Table 9.3 reproduces the Swamy and Arora estimator using
Stata.

In conclusion, for the regression coefficients, both theMonte Carlo and the empir-
ical illustration indicate that the computationally simple ANOVA estimates compare
favorably with the computationally demanding ML, REML, and MQA type estima-
tors. For the variance components, the ANOVA methods are recommended except
when ρ is large and the unbalancedness of the data is severe. For these cases, ML,
REML, or MQA are recommended. As a check for misspecification, one should
perform at least one of the ANOVA methods and one of the ML methods to see if
the estimates differ widely. This is the Maddala and Mount (1973) suggestion for
the balanced data case and applies as well for the unbalanced data case.
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Table 9.3 Hedonic housing equation: Swamy and Arora estimator

Random-effects GLS regression                   Number of obs      =       506
Group variable (i) : town                       Number of groups   =        92

R-sq:  within  = 0.6682        Obs per group: min =         1
       between = 0.8088                                        avg =       5.5
       overall = 0.7875                                        max =        30

Random effects u_i ~ Gaussian                   Wald chi2(13)      =   1169.62
corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000

------------------- theta --------------------
  min      5%       median        95%      max
0.2915   0.2915     0.5514     0.7697   0.8197

------------------------------------------------------------------------------
          mv |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        crim | -.0072338   .0010346 -6.99   0.000 -.0092616 -.0052061
          zn |   .0000396   .0006878     0.06   0.954 -.0013084    .0013876
       indus |   .0020794   .0043403     0.48   0.632 -.0064273    .0105861
        chas | -.0105913   .0289598 -0.37   0.715 -.0673515     .046169
         nox | -.005863   .0012455 -4.71   0.000 -.0083041 -.0034219
          rm |   .0091774   .0011792     7.78   0.000     .0068662    .0114885
         age | -.0009272   .0004647 -2.00   0.046 -.0018379 -.0000164
         dis | -.1328825   .0456826 -2.91   0.004 -.2224186 -.0433463
         rad |   .0968634   .0283495     3.42   0.001     .0412994    .1524274

tax | -.0003747    .000189 -1.98   0.047 -.0007452 -4.25e-06
          pt | -.029723   .0097538 -3.05   0.002 -.0488402 -.0106059
           b |   .5750649    .101031     5.69   0.000     .3770479     .773082
         lst | -.2851401   .0238546 -11.95   0.000 -.3318942 -.2383859

_cons |  9.677802   .2071417    46.72   0.000     9.271811    10.08379
-------------+----------------------------------------------------------------
     sigma_u |  .12973801
     sigma_e |  .13024876

rho |  .49803548   (fraction of variance due to u_i)
------------------------------------------------------------------------------

In another application studying the damage associated with proximity to a hazardous
waste site, Mendelsohn et al. (1992) use panel data on repeated single-family home
sales in the harbor area surrounding New Bedford, Massachusetts over the period
1969-88. Note that one observes the dependent variable, in this case the value of
the house, only when an actual sale occurs. Therefore, these data are “unbalanced”
with different time-period intervals between sales, and different numbers of repeated
sales for each single-family house over the period observed. These comprised 780
properties and 1916 sales. Mendelsohn et al. (1992) used first-differenced and fixed
effects estimation methods to control for specific individual housing characteristics.
Information on the latter variables are rarely available or complete. They find a
significant reduction in housing values, between 7000 and 10000 (1989 dollars), as
a result of these houses’ proximity to hazardous waste sites.
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Baltagi, Egger and Pfaffermayr (2003) consider an unbalanced panel of bilateral
export flows from the EU15 countries, USA, and Japan to their 57 most important
trading partners over the period 1986–1998. They estimate a three-way gravity
equationwith importer, exporter, and time fixed effects aswell as pairwise interaction
effects. These effects include time-invariant factors like distance, common borders,
island nation, land locked, common language, colonies, etc. These fixed effects as
well as the interaction terms are found to be statistically significant. Omission of
these effects can result in biased and misleading inference.

9.5 The UnbalancedTwo-Way Error Component Model

Wansbeek and Kapteyn (1989), henceforth WK, consider the regression model with
unbalanced two-way error component disturbances

yit = X ′
i tβ + uit i = 1, . . . , Nt t = 1, . . . , T (9.27)

uit = μi + λt + νi t

where Nt (Nt � N ) denotes the number of individuals observed in year t , with n =∑
t Nt . Let Dt be the (Nt × N ) matrix obtained from IN by omitting the rows

corresponding to individuals not observed in year t . Define

� = (�1,�2) ≡
⎡
⎢⎣

D1 D1ιN
...

. . .

DT DT ιN

⎤
⎥⎦ (9.28)

where �1 = (D′
1, . . . , D′

T )′ is n × N and �2 = diag[Dt ιN ] = diag[ιNt ] is n × T .
The matrix � gives the dummy-variable structure for the incomplete data model.
Note that WK order the data on the N individuals in T consecutive sets, so that t
runs slowly and i runs fast. This is exactly the opposite ordering that has been used
so far in the text. For complete panels, �1 = (ιT ⊗ IN ) and �2 = IT ⊗ ιN .

9.5.1 The Fixed Effects Model

If the μi and λt are fixed, one has to run the regression given in (9.27) with the matrix
of dummies given in (9.28). Most likely, this will be infeasible for large panels with
many households or individuals, and we need the familiar Within transformation.
This was easy for the balanced case and extended easily to the unbalanced one-way
case.However, for the unbalanced two-waycase,WKshowed that this transformation
is a little complicated but nevertheless manageable. To see this, we need some more
matrix results.

Note that �N ≡ �′
1�1 = diag[Ti ] where Ti is the number of years individual i

is observed in the panel. Also, �T ≡ �′
2�2 = diag[Nt ] and �T N ≡ �′

2�1 is the
(T × N ) matrix of zeros and ones indicating the absence or presence of a household
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in a certain year. For complete panels,�N = T IN ,�T = N IT and�T N = ιT ι′N =
JT N . Define P[�] = �(�′�)−�′, then the Within transformation is Q[�] = In −
P[�]. For the two-way unbalanced model with � = (�1, �2) given by (9.28), WK
show that

P[�] = P�1 + P[Q[�1]�2] (9.29)

The proof is sketched out in problem 9.6. Therefore,

Q[�] = Q[�1] − Q[�1]�2(�
′
2Q[�1]�2)

−�′
2Q[�1] (9.30)

Davis (2002) generalizes the WKWithin transformation to the three-way, four-way,
and higher order error component models. Davis shows that the Within transforma-
tion can be applied in stages to the variables in the regression, just like in (9.30).
This reduces the computational burden considerably. For example, consider a three-
way error component model, representing products sold at certain locations and
observed over some time period. These fixed effects are captured by three dummy
variables matrices � = [�1,�2,�3]. In order to get the Within transformation,
Davis (2002) applies (9.29) twice and obtains Q[�] = Q[A] − P[B] − P[C] where
A = �1, B = Q[A]�2, and C = Q[B]Q[A]�3; see problem 9.7. This idea general-
izes readily to higher order fixed effects error components models.

9.5.2 The Random Effects Model

In vector form, the incomplete two-way random effects model can be written as

u = �1μ + �2λ + ν (9.31)

where μ′ = (μ1, . . . , μN ),λ′ = (λ1, . . . ,λT ) and ν are random variables described
exactly as in the two-way error component model considered in Chap. 3. μ,λ, and ν
are independent of each other and among themselves with zero means and variances
σ2

μ,σ2
λ and σ2

ν , respectively. In this case,

� = E(uu′) = σ2
ν In + σ2

μ�1�
′
1 + σ2

λ�2�
′
2

= σ2
ν(In + φ1�1�

′
1 + φ2�2�

′
2) = σ2

ν� (9.32)

with φ1 = σ2
μ/σ2

ν and φ2 = σ2
λ/σ2

ν . Using the general expression for the inverse of
(I + X X ′), see problem 9.8, Wansbeek and Kapteyn (1989) obtain the inverse of �

as
�−1 = V − V �2 P̃−1�′

2V (9.33)

where
V = In − �1�̃

−1
N �′

1 (n × n)

P̃ = �̃T − �T N �̃−1
N �′

T N (T × T )

�̃N = �N + (σ2
ν/σ

2
μ)IN (N × N )

�̃T = �T + (σ2
ν/σ

2
λ)IT (T × T )

Note thatwe can no longer obtain the simple Fuller andBattese (1973) transformation
for the unbalanced two-waymodel. The expression for�−1 ismessy and asymmetric
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in individuals and time, but it reduces computational time considerably relative to
inverting � numerically. Davis (2002) shows that the WK results can be generalized
to an arbitrary number of random error components. In fact, for a three-way random
error component, like the one considered in problem 9.8, the added random error
component η adds an extra σ2

η�3�
′
3 term to the variance–covariance given in (9.32).

Therefore, � remains of the (I + X X ′) form and its inverse can be obtained by
repeated application of this inversion formula. This idea generalizes readily to higher
order unbalanced random error component models. WK suggest an ANOVA type
quadratic unbiased estimator (QUE) of the variance components based on theWithin
residuals. In fact, theMSE of theWithin regression is unbiased for σ2

ν even under the
random effects specification. Let e = y − X β̃ where β̃ denote the Within estimates
and define

qW = e′Q[�]e (9.34)

qN = e′�2�
−1
T �′

2e = e′ P[�2]e (9.35)

qT = e′�1�
−1
N �′

1e = e′ P[�1]e (9.36)

By equatingqW ,qN , andqT to their expected values and solving these three equations
one getsQUEofσ2

ν ,σ
2
μ andσ2

λ.WKalso derive theML iterative first-order conditions
as well as the information matrix under normality of the disturbances. These will not
be reproduced here, and the reader is referred to theWK article for details. A limited
Monte Carlo experiment was performed using 50 replications and three kinds of data
designs: complete panel data, 20% random attrition, and a rotating panel. This was
done using a simple regression with a Nerlove type X for fixed σ2

μ = 400,σ2
λ = 25

and σ2
ν = 25. The regression coefficients were fixed at α = 25 and β = 2, and the

number of individuals and time periods were N = 100 and T = 5, respectively. The
results imply that the QUE of the variance components are in all cases at least as
close to the true value as the MLE so that iteration on these values does not seem
to pay off. Also, GLS gives nearly identical results to MLE as far as the regression
coefficient estimates are concerned. Therefore, WK recommend GLS over MLE in
view of the large difference in computational cost.

Baltagi, Song and Jung (2002a) reconsider the unbalanced two-way error compo-
nent given in (9.27) and (9.28) and provide alternative analysis of variance (ANOVA),
minimum norm quadratic unbiased (MINQUE), and restricted maximum likelihood
(REML) estimation procedures. These are similar to the methods studied in Sect. 9.2
for the unbalanced one-way error component model. The mean squared error perfor-
mance of these estimators are compared using Monte Carlo experiments. Focusing
on the estimates of the variance components, the computationally more demanding
MLE, REML, MIVQUE estimators are recommended especially if the unbalanced
pattern is severe. However, focusing on the regression coefficients estimates, the
simple ANOVA methods perform just as well as the computationally demanding
MLE, REML, and MIVQUE methods and are recommended.
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9.6 Testing for Individual andTime Effects Using Unbalanced
Panel Data

In Chap. 4, we derived the Breusch and Pagan (1980) LM test for H0; σ2
μ = σ2

λ = 0
in a complete panel data model with two-way error component disturbances. Baltagi
and Li (1990b) derived the corresponding LM test for the unbalanced two-way error
componentmodel. Thismodel is given by (9.27), and the variance–covariancematrix
of the disturbances is given by (9.32). Following the same derivations as given in
Sect. 4.2 (see problem 9.8), one can show that under normality of the disturbances

∂�/∂σ2
μ = �1�

′
1; ∂�/∂σ2

λ = �2�
′
2 and ∂�/∂σ2

ν = In (9.37)

with

tr(�2�
′
2) = tr(�′

2�2) = tr(diag[Nt ]) =
T∑

t=1

Nt = n (9.38)

and

tr(�′
1�1) = tr(diag[Ti ]) =

N∑
i=1

Ti = n (9.39)

Substituting these results in (4.17) and noting that under H0, �̃−1 = (1/σ̃2
ν)In,where

σ̂2
ν = ũ′ũ/N T and ũ denote the OLS residuals, one gets

D̃ = (∂L/∂θ) |θ=̃θ= (n/2σ̃2
ν)

⎡
⎣ A1

A2
0

⎤
⎦ (9.40)

where θ′ = (σ2
μ,σ2

λ,σ2
ν) and θ̃ denotes the restricted MLE of θ under H0. Also,

Ar = [(̃u′�r�
′
r ũ/ũ′ũ) − 1] for r = 1, 2. Similarly, one can use (4.19) to obtain the

information matrix

J̃ = (n/2σ̃4
ν)

⎡
⎣ M11/n 1 1

1 M22/n 1
1 1 1

⎤
⎦ (9.41)

where M11 = ∑N
i=1 T 2

i and M22 = ∑T
t=1 N 2

t . This makes use of the fact that

tr(�2�
′
2)

2 =
T∑

t=1

N 2
t ; tr(�1�

′
1)

2 =
N∑

i=1

T 2
i (9.42)

and

tr[(�1�
′
1)(�2�

′
2)] =

T∑
t=1

tr[(Dt D′
t )JNt ] =

T∑
t=1

tr(JNt ) =
T∑

t=1

Nt = n

Using (9.40) and (9.41) one gets the LM statistic

L M = D̃′ J̃−1 D̃ = ( 12 )n
2[A2

1/(M11 − n) + A2
2/(M22 − n)] (9.43)
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which is asymptotically distributed as χ2
2 under the null hypothesis. For computa-

tional purposes, one need not form the �r matrices to compute Ar (r = 1, 2). In
fact,

ũ�1�
′
1ũ =

N∑
i=1

ũ2
i . where ũi . =

Ti∑
t=1

ũi t (9.44)

and

ũ′�2�
′
2ũ =

T∑
t=1

ũ2
.t where ũ.t =

Nt∑
i=1

ũi t (9.45)

Equation (9.45) is obvious, since �2 = diag[ιNt ], and (9.44) can be similarly
obtained, by restacking the residuals such that the faster index is t . The LM statistic
given in (9.43) is easily computed using least squares residuals, and retains a similar
form to that of the complete panel data case. In fact, when Nt = N , (9.43) reverts
back to the LM statistic derived in Breusch and Pagan (1980). Also, (9.43) retains
the additive property exhibited in the complete panel data case, i.e., if H0; σ2

μ = 0,
the LM test reduces to the first term of (9.43), whereas if H0; σ2

λ = 0, the LM test
reduces to the second term of (9.43). Both test statistics are asymptotically distributed
as χ2

1 under the respective null hypotheses.
These variance components cannot be negative and therefore H0;σ2

μ = 0 has to be
against a one-sided alternative H1; σ2

μ > 0. Moulton and Randolph (1989) derived
the one-sided LM1 statistic

L M1 = n[2(M11 − n)]−1/2A1 (9.46)

which is the square root of the first term in (9.43). Under weak conditions as n → ∞
and N → ∞ the LM1 statistic has an asymptotic standard normal distribution under
H0. However, Moulton and Randolph (1989) showed that this asymptotic N (0, 1)
approximation can be poor even in large samples. This occurs when the number of
regressors is large or the intra-class correlation of some of the regressors is high.
They suggest an alternative standardized Lagrange multiplier SLM given by

SL M = L M1 − E(L M1)√
var(L M1)

= d − E(d)√
var(d)

(9.47)

where d = (ũ′Dũ)/ũ′ũ and D = �1�
′
1. Using the results on moments of quadratic

forms in regression residuals (see, for example, Evans and King 1985), we get

E(d) = tr(D P̄Z )/p

where p = [n − (K + 1)] and
var(d) = 2{p tr(D P̄Z )2 − [tr(D P̄Z )]2}/p2(p + 2)

Under H0, this SLM has the same asymptotic N (0, 1) distribution as the LM1 statis-
tic. However, the asymptotic critical values for the SLM are generally closer to the
exact critical values than those of the LM1 statistic. Similarly, for H0; σ2

λ = 0, the
one-sided LM test statistic is the square root of the second term in (9.43), i.e.,

L M2 = n[2(M22 − n)]−1/2A2 (9.48)
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Honda’s (1985) “handy” one-sided test for the two-way model with unbalanced data
is simply

H O = (L M1 + L M2)/
√
2

It is also easy to show, see Baltagi, Chang and Li (1998), that the locally mean
most powerful (LMMP) one-sided test suggested by King and Wu (1997) for the
unbalanced two-way error component model is given by

K W =
√

M11 − n√
M11 + M22 − 2n

L M1 +
√

M22 − n√
M11 + M22 − 2n

L M2 (9.49)

where LM1 and LM2 are given by (9.46) and (9.48), respectively. Both HO and
KW are asymptotically distributed as N (0, 1) under H0. These test statistics can
be standardized and the resulting SLM given by {d − E(d)}/√var(d) where d =
ũ′Dũ/ũ′ũ with

D = 1

2

n√
M11 − n

(�1�
′
1) + 1

2

n√
M22 − n

(�2�
′
2) (9.50)

for Honda’s (1985) version, and

D = n√
2
√

M11 + M22 − 2n
[(�1�

′
1) + (�2�

′
2)] (9.51)

for the King and Wu (1997) version of this test. E(d) and var(d) are obtained from
the same formulas shown (9.47) using the appropriate D matrices.

SinceLM1 andLM2 canbe negative for a specific application, especiallywhenone
or both variance components are small and close to zero, one can use the Gourieroux,
Holly and Monfort (1982) (GHM) test which is given by

χ2
m =

⎧⎪⎪⎨
⎪⎪⎩

L M2
1 + L M2

2 if L M1 > 0, L M2 > 0
L M2

1 if L M1 > 0, L M2 � 0
L M2

2 if L M1 � 0, L M2 > 0
0 if L M1 � 0, L M2 � 0

(9.52)

χ2
m denotes the mixed χ2 distribution. Under the null hypothesis,

χ2
m ∼

( 1
4

)
χ2(0) + ( 1

2

)
χ2(1) + ( 1

4

)
χ2(2)

where χ2(0) equals zero with probability one.10 The weights 1
4 ,

1
2 , and

1
4 follow

from the fact that LM1 and LM2 are asymptotically independent of each other and
the results in Gourieroux, Holly and Monfort (1982). This proposed test has the
advantage over the Honda and KW tests in that it is immune to the possible negative
values of LM1 and LM2.

Baltagi, Chang and Li (1998) compare the performance of these tests usingMonte
Carlo experiments for an unbalanced two-way error componentmodel. The results of
the Monte Carlo experiments show that the nominal size of the Honda and King-Wu
tests based on asymptotic critical values are inaccurate for all unbalanced patterns
considered. However, the nominal size of the standardized version of these tests
is closer to the true significance value and is recommended. This confirms similar
results for the unbalanced one-way error componentmodel byMoulton andRandolph
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(1989). In cases where at least one of the variance components is close to zero, the
Gourieroux, Holly and Monfort (1982) test is found to perform well in Monte Carlo
experiments and is recommended. All the tests considered have larger power as the
number of individuals N in the panel and/or the variance components increase. In
fact, for typical labor or consumer panels with large N , theMonte Carlo results show
that the power of these tests is one except for cases where the variance components
comprise less than 10% of the total variance.

9.7 The Unbalanced Nested Error Component Model

Baltagi, Song and Jung (2001) extend the ANOVA, MINQUE, and MLE estima-
tion procedures described in Sect. 9.2 to the unbalanced nested error component
regression model. For this model, the incomplete panel data exhibits a natural nested
grouping. For example, data on firms may be grouped by industry, data on states
by region, data on individuals by profession and data on students by schools.11 The
unbalanced panel data regression model is given by

yi j t = x ′
i j tβ + ui j t , i = 1, . . . , M, j = 1, . . . , Ni and t = 1, . . . , Ti ,

(9.53)
where yi j t could denote the output of the jth firm in the ith industry for the tth time
period. xi j t denotes a vector of k nonstochastic inputs. The disturbances are given
by

ui j t = μi + νi j + εi j t , i = 1, . . . , M, j = 1, . . . , Ni and t = 1, . . . , Ti ,

(9.54)
where μi denotes the ith unobservable industry specific effect which is assumed to be
IID(0,σ2

μ), νi j denotes the nested effect of the jth firm within the ith industry which
is assumed to be IID(0,σ2

ν), and εi j t denotes the remainder disturbance which is
also assumed to be IID(0, σ2

ε ). The μi ’s, νi j ’s, and εi j t ’s are independent of each
other and among themselves. This is a nested classification in that each successive
component of the error term is imbedded or “nested” within the preceding compo-
nent; see Graybill (1961, p. 350). This model allows for unequal number of firms
in each industry as well as different number of observed time periods across indus-
tries. Detailed derivation of the variance–covariance matrix�, the Fuller and Battese
(1973) transformation, as well as ANOVA, MINQUE, and MLE methods are given
in Baltagi, Song and Jung (2001) and will not be reproduced here. Baltagi, Song
and Jung (2001) compared the performance of these estimators using Monte Carlo
experiments. While the MLE and MIVQUE methods perform the best in estimat-
ing the variance components and the standard errors of the regression coefficients,
the simple ANOVA methods perform just as well in estimating the regression coef-
ficients. These estimation methods are also used to investigate the productivity of
public capital in private production. In a companion paper, Baltagi, Song and Jung
(2002b) extend the LagrangeMultiplier tests described in Sect. 9.5 to the unbalanced
nested error component model. Later, Baltagi, Song and Jung (2002c) derived the
the LagrangeMultiplier tests for the unbalalnced nested error component model with
serially correlated disturbances.
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9.7.1 Empirical Example:Nested States Public Capital Productivity

In Chap. 2, example 3, we estimated a Cobb–Douglas production function inves-
tigating the productivity of public capital in each state’s private output. This was
based on a panel of 48 states over the period 1970-86. The data was provided by
Munnell (1990). Here, we group these states into nine geographical regions with
the Middle Atlantic region, for example, containing three states: New York, New
Jersey and Pennsylvania and the Mountain region containing eight states: Montana,
Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, and Nevada. In this case,
the primary group would be the regions, the nested group would be the states, and
these are observed over 17 years. The dependent variable y is the gross state product
and the regressors include the private capital stock (K) computed by apportioning the
Bureau of Economic Analysis (BEA) national estimates. The public capital stock is
measured by its components: highways and streets (KH), water and sewer facilities
(KW), and other public buildings and structures (KO), all based on the BEA national
series. Labor (L) is measured by the employment in nonagricultural payrolls. The
state unemployment rate is included to capture the business cycle in a given state.
All variables except the unemployment rate are expressed in natural logarithm

yi j t = α + β1Ki jt + β2K Hi jt + β3K Wi jt + β4K Oi jt + β5Li j t + β6 Unempi j t + uit
(9.55)

where i = 1, 2, . . . , 9 regions, j = 1, . . . , Ni with Ni equaling three for the Middle
Atlantic region and eight for the Mountain region and t = 1, 2, . . . , 17. The data is
unbalanced only in the differing number of states in each region. The disturbances
follow the nested error component specification given by (9.54).

Table 9.4 gives the OLS, Within, ANOVA, MLE, REML, and MIVQUE type
estimates using this unbalanced nested error component model. The OLS estimates
show that the highways and streets and water and sewer components of public capital
have a positive and significant effect upon private output, whereas that of other public
buildings and structures is not significant. Because OLS ignores the state and region
effects, the corresponding standard errors and t-statistics are biased; see Moulton
(1986). The Within estimator shows that the effect of KH and KW is insignificant,
whereas that of KO is negative and significant. The primary region and nested state
effects are significant using several LM tests developed in Baltagi, Song and Jung
(2002b). This justifies the application of the feasible GLS, MLE, and MIVQUE
methods. For the variance components estimates, there are no differences in the
estimate of σ2

ε . But estimates of σ2
μ and σ2

ν vary. σ̂2
μ is as low as 0.0015 for SA and

MLE and as high as 0.0029 for HFB. Similarly, σ̂2
ν is as low as 0.0043 for SA and as

high as 0.0069 for WK. This variation had little effect on estimates of the regression
coefficients or their standard errors. For all estimators of the random effects model,
the highways and streets and water and sewer components of public capital had a
positive and significant effect, while the other public buildings and structures had a
negative and significant effect upon private output. These results were verified using
TSP and Stata. In fact Table 9.5 replicates theMLE column of Table 9.4, while Table
9.6 replicates the REML column of Table 9.4, using the xtmixed command in Stata.
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Table 9.4 Cobb–Douglas production function estimates with unbalanced nested error components
1970–1986, nine regions, 48 States

Variable OLS Within WH WK SA HFB MLE REML MV1 MV2 MV3

Intercept 1.926 – 2.082 2.131 2.089 2.084 2.129 2.127 2.083 2.114 2.127

(0.053) (0.152) (0.160) (0.144) (0.150) (0.154) (0.157) (0.152) (0.154) (0.156)

K 0.312 0.235 0.273 0.264 0.274 0.272 0.267 0.266 0.272 0.269 0.267

(0.011) (0.026) (0.021) (0.022) (0.020) (0.021) (0.021) (0.022) (0.021) (0.021) (0.021)

L 0.550 0.801 0.742 0.758 0.740 0.743 0.754 0.756 0.742 0.750 0.755

(0.016) (0.030) (0.026) (0.027) (0.025) (0.026) (0.026) (0.026) (0.026) (0.026) (0.026)

KH 0.059 0.077 0.075 0.072 0.073 0.075 0.071 0.072 0.075 0.072 0.072

(0.015) (0.031) (0.023) (0.024) (0.022) (0.022) (0.023) (0.023) (0.023) (0.023) (0.023)

KW 0.119 0.079 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.076

(0.012) (0.015) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)

KO 0.009 −0.115 −0.095 −0.102 −0.094 −0.096 −0.100 −0.101 −0.095 −0.098 −0.100

(0.012) (0.018) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

Unemp −0.007 −0.005 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

σ2ε 0.0073 0.0013 0.0014 0.0014 0.0014 0.0014 0.0013 0.0014 0.0014 0.0014 0.0014

σ2μ – – 0.0027 0.0022 0.0015 0.0029 0.0015 0.0019 0.0027 0.0017 0.0017

σ2ν – – 0.0045 0.0069 0.0043 0.0044 0.0063 0.0064 0.0046 0.0056 0.0063

The dependent variable is log of gross state product. Standard errors are given in parentheses.
Source Baltagi, Song and Jung (2001), reproduced by permission of Elsevier Science Publishers
B.V. (North-Holland)

Other empirical applications of the nested error component model include Mont-
marquette and Mahseredjian (1989) who study whether schooling matters in edu-
cational achievements in Montreal’s Francophone public elementary schools. Also,
Antweiler (2001) who derives the maximum likelihood estimator for an unbalanced
nested three-way error component model. This is applied to the problem of explain-
ing the determinants of pollution concentration (measured by the log of atmospheric
sulfuric dioxide) at 293 observation stations located in 44 countries over the time
period 1971–96. This data is highly unbalanced in that out of a total of 2621 obser-
vations, about a third of these are from stations in one country, the United States.
Also, the time period of observation is not necessarily continuous. Comparing the
results of maximum likelihood for a nested versus a simple (non-nested) unbalanced
error component model, Antweiler (2001) finds that the scale elasticity coefficient
estimate for the nested model is less than half that for the non-nested model. Scale
elasticity is the coefficient of log of economic intensity as measured by GDP per
square kilometer. This is also true for the estimate of the income effect which is
negative and much lower in absolute value for the nested model than the non-nested
model. Finally, the estimate of the composition effect which is the coefficient of the
log of the country’s capital abundance is higher for the nested model than for the
non-nested model.

Davis (2002) appliesOLS,Within,MIVQUE, andMLEprocedures to a three-way
unbalanced error componentmodel using data on film revenues for sixmovie theaters
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Table 9.5 Nested Public Capital Equation: MLE Estimator

. xtmixed y k l kh kw ko unemp || region: || state:, mle

Mixed-effects ML regression                     Number of obs      =       816

-----------------------------------------------------------
|   No. of       Observations per Group

Group Variable |   Groups    Minimum    Average    Maximum
----------------+------------------------------------------

region |        9         51       90.7        136
state |       48         17       17.0         17

-----------------------------------------------------------

Wald chi2(6)       =  18829.06
Log likelihood =  1430.5016                     Prob > chi2        =    0.0000

------------------------------------------------------------------------------
y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
k |   .2671485   .0212591    12.57   0.000     .2254814    .3088155
l |   .7540721   .0261868    28.80   0.000     .7027468    .8053973
kh |   .0709766    .023041     3.08   0.002     .0258171    .1161362
kw |   .0761188   .0139248     5.47   0.000     .0488266     .103411
ko | -.0999956   .0169366 -5.90   0.000 -.1331908 -.0668005

unemp | -.0058983   .0009031 -6.53   0.000 -.0076684 -.0041282
_cons |   2.128824   .1543854    13.79   0.000     1.826234    2.431414

------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]

-----------------------------+------------------------------------------------
region: Identity             |

sd(_cons) |    .038087   .0170591      .0158316     .091628
-----------------------------+------------------------------------------------
state: Identity              |

sd(_cons) |   .0792193   .0093861      .0628027    .0999273
-----------------------------+------------------------------------------------

sd(Residual) |   .0366893    .000939      .0348944    .0385766
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(2) =  1154.73   Prob > chi2 = 0.0000

nearNewHaven,CT, observedover a sixweekperiod in 1998. Someof the reasons for
unbalancedness in the data occurs because (i) not all films are shown at all locations,
(ii) films start and stop being shown at theaters during the observation period, and
(iii) data on revenues aremissing due to nonresponse. The estimates obtained reveal a
complex set of asymmetric cross-theater price elasticities of demand. These estimates
are useful for the analysis of the impact of mergers on pricing, and for determining
the appropriate extent of geographic market definition in these markets.

In Chap. 7, we showed that the Within estimator is equivalent to OLS on the
augmented regression which adds the covariate averages Xi . to the original model;
see Mundlak (1978) and problem 7.8. Wooldridge (2010) shows that this Mundlak
result still holds for unbalanced panels. In Chap. 4, we also showed that the Within
estimator can be obtained using the Chamberlain (1982) approach of projecting the
individual effects upon covariates from all time periods. Abrevaya (2013) shows
that the Chamberlain (1982) approach is not immediately applicable for unbalanced
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Table 9.6 Nested Public Capital Equation: REML Estimator

. xtmixed y k l kh kw ko unemp || region: || state:, reml

Mixed-effects REML regression                   Number of obs      =       816

-----------------------------------------------------------
|   No. of       Observations per Group

Group Variable |   Groups    Minimum    Average    Maximum
----------------+------------------------------------------

region |        9         51       90.7        136
state | 48         17       17.0         17

-----------------------------------------------------------

Wald chi2(6)       =  18382.38
Log restricted-likelihood =  1404.7101          Prob > chi2        =    0.0000

------------------------------------------------------------------------------
y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
k | .2660309   .0215471    12.35   0.000     .2237993    .3082624
l |    .755506   .0264556    28.56   0.000     .7036539     .807358
kh |   .0718856   .0233478     3.08   0.002     .0261248    .1176464
kw |   .0761553   .0139952     5.44   0.000     .0487251    .1035854
ko | -.1005397   .0170173 -5.91   0.000 -.1338931 -.0671864

unemp | -.0058815   .0009093 -6.47   0.000 -.0076636 -.0040994
_cons |   2.126996   .1574865    13.51   0.000     1.818328    2.435664

------------------------------------------------------------------------------

------------------------------------------------------------------------------
Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval]

-----------------------------+------------------------------------------------
region: Identity             |

sd(_cons) |   .0435474   .0186293      .0188289    .1007163
-----------------------------+------------------------------------------------
state: Identity              |

sd(_cons) |   .0802738   .0095512      .0635763    .1013567
-----------------------------+------------------------------------------------

sd(Residual) |   .0368008   .0009442       .034996    .0386987
------------------------------------------------------------------------------
LR test vs. linear regression:       chi2(2) =  1162.40   Prob > chi2 = 0.0000

panels. Instead, Abrevaya introduces a modified Chamberlain approach in which
the projection depends upon the form of missingness for a given individual. This
leads to orthogonality conditions that depend upon the form of exogeneity assump-
tion maintained. These orthogonality conditions are used in a GMM framework to
develop estimators of the model (and projection) parameters as well as tests of strict
exogeneity and random effects.

Baltagi and Liu (2020) derive the best linear unbiased prediction (BLUP) for
an unbalanced panel data model. Starting with a simple one-way error compo-
nent regression model with unbalanced panel data and random effects considered
in Sect. 9.2, the paper generalizes the BLUP derived by Taub (1979) from the bal-
anced panel data case; see Sect. 2.5 to the unbalanced panel data case. In fact, the
BLUP for individual i who is observed for Ti periods corrects the GLS prediction
by a fraction of the mean of the GLS residuals corresponding to that i th individual.
This correction applies no matter what future S period we are forecasting this indi-
vidual’s behavior. Next, the paper derives the BLUP for an unequally spaced panel
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data model with serial correlation of the AR(1) type in the remainder disturbances
considered by Baltagi and Wu (1999) in Sect. 5.2.5. This in turn extends the BLUP
for a panel data model with AR(1) type remainder disturbances derived by Baltagi
and Li (1991) in Sect. 5.2.6 from the balanced to the unequally spaced panel data
case. They illustrate these forecasts with an earnings equation using the NLS young
women data over the period 1968–1988 employed by Drukker (2003). The data is
unbalanced and the forecast of the logarithm of wage for the last available year for
that individual is computed using OLS, FE, RE, FE with AR(1), RE with AR(1).
They find that the random effects model with an AR(1) term predicts significantly
better than all other models. Problem 9.15 asks the reader to replicate the results in
Baltagi and Liu (2020).

Read Chap. 5 of the Oxford Handbook of Panel Data by Bai, Liao and Liang
(2015) which deals with unbalanced panel models with interactive effects. They
propose new algorithms that allow for various types of unbalanced panels and show
their performance using Monte Carlo experiments.

9.8 Notes

1. Othermethodsof dealingwithmissingdata include (i) imputing themissingvalues
and analyzing the filled-in data by complete panel data methods; (ii) discarding
the nonrespondents and weighting the respondents to compensate for the loss of
cases; see (Little, 1988) and the section on nonresponse adjustments in Kasprzyk
et al. (1989).

2. This analysis assumes that the observations of the individual with the shortest
time series are nested in a specific manner within the observations of the other
individual. However, the same derivations apply for different types of overlapping
observations.

3. Note that if the updated value is negative, it is replaced by zero and the iteration
continues until the convergence criterion is satisfied.

4. It is important to note that ML and restricted ML estimates of the variance com-
ponents are by definition nonnegative. However, ANOVA andMINQUEmethods
can produce negative estimates of the variance component σ2

μ. In these cases, the
negative variance estimates are replaced by zero. This means that the resulting
variance component estimator is σ̃2

μ = max(̂σ2
μ, 0) which is no longer unbiased.

5. Problem 90.2.3 in Econometric Theory by Baltagi and Li (1990a) demonstrated
analytically that for a random error component model, one can construct a simple
unbiased estimator of the variance components using the entire unbalanced panel
that is more efficient than the BQU estimator using only the subbalanced pattern
(see problem 9.5). Also, Chowdhury (1991) showed that for the fixed effects error
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component model, the Within estimator based on the entire unbalanced panel is
efficient relative to any Within estimator based on a subbalanced pattern.

6. The variable descriptions are from Table IV of Harrison and Rubinfeld (1978).
See Belsley, Kuh andWelsch (1980) for a listing of the data and further diagnostic
analysis of these data. Moulton (1986) used these data to show the inappropriate
use of OLS in the presence of random group effects and Moulton (1987) applied
a battery of diagnostic tools to this data set.

7. Later, Moulton and Randolph (1989) found that asymptotic critical values of the
one-sided LM test can be very poor, and suggested a standardized LM test whose
asymptotic critical-value approximations are likely to be much better than those
of the LM statistic. They applied it to this data set and rejected the null hypothesis
of no random group effect using an exact critical value.

8. Note that the Amemiya-type estimator is not calculated for this data set since
there are some regressors without Within variation.

9. If the data were arranged differently, one would get the generalized inverse of an
(N × N ) matrix rather than that of (T × T ) as in P . Since N > T in most cases,
this choice is most favorable from the point of view of computations.

10. Critical values for the mixed χ2
m are 7.289, 4.231, and 2.952 for α = 0.01, 0.05,

and 0.1, respectively.
11. See problem 3.14 for an introduction to the balanced nested error component

model.

9.9 Problems

9.1 Variance–covariance matrix of unbalanced panels. (a) Show that the variance–
covariance matrix of the disturbances in (9.1) is given by (9.2).

(b) Show that the two nonzero block matrices in (9.2) can be written as in (9.3).

(c) Show that σν�
−1/2
j y j has a typical element (y jt − θ j ȳ j .), where θ j =

1 − σν/ω j and ω2
j = Tjσ

2
μ + σ2

ν .

9.2 Wallace and Hussain type estimators for the variance components of a one-way
unbalanced panel data model.

(a) Verify the E (̂q1) and E (̂q2) equations given in (9.16).
(b) Verify E (̃q1) and E (̃q2) given in (9.17).
(c) Verify E(q̂b

2 ) given in (9.19).

9.3 Using the Monte Carlo setup for the unbalanced one-way error component
model considered byBaltagi andChang (1994), compare the various estimators
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of the variance components and the regression coefficients considered in Sect.
9.3.2.

9.4 Hedonic housing. Using the Harrison and Rubinfeld (1978) data published
in Belsley, Kuh and Welsch (1980) and provided on the Springer website as
Hedonic.xls, reproduce Table 9.1. Perform the Hausman test based on the fixed
effects and the random effects contrast. Perform the LM test for H0; σ2

μ = 0.
9.5 Comparison of variance component estimators using balanced vs. unbalanced

data. This exercise is based on problem 90.2.3 in Econometric Theory by
Baltagi and Li (1990a). Consider the following unbalanced one-way analysis
of variance model

yit = μi + νi t i = 1, . . . , N t = 1, 2, . . . , Ti

where for simplicity’s sake no explanatory variables are included. yit could be
the output of firm i at time period t andμi could be themanagerial ability of firm
i,whereasνi t is a remainder disturbance term.Assume thatμi ∼ IIN(0,σ2

μ) and
νi t ∼IIN(0,σ2

ν) independent of each other. Let T be the maximum overlapping
period over which a complete panel could be established (T � Ti for all i). In
this case, the corresponding vector of balanced observations on yit is denoted
by yb and is of dimension N T . One could estimate the variance components
using this complete panel as follows:

σ̂2
ν = y′

b(IN ⊗ ET )yb/N (T − 1)

and
σ2

μ = [y′
b(IN ⊗ J̄T )yb/N T ] − (̂σ2

ν/T )

where ET = IT − J̄T , J̄T = JT /T and JT is a matrix of ones of dimension T .
σ̂2

ν and σ̂2
μ are the best quadratic unbiased estimators (BQUE) of the variance

components based on the complete panel. Alternatively, one could estimate the
variance components from the entire unbalanced panel as follows:

σ̃2
ν = y′diag(ETi )y/(n − N )

where n = ∑N
i=1 Ti and ETi = ITi − J̄Ti . Also, σ

2
i = (Tiσ

2
μ + σ2

ν) can be esti-
mated by σ̃2

i = y′
i J̄Ti yi ,where yi denotes the vector of Ti observations on the ith

individual. Therefore, there are N estimators ofσ2
μ obtained from (̃σ2

i − σ̃2
ν)/Ti

for i = 1, . . . , N . One simple way of combining them is to take the average

σ̃2
μ =

N∑
i=1

[(̃σ2
i − σ̃2

ν)/Ti ]/N =
{

y′diag[ J̄Ti /Ti ]y −
N∑

i=1

σ̃2
ν/Ti

}
/N

(a) Show that σ̃2
ν and σ̃2

μ are unbiased estimators σ2
ν and σ2

μ.
(b) Show that var(̃σ2

ν) �var(̂σ2
ν) andvar(̃σ

2
μ) �var(̂σ2

μ). (Hint: See solution 90.2.3
in Econometric Theory by Koning (1991).)
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9.6 Fixed effects for the two-way unbalanced panel data model. For X = (X1, X2),
the generalized inverse of (X ′ X) is given by

(X ′ X)− =
[

(X ′
1X1)

− 0
0 0

]
+

[ −(X ′
1X1)

− X ′
1X2

I

]
(X ′

2Q[X1] X2)
−[−X ′

2X1(X ′
1X1)

− I ]

see Davis (2002), Appendix A. Use this result to show that P[X ] = P[X1] +
P[Q[X1] X2]. (Hint: premultiply this expression by X , and post-multiply by X ′.)
This verifies (9.29).

9.7 Fixed effects for the three-way unbalanced panel data model. Consider the
three-way error component model described in problem 3.15. The panel data
can be unbalanced and the matrices of dummy variables are� = [�1, �2, �3]
with

u = �1μ + �2λ + �3η + ν

where μ, λ, and ν are random variables defined (9.31) and the added ran-
dom error η has mean zero and variance σ2

η . All random errors are inde-
pendent among themselves and with each other. Show that P[�] = P[A] +
P[B] + P[C] where A = �1, B = Q[A]�2, and C = Q[B]Q[A]�3. This is
Corollary 1 of Davis (2002). (Hint: apply (9.29) twice. Let X1 = �1 and
X2 = (�2,�3). Using problem 9.6, we get P[X ] = P[�1] + P[Q[�1] X2]. Now,
Q[�1] X2 = Q[�1](�2, �3) = [B, Q[A]�3]. Applying (9.29) again we get
P[B,Q[A]�3] = P[B] + P[Q[B] Q[A]�3].)

9.8 Random effects for the unbalanced three-way panel data model. (a) For�1 and
�2 defined in (9.28), verify that �N ≡ �′

1�1 = diag[Ti ] and �T ≡ �′
2�2 =

diag[Nt ]. Show that for the complete panel data case �1 = ιT ⊗ IN , �2 =
IT ⊗ ιN , �N = T IN , and �T = N IT .

(b) Under the complete panel data case, verify that �T N ≡ �′
2�1 is JT N and

Q = ET ⊗ EN , see Chap. 3, Eq. (3.3) and problem 3.1.

(c) Let X=(X1, X2)with |I + X X ′| 	= 0.Using the result that [In + X X ′]−1 =
In − X(I + X ′ X)−1X ′, apply the partitioned inverse formula for matrices
to show that (I + X X ′)−1 = Q̃[X2] − Q̃[X2] X1S−1X ′

1 Q̃[X2] where Q̃[X2] =
I − X2(I + X ′

2X2)
−1X ′

2 = (I + X2X ′
2)

−1 and S = I + X ′
1 Q̃[X2] X1. This is

lemma 2 of Davis (2002).

(d) Apply the results in part (c) using X = (
σμ

σν
�1,

σλ
σν

�2) to verify �−1 given
in (9.33).

(e) Derive E(qW ), E(qN ), and E(qT ) given in (9.34), (9.35), and (9.36).
9.9 Using the Monte Carlo setup for the unbalanced two-way error component

model considered by Wansbeek and Kapteyn (1989), compare the MSE per-
formance of the variance components and the regression coefficients estimates.

9.10 Breusch and Pagan LM test for unbalanced panel data. Assuming normality
on the disturbances, verify (9.37), (9.40) and (9.41).
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9.11 Locally mean most powerful one-sided test for unbalanced panel data. Verify
that the King and Wu (1997) test for the unbalanced two-way error component
model is given by (9.49).

9.12 Standardized Honda and King and Wu tests for unbalanced panel data. Verify
that the SLM version of the KW and HO tests are given by (9.47) with D
defined in (9.50) and (9.51).

9.13 Nested MLE and REML. Using the Munnell (1990) data set considered in
the empirical example in Sect. 9.7.1, estimate the Cobb–Douglas production
function investigating the productivity of public capital in each state’s private
output using nested MLE and REML as shown in the Stata output in Tables 9.5
and 9.6.

9.14 Consider Mundlak’s (1978) augmented regression in (7.35) except now allow
for unbalanced panel data. Show that OLS on this augmented regression yields
the unbalanced Within estimator for β given by (9.9).

9.15 Forecasting with Unbalanced Panels. This is based on Baltagi and Liu (2020).
(a) Derive the BLUP for an unbalanced one-way error component S periods
ahead. Show that this predictor corrects the GLS prediction by a fraction of the
mean of the GLS residuals corresponding to that i th individual with differing
number of observations for each individual over time. (b) Using the unbalanced
NLS young women data over the period 1968–1988 employed by Drukker
(2003) and available inStata, estimate the earnings equationusingOLS,FE,RE,
FE with AR(1), RE with AR(1) and replicate Table6 of Baltagi and Liu (2020).
(c) Forecast the logarithm of wage for the last year available for that individual
(not using this last observation in estimation). Using the MSE criteria, show
that the RE with AR(1) has the best performance.
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10SpecialTopics

10.1 Measurement Error and Panel Data

Micro-panel data on households, individuals, and firms are highly likely to exhibit
measurement error. In Chap.1, we cited Duncan and Hill (1985) who found serious
measurement error in average hourly earnings in the panel study of income dynam-
ics (PSID). This got worse for a two-year recall as compared to a one-year recall.
Bound et al. (1990) use two validation data sets to study the extent of measure-
ment error in labor market variables. The first data set is the panel study of income
dynamics validation study (PSIDVS) which uses a two-wave panel survey taken in
1983 and 1987 from a single large manufacturing company. The second data set
matches panel data on earnings from the 1977 and 1978 waves of the U.S. Current
Population Survey (CPS) to Social Security earnings records for those same individ-
uals. They find that biases from measurement errors could be very serious for hourly
wages and unemployment spells, but not severe for annual earnings. In analyzing
data from household budget surveys, total expenditure and income are known to
contain measurement error.

Econometric textbooks emphasize thatmeasurement error in the explanatory vari-
ables result in bias and inconsistency of the OLS estimates, and the solution typically
involves the existence of extraneous instrumental variables or additional assumptions
to identify the model parameters. Using panel data, Griliches and Hausman (1986)
showed that one can identify and estimate a variety of errors in variables models
without the use of external instruments. Let us illustrate their approach with a simple
regression with random individual effects:

yit = α + βx∗
i t + uit i = 1, . . . , N t = 1, . . . , T (10.1)

where the error follows a one-way error component model

uit = μi + νi t (10.2)
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and the x∗
i t are observed only with error

xit = x∗
i t + ηi t (10.3)

In this case, μi ∼ IID(0,σ2
μ), νi t ∼ IID(0, σ2

ν) and ηi t ∼ IID(0,σ2
η) are all inde-

pendent of each other. Additionally, x∗
i t is independent of uit and ηi t . In terms of

observable variables, the model becomes

yit = α + βxit + εi t (10.4)

where
εi t = μi + νi t − βηi t (10.5)

It is clear that OLS on (10.4) is inconsistent, since xit is correlated with ηi t and
therefore εi t .We followWansbeek andKoning (1991) by assuming that the variance–
covariance matrix of x denoted by �x (T × T ) is the same across individuals, but
otherwise of general form over time. In vector form, the model becomes

y = αιNT + xβ + ε (10.6)

with

ε = (ιT ⊗ μ) + ν − βη; μ′ = (μ1, . . . ,μN )

ν = (ν11, . . . , νN1, . . . , ν1T , . . . , νNT )

and
η′ = (η11, . . . , ηN1, . . . , η1T , . . . , ηNT )

Note that the data are ordered such that the faster index is over individuals. Now
consider any matrix P that wipes out the individual effects. P must satisfy PιT = 0
and let Q = P ′P For example, P = IT − (ιT ι′T /T ) is one such matrix, and the
resulting estimator is the Within estimator. In general, for any Q, the estimator of β
is given by

̂β = x ′(Q ⊗ IN )y/x ′(Q ⊗ IN )x

= β + x ′(Q ⊗ IN )(ν − βη)/x ′(Q ⊗ IN )x (10.7)

For a fixed T , taking probability limits as the limit of expectations of the numerator
and denominator as N → ∞, we get

1

N
E[x ′(Q ⊗ IN )(ν − βη)] = − 1

N
β tr[(Q ⊗ IN )E(ηη′)] = −βσ2

η trQ

1

N
E[x ′(Q ⊗ IN )x] = 1

N
tr[(Q ⊗ IN )(�x ⊗ IN )] = trQ�x

and

plim̂β = β − βσ2
η(trQ/trQ�x ) (10.8)

= β(1 − σ2
ηφ)

where φ ≡ (trQ/trQ�x ) > 0. Griliches and Hausman (1986) used various Q trans-
formations like the Within estimator and difference estimators to show that although
these transformations wipe out the individual effect, they may aggravate the
measurement-error bias. Also, consistent estimators of β and σ2

η can be obtained
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by combining these inconsistent estimators. There are actually 1
2T (T − 1) − 1 lin-

early independent Q transformations. Let Q1 and Q2 be two choices for Q and
φi = tr(Qi )/tr(Qi�x ) be the corresponding choices for φ, for i = 1, 2. Then
plim̂βi = β(1 − σ2

ηφi ), and by replacing plim̂βi by ̂βi itself, one can solve these
two equations in two unknowns to get

̂β = φ1̂β2 − φ2̂β1

φ1 − φ2
(10.9)

and

σ̂2
η =

̂β2 −̂β1

φ1̂β2 − φ2̂β1
(10.10)

In order to make these estimators operational, φi is replaced by ̂φi , where ̂φi =
tr(Qi )/tr(Qî�x ). Note that P = IT − (ιT ι′T )/T yields the Within estimator, while
P = L ′, where L ′ is the (T − 1) × T matrix defined in Chap. 8, yields the first-
difference estimator. Other P matrices suggested by Griliches and Hausman (1986)
are based on differencing the data j periods apart, (yit − yi,t− j ), thus generating
“different lengths” difference estimators. The remaining question is how to combine
these consistent estimators of β into an efficient estimator of β. The generalized
method ofmoments (GMM) approach can be used and this is based upon fourth-order
moments of the data. Alternatively, under normality one can derive the asymptotic
covariance matrix of the ̂βi which can be consistently estimated by second-order
moments of the data.Using the latter approach,Wansbeek andKoning (1991) showed
that for m different consistent estimators of β given by b = (̂β1, . . . ,̂βm)′ based on
m different Qi √

N [b − β(ιm − σ2
ηφ)] ∼ N (0, V )

where

φ = (φ1, . . . ,φm)′ (10.11)

V = F ′{σ2
v�x ⊗ IT + β2σ2

η(�x + σ2
η IN ) ⊗ IT }F

and F is the (T 2 × m) matrix with ith column fi = vec Qi/(trQi�x ). By minimiz-
ing [b − β(ιm − σ2

ηφ)]′V−1[b − β(ιm − σ2
ηφ)] one gets the asymptotically efficient

estimators (as far as they are based on b) of β and σ2
v given by

̂β =
{

φ′
̂V−1b

φ′̂V−1φ
− ι′̂V−1b

ι′̂V−1φ

}

/

{

φ′
̂V−1ι

φ′̂V−1φ
− ι′̂V−1ι

ι′̂V−1φ

}

(10.12)

and

σ̂2
ν =

{

φ′
̂V−1ι

φ′̂V−1b
− ι′̂V−1ι

ι′̂V−1b

}

/

{

φ′
̂V−1φ

φ′̂V−1b
− ι′̂V−1φ

ι′̂V−1b

}

(10.13)

with
√
N (̂β − β, σ̂2

ν − σ2
ν) asymptotically distributed as N (0,W ) and

W = 1

�

[

β2φ′V−1φ β(ιm − σ2
ηφ)′V−1φ

(ιm − σ2
ηφ)′V−1(ιm − σ2

ηφ)

]

(10.14)



262 10 Special Topics

where

� = β2(ιm − σ2
ηφ)′V−1(ιm − σ2

ηφ)(φ′V−1φ) − β2[φ′V−1(ιm − σ2
ηφ)]2 (10.15)

Griliches and Hausman (1986) classic paper shows that measurement-error exac-
erbates the bias in the fixed effects estimator and it can be reduced by differenc-
ing estimators that decrease the bias the further the differencing periods are apart.
Griliches and Hausman (1986) argue that their results can be extended to the case of
several independent variables provided that the measurement errors in the explana-
tory variables are mutually uncorrelated, or correlated with a known correlation
structure. Under some stringent assumptions these results can be extended to the
case of serially correlated ηi t . They illustrate their approach by estimating a labor
demand relationship using data on N = 1242U.S.manufacturing firms over six years
(1972–77) drawn from the National Bureau of Economic Research R&D panel.

Biorn (1996) also gives an extensive treatment for the case where the model dis-
turbances uit in Eq. (10.1) are white noise, i.e., without any error component, and
the case where ηi t , the measurement error, is autocorrelated over time. For all cases
considered, Biorn derives the asymptotic bias of theWithin, Between, various differ-
ence estimators and the GLS estimator as either N or T tend to∞. Biorn shows how
the different panel data transformations implied by these estimators affect measure-
ment error differently. Biorn (2000) proposes GMM estimators that use either (A)
equations in differences with level values as instruments, or (B) equations in levels
with differenced values as instruments. The conditions needed for the consistency
of the (B) procedures under individual heterogeneity are stronger than for the (A)
procedures. These procedures are illustrated for a simple regression of log of gross
production on log of material input for the manufacture of textiles. The data uses
N = 215 firms observed over T = 8 years 1983–90 and obtained from the annual
Norwegian manufacturing census. For this empirical illustration, Biorn shows that
adding the essential two-period difference orthogonality conditions to the one-period
conditions in the GMM algorithm may significantly increase estimation efficiency.
However, redundant orthogonality conditions are of little practical use. Overall, the
GMM estimates based on the level equations are more precise than those based on
differenced equations.

Read Chap. 11 of the Oxford Handbook of Panel data entitled measurement error
in panel data by Meijer, Spierdijk and Wansbeek (2015). This chapter takes the
reader through a simple panel data model with measurement error and explains how
panels can decrease the inconsistency of OLS. Then it shows how the fixed effects
transformation and differencing that wipe out the individual effects are affected by
measurement error. In fact, they derive an ordering of the reduction in bias due to
these various estimators. This reproduces the Hausman and Griliches (1986) result
that the inconsistency due tomeasurement error decreaseswhen differences are taken
further apart in time. Much more on how measurement error affects the random
effects estimator, dynamic estimators, identification issues. This is essential reading
that supplements this section.
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10.2 Rotating Panels

Biorn (1981) considers the case of rotating panels, where in order to keep the same
number of households in the survey, the fraction of households that drops from the
sample in the second period is replaced by an equal number of new households that
are freshly surveyed. This is a necessity in survey panels where the same household
may not want to be interviewed again and again. In the study by Biorn and Jansen
(1983) based on data from the Norwegian household budget surveys, half the sample
is rotated in each period. In other words, half the households surveyed drop from the
sample each period and are replaced by new households. To illustrate the basics of
rotating panels, let us assume that T = 2 and that half the sample is being rotated
each period. In this case, without loss of generality, households 1, 2, . . . , (N/2) are
replaced by households N + 1, N + 2, . . . , N + (N/2) in period 2. It is clear that
only households (N/2) + 1, (N/2) + 2, . . . , N are observed over two periods.1 In
this case there are 3N/2 distinct households, only N/2 households of which are
observed for two periods. In our case, the first and last N/2 households surveyed
are only observed for one period. Now consider the usual one-way error component
model

uit = μi + νi t

with μi ∼ IID(0, σ2
μ) and νi t ∼ IID(0,σ2

ν) independent of each other and the xit .
Order the observations such that the faster index is that of households and the slower
index is that of time. This is different from the ordering we used in Chap. 2. In this
case, u′ = (u11, u21, . . . , uN1, uN/2+1,2, . . . , u3N/2,2) and

E(uu′) = � =

⎡

⎢

⎢

⎣

σ2 IN/2 0 0 0
0 σ2 IN/2 σ2

μ IN/2 0
0 σ2

μ IN/2 σ2 IN/2 0
0 0 0 σ2 IN/2

⎤

⎥

⎥

⎦

(10.16)

where σ2 = σ2
μ + σ2

ν . It is easy to see that � is block-diagonal and that the middle
block has the usual error component model form σ2

μ(J2 ⊗ IN/2) + σ2
ν(I2 ⊗ IN/2).

Therefore

�−1/2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

σ
IN/2 0 0

0

(

1

σ∗
1
J̄2 + 1

σν
E2

)

⊗ IN/2 0

0 0
1

σ
IN/2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(10.17)

where E2 = I2 − J̄2, J̄2 = J2/2 and σ∗2
1 = 2σ2

μ + σ2
ν . By premultiplying the regres-

sion model by�−1/2 and performing OLS one gets the GLS estimator of the rotating
panel. In this case, one divides the first and last N/2 observations byσ. For themiddle
N observations, with i = (N/2) + 1, . . . , N and t = 1, 2, quasi-demeaning similar
to the usual error component transformation is performed, i.e., (yit − θ∗ ȳi .)/σν with
θ∗ = 1 − (σν/σ

∗
1) and ȳi . = (yi1 + yi2)/2. A similar transformation is also per-

formed on the regressors. In order to make this GLS estimator feasible, we need
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estimates of σ2
μ and σ2

ν . One consistent estimator of σ2
ν can be obtained from the

middle N observations or simply the households that are observed over two periods.
For these observations, σ2

ν is estimated consistently from the Within residuals

σ̃2
ν =

2
∑

t=1

N
∑

i=N/2+1

[(yit − ȳi .) − (xit − x̄i .)
′
˜βWithin]2/N (10.18)

whereas the total variance can be estimated consistently from the least squares mean
square error over the entire sample

σ̃2 = σ̃2
ν + σ̃2

μ =
2
∑

t=1

3N/2
∑

i=1

(yit − x ′
i t
̂βOLS)

2/(3N/2) (10.19)

Note that we could have reordered the data such that households observed over one
period are stacked on top of households observed over two time periods. This way
the rotating panel problem becomes an unbalanced panel problem with N house-
holds observed over one period and N/2 households observed for two periods. In
fact, except for this different way of ordering the observations, one can handle the
estimation as in Chap. 9.

This feasible GLS estimation can be easily derived for other rotating schemes.
In fact, the reader is asked to do that for T = 3 with N/2 households rotated every
period, and T = 3 with N/3 households rotated every period (see problem 10.2).
For the estimation of more general rotation schemes as well as maximum likelihood
estimation under normality, see Biorn (1981). The analysis of rotating panels can
also be easily extended to a set of seemingly unrelated regressions, simultaneous
equations, or a dynamic model. Biorn and Jansen (1983) consider a rotating panel
of 418 Norwegian households, one half of which are observed in 1975 and 1976
and the other half in 1976 and 1977. They estimate a complete system of consumer
demand functions using maximum likelihood procedures.

Rotating panels allow the researcher to test for the existence of “time-in-sample”
bias effects mentioned in Chap.1. These correspond to a significant change in
response between the initial interview and a subsequent interview when one would
expect the same response.2 With rotating panels, the fresh group of individuals that
are added to the panel with each wave provide a means of testing for time-in-sample
bias effects. Provided that all other survey conditions remain constant for all rotation
groups at a particular wave, one can compare these various rotation groups (for that
wave) to measure the extent of rotation group bias. This has been done for various
labor force characteristics in the Current Population Survey. While the findings indi-
cate a pervasive effect of rotation group bias in panel surveys, the survey conditions
do not remain the same in practice and hence it is hard to disentangle the effects of
time-in-sample bias from other effects.
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10.3 Pseudo-Panels

For some countries, panel data may not exist. Instead the researcher may find annual
household surveys based on a large random sample of the population. Examples
of some of these cross-sectional consumer expenditure surveys include: the British
Family Expenditure Survey, also a number of household surveys from less developed
countries sponsored by theWorld Bank. Examples of repeated cross-section surveys
in the USA include the Current Population Survey, the National Health Interview
Survey, theConsumerExpenditure Survey, theNationalCrimeSurvey, and the survey
of small business finances from the Federal Reserve Board, to mention a few.

For these repeated cross-section surveys, it may be impossible to track the same
household over time as required in a genuine panel. Instead, Deaton (1985) suggests
tracking cohorts and estimating economic relationships based on cohort means rather
than individual observations. One cohort could be the set of all males born between
1945 and 1950. This birth cohort is well defined and can be easily identified from
the data. Deaton (1985) argued that these pseudo-panels do not suffer the attrition
problem that plagues genuine panels and may be available over longer time periods
compared to genuine panels.3 In order to illustrate the basic ideas involved in con-
structing a pseudo-panel, we start with the set of T independent cross-sections given
by

yit = x ′
i tβ + μi + νi t t = 1, . . . , T (10.20)

Note that the individual subscript i corresponds to a new and most likely different
set of individuals in each period. This is why it is denoted by i(t) to denote that each
period different individuals are sampled, making these individuals time dependent.
For ease of exposition, we continue the use of the subscript i and assume that the
same number of households N is randomly surveyed each period. Define a set of C
cohorts, each with a fixed membership that remains the same throughout the entire
period of observation. Each individual observed in the survey belongs to exactly one
cohort. Averaging the observations over individuals in each cohort, one gets

ȳct = x̄ ′
ctβ + μ̄ct + ν̄ct c = 1, . . . ,C t = 1, . . . , T (10.21)

where ȳct is the average of yit over all individuals belonging to cohort c at time t .
Since the economic relationship for the individual includes an individual fixed effect,
the corresponding relationship for the cohort will also include a fixed cohort effect.
However, μ̄ct now varies with t , because it is averaged over a different number of
individuals belonging to cohort c at time t . These μ̄ct are most likely correlated with
the xit and a random effect specification will lead to inconsistent estimates. On the
other hand, treating the μ̄ct as fixed effects leads to an identification problem, unless
μ̄ct = μ̄c and is invariant over time. The latter assumption is plausible if the number
of observations in each cohort is very large. In this case,

ȳct = x̄ ′
ctβ + μ̄c + ν̄ct c = 1, . . . ,C t = 1, . . . , T (10.22)

For this pseudo-panel with T observations on C cohorts, the fixed effects estimator
˜βW , based on theWithin cohort transformation ỹct = ȳct − ȳc, is a natural candidate
for estimating β. Note that the cohort populationmeans are genuine panels in that, at
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the population level, the groups contain the same individuals over time. However, as
Deaton (1985) argued, the sample-based averages of the cohort means, ȳct , can only
estimate the unobservedpopulation cohortmeanswithmeasurement error. Therefore,
one has to correct the Within estimator for measurement error using estimates of
the errors in measurement variance–covariance matrix obtained from the individual
survey data. Details are given in Deaton (1985) and Verbeek and Nijman (1993).
Deaton (1985) shows that his proposed measurement-error corrected Within-groups
estimator for the static model with individual effects is consistent for a fixed number
of observations per cohort. Verbeek and Nijman (1993) modify Deaton’s estimator
to achieve consistency for a fixed number of time periods and a fixed number of
individuals per cohort. If the number of individuals in each cohort is large, so that the
average cohort size nc = N/C tends to infinity, then the measurement errors as well
as their estimates tend to zero and the Within cohort estimator of β is asymptotically
identical to Deaton’s (1985) estimator of β, denoted by˜βD . In fact, when nc is large,
most applied researchers ignore the measurement error problem and compute the
Within cohort estimator of β (see Browning, Deaton and Irish, 1985). The last study
involved sixteen cohorts, seven-time periods with an average cohort size of 190.

There is an obvious trade-off in the construction of a pseudo-panel. The larger
the number of cohorts, the smaller is the number of individuals per cohort. In this
case, C is large and the pseudo-panel is based on a large number of observations.
However, the fact that nc is not large implies that the sample cohort averages are
not precise estimates of the population cohort means. In this case, we have a large
number C of imprecise observations. In contrast, a pseudo-panel constructed with
a smaller number of cohorts (C) and therefore more individuals per cohort (nc) is
trading a large pseudo-panel with imprecise observations for a smaller pseudo-panel
with more precise observations. It is important to note that nc → ∞ is a crucial con-
dition for the consistency of the Within cohort estimator. However, the bias of the
Within cohort estimator may be substantial even for large nc, see Verbeek (2008).
On the other hand, Deaton’s estimator is consistent for β, for finite nc when either C
or T tend to infinity. How to choose the cohorts under study is very important. For
example, in order to minimize the measurement error variance, the individuals in
each cohort should be as homogeneous as possible. However, to maximize the varia-
tion in the pseudo-panel, and get precise estimates, the different cohorts should be as
heterogeneous as possible. Verbeek (2008) empasizes the fact that a necessary con-
dition for consistent estimation is that all exogenous variables exhibit time-varying
cohort-specific variation. This is not necessarily satisfied in empirical applications.

Moffitt (1993) extends Deaton’s (1985) analysis to the estimation of dynamic
models with repeated cross-sections. By imposing certain restrictions, Moffitt shows
that linear and nonlinear models, with and without fixed effects, can be identified
and consistently estimated with pseudo-panels. Moffitt (1993) gives an instrumen-
tal variable interpretation for the Within estimator based on the pseudo-panel using
cohort dummies, and a set of time dummies interacted with the cohort dummies.
Because nc is assumed to tend to ∞, the measurement error problem is ignored.
Since different individuals are sampled in each period, the lagged dependent vari-
able is not observed. Moffitt suggests replacing the unknown yi,t−1 by a fitted value
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obtained from observed data at time t − 1. Moffitt (1993) illustrates his estimation
method for the linear fixed effects life-cycle model of labor supply using repeated
cross-sections from the U.S. Current Population Survey (CPS). The sample included
white males, ages 20–59, drawn from 21 waves over the period 1968-88. In order
to keep the estimation problem manageable, the data were randomly sub-sampled to
include a total of 15500 observations. Moffitt concludes that there is a considerable
amount of parsimony achieved in the specification of age and cohort effects. Also,
individual characteristics are considerably more important than either age, cohort, or
year effects. Blundell, Meghir and Neves (1993) use the annual UK Family Expendi-
ture Survey covering the period 1970–84 to study the intertemporal labor supply and
consumption of married women. The total number of households considered was
43671. These were allocated to ten different cohorts depending on the year of birth.
The average number of observations per cohort was 364. Their findings indicate
reasonably sized intertemporal labor supply elasticities.

Collado (1997) proposes measurement-error corrected estimators for dynamic
models with individual effects using time series of independent cross-sections. A
GMM estimator corrected for measurement error is proposed that is consistent as
the number of cohorts, tends to infinity for a fixed T and a fixed number of individuals
per cohort. In addition, a measurement-error corrected Within-groups estimator is
proposed which is consistent as T tends to infinity. Monte Carlo simulations are
performed to study the small sample properties of the estimators proposed. Some of
the main results indicate that the measurement-error correction is important, and that
corrected estimators reduce the bias obtained. Also, for small T , GMM estimators
are better than Within-groups estimators.

Verbeek and Vella (2005) review the identification conditions for consistent esti-
mation of a linear dynamic model from repeated cross-sections. They show that
Moffitt’s (1993) estimator is inconsistent, unless the exogenous variables are either
time-invariant or exhibit no autocorrelation. They propose an alternative instrumental
variable estimator, corresponding to theWithin estimator applied to the pseudo-panel
of cohort averages. This estimator is consistent under the same conditions as those
suggested byCollado (1997).However,Verbeek andVella argue that those conditions
are not trivially satisfied in applied work.

Girma (2000) suggests an alternative GMMmethod of estimating linear dynamic
models from a time series of independent cross-sections. Unlike the Deaton (1985)
approach of averaging across individuals in a cohort, Girma suggests a quasi-
differencing transformation across pairs of individuals that belong to the same group.
The asymptotic properties of the proposed GMM estimators are based upon having a
large number of individuals per group-time cell. This is in contrast to theDeaton-type
estimator which requires the number of group/time periods to grow without limit.
Some of the other advantages of this method include the fact that no aggregation is
involved, the dynamic response parameters can freely vary across groups, and the
presence of unobserved individual specific heterogeneity is explicitly allowed for.

McKenzie (2001) considers the problem of estimating dynamic models with
unequally spaced pseudo-panel data. Surveys in developing countries are often taken
at unequally spaced intervals and this unequal spacing, in turn, imposes nonlin-
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ear restrictions on the parameters.4 nonlinear least squares, minimum distance, and
one-step estimators are suggested that are consistent and asymptotically normal for
finite T as the number of individuals per cohort is allowed to pass to infinity. In
another paper, McKenzie (2004) allows for parameter heterogeneity among cohorts
and argues that in many practical applications, it is important to investigate whether
there are systematic differences between cohorts. McKenzie (2004) develops an
asymptotic theory for pseudo-panels using sequential and diagonal path limit tech-
niques following the work of Phillips and Moon (1999) for nonstationary panels.
McKenzie uses 20 years of household survey data (1976–1996) from the Taiwanese
personal income distribution survey, to quantify the degree of inter-cohort parameter
heterogeneity. He finds that younger cohorts experienced faster consumption growth
over the sample period than older cohorts.

Inoue (2008) considers the efficient estimation of pseudo-panels when the num-
ber of individuals per cohort nc is large relative to the number of cohorts C , and
the number of time periods T . Inuoe shows that the OLS estimator, ignoring the
time-invariant cohort fixed effects, converges to a random variable rather than a con-
stant. Also, the fixed effects estimator employing cohort effects is consistent but the
associated t-statistics are not asymptotically Normal. Inoue proposes efficient GMM
estimators using the orthogonality conditions implied by the grouping into cohorts
and provides t-tests that are valid even in the presence of time invariant cohort effects.
Inoue suggests using the GMM over-identification test as a test for the validity of
cohort selection.

10.4 Short-RunVersus Long-Run Estimates in PooledModels

Applied studies using panel data find that the Between estimator (which is based on
the cross-sectional component of the data) tends to give long-run estimates while the
Within estimator (which is based on the time-series component of the data) tends to
give short-run estimates. This agrees with the folk wisdom that cross-sectional stud-
ies tend to yield long-run responses while time-series studies tend to yield short-run
responses. Both are consistent estimates of the same regression coefficients as long as
the disturbances are uncorrelated with the explanatory variables. In fact, Hausman’s
specification test is based on the difference between these estimators (see Chap. 4).
Rejection of the null implies that the random individual effects are correlatedwith the
explanatory variables. This means that the Between estimator is inconsistent while
theWithin estimator is consistent since it sweeps away the individual effects. In these
cases, the applied researcher settles on theWithin estimator rather than theBetween or
GLS estimators. (See Mundlak, 1978 for additional support of theWithin estimator).
Baltagi and Griffin (1984) argue that in panel data models, the difference between
the Within and Between estimators is due to dynamic misspecification. The basic
idea is that even with a rich panel data set, long-lived lag effects coupled with the
shortness of the time series is a recipe for dynamic underspecification. This is illus-
trated using Monte Carlo experiments. Egger and Pfaffermayr (2004) show that the
asymptotic bias of theWithin and Between estimators as estimates of short-run and
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long-run effects depend upon the memory of the data generating process, the length
of the time series and the importance of the cross-sectional variation in the explana-
tory variables. Griliches and Hausman (1986) attribute the difference between the
Within and Between estimators to measurement error in panel data (see Sect. 10.1).
Mairesse (1990) tries to explain why these two estimators differ in economic applica-
tions using three samples of largemanufacturing firms in France, Japan, and the USA
over the period 1967–79, and a Cobb–Douglas production function. Mairesse (1990)
compares OLS, Between and theWithin estimators using levels and first-differenced
regressions with and without constant returns to scale. Assuming constant returns
to scale, he finds that the Between estimates of the elasticity of capital are of the
order of 0.31 for France, 0.47 for Japan and 0.22 for the USA, whereas the Within
estimates are lower, varying from 0.20 for France to 0.28 for Japan and 0.21 for
the USA. Mairesse (1990) argues that if the remainder error νi t is correlated with
the explanatory variables, then the Within estimator will be inconsistent, while the
Between estimator is much less affected by these correlations because the νi t are
averaged and practically wiped out for large enough T . This is also the case when
measurement error in the explanatory variables is present. In fact, if these mea-
surement errors are not serially correlated from one year to the next, the Between
estimator tends to minimize their importance by averaging. In contrast, the Within
estimator magnifies the variability of these measurement errors and increases the
resulting bias.

10.5 Heterogeneous Panels

For panel data studies with large N and small T , it is usual to pool the observations,
assuming homogeneity of the slope coefficients. The latter is a testable assumption
which is quite often rejected, see Chap. 4. Moreover, with the increasing time dimen-
sion of panel data sets, some researchers including Robertson and Symons (1992)
and Pesaran and Smith (1995) have questioned the poolability of the data across
heterogeneous units. Instead, they argue in favor of heterogeneous estimates that can
be combined to obtain homogeneous estimates if the need arises. To make this point,
Robertson and Symons (1992) studied the properties of some panel data estimators
when the regression coefficients vary across individuals, i.e., they are heterogeneous
but are assumed homogeneous in estimation. This is done for both stationary and
nonstationary regressors. The basic conclusion is that severe biases can occur in
dynamic estimation even for relatively small parameter variation. They consider the
case of say two countries (N = 2), where the asymptotics depend on T → ∞ . Their
true model is a simple heterogeneous static regression model with one regressor

yit = βi xi t + νi t i = 1, 2 t = 1, . . . , T (10.23)

where νi t is independent for i = 1, 2, and βi varies across i = 1, 2. However, their
estimated model is dynamic and homogeneous with β1 = β2 = β and assumes an
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identity covariance matrix for the disturbances:

yit = λyi,t−1 + βxit + wi t i = 1, 2 (10.24)

The regressors are assumed to follow a stationary process xit = ρxi,t−1 + εi t with
| ρ |< 1 but different variances σ2

i for i = 1, 2. Seemingly unrelated regression
estimation with the equality restriction imposed and an identity covariance matrix
reduces to OLS on this system of two equations. Robertson and Symons (1992)
obtain the probability limits of the resulting ̂λ and ̂β as T → ∞. They find that
the coefficient λ of yi,t−1 is overstated, while the mean effect of the regressors (the
xit ) is underestimated. In case the regressors are random walks (ρ = 1), then plim
̂λ = 1 and plim̂β = 0. Therefore, false imposition of parameter homogeneity, and
dynamic estimation of a static model when the regressors follow a random walk lead
to perverse results. Using Monte Carlo experiments they show that the dynamics
become misleading even for T as small as 40, which corresponds to the annual post-
war data period. Even though these results are derived for N = 2, one regressor and
no lagged dependent variable in the true model, Robertson and Symons (1992) show
that the same phenomenon occurs for an empirical example of a real wage equa-
tion for a panel of 13 OECD countries observed over the period 1958-86. Parameter
homogeneity across countries is rejected and the true relationship appears dynamic.
Imposing false equality restriction biases the coefficient of the lagged wage upwards
and the coefficient of the capital-labor ratio downwards.

For typical labor or consumer panelswhere N is large but T is fixed,Robertson and
Symons (1992) assume that the true model is given by (10.23) with βi ∼ IID(β, σ2

β)

for i = 1, . . . , N , and νi t ∼ IID(0, 1). In addition, xit isAR(1)with innovations εi t ∼

IID(0, 1) and xi0 = νi0 = 0. The estimated model is dynamic as given by (10.24),
with known variance–covariance matrix I , and βi = β imposed for i = 1, . . . , N .
For fixed T , and random walk regressors, plim̂λ > 0 and plim̂β < β as N → ∞,

so that the coefficient of yi,t−1 is over-estimated and the mean effect of the βi

is underestimated. As T → ∞, one gets the same result obtained previously, plim
̂λ = 1 and plim̂β = 0. If the regressor xit iswhite noise, no biases arise. These results
are confirmed with Monte Carlo experiments for T = 5 and N = 50, 100 and 200.
The dynamics are overstated even for N = 50 and T = 5, but they disappear as the
regressor approacheswhite noise, and remain important for autoregressive regressors
with ρ = 0.5. Finally, Robertson and Symons (1992) reconsider the Anderson and
Hsiao (1982) estimator of a dynamic panel data model that gets rid of the individual
effects by first-differencing and uses lagged first-differences of the regressors as
instruments. Imposing false equality restrictions renders these instruments invalid
unless xit is white noise or follows a randomwalk. Only the second case is potentially
important becausemany economic variables arewell approximated by randomwalks.
However, Robertson and Symons (1992) show that if xit is a random walk, the
instrument is orthogonal to the instrumented variable and the resulting estimator
has infinite asymptotic variance, a result obtained in the stationary case by Arellano
(1989). Using levels (yi,t−2) as instruments as suggested by Arellano (1989) will
not help when xit is a random walk, since the correlation between the stationary
variable (yi,t−1 − yi,t−2) and the I (1) variable yi,t will be asymptotically zero.
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Using Monte Carlo experiments, with T = 5 and N = 50, Robertson and Symons
(1992) conclude that the Anderson and Hsiao (1982) estimator is useful only when
xit is white noise or a random walk. Otherwise, severe biases occur when xit is
stationary and autocorrelated.

Pesaran and Smith (1995) consider the problem of estimating a dynamic panel
data model when the parameters are individually heterogeneous and illustrate their
results by estimating industry-specific UK labor demand functions. In this case the
model is given by

yit = λi yi,t−1 + βi xi t + uit i = 1, . . . , N t = 1, . . . , T (10.25)

where λi is IID(λ, σ2
λ) and βi is IID(β, σ2

β). Further λi and βi are independent of
yis , xis and uis for all s. The objective in this case is to obtain consistent estimates
of the mean values of λi and βi . Pesaran and Smith (1995) present four different
estimation procedures:

(1) aggregate time-series regressions of group averages;
(2) cross-section regressions of averages over time;
(3) pooled regressions allowing for fixed or random intercepts, or
(4) separate regressions for each group, where coefficients estimate are averaged

over these groups.

They show that when T is small (even if N is large), all the procedures yield incon-
sistent estimators. The difficulty in obtaining consistent estimates for λ and β can
be explained by rewriting (10.25) as

yit = λyi,t−1 + βxit + νi t (10.26)

whereνi t = uit + (λi − λ)yi,t−1 + (βi − β)xit . By continuous substitutionof yi,t−s

it is easy to see that νi t is correlated with all present and past values of yi,t−1−s and
xit−s for s � 0. The fact that νi t is correlatedwith the regressors of (10.26) renders the
OLS estimator inconsistent, and the fact that νi t is correlated with (yi,t−1−s, xi,t−s)

for s > 0 rules out the possibility of choosing any lagged value of yit and xit as
legitimate instruments. When both N and T are large, Pesaran and Smith (1995)
show that the cross-section regression procedure will yield consistent estimates of
the mean values of λ and β. Intuitively, when T is large, the individual parameters λi

and βi can be consistently estimated using T observations of each individual i , say
̂λi and̂βi , then averaging these individual estimators,

∑N
i=1
̂λi/N and

∑N
i=1
̂βi/N ,

will lead to consistent estimators of the mean values of λ and β. This is known as
the mean group estimator and is programmed in Stata with the xtmg command, see
Eberhardt (2012).

Maddala et al. (1997) on the other hand argued that the heterogeneous time series
estimates yield inaccurate estimates and even wrong signs for the coefficients, while
the panel data estimates are not valid when one rejects the hypothesis of homogene-
ity of the coefficients. They argued that shrinkage estimators are superior to either
heterogeneous or homogeneous parameter estimates especially for prediction pur-
poses. In fact, Maddala et al. (1997) considered the problem of estimating short-run
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and long-run elasticities of residential demand for electricity and natural gas for
each of 49 states over the period 1970-90. They conclude that individual heteroge-
neous state estimates were hard to interpret and had the wrong signs. Pooled data
regressions were not valid because the hypothesis of homogeneity of the coefficients
was rejected. They recommend shrinkage estimators if one is interested in obtaining
elasticity estimates for each state since these give more reliable results.

In the context of dynamic demand for gasoline across 18 OECD countries over
the period 1960–1990, Baltagi and Griffin (1997) argued for pooling the data as
the best approach for obtaining reliable price and income elasticities. They also
pointed out that pure cross-section studies cannot control for unobservable country
effects, whereas pure time-series studies cannot control for unobservable oil shocks
or behavioral changes occurring over time. Baltagi and Griffin (1997) compared the
homogeneous and heterogeneous estimates in the context of gasoline demand based
on the plausibility of the price and income elasticities as well as the speed of adjust-
ment path to the long-run equilibrium. They found considerable variability in the
parameter estimates among the heterogeneous estimators some giving implausible
estimates, while the homogeneous estimators gave similar plausible short-run esti-
mates that differed only in estimating the long-run effects. Baltagi and Griffin (1997)
also compared the forecast performance of these homogeneous and heterogeneous
estimators over one, five, and ten years horizon. Their findings show that the homo-
geneous estimators outperformed their heterogeneous counterparts based on mean
squared forecast error. This result was replicated using a panel data set of 21 French
regions over the period 1973–1998 by Baltagi et al. (2003). Unlike the international
OECD gasoline data set, the focus on the inter-regional differences in gasoline prices
and income within France posed a different type of data set for the heterogeneity
versus homogeneity debate. The variation in these prices and income were much
smaller than international price and income differentials. This in turn reduces the
efficiency gains from pooling and favors the heterogeneous estimators, especially
given the differences between the Paris region and the rural areas of France. Baltagi
et al. (2003) showed that the time series estimates for each region are highly vari-
able, unstable and offer the worst out-of-sample forecasts. Despite the fact that the
shrinkage estimators proposed by Maddala et al. (1997) outperformed these individ-
ual heterogeneous estimates, they still had a wide range and were outperformed by
the homogeneous estimators in out-of-sample forecasts. Baltagi, Griffin and Xiong
(2000) carried out this comparison for a dynamic demand for cigarettes across 46U.S.
states over 30 years (1963–1992). Once again the results showed that the homoge-
neous panel data estimators beat the heterogeneous and shrinkage type estimators in
RMSE performance for out-of-sample forecasts. In another application, Driver et al.
(2004) utilize the Confederation of British Industry’s (CBI) survey data to measure
the impact of uncertainty on UK investment authorizations. The panel consists of 48
industries observed over 85 quarters 1978(Q1) to 1999(Q1). The uncertaintymeasure
is based on the dispersion of beliefs across survey respondents about the general busi-
ness situation in their industry. The heterogeneous estimators considered are OLS
and 2SLS at the industry level, as well as the unrestricted SUR estimation method.
Fixed effects, random effects, pooled 2SLS and restricted SUR are the homogeneous
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estimators considered. The panel estimates find that uncertainty has a negative, non-
negligible effect on investment, while the heterogeneous estimates vary considerably
across industries. Forecast performance for 12 out-of-sample quarters 1996(Q2) to
1999(Q1) are compared. The pooled homogeneous estimators outperform their het-
erogeneous counterparts in terms of RMSE.

Baltagi, Bresson and Pirotte (2002) reconsidered the two U.S. panel data sets on
residential electricity and natural gas demand used by Maddala et al. (1997) and
compared the out-of-sample forecast performance of the homogeneous, heteroge-
neous, and shrinkage estimators. Once again the results show that when the data is
used to estimate heterogeneous models across states, individual estimates offer the
worst out-of-sample forecasts. Despite the fact that shrinkage estimators outperform
these individual estimates, they are outperformed by simple homogeneous panel data
estimates in out-of-sample forecasts. Admittedly, these are additional case studies,
but they do add to the evidence that simplicity and parsimony in model estimation
offered by the homogeneous estimators yield better forecasts than themore parameter
consuming heterogeneous estimators.

Hsiao and Tahmiscioglu (1997) use a panel of 561 U.S. firms over the period
1971–92 to study the influence of financial constraints on company investment.
They find substantial differences across firms in terms of their investment behavior.
When a homogeneous pooled model is assumed, the impact of liquidity on firm
investment is seriously underestimated. The authors recommend a mixed fixed and
random coefficients framework based on the recursive predictive density criteria.

Pesaran, Smith and Im (1996) investigated the small sample properties of vari-
ous estimators of the long-run coefficients for a dynamic heterogeneous panel data
model using Monte Carlo experiments. Their findings indicate that the mean group
estimator performs reasonably well for large T . However, when T is small, the mean
group estimator could be seriously biased, particularly when N is large relative to T .
Hsiao, Pesaran and Tahmiscioglu (1999) suggest a Bayesian approach for estimating
the mean parameters of a dynamic heterogeneous panel data model. The coefficients
are assumed to be normally distributed across cross-sectional units and the Bayes
estimator is implemented usingMarkov ChainMonte Carlomethods. Hsiao, Pesaran
and Tahmiscioglu (1999) argue that Bayesian methods can be a viable alternative
in the estimation of mean coefficients in dynamic panel data models even when
the initial observations are treated as fixed constants. They establish the asymp-
totic equivalence of this Bayes estimator and the mean group estimator proposed
by Pesaran and Smith (1995). The asymptotics are carried out for both N and T
→ ∞ with

√
N/T → 0. Monte Carlo experiments show that this Bayes estimator

has better sampling properties than other estimators for both small and moderate
size T . Hsiao, Pesaran and Tahmiscioglu also caution against the use of the mean
group estimator unless T is sufficiently large relative to N. The bias in the mean
coefficient of the lagged dependent variable appears to be serious when T is small
and the true value of this coefficient is larger than 0.6. Hsiao, Pesaran and Tahmis-
cioglu apply their methods to estimate the q-investment model using a panel of 273
U.S. firms over the period 1972–93. Baltagi, Bresson and Pirotte (2004) reconsider
the Tobin q investment model studied by Hsiao, Pesaran and Tahmiscioglu (1999)
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using a slightly different panel of 337 U.S. firms over the period 1982–1998. They
contrast the out-of-sample forecast performance of 9 homogeneous panel data esti-
mators and 11 heterogeneous and shrinkage Bayes estimators over a 5-year horizon.
Results show that the average heterogeneous estimators perform the worst in terms
of mean squared error, while the hierarchical Bayes estimator suggested by Hsiao,
Pesaran and Tahmiscioglu (1999) performs the best. Homogeneous panel estimators
and iterative Bayes estimators are a close second. In conclusion, while the perfor-
mance of various estimators and their corresponding forecasts may vary in ranking
from one empirical example to another, the consistent finding in all these studies
is that homogeneous panel data estimators perform well in forecast performance
mostly due to their simplicity, their parsimonious representation and the stability
of the parameter estimates. Average heterogeneous estimators perform badly due to
parameter estimate instability caused by the estimation of several parameters with
short time series. Shrinkage estimators did well for some applications, especially
iterative Bayes and iterative empirical Bayes.

Using data on migration to Germany from 18 source countries over the period
1967–2001, Brucker and Siliverstovs (2006) compare the performance of homoge-
neous and heterogeneous estimators using out-of-sample forecasts. They find that the
mean group estimator performs the worst, while a fixed effects estimator performs
the best in RMSE for 5years and 10years ahead forecasts. In general, the hetero-
geneous estimators performed poorly. They attribute this to the unstable regression
parameters across the 18 countries, such that the gains from pooling more than offset
the biases from the inter-country heterogeneity.

Rapach and Wohar (2004) show that the monetary model of exchange rate deter-
mination performs poorly on a country-by-country basis for U.S. dollar exchange
rates over the post-Bretton Woods period for 18 industrialized countries for quar-
terly data over the period 1973:1–1997:1. However, they find considerable support
for themonetarymodel using panel procedures. They reject tests for the homogeneity
assumptions inherent in panel procedures. Hence, they are torn between obtaining
panel cointegrating coefficient estimates that are much more plausible in economic
terms than country-by-country estimates. Yet these estimatesmight be spurious since
they are rejected by formal statistical test for pooling. Rapach andWohar (2004) per-
form an out-of-sample forecasting exercise using the panel and country-by-country
estimates employing the RMSE criteria for a 1-, 4-, 8-, 12-, and 16-step ahead quar-
ters. For the 1-step and 4-step ahead, the RMSEs of the homogeneous and hetero-
geneous estimates are similar. At the 8-step ahead horizon, homogeneous estimates
generate better forecasts in comparison to five of the six heterogeneous estimates.
At the 16-step horizon, the homogeneous estimates have RMSE that is smaller than
each of the heterogeneous estimates. In most cases the RMSE is reduced by 20%.
They conclude that while there are good reasons to favor the panel estimates over the
country-by country estimates of the monetary model, there are also good reasons to
be suspicious of these panel estimates since the homogeneity assumption is rejected.
Despite this fact, they argue that panel data estimates should not be dismissed based
on tests for homogeneity alone, because theymay eliminate certain biases that plague
country-by-country estimates. In fact, panel estimates of the monetary model were
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more reliable and generated superior forecasts to those of country-by-country esti-
mates. Rapach andWohar (2004) suspicion of panel data estimates come fromMonte
Carlo evidence that show that “it is not improbable to find evidence in support of the
monetary model by relying on panel estimates, even when the true data generating
process is characterized by a heterogeneous structure that is not consistent with the
monetary model”. Another paper in this vein is Groen (2005) which utilizes a panel
of vector error-correction models based on a common long-run relationship to test
whether the Euro exchange rates of Canada, Japan, and the United States have a
long-run link with monetary fundamentals. Out of sample forecasts show that this
common long-run exchange model is superior to both the naive random walk based
forecasts and the standard cointegrated VAR model-based forecasts, especially for
horizons of 2–4years.

Hoogstrate, Palm and Pfann (2000) investigate the improvement of forecasting
performance using pooling techniques instead of single country forecasts for N fixed
and T large. They use a set of dynamic regression equations with contemporaneously
correlated disturbances. When the parameters of the models are different but exhibit
some similarity, pooling may lead to a reduction in the mean squared error of the
estimates and the forecasts. They show that the superiority of the pooled forecasts in
small samples can deteriorate as T grows. They apply these results to growth rates of
18 OECD countries over the period 1950–1991 using an AR(3) model and an AR(3)
modelwith leading indicators. They find that themedianMSFEofOLS-based pooled
forecasts is smaller than that of OLS-based individual forecasts and that a fairly large
T is needed for the latter to outperform the former. They argue that this is due to the
reduction in MSE due to imposing a false restriction (pooling). However, for a large
enough T, the bias of the pooled estimates increase with out bound and the resulting
forecasts based on unrestricted estimates will outperform the forecasts based on the
pooled restricted estimates.

Gavin and Theodorou (2005) use forecasting criteria to examine the macrody-
namic behavior of 15 OECD countries observed quarterly over the period 1980 to
1996. They utilize a small set of familiar, widely used core economic variables, (out-
put, price level, interest rates, and exchange rates), omitting country-specific shocks.
They find that this small set of variables and a simple VAR common model strongly
support the hypothesis that many industrialized nations have similar macroeconomic
dynamics. In sample, they often reject the hypothesis that coefficient vectors esti-
mated separately for each country are the same. They argue that these rejections may
be of little importance if due to idiosyncratic events since macro-time series are typ-
ically too short for standard methods to eliminate the effects of idiosyncratic factors.
Panel data can be used to exploit the heterogeneous information in cross-country
data, hence increasing the data and eliminating the idiosyncratic effects. They com-
pare the forecast accuracy of the individual country models with the commonmodels
in a simulated out of sample experiment. They calculate four forecasts with increas-
ing horizons at each point in time-one quarter ahead and four quarters ahead. For the
four equations, at every horizon, the panel forecasts are significantly more accurate
more often than are the individual country model forecasts. The biggest difference
is for the exchange rate and the interest rate. They conclude that the superior out
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of sample forecasting performance of the common model supports their hypothesis
that market economies tend to have a common macrodynamic patterns related to a
small number of variables.

10.6 Count Panel Data

Examples of panel data where the dependent variable is a count, include the number
of bids on an offshore oil lease by a firm, or the number of visits to a doctor by an
individual, or the number of cigarettes smoked per day, or the number of patents
filed by an R&D firm, all of which are observed over time. Though one can still treat
this count data with a panel regression, the occurrence of zeroes and the discrete
non-negative nature of the dependent variable suggest that perhaps a Poisson panel
regression model should be used, see Cameron and Trivedi (2015) for a handbook
chapter on this subject and Hausman, Hall and Griliches (1984) for popularizing this
approach using panel data. The Poisson panel regression is given by

Pr(Yit = yit/xit ) = e−λi t λ
yit
i t

yi t ! where yit = 0, 1, 2, . . . ; i = 1, . . . , N ; t = 1, . . . , T

(10.27)
with i denoting households, individuals, firms, countries, etc., and t denoting time.
The most common specification is the loglinear model lnλi t = μi + x ′

i tβ, where μi

denotes the unobservable individual specific effect. For the fixed effects specification
for the μ′

i s, the E(yit/xit ) = var(yit/xit ) = λi t = eμi+x ′
i tβ . The marginal effect of

a continuous variable xk is given by ∂E(yit/xit )/∂xk = λi tβk . In this case, one can
write the likelihood function as the product of the marginals

L(β,λi t ) =
N
∑

i=1

T
∑

t=1

[−λi t + yit (μi + x ′
i tβ) − ln yit !

]

(10.28)

The first-order conditions of this log likelihood are given by

∂L(β, λi t )/∂β =
N
∑

i=1

T
∑

t=1

(yit − λi t )xit = 0

and

∂L(β, λi t )/∂μi =
T
∑

t=1

(yit − λi t ) =
T
∑

t=1

(yit − e
μi ex

′
i tβ) = 0

for i = 1, . . . , N . Solving for μi in terms of β in this model gives



10.6 Count Panel Data 277

μ̂i = ln
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The conditional Poisson likelihood, which maximizes the joint probability of
(yi1, yi2, . . . , yiT ) conditioning on their sum, yields a likelihood that is free of μi .
This is similar to the conditional logit approach in panel data, seeChamberlain (1984)
and Chap. 11. In fact, the sum of T independent Poissons each with parameter λi t

is a Poisson with parameter
T
∑

t=1
λi t , i.e.,

Pr
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yit
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(10.29)

Since μi is a fixed parameter, the joint probability is the product of the marginals

Pr [yi1, yi2, . . . , yiT ] =
exp

(

−
T
∑

t=1
λi t

)

∏T
t=1 λ

yit
i t

∏T
t=1 yit !

(10.30)

Hence, the conditional likelihood is

Pr
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where pit = λi t
T
∑

t=1
λi t

= eμi+x ′i t β
T
∑

t=1
(eμi+x ′i t β)

= ex
′
i t β

T
∑

t=1
ex

′
i t β

. As clear from this conditional likeli-

hood, it is free of μi . Also, zero counts in every period do not contribute to this
conditional log likelihood.



278 10 Special Topics

In contrast, the random effects Poisson panel data model has μi correlated across
periods for the same individual. We will encounter this phenomena when studying
random effects probits in Chap. 11. The same idea applies here for the estimation
of the maximum likelihood. First, one condition on the random effects and write the
joint probability Pr(yi1, yi2, . . . , yiT /μi ) =∏T

t=1 Pr(yit/μi ), then one integrates
out the effect of μi , i.e.,

Pr(yi1, yi2, . . . , yiT ) =
∫

Pr(yi1, yi2, . . . , yiT , μi )dμi =
∫

Pr(yi1, yi2, . . . , yiT /μi )g(μi )dμi

(10.32)
Assuming Pr(yit/μi ) is distributed asPoisson(λi t = eμi+x ′

i tβ) and eμi is distributed
as Gamma with mean 1 and variance θ, the resulting distribution is a negative bino-

mial for
T
∑

t=1
yit . In fact,

Pr(yi1, yi2, . . . , yiT /μi ) =
exp

(

−
T
∑

t=1
λi t

)

∏T
t=1 λ

yit
i t

∏T
t=1 yit !

(10.33)

=
exp

(

−eμi
T
∑

t=1
γi t

)

(

∏T
t=1 γ

yit
i t

)

(eμi )

T
∑

t=1
yit

∏T
t=1 yit !

where γi t = ex
′
i tβ . Let εi = eμi be distributed as Gamma with mean 1 and variance

θ, then

g(εi ) = θθ

�(θ)
εθ−1
i exp(−θεi ) (10.34)

for εi > 0. So that
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Let qi = θ/(θ +
T
∑

t=1
γi t ), then

Pr(yi1, yi2, . . . , yiT ) =
∏T

t=1 γ
yit
i t

∏T
t=1 yit !
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yit

(10.36)



10.6 Count Panel Data 279

which is a negative binomial. Stata computes the fixed and random Poisson panel
procedures using xtpoisson, fe and re. In addition, it computes alternative estimates
of the Poisson panel model allowing for a Normal distribution on the random effects
using Gauss–Hermite quadrature which will also be used in the estimation of random
effects probit, see Chap. 11. A quadcheck should be used to check whether the
integrand is well approximated by a polynomial.

The Poisson specification has been criticized in the count data literature, despite
its popularity, because it has the property that its mean is equal to its variance.
This is known as the equi-dispersion property. Empirical work most often reject
this specification in favor of over-dispersion. To model this over-dispersion, the
negative binomial specification is usually employed and this is studied for panel data
by Hausman, Hall and Griliches (1984). This can also be implemented using Stata
xtnbreg, re, and fe. The negative binomial (NB) distribution has mean λ and variance
λ + αλ2−k . When α = 0, this reverts back to the Poisson model of equi-dispersion.
Stata uses k = 0 as the default option, this is the NB2. In this case the variance is
quadratic in the mean, i.e., λ + αλ2. Another popular specification is k = 1, the
NB1, which has a variance that is proportional to the mean, i.e., (1 + α)λ. This can
be implemented with Stata with the option dispersion (constant).

EmpiricalExample: Hausman,Hall andGriliches (1984) studied the relationship
between patents and R&D expenditures using panel data. We use their data com-
prising of 346 U.S. firms observed over the period 1975–1979. The count dependent
variable is the number of patents applied for by the firm during the year (that were
eventually granted). Some of the explanatory variables included are (i) real R&D
spending (in 1972 dollars) and its lagged values; (ii) logarithm of the book value of
capital in 1972 as a measure of size of the firm (LOGK); (iii) a dummy for whether
the firm is in the scientific sector (SCISECT); (iv) a two-digit code for the applied
R&D industrial classification; (v) the sum of patents applied for between 1972–
1979. Tables10.1 and 10.2 show the Stata output for the fixed effects specification
using the Poisson and Negative Binomial distributions, while Tables10.3 and 10.4
give the corresponding random effects specification including variables that are time
invariant like LOGK and SCISECT. Both the Poisson and Negative Binomial fixed
effects estimates show that only the current R&D spending is significant. For the
random effects specification, LOGK is significant, while SCISECT is not. The cur-
rent R&D spending has a larger effect on patents for the Poisson random effects than
for the Poisson fixed effects (0.40 as compared to 0.32). For the Negative Binomial
distribution, the difference is much smaller (0.35 as compared to 0.32).

Another problemwith the Poisson specification is that it cannot explain the occur-
rence of excess zeroes. For example, health data may contain a large number of indi-
viduals that do not visit a doctor or smoke zero cigarettes. The Zero-Inflated Poisson
(ZIP) in its simplest form gives a constant zero-inflation probability q to non-users
and (1-q) to users. This is estimated usingmaximum likelihoodmethods and is imple-
mented in Stata by the ZIP command with the option inflate (_cons).Another option
that can be used is Vuong, which gives a non-nested test of ZIP versus the Poisson
model. This can be generalized to allow the zero-inflated probability q to depend on
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Table 10.1 Poisson fixed effects for the R & D data

. xtpois PAT LOGR LOGR1 LOGR2 LOGR3 LOGR4 LOGR5 dyear2 dyear3 dyear4 dyear5,fe
note: 22 groups (110 obs) dropped due to all zero outcomes

Conditional fixed-effects Poisson regression    Number of obs =      1620
Group variable (i): id                          Number of groups   =       324

Obs per group: min =         5
avg =       5.0
max =         5

Wald chi2(10)      =    245.39
Log likelihood  = -3536.3086                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
PAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
LOGR |   .3222105   .0459412 7.01   0.000     .2321674    .4122535

LOGR1 | -.0871295   .0486887 -1.79   0.074 -.1825576    .0082986
LOGR2 |   .0785816    .044784     1.75   0.079 -.0091934    .1663567
LOGR3 |     .00106   .0414151     0.03   0.980 -.0801122    .0822322
LOGR4 | -.0046414   .0378489 -0.12   0.902 -.0788238    .0695411
LOGR5 |   .0026068   .0322596     0.08   0.936 -.0606209    .0658346
dyear2 | -.0426076    .013132 -3.24   0.001 -.0683458 -.0168695
dyear3 | -.0400462   .0134677 -2.97   0.003 -.0664423 -.01365
dyear4 | -.1571185   .0142281 -11.04   0.000 -.1850051 -.1292319
dyear5 | -.1980306   .0152946 -12.95   0.000 -.2280074 -.1680538

------------------------------------------------------------------------------

Table 10.2 Negative binomial fixed effects for the R & D data
. xtnbreg PAT LOGR LOGR1 LOGR2 LOGR3 LOGR4 LOGR5 dyear2 dyear3 dyear4 dyear5,fe
note: 22 groups (110 obs) dropped due to all zero outcomes

Conditional FE negative binomial regression     Number of obs      =      1620
Group variable (i): id                          Number of groups   =       324

Obs per group: min =         5
avg = 5.0
max =         5

Wald chi2(10)      =    117.12
Log likelihood  = -3206.867                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
PAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
LOGR |   .3188563   .0673654     4.73   0.000     .1868225    .4508902

LOGR1 | -.080442   .0773311 -1.04   0.298 -.2320082    .0711241
LOGR2 |   .0559045   .0710929     0.79   0.432 -.0834351    .1952441
LOGR3 | -.0128025   .0659707 -0.19   0.846 -.1421028    .1164978
LOGR4 |   .0355272   .0620031     0.57   0.567 -.0859966    .1570511
LOGR5 |   .0094533   .0516237     0.18   0.855 -.0917273    .1106338
dyear2 | -.0422643   .0249051 -1.70   0.090 -.0910773 .0065488
dyear3 | -.0488698   .0253965 -1.92   0.054 -.098646    .0009063
dyear4 | -.1606011   .0262724 -6.11   0.000 -.2120941 -.1091081
dyear5 | -.2154138   .0265014 -8.13   0.000 -.2673556 -.163472
_cons |   2.423638   .1749545    13.85   0.000     2.080734    2.766543

------------------------------------------------------------------------------
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Table 10.3 Poisson random effects for the R & D data
. xtpois PAT LOGR LOGR1 LOGR2 LOGR3 LOGR4 LOGR5 dyear2 dyear3 dyear4 dyear5
LOGK  SCISECT, re

Fitting Poisson model:

Random-effects Poisson regression               Number of obs      =      1730
Group variable (i): id                          Number of groups   =       346

Random effects u_i ~ Gamma                      Obs per group: min =         5
avg =       5.0
max =         5

Wald chi2(12)      =   1272.14
Log likelihood  = -5234.9265                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
PAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
LOGR |   .4034537   .0435022     9.27   0.000 .318191    .4887165

LOGR1 | -.0461765   .0482224 -0.96   0.338 -.1406906    .0483376
LOGR2 |   .1079235   .0447115     2.41   0.016     .0202905    .1955565
LOGR3 |   .0297733   .0413235     0.72   0.471 -.0512193     .110766
LOGR4 |   .0106957   .0377074     0.28   0.777 -.0632094    .0846008
LOGR5 |   .0406111   .0315738     1.29   0.198 -.0212724    .1024946
dyear2 | -.0449624   .0131291 -3.42   0.001 -.070695 -.0192298
dyear3 | -.0483864   .0134018 -3.61   0.000 -.0746534 -.0221193
dyear4 | -.1741619   .0139702 -12.47   0.000 -.201543 -.1467809
dyear5 | -.2258977   .0146645 -15.40   0.000 -.2546396 -.1971557
LOGK |   .2916932   .0393368 7.42   0.000     .2145945     .368792

SCISECT |   .2570001   .1122716     2.29   0.022     .0369517    .4770484
_cons |   .4107881   .1467443     2.80   0.005     .1231746    .6984016

-------------+----------------------------------------------------------------
/lnalpha | -.156739   .0809735 -.3154441    .0019661

-------------+----------------------------------------------------------------
alpha |   .8549271   .0692264                      .7294648    1.001968

------------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) =  2.5e+04 Prob>=chibar2 = 0.000

some explanatory variables. It can also be extended to allow for zero-inflated NB
rather than the zero-inflated Poisson model.

Alternative explanations of excess zeroes are that they are generated by a different
process altogether. For example, the decision to visit a doctor may depend on the
individual, while the frequency of visits depends on the doctor, once initial contact
is made. Let P1 define the participation decision, which is usually a binary decision,
modeled with a logit or probit specification, while P2 defines the process generating
the positive counts, a truncated at zero count model usually a Poisson or NB. This
double hurdle model for count data can be estimated separately using maximum
likelihood methods and can be easily implemented in Stata using logit/probit and
ztnb.
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Table 10.4 Negative binomial random effects for the R & D data

. xtnbreg PAT LOGR LOGR1 LOGR2 LOGR3 LOGR4 LOGR5 dyear2 dyear3 dyear4 dyear5
LOGK  SCISECT, re

Fitting negative binomial (constant dispersion) model:

Random-effects negative binomial regression     Number of obs      =      1730
Group variable (i): id                          Number of groups   =       346

Random effects u_i ~ Beta                       Obs per group: min =         5
avg =       5.0
max =         5

Wald chi2(12)      =    944.21
Log likelihood  = -4948.4944                    Prob > chi2        =    0.0000

------------------------------------------------------------------------------
PAT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
LOGR | .3503119   .0652818     5.37   0.000     .2223619    .4782619

LOGR1 | -.0030317   .0750916 -0.04   0.968 -.1502085    .1441452
LOGR2 |   .1049876   .0688488     1.52   0.127 -.0299537    .2399289
LOGR3 |   .0163523   .0636376     0.26   0.797 -.1083752    .1410797
LOGR4 |   .0359425   .0587161     0.61   0.540 -.0791389    .1510239
LOGR5 |   .0718323   .0482887     1.49   0.137 -.0228119    .1664764
dyear2 | -.0436736   .0213435 -2.05   0.041 -.085506 -.0018411
dyear3 | -.0556597   .0218572 -2.55   0.011 -.098499 -.0128203
dyear4 | -.1831055   .0227183 -8.06   0.000 -.2276326 -.1385784
dyear5 | -.2300438   .0231525 -9.94   0.000 -.2754219 -.1846658
LOGK |    .161937   .0417874     3.88   0.000     .0800351    .2438388

SCISECT |   .1176419   .1066164     1.10   0.270 -.0913224    .3266063
_cons |   .8995618   .1681113     5.35   0.000     .5700698    1.229054

-------------+----------------------------------------------------------------
/ln_r |   .9877591   .0961426                      .7993231    1.176195
/ln_s |   .7009608   .1079684                      .4893467    .9125748

-------------+----------------------------------------------------------------
r |    2.68521   .2581631                      2.224035    3.242015
s |   2.015688   .2176306                       1.63125    2.490728

------------------------------------------------------------------------------

For count panel data estimation of dynamic models that include correlated indi-
vidual effects and predetermined variables, see Blundell, Griffith and Windmeijer
(2002).

10.7 Notes

1. In general, for any T , as long as the fraction of the sample being rotated is greater
or equal to half, then no individual will be observed more than twice.

2. The terms “panel conditioning,” “reinterview effect” and “rotation group bias”
are also used in the literature synonymously with “time-in-sample bias” effects.

3. Moffitt (1993) explains that many researchers prefer to use pseudo-panels like the
CPS because it has larger, more representative samples and the questions asked
are more consistently defined over time than the available U.S. panels.
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4. Table10.1 of McKenzie (2001) provides examples of unequally spaced surveys
and their sources. See also Table10.1 of Millimet and McDonough (2017).

10.8 Problems

10.1 Measurement error and panel data. This problem is based upon Griliches and
Hausman (1986). Using the simple regression given in (10.1)–(10.3):

(a) Show that for the first-difference (FD) estimator of β, the expression in
(10.8) reduces to

plim̂βFD = β

(

1 − 2σ2
η

var(�x)

)

where �xit = xit − xi,t−1.
(b) Also show that (10.8) reduces to

plim˜βW = β

(

1 − T − 1

T

σ2
η

var(̃x)

)

where˜βW denotes the Within estimator and x̃i t = xit − x̄i .
(c) Formost economic series, the x∗

i t are positively serially correlated exhibiting
a declining correlogram, with

var(�x) <
2T

T − 1
var(̃x) for T > 2

Using this result, conclude that

| biaŝβFD |>| bias˜βW |
(d) Solve the expressions in parts (a) and (b) for β and σ2

η and verify that the
expressions in (10.9) and (10.10) reduce to

̂β = [2˜βW /var(�x) − (T − 1)̂βFD/T var(̃x)]
[2/var(�x) − (T − 1)/T var(̃x)]

σ2
η = (̂β −̂βFD) var(�x)/2̂β

(e) For T = 2, the Within estimator is the same as the first-difference estimator
since 1

2�xit = x̃i t .Verify that the expressions in part (a) and (b) are also the
same.

10.2 Rotating panel with three waves. For the rotating panel considered in Sect. 10.2,
assume that T = 3 and that the number of households being replaced each
period is equal to N/2.

(a) Derive the variance–covariance of the disturbances �.
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(b) Derive �−1/2 and describe the transformation needed to make GLS a
weighted least squares regression.

(c) How would you consistently estimate the variance components σ2
μ and σ2

ν?
(d) Repeat this exercise for the case where the number of households being

replaced each period is N/3. How about 2N/3?

10.3 Residential natural gas and electricity. Download the Maddala et al. (1997)
data set on residential natural gas and electricity consumption for 49 states over
21years (1970-90) from the Journal of Business and Economic Statistics web
site www.amstat.org/publications/jbes/ftp.html.

(a) Using this data set, replicate the individual OLS state regressions for elec-
tricity, given in Table 6, and natural gas, given in Table8 of Maddala et al.
(1997).

(b) Replicate the shrinkage estimates for electricity and natural gas given in
Tables7 and 9 of Maddala et al. (1997).

(c) Replicate the fixed effects estimator given in column 1 of Table10.2 of
Maddala et al. (1997), and the pooled OLS model given in column 2 of that
table.

(d) Replicate the average OLS, the average shrinkage estimator and the average
Stein-Rule estimator in Table10.2 of Maddala et al. (1997).

(e) Redo parts (c) and (d) for the natural gas equation as given in Table10.4 of
Maddala et al. (1997).

10.4 Patents and R&D expenditures. Download the Hausman, Hall and Griliches
(1984) panel data on patents and R&D expenditures using 346 U.S. firms
observed over the period 1975–1979. See the empirical example in Sect. 10.6.

(a) Replicate Tables10.1 and 10.2 for the fixed effects specification using the
Poisson and Negative Binomial distributions.

(b) Replicate Tables10.3 and 10.4 for the random effects specification (includ-
ing variables that are time invariant like LOGK and SCISECT) using the
Poisson and Negative Binomial distributions.

10.5 Doctor’s visits.Winkelmann (2004) fits a Poisson model to explain the number
of doctor’s visits using panel data drawn from the GSOEP from 1995–1999.
The explanatory variables include, age, age-squared, dummy for male, years of
education, dummy for married, household size, active sports, good health, bad
health, whether on social assistance, log(income), yearly dummies, whether
self-employed, full-time, part-time, or unemployed, and quarterly dummies.
The data set can be downloaded from the Journal of Applied Econometrics
archive web site: (http://qed.econ.queensu.ca/jae/).

www.amstat.org/publications/jbes/ftp.html
http://qed.econ.queensu.ca/jae/
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(a) Run the Poisson random and fixed effects regressions given in Table II
on page 466 of Winkelmann (2004). How does being married or being on
welfare affect the number of doctor’s visits?

(b) Run the Negative Binomial random and fixed effects regressions. How does
log(income) affect the number of doctor’s visits?

10.6 Hospital visits. Geil et al. (1997) fit a negative binomial random effects model
to explain the number of hospital visits using panel data on 5180 individuals
drawn from 8 waves of the GSOEP from 1984–1994. The 1990, 1991, and
1993 waves were excluded because they did not provide information on hos-
pitalization. The individuals were between the ages of 25 to 64 and excluded
children, students, and retired people. This is an unbalanced panel of 30,590
observations. The explanatory variables are described in Table I of Geil et
al. (1997, p. 300). These include, age, age-squared, age-cubed, dummy for
male, dummy for private insurance, dummy for private insurance with copay-
ment obligation, dummy for public insurance, dummy for voluntary public
insurance, dummy for family public insurance, dummy for public insurance
company legally obliged to accept all risks, dummy for public insurance with
voluntary additional coverage through a private scheme, dummy for chronic
conditions, dummy for handicapped, monthly net income, dummy for living
outside city center, dummy for married, dummy for at least secondary educa-
tion, dummy for university or technical college, dummy for passing vocational
training, dummy for working in a health-related field, dummy for being in
the labor force, dummy for blue collar, dummy for white collar, dummy for
civil servant, dummy for self-employed, dummy for part-time, dummy for a
non-German fromWestern countries, dummy for other non-German nationals,
dummy for children below the age of 16 in the household. The data set can
be downloaded from the Journal of Applied Econometrics archive web site:
(http://qed.econ.queensu.ca/jae/).

(a) Replicate the descriptive statistics given in Table II of Geil et al. (1997, p.
301)?

(b) Run theNegativeBinomial randomeffects regressions formales and females
given in Table III of Geil et al. (1997, p. 305). Compare the estimates and
their significance for males versus females with regard to their hospital visits
in Germany?

10.7 Matchedpanels: smoking andbirthweight. Abrevaya (2006) estimates the effect
of smoking on birth outcomes from panel data (i.e., data on mothers with
multiple births). Panel data allows the identification of the smoking effect from
women who change their smoking behavior from one pregnancy to another.
The data set contains 296,218 birth observations with 141,929 distinct mothers
(identified by momid3 and idx, an index number of a mother’s birth). The data
set can be downloaded from the Journal of Applied Econometrics archive web
site:

http://qed.econ.queensu.ca/jae/
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(http://qed.econ.queensu.ca/jae/2006-v21.4/abrevaya/).Birthweight (in grams)
is regressed on (i)whether the mother smokes; (ii) the number of cigarettes
smoked per day; (iii) the baby’s gender; (iv) mother’s age and age-squared;
(v) whether she is a high-school graduate, had some-college, or is a college-
graduate; (vi) her race andmarital status; (vii) adeqcode2 and adeqcode3,which
are indicators that the Kessner index = 2 or 3. This measures the adequacy of
prenatal care, 2 being intermediate and 3 being inadequate; (viii) a dummy
variable for no prenatal visits; (ix) petri2 and petri3, which are indicators that
the first prenatal visit occurred in the 2nd or 3rd trimester. (a) Run the OLS
estimates to replicate column 5 of Table IV of Abrevaya (2006, p.502). This
only includes the dummy variable for smoking but not the number of cigarettes
smoked. Be sure to include the dummies for the number of live births, mother’s
state of residence, and mother’s year of birth. (b) Run the corresponding FE
estimates (including the women’s fixed effect) and thus wiping out the time-
invariant variables. This should replicate the FE estimates in column 6 of Table
IV of Abrevaya (2006, p.502). (c) Add the number of cigarettes smoked and
replicate columns 11 and 12 of Table IV ofAbrevaya (2006, p.502). (d) compar-
ing the FE and OLS estimates, what do you conclude? (e) To gauge the degree
of incorrect matching and its effect on the estimates reported above, Abrevaya
utilized a proxy for correct matches. This dummy variable proxy takes the value
1 if the observed interval since last birth agrees with the record. A value of zero
for proxy is extremely strong evidence of an incorrect match since onlymiscod-
ing of the interval record or birth month could result in proxy = 0 for a correct
match. Show that the fixed effects estimates for this more reliable sample yield
a reduction in birth weight of 67 g for smokers which is much smaller than the
overall fixed effects estimates based upon the full samples (144 g).

10.8 European Patents. Cincera (1997) performed count panel data regressions of
patent activity using 181 internationalmanufacturing firms investing substantial
amounts in R&D over the period 1983 to 1991. The dependent variable was
the number of European patent applications filed by the firm in that year. This
was regressed on current and 4 year lag of log of R&D expenditures as well
as log of technological spillovers. Other control variables included the firm’s
geographical area as well as the firm’s main industry sector. The data set can
be downloaded from the Journal of Applied Econometrics archive web site.

(a) Replicate the descriptive statistics and correlation matrix given in Table I of
Cincera (1997, p. 273).

(b) Run the poisson and negative binomial regressions using robust variance–
covariance matrices as described in equation (1) of Cincera (1997, p. 267).

http://qed.econ.queensu.ca/jae/2006-v21.4/abrevaya/
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(c) Run xtpoisson and xtnbreg using both the fe and re options on this data.
This should replicate the estimates (but not the standard errors), reported in
column (3) of Table II of Cincera (1997, p. 275) which is entitled conditional
poisson.

References

Abrevaya, J. 2006. Estimating the effect of smoking on birth outcomes using a matched panel data
approach. Journal of Applied Econometrics 21: 489–519.

Anderson, T.W., and C. Hsiao. 1982. Formulation and estimation of dynamic models using panel
data. Journal of Econometrics 18: 47–82.

Arellano, M. 1989. A note on the Anderson-Hsiao estimator for panel data. Economics Letters 31:
337–341.

Baltagi, B.H., G. Bresson, and A. Pirotte. 2002. Comparison of forecast performance for homo-
geneous, heterogeneous and shrinkage estimators: Some empirical evidence from US electricity
and natural-gas consumption. Economics Letters 76: 375–382.

Baltagi, B.H., G. Bresson, and A. Pirotte. 2004. Tobin q: Forecast performance for hierarchical
Bayes, shrinkage, heterogeneous and homogeneous panel data estimators. Empirical Economics
29: 107–113.

Baltagi, B.H., G. Bresson, J.M. Griffin, and A. Pirotte. 2003. Homogeneous, heterogeneous or
shrinkage estimators? Some empirical evidence from French regional gasoline consumption.
Empirical Economics 28: 795–811.

Baltagi, B.H., and J.M. Griffin. 1984. Short and long run effects in pooled models. International
Economic Review 25: 631–645.

Baltagi, B.H., and J.M. Griffin. 1997. Pooled estimators versus their heterogeneous counterparts in
the context of dynamic demand for gasoline. Journal of Econometrics 77: 303–327.

Baltagi, B.H., J.M. Griffin, and W. Xiong. 2000. To pool or not to pool: Homogeneous versus
heterogeneous estimators applied to cigarette demand. Review of Economics and Statistics 82:
117–126.

Biorn, E. 1981. Estimating economic relations from incomplete cross-section/time-series data.
Journal of Econometrics 16: 221–236.

Biorn, E. 1996. Panel data with measurement errors, Chapter 10. In The econometrics of panel
data: A handbook of the theory with applications, (eds.) L. Mátyás, and P. Sevestre, 236–279.
Dordrecht: Kluwer Academic Publishers.

Biorn, E. 2000. Panel data with measurement errors: Instrumental variables and GMM procedures
combining levels and differences. Econometric Reviews 19: 391–424.

Biorn, E., and E.S. Jansen. 1983. Individual effects in a system of demand functions. Scandinavian
Journal of Economics 85: 461–483.

Blundell, R., C.Meghir, and P. Neves. 1993. Labour supply and intertemporal substitutions. Journal
of Econometrics 59: 137–160.

Blundell, R., R. Griffith, and F. Windmeijer. 2002. Individual effects and dynamics in count data
models. Journal of Econometrics 108: 113–131.

Bound, L., C. Brown, G.J. Duncan, and W.L. Rodgers. 1990. Measurement error in cross-sectional
and longitudinal labormarket surveys: Validation study evidence. InPanel Data and labor market
studies, (eds.) J. Hartog, G. Ridder, and T. Theeuwes, 1–19. Amsterdam: North-Holland.

Browning, M., A. Deaton, andM. Irish. 1985. A profitable approach to labor supply and commodity
demands over the life cycle. Econometrica 53: 503–543.

Brucker, H., and B. Siliverstovs. 2006. On the estimation and forecasting of international migration:
How relevant is heterogeneity across countries. Empirical Economics 31: 735–754.



288 10 Special Topics

Cameron, C., and P. Trivedi. 2015. Count panel data, Chapter 8. In Oxford handbook of panel data,
(ed.) B.H. Baltagi, 233–256. Oxford: Oxford University Press.

Chamberlain, G. 1984. Panel data, Chapter 22. In Handbook of econometrics, (eds.) Z. Griliches,
and M. Intrilligator, 1247–1318. Amsterdam: North-Holland.

Cincera, M. 1997. Patents, R&D and technological spillovers at the firm level: Some evidence from
econometric count models for panel data. Journal of Applied Econometrics 12: 265–280.

Collado, M.D. 1997. Estimating dynamic models from time series of independent cross-sections.
Journal of Econometrics 82: 37–62.

Deaton, A. 1985. Panel data from time series of cross-sections. Journal of Econometrics 30: 109–
126.

Driver, C., K. Imai, P. Temple, and A. Urga. 2004. The effect of uncertainty on UK investment
authorisation: Homogeneous vs. heterogeneous estimators. Empirical Economics 29: 115–128.

Duncan, G.J., and D.H. Hill. 1985. An investigation of the extent and consequences of measurement
error in labor economic survey data. Journal of Labor Economics 3: 508–532.

Eberhardt, M. 2012. Estimating panel time series models with heterogeneous slopes. Stata Journal
12: 61–71.

Egger, P., and M. Pfaffermayr. 2004. Distance, trade and FDI: A Hausman-Taylor SUR approach.
Journal of Applied Econometrics 19: 227–246.

Gavin, W.T., and A.T. Theodorou. 2005. A common model approach to macroeconomics: Using
panel data to reduce sampling error. Journal of Forecasting 24: 203–219.

Geil, P., A.Million, R. Rotte, andK.F. Zimmermann. 1997. Economic incentives and hospitalization
in Germany. Journal of Applied Econometrics 12: 295–311.

Girma, S. 2000. A quasi-differencing approach to dynamic modelling from a time series of inde-
pendent cross-sections. Journal of Econometrics 98: 365–383.

Griliches, Z., and J.A. Hausman. 1986. Errors in variables in panel data. Journal of Econometrics
31: 93–118.

Groen, J.J.J. 2005. Exchange rate predictability andmonetary fundamentals in a smallmulti-country
panel. Journal of Money, Credit, and Banking 37: 495–516.

Hausman, J.A., B.H. Hall, and Z. Griliches. 1984. Econometric models for count data with an
application to the patents-R&D relationship. Econometrica 52: 909–938.

Hoogstrate, A.J., F.C. Palm, and G.A. Pfann. 2000. Pooling in dynamic panel-data models: An
application to forecasting GDP growth rates. Journal of Business and Economic Statistics 18:
274–283.

Hsiao, C., M.H. Pesaran, and A.K. Tahmiscioglu. 1999. Bayes estimation of short run coefficients
in dynamic panel data models, Chapter 11. In Analysis of panels and limited dependent variable
models, (eds.) C. Hsiao, K. Lahiri, L.F. Lee, andM.H. Pesaran, 268–296. Cambridge: Cambridge
University Press.

Hsiao, C., and A.K. Tahmiscioglu. 1997. A panel analysis of liquidity constraints and firm invest-
ment. Journal of the American Statistical Association 92: 455–465.

Inoue, A. 2008. Efficient estimation and inference in linear pseudo-panel data models. Journal of
Econometrics 142: 449–466.

Maddala, G.S., R.P. Trost, H. Li, and F. Joutz. 1997. Estimation of short-run and long-run elasticities
of energy demand from panel data using shrinkage estimators. Journal of Business and Economic
Statistics 15: 90–100.

Mairesse, J. 1990. Time-series and cross-sectional estimates on panel data: Why are they different
andwhy should they be equal? InPanel data and labor market studies, (eds.) J. Hartog, G. Ridder,
and J. Theeuwes, 81–95. Amsterdam: North-Holland.

McKenzie, D.J. 2001. Estimation of AR(1) models with unequally spaced pseudo-panels. Econo-
metrics Journal 4: 89–108.

McKenzie, D.J. 2004. Asymptotic theory for heterogeneous dynamic pseudo-panels. Journal of
Econometrics 120: 235–262.

Meijer, E., L. Spierijk, and T. Wansbeek. 2015. Measurement error in panel data, Chapter 11. In
Oxford handbook of panel data, (ed.) B.H. Baltagi, 325–362. Oxford: Oxford University Press.



References 289

Millimet, D.L., and I.K. McDonough. 2017. Dynamic panel data models with irregular spacing:
With an application to early childhood development. Journal of Applied Econometrics 32: 725–
743.

Moffitt, R. 1993. Identification and estimation of dynamic models with a time series of repeated
cross-sections. Journal of Econometrics 59: 99–123.

Mundlak, Y. 1978. On the pooling of time series and cross-section data. Econometrica 46: 69–85.
Pesaran, M.H., and R. Smith. 1995. Estimating long-run relationships from dynamic heterogenous
panels. Journal of Econometrics 68: 79–113.

Pesaran, M.H., R. Smith, and K.S. Im. 1996. Dynamic linear models for heterogenous panels,
Chapter 8. In The Econometrics of panel data: A handbook of the theory with applications, (eds.)
L. Mátyás, and P. Sevestre, 145–195. Dordrecht: Kluwer Academic Publishers.

Phillips, P.C.B., and H. Moon. 1999. Linear regression limit theory for nonstationary panel data.
Econometrica 67: 1057–1111.

Rapach, D.E., and M.E. Wohar. 2004. Testing the monetary model of exchange rate determination:
A closer look at panels. Journal of International Money and Finance 23: 867–895.

Robertson, D., and J. Symons. 1992. Some strange properties of panel data estimators. Journal of
Applied Econometrics 7: 175–189.

Verbeek, M. 2008. Pseudo-panels and repeated cross-sections, Chapter 11. In The econometrics of
panel data: fundamentals and recent developments in theory and practice, (eds.) L. Mátyás, and
P. Sevestre, 369–383. Berlin: Springer.

Verbeek, M., and T.E. Nijman. 1993. Minimum MSE estimation of a regression model with fixed
effects and a series of cross-sections. Journal of Econometrics 59: 125–136.

Verbeek, M., and F. Vella. 2005. Estimating dynamic models from repeated cross-sections. Journal
of Econometrics 127: 83–102.

Wansbeek, T.J., and R.H. Koning. 1991. Measurement error and panel data. Statistica Neerlandica
45: 85–92.

Winkelmann, R. 2004. Health care reform and the number of doctor visits-an econometric analysis.
Journal of Applied Econometrics 19: 455–472.



11LimitedDependentVariables and
PanelData

Inmany economic studies, the dependent variable is discrete, indicating, for example,
that a household purchased a car or that an individual is unemployed or that he or
she joined a labor union or defaulted on a loan or was denied credit. This dependent
variable is usually represented by a binary choice variable yit = 1 if the event happens
and 0 if it does not for individual i at time t . In fact, if pit is the probability that
individual i participated in the labor force at time t , then E(yit ) = 1. pit + 0. (1 −
pit ) = pit , and this is usually modeled as a function of some explanatory variables

pit = Pr [yit = 1] = E(yit/xit ) = F(x ′
i tβ) (11.1)

For the linear probability model, F(x ′
i tβ) = x ′

i tβ and the usual panel data methods
apply except that ŷi t is not guaranteed to lie in the unit interval. The standard solution
has been to use the logistic or normal cumulative distribution functions that constrain
F(x ′

i tβ) to be between zero and one. These probability functions are known in the
literature as logit and probit, corresponding to the logistic and normal distributions,
respectively.1 For example, a worker participates in the labor force if his offered
wage exceeds his unobserved reservation wage. This threshold can be described as

yit = 1 if y∗
i t > 0

= 0 if y∗
i t � 0

(11.2)

where y∗
i t = x ′

i tβ + uit . So that

Pr[yit = 1] = Pr[y∗
i t > 0] = Pr[uit > −x ′

i tβ] = F(x ′
i tβ) (11.3)

where the last equality holds as long as the density function describing F is symmetric
around zero. This is true for the logistic and normal density functions.
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11.1 Fixed and Random Logit and Probit Models

For panel data, the presence of individual effects complicates matters significantly.
To see this, consider the fixed effects panel data model, y∗

i t = x ′
i tβ + μi + νi t with

Pr[yit = 1] = Pr[y∗
i t > 0] = Pr[νi t > −x ′

i tβ − μi ] = F(x ′
i tβ + μi ) (11.4)

where the last equality holds as long as the density function describing F is symmetric
around zero. In this case, μi and β are unknown parameters and as N → ∞, for a
fixed T , the number of parameters μi increases with N . This means that μi cannot
be consistently estimated for a fixed T . This is known as the incidental parameters
problem in statistics. For the linear panel data regression model, when T is fixed,
only β was estimated consistently by first getting rid of the μi using the Within
transformation.2 This was possible for the linear case because the MLE of β and
μi are asymptotically independent (see Hsiao, 2003). This is no longer the case
for a qualitative limited dependent variable model with fixed T as demonstrated by
Chamberlain (1980). For a simple illustration of how the inconsistency of the MLE
of μi is transmitted into inconsistency for ̂βmle, see Hsiao (2003). This is done in the
context of a logit model with one regressor xit that is observed over two periods, with
xi1 = 0 and xi2 = 1. Hsiao shows that as N → ∞ with T = 2, plim̂βmle = 2β, see
also problem 11.4. Greene (2004a) shows that despite the large number of incidental
parameters, one can still perform maximum likelihood for the fixed effects model by
brute force, i.e., including a large number of dummy variables. Using Monte Carlo
experiments, he shows that the fixed effects MLE is biased even when T is large.
For N = 1000, T = 2 and 200 replications, this bias is 100% confirming the results
derived by Hsiao (2003). However, this bias improves as T increases. For example,
when N = 1000 and T = 10 this bias is 16% and when N = 1000 and T = 20 this
bias is 6.9%.

The usual solution around this incidental parameters problem is to find a minimal
sufficient statistic forμi .For the logitmodel, Chamberlain (1980) finds that

∑T
t=1 yit

is aminimumsufficient statistic forμi . Therefore, Chamberlain suggestsmaximizing
the conditional likelihood function

Lc =
N

∏

i=1

Pr

(

yi1, . . . , yiT /

T
∑

t=1

yit

)

(11.5)

to obtain the conditional logit estimates for β. By definition of a sufficient statistic,
the distribution of the data given this sufficient statistic will not depend on μi . For
the fixed effects logit model, this approach results in a computationally convenient
estimator and the basic idea can be illustrated for T = 2. The observations over the
two periods and for all individuals are independent and the unconditional likelihood
is given by

L =
N

∏

i=1

Pr(yi1)Pr(yi2) (11.6)
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The sum (yi1 + yi2) can be 0, 1 or 2. If it is 0, both yi1 and yi2 are 0 and

Pr[yi1 = 0, yi2 = 0/yi1 + yi2 = 0] = 1 (11.7)

Similarly, if the sum is 2 both yi1 and yi2 are 1 and

Pr[yi1 = 1, yi2 = 1/yi1 + yi2 = 2] = 1 (11.8)

These terms add nothing to the conditional log likelihood since log1= 0. Only the
observations for which yi1 + yi2 = 1 matter in log Lc and these are given by

Pr[yi1 = 0, yi2 = 1/yi1 + yi2 = 1] and Pr[yi1 = 1, yi2 = 0/yi1 + yi2 = 1]
The latter can be calculated as Pr[yi1 = 1, yi2 = 0]/Pr[yi1 + yi2 = 1] with

Pr[yi1 + yi2 = 1] = Pr[yi1 = 0, yi2 = 1] + Pr[yi1 = 1, yi2 = 0]
since the latter two events are mutually exclusive. From (11.4), the logit model yields

Pr[yit = 1] = eμi+x ′
i tβ

1 + eμi+x ′
i tβ

(11.9)

and

Pr[yit = 0] = 1 − eμi+x ′
i tβ

1 + eμi+x ′
i tβ

= 1

1 + eμi+x ′
i tβ

Therefore

Pr[yi1 = 1, yi2 = 0] = eμi+x ′
i1β

1 + eμi+x ′
i1β

1

1 + eμi+x ′
i2β

and

Pr[yi1 = 0, yi2 = 1] = 1

1 + eμi+x ′
i1β

eμi+x ′
i2β

1 + eμi+x ′
i2β

with

Pr[yi1 + yi2 = 1] = Pr[yi1 = 1, yi2 = 0] + Pr[yi1 = 0, yi2 = 1]

= eμi+x ′
i1β + eμi+x ′

i2β

(1 + eμi+x ′
i1β)(1 + eμi+x ′

i2β)

Therefore,

Pr[yi1 = 1, yi2 = 0/yi1 + yi2 = 1] = Pr[yi1 = 1, yi2 = 0]
Pr[yi1 + yi2 = 1] (11.10)

= eμi+x ′
i1β

eμi+x ′
i1β + eμi+x ′

i2β
= ex

′
i1β

ex
′
i1β + ex

′
i2β

= 1

1 + e(xi2−xi1)′β
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Similarly

Pr[yi1 = 0, yi2 = 1/yi1 + yi2 = 1] = ex
′
i2β

ex
′
i1β + ex

′
i2β

= e(xi2−xi1)′β

1 + e(xi2−xi1)′β
(11.11)

and neither probability involves the μi . Therefore, by conditioning on yi1 + yi2,
we swept away the μi . The product of terms such as these with yi1 + yi2 = 1 give
the conditional likelihood function which can be maximized with respect to β using
conventional maximum likelihood logit programs. In this case, only the observations
for individuals who switched status are used in the estimation. A standard logit
package can be used with x ′

i2 − x ′
i1 as explanatory variables and the dependent

variable taking the value one if yit switches from 0 to 1, and zero if yit switches from
1 to 0. This procedure can be easily generalized for T > 2 (see problem 11.2).3

In order to test for fixed individual effects one can perform a Hausman-type test
based on the difference between Chamberlain’s conditional MLE and the usual logit
MLE ignoring the individual effects. The latter estimator is consistent and efficient
only under the null of no individual effects and inconsistent under the alternative.
Chamberlain’s estimator is consistent whether H0 is true or not, but it is inefficient
under H0 because it may not use all the data. Both estimators can be easily obtained
from the usual logitML routines. The constant is dropped and estimates of the asymp-
totic variances are used to form Hausman’s χ2 statistic. This will be distributed as
χ2
K under H0. For an application of Chamberlain’s conditional MLE see Winkel-

mann and Winkelmann (1998) who applied the conditional logit approach to study
the effect of unemployment on the level of satisfaction. Using data from the first six
waves of the GSOEP over the period 1984-89, the authors showed that unemploy-
ment had a large detrimental effect on satisfaction. This effect became even larger
after controlling for individual specific effects. The dependent variable was based
on the response to the question “How satisfied are you at present with your life as
a whole?” An ordinal scale from 0 to 10 is recorded, where 0 meant “completely
dissatisfied” and 10 meant “completely satisfied”. Winkelmann and Winkelmann
constructed a binary variable taking the value 1 if this score was above 7 and 0 oth-
erwise. They justified this on the basis that average satisfaction was between 7 and 8
and this was equivalent to classifying individuals into those who reported above and
those who reported below average satisfaction. The explanatory variables included a
set of dummy variables indicating current labor market status (unemployed out of the
labor force) with employed as the reference category. A good health variable defined
as the absence of any chronic condition or handicap. Age, age-squared, marital sta-
tus, and the duration of unemployment and its square. Since unemployment reduces
income which in turn may reduce satisfaction, household income was included as
a control variable to measure the non-pecuniary effect of unemployment holding
income constant. Of particular concern with the measurement of life satisfaction is
that individuals “anchor” their scale at different levels, rendering interpersonal com-
parisons of responses meaningless. This problem bears a close resemblance to the
issue of cardinal versus ordinal utility. Any statistic that is calculated from a cross-
section of individuals, for instance, an average satisfaction, requires cardinality of
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the measurement scale. This problem is closely related to the unobserved individual
specific effects. Hence anchoring causes the estimator to be biased as long as it is not
random but correlated with the explanatory variables. Panel data help if the metric
used by individuals is time invariant. Fixed effects make inference based on intra-
rather than interpersonal comparisons of satisfaction. This avoids not only the poten-
tial bias caused by anchoring, but also bias caused by other unobserved individual
specific factors. Hausman’s test based on the difference between a standard logit and
a fixed effects logit yielded a significant χ2 variable. After controlling for individual
specific effects, this study found that unemployment had a significant and substantial
negative impact on satisfaction. The non-pecuniary costs of unemployment by far
exceeded the pecuniary costs associated with loss of income while unemployed.

In contrast to the fixed effects logit model, the conditional likelihood approach
does not yield computational simplifications for the fixed effects probit model. This
is why there is no xtprobit with a fe option in Stata. But the probit specification
has been popular for the random effects model. In this case, uit = μi + νi t where
μi ∼ IIN(0, σ 2

μ) and νi t ∼ IIN(0, σ 2
ν ) independent of each other and the xit . Since

E(uit uis) = σ 2
μ for t �= s, the joint likelihood of (y1t , . . . , yNt ) can no longer be

written as the product of the marginal likelihoods of the yit . This complicates the
derivation of maximum likelihood which will now involve T-dimensional integrals.4

The likelihood function is a multiple integral

Li = Pr [yi1, yi2, .., yiT /X ] =
∫

..

∫

f (ui1, ui2, .., uiT )dui1dui2..duiT

(11.12)
which is maximized w.r.t. β and σμ. This gets to be infeasible if T is big. The trick
is to write the joint density function as a product of the conditional density and the
marginal density of μi . In fact,

f (ui1, ui2, .., uiT , μi ) = f1(ui1, ui2, .., uiT /μi ) f2(μi )

so that

f (ui1, ui2, .., uiT ) =
∫

f1(ui1, ui2, .., uiT /μi ) f2(μi )dμi

By conditioning on the individual effects, this T -dimensional integral problem
reduces to a single integral. To see this, note that the u′

i s conditional on μi are
independent, so

f (ui1, ui2, .., uiT ) =
∫ T

∏

t=1

f1(uit/μi ) f2(μi )dμi
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Inserting this in the likelihood, one gets

Li = Pr [yi1, yi2, .., yiT /X ] =
∫

..

∫ ∫ T
∏

t=1

f1(uit/μi ) f2(μi )dμi dui1dui2..duiT

The ranges of integration are independent, so we interchange the order of integration

Li = Pr [yi1, yi2, .., yiT /X ] =
∫

⎡

⎣

∫

..

∫ T
∏

t=1

f1(uit/μi )dui1dui2..duiT

⎤

⎦ f2(μi )dμi

The terms in square brackets are the product of individual probabilities

Li = Pr [yi1, yi2, .., yiT /X ] =
∫

[

T
∏

t=1

(

∫

f1(uit/μi )duit

]

f2(μi )dμi (11.13)

For the probit, the individual probabilities inside the product are given by
�(qit (x ′

i tβ + μi )), where qit = 2yit − 1. The payoff is that this likelihood involves
only one integral. The inner integrals are standard normal CDF. This can be evaluated
using the Gaussian–Hermite quadrature procedure suggested by Butler and Moffitt
(1982):

lnLh =
N

∑

i=1

[ln{ 1√
π

H
∑

h=1

T
∏

t=1

wh�(qit (x
′
i tβ + θ zh))}]

where H is the number of points for the quadrature, and wh and zh are the weights
and nodes of the quadrature. Here θ = σμ

√
2, so an estimate of σμ can be obtained

by dividing the estimate of θ by
√
2. This approach has the advantage of being

computationally feasible even for fairly large T . The accuracy of this quadrature
procedure increases with the number of evaluation points. For an application of the
random effects probit model, see Sickles and Taubman (1986) who estimated a two-
equation structural model of the health and retirement decisions of the elderly using
five biennial panels of males drawn from the Retirement History Survey. Both the
health and retirement variables were limited dependent variables andMLE using the
Butler and Moffitt (1982) Gaussian quadrature procedure was implemented. Sickles
and Taubman found that retirement decisions were strongly affected by health status,
and that workers not yet eligible for social security were less likely to retire. LIMDEP
and Stata provide basic routines for the random and fixed effects logit and probit
models. In Stata these are the (xtprobit and xtlogit) commands with the (fe and re)
options available for xtlogit and only re available for the xtprobit. These will be
illustrated in the empirical example later on in this chapter.

Heckman (1981b) performed some limited Monte Carlo experiments on a pro-
bit model with a single regressor and a Nerlove (1971) type xit . For N = 100,
T = 8, σ 2

ν = 1 and σ 2
μ = 0.5, 1 and 3, Heckman computed the bias of the fixed

effects MLE of β using 25 replications. He found at most 10% bias for β = 1 which
was always toward zero. Replicating Heckman’s design and using 100 replications,
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Greene (2004a) finds that the bias of the fixed effects MLE of β is of the order of 10
to 24% always away from zero.

Fernandez-Val (2009) characterizes the leading term of a large T expansion of
the bias of the fixed effects probit MLE of β which allows him to obtain a lower
bound for the first order bias that depends uniquely on T . This bias turns out to be at
least 40% for T = 2; 20% for T = 4, and 10% for T = 8. Monte Carlo simulations
confirm that these biases are between 33 and 48% for T = 4, and between 15 and
21% for T = 8. When there is a single regressor, the probit fixed effects estimates
are biased away from zero, providing support for the previous numerical evidence
by Greene (2004a). Interestingly, the FE estimates of the marginal effects exhibit
no bias in the absence of heterogeneity and negligible bias for a wide variety of
distributions of regressors and individual effects in the presence of heterogeneity.

Hahn and Newey (2004) consider two approaches to reducing the bias from fixed
effects estimators in nonlinearmodels as T gets large. The first is a panel jacknife that
uses the variation in the fixed effects estimators as each time period is dropped, one
at a time, to form a bias corrected estimator. The second is an analytic bias correction
using the bias formula obtained froman asymptotic expansion as T grows. They show
that if T grows at the same rate as N , the fixed effects estimator is asymptotically
biased, so that the asymptotic confidence intervals are incorrect. However, these
are correct for the panel jacknife. If T grows faster than N 1/3, the analytical bias
correction yields an estimator that is asymptotically normal and centered at the truth.

Cruz-Gonzalez, Fernandez-Val and Weidner (2017) wrote Stata commands pro-
bitfe and logitfe that implement the analytical and jackknife bias corrections of
Fernandez-Val and Weidner (2016) to probit and logit panel data models with
both individual and time effects. The methods are combinations of the leave-one-
observation-out panel jackknife (PJ) of Hahn and Newey (2004) and the split-panel
jackknife (SPJ) of Dhaene and Jochmans (2015) applied to the two dimensions of
the panel.

Example 1 Female Labor force participation. This is the empirical example used
in Fernandez-Val (2009). The sample is selected from waves 13 to 22 of the Panel
Study of Income Dynamics (PSID) and covers ten calendar years 1979–1988. Only
women aged 18–60 in 1985 who were continuously married with husbands in the
labor force in each of the sample periods are included in the sample. The sample
considered consists of 1461 women, 664 of whom changed labor force participation
status during the sample period. The first year of the sample is excluded for use as the
initial condition in the dynamic model. Table11.1 gives the xtlogit, fe results for the
female labor force participation as a function of the number of kids between 0-2 years
of age, number of kids between 3–5 years of age, number of kids between 6–12 years
of age, log of her husband’s income, her age and age2. The results show that having
kids no matter what age reduces the probability of participating in the labor force.
The higher the husband’s income and the higher her age, the higher is her probability
of participating in the labor force. This probability however decreases with age2.
All effects are significant. Unfortunately, these are not the marginal effects. Average
partial effects are available using logitfe.
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Table 11.1 Conditional Logit: Female Labor Force Participation

Table11.2 does xtprobit, re for the female labor force participation empirical
example 1 taken from Fernandez-Val (2009). You are asked to replicate Tables11.1
and 11.2 in problem 11.12. One can also show that xtprobit, re and xtlogit, re are
robust to quadcheck for this example. The quadcheck option in Stata checks the
sensitivity of the estimates to the number of nodes used in computing the integral.

Problem11.12 illustrates the logitfe and probitfe commands in Stata for the female
labor force participation considered in example 1. Problem 11.13 illustrates logitfe
and probitfe for the trade empirical example of Helpman, Melitz and Rubenstein
(2008). These commands are useful for empirical research as they check the sensi-
tivity of the estimates to various jackknife procedures as well as the extent of the
bias in the uncorrected fixed effects estimator for the logit and probit model. Note
that xtprobit fixed effects is not available in Stata because Chamberlain’s conditional
fixed effects applies specifically to the logit specification and is not applicable to the
probit specification. It is also worth mentioning that the average partial effects are
available using probitfe and logitfe but not available when using xtlogit fixed effects.

Example 2 Beer Taxes and motor vehicle fatality rates. Ruhm (1996) uses grouped
logit analysis with fixed time and state effects to study the impact of beer taxes and a
variety of alcohol-control policies on motor vehicle fatality rates. Ruhm uses panel
data of 48 states (excluding Alaska, Hawaii and the District of Columbia) over the
period 1982-1988. The dependent variable is log[p/(1 − p)] where p is the total
vehicle fatality rate per capita for state i at time t . The explanatory variables included
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Table 11.2 Probit Random Effects: Female Labor Force Participation

the real beer tax rate on 24 (12 oz.) containers of beer (BEERTAX), the minimum
legal drinking age (MLDA) in years, the percentage of the population living in dry
counties (DRY), the average number of vehicle miles per person aged 16 and over
(VMILES), and the percentage of young drivers (15–24 years old) (YNGDRV). Also
some dummy variables indicating the presence of alcohol regulations. These include
BREATH test laws which is a dummy variable that takes the value 1 if the state
authorized the police to administer pre-arrest breath test to establish probable cause
for driving under the influence (DUI). JAILD which takes the value of 1 if the state
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passed legislation mandating jail or community service (COMSERD) for the first
DUI conviction. Other variables included are the unemployment rate, real per capita
income and state and time dummy variables. Details on these variables are given in
Table11.1 of Ruhm (1996). Results showed that most of the regulations had little or
no impact on traffic mortality. By contrast, higher beer taxes were associated with
reductions in crash deaths. Problem 11.8 asks the reader to replicate some of the
results in this paper.

Grossman (2001) also ran an inverse logit model investigating the effect of multi-
ple liability of bank share holders on bank failure rates in U.S. states before the Great
Depression. Grossman found that double liability did reduce bank failures in periods
where bank failures were not abnormally high. However, it did not guarantee bank
stability in times of widespread financial distress. Problem 11.11 asks the reader to
replicate some of the results in this paper.

The random effects probit model assume that μi and xit are uncorrelated. Cham-
berlain (1980, 1984) relaxes this assumption as follows:

μi = x ′
i a + εi (11.14)

where a′ = (a′
1, . . . , a

′
T ), x ′

i = (x ′
i1, . . . , x

′
iT ) and εi ∼ IID(0, σ 2

ε ) independent of
νi t . In this case,

yit = 1 if (x ′
i tβ + x ′

i a + εi + νi t ) > 0

and the distribution of yit conditional on xit but marginal on μi has the probit form

Pr[yit = 1] = �[(1 + σ 2
ε )−1/2(x ′

i tβ + x ′
i a)]

where � denotes the cumulative normal distribution function. Once again, MLE
involves numerical integration, but a computationally simpler approach suggested
by Chamberlain is to run simple probit on this equation to get ̂
. In this case, 


satisfies the restriction


 = (1 + σ 2
ε )−1/2(IT ⊗ β ′ + ιT a

′)

Therefore, Chamberlain suggests a minimum distance estimator based on (π̂ − π),
where π = vec(
′), that imposes this restriction. Chamberlain (1984) applies both
his fixed effects logit estimator and his minimum distance random effects probit
estimator to a study of labor force participation of 924 married women drawn from
the PSID. These estimation methods give different results especially with regard
to the effect of the presence of young children on labor force participation. These
different results could be attributed to themisspecification of the relationship between
μi and the xit in the random effects specification or a misspecification of the fixed
effects logit model in its omission of leads and lags of the xit from the structural
equation.

Bover and Arellano (1997) provide extensions of the random effects probit model
of Chamberlain (1984) which has applications in the analysis of binary choice, linear
regression subject to censoring, and other models with endogenous selectivity. They
propose a simple two-step Within estimator for limited dependent variable models,
which may include lags of the dependent variable, other exogenous variables and
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unobservable individual effects. This estimator is based on reduced form predictions
of the latent endogenous variables. It can be regarded as a member of Chamberlain’s
class of random effects minimum distance estimators, and as such it is consistent
and asymptotically normal for fixed T . However, this Within estimator is not asymp-
totically efficient within the minimum distance class, since it uses a non-optimal
weighting matrix. Therefore, Bover and Arellano (1997) show how one can obtain
in onemore step a chi-squared test statistic for over-identifying restrictions and linear
GMM estimators that are asymptotically efficient. The drawbacks of this approach
are the same as those for the Chamberlain probit model. Both require the availability
of strictly exogenous variables and the specification of the conditional distribution
of the effects. Labeaga (1999) applies the Bover and Arellano (1997) method to
estimate a double-hurdle rational addiction model for tobacco consumption using
an unbalanced panel of households drawn from the Spanish Permanent Survey of
Consumption (SPSC). This is a panel collected by the Spanish Statistical Office for
approximately 2000 households between 1977 and 1983.

11.2 Simulation Estimation of Limited DependentVariable
Models with Panel Data

Keane (1994) derived a computationally practical simulation estimator for the panel
data probit model. The basic idea of simulation estimation methods is to replace
intractable integrals by unbiased Monte Carlo probability simulators. This is ideal
for limited dependent variable models where for a multinomial probit model, the
choice probabilities involve multivariate integrals.5 In fact, for cross-section data,
the method of simulated moments (MSM) involves an M − 1 integration problem,
where M is the number of possible choices facing the individual. For panel data,
things get more complicated, because there are M choices facing any individual at
each period. This means that there are MT possible choice sequences facing each
individual over the panel. Hence the MSM estimator becomes infeasible as T gets
large. Keane (1994) sidesteps this problem of having to simulate MT possible choice
sequences by factorizing themethod of simulatedmoments first-order conditions into
transition probabilities. The latter are simulated using highly accurate importance
sampling techniques. This method of simulating probabilities is referred to as the
Geweke, Hajivassiliou, and Keane (GHK) simulator because it was independently
developed by these authors. Keane performs Monte Carlo experiments and finds
that even for large T and small simulation sizes, the bias in the MSM estimator
is negligible. When maximum likelihood methods are feasible, Keane finds that
the MSM estimator performs well relative to quadrature-based maximum likelihood
methods evenwhere the latter are based on a large number of quadrature points.When
maximum likelihood is not feasible, the MSM estimator outperforms the simulated
MLE even when the highly accurate GHK probability simulator is used.
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The Method of Simulated Likelihood looks at the transformed likelihood in
(11.13) as an expectation:

Li =
∫

[

T
∏

t=1

(

∫

f1(uit/μi )duit

]

f2(μi )dμi = Eμi

[

T
∏

t=1

(

∫

f1(uit/μi )duit

]

= Eμi (h(μi ))

(11.15)
This function is smooth, continuous, and continuously differentiable. If this expec-
tation is finite, then the conditions of the law of large numbers should apply. This
means that for a sample of observations μi1, ..., μi R

plim
1

R

R
∑

r=1

h(μir ) = Eμi (h(μi ))

A sample of person specific draws from the population μi can be generated from a
random number generator. For the probit function in the Buttler and Moffitt (1982)
model

lnLsimulated =
N

∑

i=1

[ln{ 1
R

R
∑

r=1

T
∏

t=1

�(qit (x
′
i tβ + σμμir ))}]

Keane (1994) argues that MSM has three advantages over other practical non-
maximum likelihood estimators. First, MSM is asymptotically as efficient as maxi-
mum likelihood (in simulation size) while the other estimators are not. Second,MSM
can be easily extended to handle multinomial probit situations whereas the exten-
sion of the other estimators is computationally burdensome. Third, MSM can be
extended to handle nonlinear systems of equations which are intractable with max-
imum likelihood. Keane (1994) also finds that MSM can estimate random effects
models with autoregressive moving average error in about the same time necessary
for estimating a simple random effects model usingmaximum likelihood quadrature.
The extension of limited dependent variable models to allow for a general pattern
of serial correlation is now possible using MSM and could prove useful for out-of-
sample predictions. An example of theMSMestimator is given byKeane (1993) who
estimates probit employment equations using data from the National Longitudinal
Survey of Young Men (NLS). This is a sample of 5225 males aged 14–24 and inter-
viewed 12 times over the period 1966-81. For this example, Keane concludes that
relaxing the equicorrelation assumption by including anMA(1) or AR(1) component
to the error term had little effect on the parameter estimates. Keane (1993) discusses
simulation estimation of models more complex than probit models. He argues that
it is difficult to put panel data selection models and Tobit models in an MSM frame-
work and that the method of simulated scores (MSS) may be a preferable way to
go. For another application, see Hajivassiliou (1994) who reconsiders the problem
of external debt crisis of 93 developing countries observed over the period 1970-88.
Using several simulation estimation methods, Hajivassiliou concludes that allowing
for flexible correlation patterns changes the estimates substantially and raises doubts
over previous studies that assumed restrictive correlation structures.
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Zhang and Lee (2004) argue that the statistical performance of the GHK simulator
may be adequate for panels with small T, but this performance deteriorates when T
is larger than 50 (for a moderate amount of simulation draws). In fact, the bias of
the SML estimator may become larger than its standard deviation. Zhang and Lee
suggest applying the accelerated importance sampling (AIS) procedure to SML
estimation of dynamic discrete choice models with long panels. Using Monte Carlo
experiments, they show that this can improve upon the GHK sampler when T is large
and they illustrate their method using an application on firm’s dividend decisions.
They collect data on quarterly dividends and earnings per share from COMPUSTAT
tapes. The sample period is 54 quarters (1987:1–2002:2). Two quarters were used
for getting the initial value for each firm, so T = 52. The final sample used included
N =150 large U.S. industrial firms and the total number of observations NT = 7800.
The results confirm that the AIS improves the performance of the GHK sampler.

11.3 Dynamic Panel Data Limited DependentVariable Models

So far the model is static implying that, for example, the probability of buying a car
is independent of the individual’s past history of car purchases. If the probability of
buying a car is more likely if the individual has bought a car in the past than if he
or she has not, then a dynamic model that takes into account the individual’s past
experience is more appropriate. Heckman (1981a, b, c) gives an extensive treatment
of these dynamic models and the consequences of various assumptions on the initial
values on the resulting estimators. Heckman (1981c) also emphasizes the importance
of distinguishing between true state dependence and spurious state dependence. In
the “true” case, once an individual experiences an event like unemployment, his
preferences change and he or she will behave differently in the future as compared
with an identical individual that has not experienced this event in the past. In fact, it is
observed that individuals with a long history of unemployment are less likely to leave
unemployment. They may be less attractive for employers to hire or may become
discouraged in looking for a job. In the “spurious” case, past experience has no
effect on the probability of experiencing the event in the future. It is the individual’s
characteristics that makes him or her less likely to leave unemployment. However,
one cannot properly control for all the variables that distinguish one individual’s
decision from another’s. In this case, past experience which is a good proxy for these
omitted variables shows up as a significant determinant of the future probability
of occurrence of this event. Testing for true versus spurious state dependence is
therefore important in these studies, but it is complicated by the presence of the
individual effects or heterogeneity. In fact, even if there is no state dependence,
Pr[yit/xit , yi,t−l ] �= Pr[yit/xit ] as long as there are random individual effects present
in the model. If in addition to the absence of the state dependence, there is also no
heterogeneity, then Pr[yit/xit , yi,t−l ] = Pr[yit/xit ]. A test for this equality can be
based on a test for γ = 0 in the model

Pr[yit = 1/xit , yit−1] = F(x ′
i tβ + γ yi,t−1)
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using standard maximum likelihood techniques. If γ = 0 is not rejected, we ignore
the heterogeneity issue and proceed as in conventional limited dependent variable
models not worrying about the panel nature of the data. However, rejecting the null
does not necessarily imply that there is heterogeneity since γ can be different from
zero due to serial correlation in the remainder error or due to state dependence. In
order to test for time dependence one has to condition on the individual effects,
i.e., test Pr[yit/yi,t−l , xit , μi ] = Pr[yit/xit , μi ]. In fact, if γ = 0 is rejected, Hsiao
(2003) suggests testing for time dependence against heterogeneity. If heterogene-
ity is rejected, the model is misspecified. If heterogeneity is not rejected then one
estimates the model correcting for heterogeneity. See Heckman (1981c) for an appli-
cation to married women’s employment decisions based on a three-year sample from
the PSID. One of the main findings of this study is that neglecting heterogeneity in
dynamic models overstates the effect of past experience on labor market participa-
tion. Das and van Soest (1999) use the October waves of 1984 till 1989 from the
DutchSocio-EconomicPanel to studyhousehold subjective expectations about future
income changes. Ignoring attrition and sample selection problems which could be
serious, the authors estimate a static random effects probit model and a fixed effects
conditional logit model and extend them to the case of ordered response. Using
Heckman’s (1981b) procedure, they also estimate a dynamic random effects model
which includes ameasure of permanent and transitory income. They find that income
change expectations strongly depend on realized income changes in the past. In par-
ticular, those whose income fell were more pessimistic than others, while those
whose income rose were more optimistic. The paper rejects rational expectations
finding that households whose income has decreased in the past underestimate their
future income growth. In marketing research, one can attribute consumers repeated
purchases of the same brands to either state dependence or heterogeneity. For an
application using household-level scanner panel data on six frequently purchased
packaged products: ketchup, peanut, butter, liquid detergent, tissue, tuna, and sugar,
see Erdem and Sun (2001). The authors find evidence of state dependence for all
product categories except sugar. Read also Chap.18 of the Handbook of Panel Data
by Keane (2015) entitled Discrete choice models of consumer demand. Keane gives
an extensive reviewof the use of themethod of simulatedmethods inmarketingwhere
scanner panel data is available on consumers buying goods over severalweeks.Keane
sheds more light on distinguishing between state dependence and consumer hetero-
geneity controlling for serial correlation in tastes. One of his conclusions is that there
is consensus in the marketing literature of the existence of state dependence. This has
important implications for marketing actions, where price discounts not only affect
current but also future demand.

Chamberlains’ fixed effects conditional logit approach can be generalized to
include lags of the dependent variable, provided there are no explanatory variables
and T � 4, see Chamberlain (1985). Assuming the initial period yi0 is observed but
its probability is unspecified, the model is given by

Pr[yi0 = 1/μi ] = p0(μi )

Pr[yit = 1/μi , yi0, yi1, . . . , yi,t−1] = eγ yi,t−1+μi

1 + eγ yi,t−1+μi
t = 1, . . . , T (11.16)
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where p0(μi ) is unknown but the logit specification is imposed from period one to
T . Consider the two events

A = {yi0 = d0, yi1 = 0, yi2 = 1, yi3 = d3} (11.17)

B = {yi0 = d0, yi1 = 1, yi2 = 0, yi3 = d3} (11.18)

where d0 and d3 are either 0 or 1. If T = 3, inference on γ is based upon the
fact that Pr[A/yi1 + yi2 = 1, μi ] and Pr[B/yi1 + yi2 = 1, μi ] do not depend upon
μi , see problem 11.2. Honoré and Kyriazidou (2000b) consider the identification
and estimation of panel data discrete choice models with lags of the dependent
variable and strictly exogenous variables that allow for unobservable heterogeneity.
In particular, they extend Chamberlain’s (1985) fixed effects logit model in (11.16)
to include strictly exogenous variables x ′

i = (xi1, . . . , xiT ), i.e.,

Pr[yi0 = 1/x ′
i , μi ] = p0(x

′
i , μi ) (11.19)

Pr[yit = 1/x ′
i , μi , yi0, . . . , yi,t−1] = ex

′
i tβ+γ yi,t−1+μi

1 + ex
′
i tβ+γ yi,t−1+μi

t = 1, . . . , T

The crucial assumption is that the errors in the threshold-crossing model leading to
(11.19) are IID over time with logistic distributions and independent of (x ′

i , μi , yi0)
at all time periods. Honoré and Kyriazidou (2000b) show that Pr(A/x ′

i , μi , A∪B)

and Pr(B/x ′
i , μi , A∪B) will still depend upon μi . This means that a conditional

likelihood approach will not eliminate the fixed effects. However, if x ′
i2 = x ′

i3, then
the conditional probabilities

Pr(A/x ′
i , μi ,A∪ B,x ′

i2 = x ′
i3) = 1

1 + e(xi1−xi2)′β+γ (d0−d3)
(11.20)

Pr(B/x ′
i , μi ,A∪ B, x ′

i2 = x ′
i3) = e(xi1−xi2)′β+γ (d0−d3)

1 + e(xi1−xi2)′β+γ (d0−d3)

donot dependonμi , see problem11.3. If all the explanatory variables are discrete and
Pr[x ′

i2 = x ′
i3] > 0, Honoré and Kyriazidou (2000b) suggest maximizing a weighted

likelihood function based upon (11.20) for observations that satisfy x ′
i2 = x ′

i3 and
yi1 + yi2 = 1. The weakness of this approach is its reliance on observations for
which x ′

i2 = x ′
i3 which may not be useful for many economic applications. However,

Honoré and Kyriazidou suggest weighing the likelihood function with weights that
depend inversely on x ′

i2 − x ′
i3, giving more weight to observations for which x ′

i2 is

close to x ′
i3. This is done using a kernel density K

(

x ′
i2−x ′

i3
hN

)

where hN is a bandwidth

that shrinks as N increases.The resulting estimators are consistent and asymptotically
Normal under standard assumptions. However, their rate of convergence will be
slower than

√
N and will depend upon the number of continuous covariates in x ′

i t .
The results of a small Monte Carlo study suggest that this estimator performs well
and that the asymptotics provide a reasonable approximation to the finite sample
behavior of the estimator.6
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Chintagunta, Kyriazidou and Perktold (2001) apply the Honoré and Kyriazidou
(2000b) method to study yogurt brand loyalty in South Dakota. They use household
panel data with at least two purchases of Yoplait and Nordica yougurt brands over
approximately a two-year period. They control for household effects, difference in
price and whether the brand was featured in an advertisement that week or displayed
in the store. They find that a previous purchase of a brand increases the probability of
purchasing that brand in the next period. They also find that if one ignores household
heterogeneity, this previous purchase effect is overstated.

Contoyannis, Jones andRice (2004) utilize sevenwaves (1991–1997) of the british
household panel survey (BHPS) to analyze the dynamics of individual health and to
decompose the persistence in health outcomes in the BHPS data into components due
to state dependence, serial correlation, and unobserved heterogeneity. The indicator
of health is defined by a binary response to the question: “ Does your health in any
way limit your daily activities compared to most people of your age?” A sample of
6106 individuals resulting in 42,742 panel observations are used to estimate static
and dynamic panel probit models by maximum simulated likelihood using the GHK
simulator with antithetic acceleration. The dynamic models show strong positive
state dependence.

Arellano and Carrasco (2003) consider a binary choice panel data model with
predetermined variables. A semiparametric random effects specification is suggested
as a compromise to the fixed effects specification that leaves the distribution of
the individual effects unrestricted. Dependence is allowed through a nonparametric
specification of the conditional expectation of the effects given the predetermined
variables. The paper proposes a GMM estimator which is shown to be consistent and
asymptotically normal for fixed T and large N . This method is used to estimate a
labor force participation equation for women with children, using PSID data.

Carro (2007) considers the problem of estimating dynamic binary choice panel
datamodelswith fixed effects.He suggests amodifiedmaximum likelihood estimator
(MMLE) which modifies the concentrated log-likelihood to correct the first term on
the asymptotic bias that comes from the estimation of fixed effects. This reduces
the order of bias for the MLE from O(1/T ) to O(1/T 2), without increasing the
asymptotic variance. Even though this estimator is consistent only for T → ∞, it is
shown viaMonte Carlo experiments to have negligible finite sample bias for logit and
probit dynamic panel data models with T = 8. Unlike the Honoré and Kyriazidou
(2000b) estimator, the MMLE does not require a logistic distribution and can allow
for time dummy variables. It can also allow for more lags on the endogenous variable
and could be generally applied to multinomial choice and nonlinear models.

Wooldridge (2005) suggested a simple approach for handling the initial conditions
problem in dynamic nonlinear unobserved effectsmodels. Three popular applications
of this approach include the probit, Tobit, and Poisson panel data models. This
involves parametrizing the distribution of the unobserved effects conditional on the
initial value and any exogenous explanatory variables, seeChamberlain (1980, 1984).
This has the advantages of being flexible and easily estimated with standard software
which in turn allows the identification of partial effects on mean responses averaged
over the distribution of unobservables. Its disadvantage is that misspecifying this
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distribution leads to inconsistent estimates. The semiparametric approach of Honoré
andKyriazidou (2000b) does not specify the distribution of the unobserved effects but
requires strong assumptions on the strictly exogenous variables mentioned above.
Also, it reduces the panel to individuals with no change in any discrete variables
over the last two time periods. It also cannot yield partial effects on the response
probabilities. For the dynamic probit model, Wooldridge (2005) assumes that for
each random individual i = 1, 2.., N :

Pr[yit = 1/x ′
i , μi , yi0, . . . , yi,t−1] = �(x ′

i tβ + λyi,t−1 + μi ) for t = 1, 2, .., T .

where x ′
i = (x ′

i1, .., x
′
iT ). Also, that

(μi/x
′
i , yi0) ∼ N ((x ′

iδ + γ yi,0 + γ0), σ
2
ε )

and estimation can be carried out with a standard random effects probit procedure.
In fact, if we write

μi = x ′
iδ + γ yi,0 + γ0 + εi

with (εi/x ′
i , yi0)˜N (0, σ 2

ε ), then yit given (x ′
i , εi , yi0, . . . , yi,t−1) follows a probit

model with response probability:

�(x ′
i tβ + λyi,t−1 + x ′

iδ + γ yi,0 + γ0 + εi )

This means that we can estimate this model with xtprobit, re in Stata using as regres-
sors (1, x ′

i t , yi,t−1, x ′
i , yi,0). In essence, one is adding x ′

i , yi,0 as extra regressors. A
consistent estimator of the average partial effects can be obtained from evaluating
changes or derivatives of the following expression with respect to x ′

i t or yi,t−1 at
their MLEs:

1

N

N
∑

i=1

�[(x ′
i t
̂β +̂λyi,t−1 + x ′

i
̂δ + γ̂ yi,0 + γ̂0)/

√

1 + σ̂ 2
ε ]

Wooldridge (2005) applies this method to the Vella and Verbeek (1998) panel data
set which estimated the union wage differential for working men using the PSID, see
Sect. 11.6 below. In particular, Wooldridge examines the persistence of union mem-
bership using the dynamic probit equation described above with yit denoting union
membership and x ′

i including marital status and time dummies. Wooldridge finds
that the lagged union effect is statistically significant and so is the initial union mem-
bership effect. Table11.3 replicates the results of column 1 of Table I in Wooldridge
(2005, p. 52). In the xtprobit command: union_l is union lagged (yi,t−1) and union80
is the initial value ( yi,0). See also the companion book, exercise 11.8 in Baltagi
(2009). Additionally, two time-invariant variables: years of education and a dummy
variable for whether the individual is black were added to the specification, finding
only the latter significant. Using the average partial effects computations described
above, Wooldridge computes the estimated probability of being in a union in 1987
and 1986 for married and non-married men and finds that the estimate of state depen-
dence for union membership is 0.182 for married men and 0.173 for non-married
men over these two years. Problem 11.7 asks the reader to replicate these results.
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Table 11.3 Union Membership: Random-effects probit
. xtprobit union married union_1 union80 marr81 marr82 marr83 marr84 marr85 marr86 
marr87 d81 d82 d83 d84 d85 d86 d87, re 

Random-effects probit regression                Number of obs      =      3815 

Group variable (i): nr                          Number of groups   =       545 

Random effects u_i ~ Gaussian                   Obs per group: min =         7 

                                                               avg =       7.0 

                                                               max =         7 

                                                Wald chi2(16)      =    403.30 

Log likelihood  = -1291.2555                    Prob > chi2        =    0.0000 

------------------------------------------------------------------------------ 

       union |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

married |   .1645174   .1086856     1.51   0.130    -.0485024    .3775373 

union_1 |   .9778509   .0845496    11.57   0.000     .8121366    1.143565 

union80 |   1.342638   .1370911     9.79   0.000     1.073944    1.611331 

      marr81 |   .0557457   .1927517     0.29   0.772    -.3220408    .4335321

      marr82 |  -.1061208   .2278688    -0.47   0.641    -.5527355    .3404939 

      marr83 |  -.0740984   .2307409    -0.32   0.748    -.5263423    .3781455 

      marr84 |   .0019333    .248823     0.01   0.994    -.4857507    .4896174 

      marr85 |  .3572686   .2346558     1.52   0.128    -.1026483    .8171854 

      marr86 |   .1000752    .235037     0.43   0.670    -.3605888    .5607392 

      marr87 |  -.3870529   .1835973    -2.11   0.035    -.7468971   -.0272087

         d81 |  -.0765441   .1166593    -0.66   0.512    -.3051922    .1521039 

         d82 |  -.0489836   .1149461    -0.43   0.670    -.2742738    .1763065 

         d83 |  -.1634238   .1154857    -1.42   0.157    -.3897717    .0629241 

         d84 |  -.1246027   .1147137    -1.09   0.277    -.3494374    .1002319 

         d85 |  -.3350622   .1172977    -2.86   0.004    -.5649614    -.105163

         d86 |  -.3777447   .1173934    -3.22   0.001    -.6078316   -.1476579

       _cons |  -1.644473   .1275296   -12.89   0.000    -1.894426   -1.394519

(continued)
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Table 11.3 (continued)
-------------+---------------------------------------------------------------- 

/lnsig2u |  -.0889939   .1235904                     -.3312267    .1532389 

-------------+---------------------------------------------------------------- 

sigma_u |   .9564785   .0591058                      .8473738    1.079631 

         rho |   .4777662   .0308365                      .4179422    .5382349 

------------------------------------------------------------------------------ 

Likelihood-ratio test of rho=0: chibar2(01) = 149.59 Prob >= chibar2 = 0.000

Using Monte Carlo experiments, Akay (2012) shows that for short panels, mis-
specification of the conditional distribution of the initial values leads to serious bias
in the estimated parameters. For example, exogenous initial values assumption leads
to overestimation of the true state dependence and underestimation of the variance of
the unobserved individual effects. However, this bias is not a problem for panels of
long duration. One of the main findings is thatWooldridge’s method works very well
for panels with T ≥ 5 periods, but its performance for T < 5may be highly sensitive
to the specification of the auxiliary distribution of the unobserved individual effects
and the explanatory variables entering the specification.

11.4 Selection Bias in Panel Data

In Chap. 9, we studied incomplete panels that had randomly missing data. In section
10.2 we studied rotating panels where, by the design of the survey, households that
drop from the sample in one period are intentionally replaced in the next period.
However, in many surveys, nonrandomly missing data may occur due to a variety
of self-selection rules. One such self-selection rule is the problem of nonresponse of
the economic agent. Nonresponse occurs, for example, when the individual refuses
to participate in the survey, or refuses to answer particular questions. This problem
occurs in cross-section studies, but it becomes aggravated in panel surveys. After all,
panel surveys are repeated cross-sectional interviews. So, in addition to the above
kinds of nonresponse, one may encounter individuals that refuse to participate in
subsequent interviews or simply move or die. Individuals leaving the survey cause
attrition in the panel. This distorts the random design of the survey and questions the
representativeness of the observed sample in drawing inference about the population
we are studying. Inference based on the balanced subpanel is inefficient even in
randomly missing data since it is throwing away data. In nonrandomly missing data,
this inference is misleading because it is no longer representative of the population.
Verbeek and Nijman (1996) survey the reasons for nonresponse and distinguish
between ignorable and nonignorable selection rules. This is important because, if
the selection rule is ignorable for the parameters of interest, one can use the standard
panel data methods for consistent estimation. If the selection rule is nonignorable,
then one has to take into account the mechanism that causes the missing observations
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in order to obtain consistent estimates of the parameters of interest. In order to reduce
the effects of attrition, refreshment samples are used which replace individuals who
dropped from the panel by new individuals randomly sampled from the population.
With these refreshment samples, it may be possible to test whether the missing data
is ignorable or nonignorable, see Hirano et al. (2001).

For the one-way error component regression model

yit = x ′
i tβ + μi + vi t (11.21)

where μi ∼ IID(0, σ 2
μ) and νi t ∼ IIN(0, σ 2

ν ) independent of each other and the xit .
Observations on yit (and possibly xit ) are missing if a selection variable rit = 0 and
not missing if rit = 1. The missing data mechanism is ignorable of order one for β if
E(μ + νi/ri ) = 0 for i = 1, . . . , N , whereμ′ = (μ1, . . . , μN ), ν′

i = (νi1, . . . , νiT )

and r ′
i = (ri1, . . . , riT ). In this case, both GLS on the unbalanced panel and the

balanced subpanel are consistent if N → ∞. The Within estimator is consistent
for both the unbalanced and balanced subpanel as N → ∞ if E (̃νi/ri ) = 0 where
ν̃′
i = (̃νi1, . . . , ν̃iT ) and ν̃i t = νi t − νi .7

We now consider a simplemodel of nonresponse in panel data. FollowingVerbeek
and Nijman (1996), we assume that yit is observed, i.e., rit = 1, if a latent variable
r∗
i t � 0. This latent variable is given by

r∗
i t = z′i tγ + εi + ηi t (11.22)

where zit is a set of explanatory variables possibly including some of the xit .8

The one-way error component structure allows for heterogeneity in the selection
process. The errors are assumed to be normally distributed εi ∼ IIN(0, σ 2

ε ) and
ηi t ∼ IIN(0, σ 2

η ) with the only nonzero covariances being cov(εi , μi ) = σμε and
cov(ηi t , νi t ) = σην. In order to get a consistent estimator for β, a generalization of
Heckman’s (1979) selectivity bias correction procedure from the cross-section to the
panel data case can be employed. The conditional expectation of uit given selec-
tion now involves two terms. Therefore, instead of one selectivity bias correction
term, there are now two terms corresponding to the two covariances σμε and σην .
However, unlike the cross-sectional case, these correction terms cannot be computed
from simple probit regressions and require numerical integration. Fortunately, this is
only a one-dimensional integration problem because of the error component struc-
ture. Once the correction terms are estimated, they are included in the regression
equation as in the cross-sectional case and OLS or GLS can be run on the resulting
augmented model. For details, see Verbeek and Nijman (1996) who also warn about
heteroskedasticity and serial correlation in the second step regression if the selection
rule is nonignorable. Verbeek and Nijman (1996) also discuss MLE for this random
effect probit model with selection bias. The computations require two-dimensional
numerical integration for all individuals with rit = 0 for at least one t .

Before one embarks on these complicated estimation procedures one should first
test whether the selection rule is ignorable. Verbeek and Nijman (1992) consider
a Lagrange multiplier (LM) test for H0; σνη = σμε = 0. The null hypothesis is a
sufficient condition for the selection rule to be ignorable for the random effects
model. Unfortunately, this also requires numerical integration over a maximum of
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two dimensions and is cumbersome to use in applied work. In addition, the LM
test is highly dependent on the specification of the selectivity equation and the dis-
tributional assumptions. Alternatively, Verbeek and Nijman (1992) suggest some
simple Hausman-type tests based on GLS and Within estimators for the unbalanced
panel and the balanced subpanel.9 All four estimators are consistent under the null
hypothesis that the selection rule is ignorable and all four estimators are inconsistent
under the alternative. This is different from the usual Hausman-type test where one
estimator is consistent under both the null and alternative hypotheses. Whereas the
other estimator is efficient under the null, but inconsistent under the alternative. As a
consequence, these tests may have low power especially if under the alternative these
estimators have close asymptotic biases. On the other hand, the advantages of these
tests are that they are computationally simple and do not require the specification of
a selection rule to derive these tests. Let̂δ = (˜βW (B), ˜βW (U ), ̂βGLS(B), ̂βGLS(U ))

where ˜βW denotes the Within estimator and ̂βGLS denotes the GLS estimator, ̂β(B)

corresponds to an estimator of β from the balanced subpanel and ̂β(U ) corresponds
to an estimator of β from the unbalanced panel. Verbeek and Nijman (1992) show
that the variance–covariance matrix of̂δ is given by

var(̂δ) =

⎡

⎢

⎢

⎣

V11 V22 V33 V44
V22 V22V

−1
11 V13 V44
V33 V44

V44

⎤

⎥

⎥

⎦

(11.23)

where V11 = var(˜βW (B)), V22 = var(˜βW (U )), V33 = var(̂βGLS(B)) and V44 =
var(̂βGLS(U )). Therefore an estimate of var(̂δ) can be obtained from the estimated
variance–covariance matrices of the four estimation procedures. Hausman-type tests
can now be performed on say H0; Rδ = 0, where R is a known matrix, as follows:

m = N̂δ′R′[R var(̂δ)R′]−R̂δ (11.24)

and this is distributed as χ2 under the null with degrees of freedom equal to the rank
of [R var(̂δ)R′]. Natural candidates for R are R1 = [I , 0,−I , 0], R2 = [0, I , 0,−I ],
R3 = [I ,−I , 0, 0] and R4 = [0, 0, I − I ]. The first two are the standard Hausman
tests based on the difference between theWithin andGLS estimators for the balanced
subpanel (R1) and the unbalanced panel (R2). The third is based on the difference
between theWithin estimators from the balanced and unbalanced panels (R3), while
the last is based on the difference between the GLS estimators from the balanced and
unbalanced panels (R4). For all four cases considered, the variance of the difference
is the difference between the two variances and hence it is easy to compute. Verbeek
andNijman (1992) perform someMonte Carlo experiments verifying the poor power
of these tests in some cases, but also illustrating their usefulness in other cases. In
practice, they recommend performing the tests based on R2 and R4. It is important
to note that these Hausman type tests are not verifying whether the selection rule
is ignorable, instead they are checking for possible bias due to sample selection on
observables.

Wooldridge (1995) derives some simple variable addition tests of selection bias
as well as easy-to-apply estimation techniques that correct for selection bias in linear
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fixed effects panel data models. The auxiliary regressors are either Tobit residuals
or inverse Mill’s ratios and the disturbances are allowed to be arbitrarily serially
correlated and unconditionally heteroskedastic. Wooldridge (1995) considers the
fixed effects model where the μi ’s are correlated with xit . However, the remainder
disturbances νi t are allowed to display arbitrary serial correlation and unconditional
heteroskedasticity. The panel is unbalanced with the selection indicator vector for
each individual i denoted by s′

i = (si1, si2, . . . , sit ). When sit = 1, it is assumed that
(x ′

i t , yit ) is observed. The fixed effects estimator is given by

˜β =
(

N
∑

i=1

T
∑

t=1

sit x̃i t x̃
′
i t

)−1 (

N
∑

i=1

T
∑

t=1

sit x̃i t ỹi t

)

(11.25)

where x̃ ′
i t = x ′

i t −
(

∑T
r=1 sir x

′
ir/Ti

)

, ỹi t = yit −
(

∑T
r=1 sir yir/Ti

)

and Ti =
∑T

i=1 sit . A sufficient condition for the fixed estimator to be consistent and asymptot-
ically Normal, as N → ∞, is that E(νi t/μi , x ′

i , s
′
i ) = 0 for t = 1, 2, . . . , T . Recall,

that x ′
i = (x ′

i1, . . . , x
′
iT ). Under this assumption, the selection process is strictly

exogenous conditional on μi and x ′
i .

Wooldridge (1995) considers two cases. The first is when the latent variable
determining selection is partially observed. Define a latent variable

h∗
i t = δt0 + x ′

i1δt1 + . . . + x ′
iT δtT + εi t (11.26)

where εi t is independent of (μi , x ′
i ), δtr is a K × 1 vector of unknown parameters

for r = 1, 2, . . . , T and εi t ∼ N (0, σ 2
t ).

The binary selection indicator is defined as sit = 1 if h∗
i t > 0. For this case,

the censored variable hit = max(0, h∗
i t ) is observed. For example, this could be a

wage equation, and selection depends on whether or not individuals are working. If a
person is working, the working hours hit are recorded, and selection is determined by
nonzero hours worked. This is what is meant by partial observability of the selection
variable.

Because si is a function of (x ′
i , ε

′
i )where ε′

i = (εi1, . . . , εiT ), a sufficient condition
for the fixed effects estimator to be consistent and asymptotically Normal as N →
∞ is E(νi t/μi , x ′

i , ε
′
i ) = 0 for t = 1, 2 . . . , T . The simplest alternative that imply

selectivity bias is E(νi t/μi , x ′
i , ε

′
i ) = E(νi t/εi t ) = γ εi t for t = 1, 2, . . . , T , with γ

being an unknown scalar. Therefore,

E(yit/μi , x
′
i , ε

′
i , s

′
i ) = E(yit/μi , x

′
i , ε

′
i ) = μi + x ′

i tβ + γ εi t (11.27)

It follows that, if we could observe εi t when sit = 1, then we could test for selec-
tivity bias by including the εi t as an additional regressor in fixed effects estimation
and testing H0; γ = 0 using standard methods. While εi t cannot be observed, it can
be estimated whenever sit = 1 because εi t is simply the error of a Tobit model.

When hit is observed, Wooldridge’s (1995) test for selection bias is as follows:

Step 1: For each t = 1, 2, . . . , T , estimate the equation

hit = max(0, x ′
iδt + εi t ) (11.28)
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by standard Tobit, where δ′
t = (δt0, δ

′
t1, . . . , δ

′
tT ) and xi now has unity as

its first element. For sit = 1, let ε̂i t = hit − x ′
i
̂δt denote the Tobit residuals.

Step 2: Estimate the equation

ỹi t = x̃ ′
i tβ + γ ε̃i t + residuals (11.29)

by pooled OLS using those observations for which sit = 1. x̃i t and ỹi t
were defined above, and

ε̃i t = ε̂i t −
(

T
∑

r=1

sir ε̂ir/T

)

. (11.30)

Step 3: Test H0; γ = 0 using the t-statistic for γ̂ . A serial correlation and
heteroskedasticity-robust standard error should be used unless E[νiν′

i/μi ,

x ′
i , si ] = σ 2

ν IT . This robust standard error is given in the Appendix to
Wooldridge’s (1995) paper.

The second case considered by Wooldridge is when hit is not observed. In this
case, one conditions on si rather than εi . Using iterated expectations, this gives

E(yit/μi , x
′
i , s

′
i ) = μi + x ′

i tβ + γ E(εi t/μi , x
′
i , s

′
i ) (11.31)

= μi + x ′
i tβ + γ E(εi t/x

′
i , s

′
i )

If the εi t were independent across t , then E(εi t/x ′
i , s

′
i ) = E(εi t/x ′

i , sit ). The con-
ditional expectation we need to estimate is E[εi t/x ′

i , sit = 1] = E[εi t/x ′
i , εi t >

−x ′
iδt ]. Assuming that the var(εi t ) = 1, we get E[εi t/x ′

i , εi t > − x ′
iδt ] = λ(x ′

iδt )

where λ(.) denotes the inverse Mills ratio.
When hit is not observed,Wooldridge’s (1995) test for selection bias is as follows:

Step 1: For each t = 1, 2, . . . , T , estimate the equation

Pr[sit = 1/x ′
i ] = �(x ′

iδt ) (11.32)

using standard probit. For sit = 1, computêλi t = λ(x ′
i
̂δt ).

Step 2: Estimate the equation

ỹi t = x̃ ′
i tβ + γ˜λi t + residuals (11.33)

by pooled OLS using those observations for which sit = 1. x̃i t and ỹi t were
defined above, and

˜λi t =̂λi t −
(

T
∑

r=1

sir̂λir/Ti

)

Step 3: Test H0; γ = 0 using the t-statistic for γ = 0. Again, a serial correlation
and heteroskedasticity-robust standard error is warranted unless

E(νiν
′
i/μi , x

′
i , si ) = σ 2 IT under H0.
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Both tests proposed by Wooldridge (1995) are computationally simple involving
variable addition tests. These require either Tobit residuals or inverse Mills ratios
obtained fromprobit estimation for each time period. This is followed by fixed effects
estimation.

For the random effectsmodel, Verbeek andNijman (1992) suggest including three
simple variables in the regression to check for the presence of selection bias. These
are (i) the number of waves the i th individual participates in the panel, Ti , (ii) a binary
variable taking the value 1 if and only if the i th individual is observed over the entire
sample,

∏T
r=1 sir , and (iii) si,t−1 indicating whether the individual was present in the

last period. Intuitively, testing the significance of these variables checks whether the
pattern of missing observations affects the underlying regression.Wooldridge (1995)
argues that the first two variables have no time variation and cannot be implemented
in a fixed effects model. He suggested other variables to be used in place of ̂λi t
in a variable addition test during fixed effects estimation. These are

∑T
r �=t sir and

∏T
r �=t sir . Such tests have the computational simplicity advantage and the need to

only observe xit when sit = 1.10

Nicoletti (2006) is critical of this literature and argues that the missing at random
condition can be verified only in two cases: (a) when additional information is avail-
able to recover the distribution of the variables affected by nonresponse, (b) when
some untestable assumptions are imposed on the relationship between the missing
variables and the probability of responding. Nicoletti classifies the different estima-
tion approaches to take into account the problem of nonresponse into five categories:
(i) propensity score methods, used in the evaluation of treatment effects; (ii) impu-
tation methods, used in sample surveys to deal with the nonresponse problem; (iii)
econometric sample selection correctionmethods, a laHeckman (1979); (iv)methods
using external data sources such as population registers and refreshment samples, see
Hirano et al. (2001); (v) partial identification methods a la Manski (1995). Nicoletti
argues that the propensity score and imputationmethods are based on the assumption
that the data aremissing at random and hence their validity can only be verified when
the missing data are observed! On the other hand, the econometric sample selection
correction methods, relax the missing at random assumption, and specify a joint
model for the dependent variable and the dummy indicating selection given a set of
explanatory variables. This approach has been criticized because of the restrictive
assumptions on the joint distribution of the errors, which are untestable. Nicoletti
(2006, p. 467) adds that the “...sample selection correction approach relaxes one
untestable assumption by replacing it by another untestable assumption. The choice
between either accepting the missing at random condition or imposing a joint distri-
butional assumption is not easy. Any decision is to some extent arbitrary and cannot
be submitted to a test procedure.”

11.5 Censored andTruncated Panel Data Models

So far, we have studied economic relationships, say labor supply, based on a ran-
dom sample of individuals where the dependent variable is one if the individual is
employed and zero if the individual is unemployed. However, for these random sam-
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ples, one may observe the number of hours worked if the individual is employed.
This sample is censored in that the hours worked are reported as zero if the individual
does not work and the regression model is known as the Tobit model.11 Heckman
and MaCurdy (1980) consider a fixed effects Tobit model to estimate a life-cycle
model of female labor supply. They argue that the individual effects have a specific
meaning in a life-cycle model and therefore cannot be assumed independent of the
xit . Hence, a fixed effects rather than a random effects specification is appropriate.
For this fixed effects Tobit model:

y∗
i t = x ′

i tβ + μi + νi t (11.34)

with νi t ∼ IIN(0, σ 2
ν ) and

yit = y∗
i t if y

∗
i t > 0

= 0 otherwise
(11.35)

where yit could be the expenditures on a car or a house, or the number of hours
worked. This will be zero if the individual does not buy a car or a house or if the
individual is unemployed.12 As in the fixed effects probit model, the μi cannot be
swept away and as a resultβ andσ 2

ν cannot be estimated consistently forT fixed, since
the inconsistency in theμi is transmitted to β and σ 2

ν . Heckman andMaCurdy (1980)
suggest estimating the log-likelihood using iterative methods. Using Monte Carlo
experiments with N = 1000, T = 2, 3, 5, 8, 10 and 20, Greene (2004a, b) finds that
the MLE for the Tobit model with fixed effects exhibits almost no bias even though
in each data set in the design, roughly 40 to 50% of the observations were censored.
For the truncated panel data regression model, Greene finds some downward bias
in the estimates toward 0. He also finds that the estimated standard deviations are
biased downward in all cases. For the truncated regression model, Greene (2004b)
finds that the MLE/FE estimator underestimates everything, the slopes, the standard
errors and the marginal effects.

Honoré (1992) suggested trimmed least absolute deviations and trimmed least
squares estimators for truncated and censored regression models with fixed effects
defined in (11.34). These are semiparametric estimators with no distributional
assumptions necessary on the error term. The main assumption is that the remain-
der error νi t is independent and identically distributed conditional on the xit and
the μi for t = 1, . . . , T . Honoré (1992) exploits the symmetry in the distribution
of the latent variables and finds that when the true values of the parameters are
known, trimming can transmit the same symmetry in distribution to the observed
variables. This generates orthogonality conditions which must hold at the true value
of the parameters. Therefore, the resulting GMM estimator is consistent provided
the orthogonality conditions are satisfied at a unique point in the parameter space.
Honoré (1992) shows that these estimators are consistent and asymptotically normal.
Monte Carlo results show that as long as N � 200, the asymptotic distribution is a
good approximation of the small sample distribution. However, if N is small, the
small sample distribution of these estimators is skewed.

Honoré and Kyriazidou (2000a) review estimators for censored regression and
sample selection panel data models with unobserved individual specific effects and
show how they can be easily extended to other Tobit-type models. The proposed
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estimators are semiparametric and do not require the parametrization of the distribu-
tion of the unobservables. However, they do require that the explanatory variables be
strictly exogenous. This rules out lags of the dependent variables among the regres-
sors. The general approach exploits stationarity and exchangeability assumptions on
the models’ transitory error terms in order to construct moment conditions that do
not depend on the individual specific effects.

Kyriazidou (1997) studies the panel data sample selection model, also known as
the Type 2 Tobit model with

y∗
1i t = x ′

1i tβ1 + μ1i + ν1i t (11.36)

y∗
2i t = x ′

2i tβ2 + μ2i + ν2i t (11.37)

where
y1i t = 1 if y∗

1i t > 0
= 0 otherwise

and
y2i t = y∗

2i t if y1i t = 1
= 0 otherwise

Kyriazidou suggests estimating β1 by one of the estimation methods for discrete
choice models with individual effects that were discussed in Sect. 11.1. Next, μ2i is
eliminated by first-differencing the data for which y∗

2i t is observed. With this sample
selection, Kyriazidou (1997) focuses on individuals for whom x ′

1i tβ1 = x ′
1isβ1. For

these individuals, the same first-differencing that will eliminate the fixed effects will
also eliminate the sample selection. This suggests a two-step Heckman procedure
where β1 is estimated in the first step and then β2 is estimated by applying OLS to the
first differences but giving more weight to observations for which (x1i t − x1is)′̂β1 is
close to zero. Thisweighting can be done using aKernelwhose bandwidth hN shrinks
to zero as the sample size increases. The resulting estimator is

√
NhN consistent and

asymptotically normal. Monte Carlo results for N = 250, 1000 and 4000 and T = 2
indicate that this estimator works well for sufficiently large data sets. However, it is
quite sensitive to the choice of the bandwidth parameters.

Charlier, Melenberg and van Soest (2001) apply the methods proposed by Kyr-
iazidou (1997) to a model of expenditure on housing for owners and renters using
an endogenous switching regression. The data is based on three waves of the Dutch
Socio-Economic Panel from 1987–1989. The share of housing in total expenditure
is modeled using a household specific effect, family characteristics, constant-quality
prices, and total expenditure, where the latter is allowed to be endogenous. Esti-
mates from a random effects model are compared to estimates from a linear panel
data model in which selection only enters through the fixed effects, and a Kyriazi-
dou type estimator allowing for fixed effects and a more general type of selectivity.
Hausman-type tests reject the random effects and linear panel data models as too
restrictive. However, the overidentification restrictions of themore general semipara-
metric fixed effects model of Kyriazidou (1997) were rejected suggesting possible
misspecification.

Honoré (1993) also considers the dynamic Tobit model with fixed effects, i.e.,

y∗
i t = x ′

i tβ + λyi,t−1 + μi + νi t (11.38)
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with yit =max{0, y∗
i t } for i = 1, . . . , N ; t = 1, . . . , T . The basic assumption is that

νi t is IID(0, σ 2
ν ) for t = 1, . . . , T , conditional on yi0, xit and μi . Honoré (1993)

shows how to trim the observations from a dynamic Tobit model so that the sym-
metry conditions are preserved for the observed variables at the true values of the
parameters. These symmetry restrictions are free of the individual effects and no
assumption is needed on the distribution of the μi or their relationship with the
explanatory variables. These restrictions generate orthogonality conditions which
are satisfied at the true value of the parameters. The orthogonality conditions can
be used in turn to construct method of moments estimators. Honoré (1993) does
not prove that the true values of the parameters are the only values in the parameter
space where the orthogonality conditions are satisfied. This means that the resulting
GMM estimator is not necessarily consistent. UsingMonte Carlo experiments, Hon-
oré shows that MLE for a dynamic Tobit model with fixed effects performs poorly,
whereas the GMM estimator performs quite well, when λ is the only parameter of
interest. The assumption that the νi t are IID is too restrictive, especially for a dynamic
model. Honoré relaxes this assumption to the case of stationary νi t for t = 1, . . . , T
conditional on the xit and the μi . Still, this assumption is likely to be violated by
many interesting economic models.

Hu (2002) proposes a method for estimating a censored dynamic panel data
model with individual fixed effects and lagged latent dependent variables. Cen-
soring destroys a certain symmetry between the latent variables. Hu shows that one
can artificially truncate the observations in such a way that the symmetry is restored.
Based on the restored symmetry, orthogonality conditions are constructed and GMM
estimation can be implemented. Although it is hard to prove identification for non-
linear GMM, Hu shows that based on the moment conditions, one can still construct
valid asymptotic confidence intervals for the parameters of interest. This is applied
to matched data from the 1973 and 1978 March CPS and social security adminstra-
tion earnings records to estimate a dynamic earnings model for a sample of men
living in the South during 1957-1973, by race. The results suggest that white men’s
earnings process appears to be more persistent than that of black men (conditional
on individual heterogeneity).

Arellano, Bover and Labeaga (1999) consider a linear autoregressive model for a
latent variable which is only partly observed due to a selection mechanism:

y∗
i t = αy∗

i,t−1 + μi + νi t (11.39)

with |α| < 1 and E(νi t/y∗
i1, . . . , y

∗
i,t−1) = 0. The variable y∗

i t is observed subject to
endogenous selection. Arellano, Bover and Labeaga (1999) show that the intractabil-
ity of this dynamic model subject to censoring using a single time series can be suc-
cessfully handled using panel data by noting that individuals without censored past
observations are exogenously selected. They propose an asymptotic least squares
method to estimate features of the distribution of the censored endogenous vari-
able conditional on its past. They apply these methods to a study of female labor
supply and wages using two different samples from the PSID covering the periods
1970–1976 and 1978–1984.

Vella and Verbeek (1999) suggest two-step estimators for a wide range of para-
metric panel data models with censored endogenous variables and sample selection
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bias. This generalizes the treatment of sample selection models by Nijman and Ver-
beek (1992) to a wide range of selection rules. This also generalizes the panel data
dummy endogenous regressor model in Vella and Verbeek (1998) by allowing for
other forms of censored endogenous regressors. In addition, this analysis shows how
Wooldridge’s (1995) estimation procedures for sample selection can be applied to
more general specifications. The two-step procedure derives estimates of the unob-
served heterogeneity responsible for the endogeneity/selection bias in the first step.
These in turn are included as additional regressors in the primary equation. This
is computationally simple compared to maximum likelihood procedures, since it
requires only one-dimensional numerical integration. The panel nature of the data
allows adjustment, and testing, for two forms of endogeneity and/or sample selection
bias. Furthermore, it allows for dynamics and state dependence in the reduced form.
This procedure is applied to the problem of estimating the impact of weekly hours
worked on the offered hourly wage rate:

wi t = x ′
1,i tβ1 + x ′

2,i tβ2 + m(hoursi t ;β3) + μi + ηi t (11.40)

hours∗i t = x ′
3,i tθ1 + hoursi,t−1θ2 + αi + νi t

hoursi t = hours∗i t if hours∗i t > 0

hoursi t = 0, wi t not observed if hours∗i t � 0.

Here,wi t represents log of the hourlywage for individual i at time t ; x1,i t and x3,i t are
variables representing individual characteristics, x2,i t are work place characteristics
for individual i ; hours∗i t and hoursi t represent desired and observed number of hours
worked; m denotes a polynomial of known length with unknown coefficients β3.
This is estimated using data for young females from the NLSY for the period 1980-
87. This included a total of 18400 observations of which 12039 observations report
positive hours of work in a given period.

Semykina and Wooldridge (2010) consider the estimation of panel data models
with sample selection, as well as endogenous explanatory variables and unobserved
heterogeneity. They extend the approach ofWooldridge (1995) of testing for selection
bias to allow for some variables to be correlatedwith idiosyncratic errors. In fact, they
propose simple variable addition tests to detect selection biase that is due to viola-
tions of strict exogeneity. They also propose two estimation procedures that correct
for selection in the presence of endogenous regressors, assuming that appropriate
instruments are available. The tests are based on the FE-2SLS estimator, thereby
permitting arbitrary correlation between unobserved heterogeneity and explanatory
variables. The first correction procedure is parametric relying on the assumption that
the errors in the selection equation are normally distributed. The second procedure
estimates the model parameters semiparametrically using series estimators.

Semykina andWooldridge (2013) argue that, for dynamic panel data models with
arbitrary selection patterns, the use of first-differencing looses much of the data.
Instead, they model the conditional expectation of the unobserved effect as a lin-
ear function of the exogenous variables and the initial condition as in Wooldridge
(2005). Using backward substitution for the lagged dependent variable, they obtain
an equation that contains lags of the exogenous explanatory variables and the initial
condition, but no lags of the dependent variable. As a result, selection correction
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reduces to a contemporaneous selection problem of the type studied in Wooldridge
(1995) with strictly exogenous variables. Assuming normality and focusing on selec-
tion (period by period) simplifies the derivation of the correction term. Once the
correction term is obtained, the augmented equation can be consistently estimated
by nonlinear least squares (NLS) or GMM. Semykina and Wooldridge (2013) also
propose a simple test for selection bias that is based on the addition of a selection
term to the first-difference equation and testing for the significance of this term. The
methods are applied to estimating dynamic earnings equations for women using the
Panel Study of IncomeDynamics over the period 1980–1992. Since it is necessary to
observe the initial condition, only females for whom 1980 earnings are available are
included in the sample. The final sample consists of 579women or 6948 observations
over the 12-year period (1981–1992).

Frederiksen, Honoré and Hu (2007) consider an alternative way of modeling
dynamic discrete choice panel models by using the duration in the current state as a
covariate. They propose estimators that allow for group-specific effect in parametric
and semiparametric versions of the model. The proposed method is illustrated with
an empirical analysis of job durations allowing for firm-level effects using Danish
data on all employees of all establishments in the private sector observed over the
period 1980 to 2000.

11.6 Empirical Applications

There are many empirical applications illustrating the effects of attrition bias; see
Hausman andWise (1979) for a study of the Gary IncomeMaintenance Experiment.
For this experimental panel study of labor supply response, the treatment effect is an
income guarantee/tax rate combination. People who benefit from this experiment are
more likely to remain in the sample. Therefore, the selection rule is nonignorable, and
attrition can overestimate the treatment effect on labor supply. For the Gary Income
Maintenance Experiment, Hausman and Wise (1979) found little effect of attrition
bias on the experimental labor supply response. Similar results were obtained by
Robins and West (1986) for the Seattle and Denver Income Maintenance Experi-
ments. For the latter sample, attrition was modest (11% for married men and 7% for
married women and single heads during the period studied) and its effect was not
serious enough to warrant extensive correction procedures.

Ridder (1992) studied the determinants of the total number of trips using the first
seven waves of the dutch transportation panel (DTP). This panel was commissioned
by the Department of Transportation in the Netherlands to evaluate the effect of
price increases on the use of public transportation. The first wave of interviews was
conducted in March 1984. There is heavy attrition in the DTP with only 38% of
the original sample participating in all seven waves of the panel. Ridder (1992)
found that nonrandom attrition from the DTP did not bias time-constant regression
coefficients. However, it did bias the time-varying coefficients. Ridder (1992) also
found that the restrictions imposed by the standard Hausman andWise (1979) model
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for nonrandom attrition on the correlations between individual effects and random
shocks may even prevent the detection of nonrandom attrition.

Nijman and Verbeek (1992) studied the effects of nonresponse on the estimates
of a simple life-cycle consumption function using a Dutch panel of households
interviewed over the period April 1984–March 1987. Several tests for attrition bias
were performed, and the model was estimated using (i) one wave of the panel, (ii)
the balanced subpanel, and (iii) the unbalanced panel. For this application, attrition
bias was not serious. The balanced subpanel estimates had implausible signs, while
the one-wave estimates and the unbalanced panel estimates gave reasonably close
estimates with the latter having lower standard errors.

Ziliak and Kniesner (1998) examine the importance of sample attrition in a life-
cycle labor supply using both a Wald test comparing attriters to nonattriters and
variable addition tests based on formal models of attrition. Estimates using waves
I-XXII of the PSID (interview years 1968-1989) show that nonrandom attrition is
of little concern when estimating prime age male labor supply because the effect of
attrition is absorbed into fixed effects in labor supply.

Dionne,Gagne′, andVanasse (1998) estimate a costmodel based on an incomplete
panel of Ontario trucking firms. The data consists of 445 yearly observations of
general freight carriers in Ontario observed over the period 1981-88. It includes 163
firms for which information is available for 2.7 years on average. The cost-input
demand system is jointly estimated with a bivariate probit selection model of entry
and exit from the sample. A test for selectivity bias reveals potential bias related to
exit but not entry from the sample.

Vella and Verbeek (1998) estimate the union premium for young men over a
period of declining unionization (1980-87). The panel data is taken from the NLSY
and includes 545 full time working males who completed their schooling by 1980.
The probability of union membership is estimated using a dynamic random effects
probit model. The coefficient of lagged union status is estimated at 0.61 with a stan-
dard error of 0.07 indicating a positive and statistically significant estimate of state
dependence. OLS estimates of the wage equation yield a union wage effect of 15%
to 18% depending on whether occupational status dummies are included or not.
These estimates are contaminated by endogeneity. The corresponding fixed effects
estimates are much lower yielding 7.9% to 8.0%. These estimates eliminate only
the endogeneity operating through the individual specific effects. Thus, any time-
varying endogeneity continues to contaminate these estimates. Including correction
terms based on the estimated union model yield negative significant coefficients and
reveal selection bias. This indicates that workers who receive lower wages, after con-
ditioning on their characteristics and in the absence of unions, are most likely to be
in the union. This is consistent with the findings that minority groups who are lower
paid for discriminatory reasons have a greater tendency to seek union employment
than whites. Vella and Verbeek conclude that the union effect is approximately 21%
over the period studied. However, the return to unobserved heterogeneity operat-
ing through union status is substantial, making the union premium highly variable
among individuals. Moreover, this union premium is sensitive to the pattern of sort-
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ing into union employment allowed in the estimation. Problem 11.6 asks the reader
to replicate some of the results in this paper.

11.7 Empirical Example:Nurses Labor Supply

Shortage of nurses is a problem in several countries. It is an unsettled question
whether increasing wages constitute a viable policy for extracting more labor supply
from nurses. Askildsen, Baltagi and Holmås (2003) use a unique matched panel data
set of Norwegian nurses covering the period 1993-1998 to estimate wage elasticities.
The data set collected from different official data registers and Statistics Norway
includes detailed information on 19,638 individuals over 6 years totalling 69,122
observations. Female nurses younger than 62 years of age who were registered with
a complete nursing qualification and employed by municipalities or counties were
included in the sample. For the sample of female nurses considered, the average
age was 37 years with 35% of the nurses being single. The majority of these nurses
worked in somatic hospitals (62%)or nursing homes (20%)with the remaining nurses
engaged in home nursing (10%), at psychiatric institutions (5%), in health services
(1%), and others (3%). Senior nurses comprised only 2% of the sample, while 16%
were ward nurses, 20% were nursing specialists and the remaining majority (62%)
worked as staff nurses. The average years of experience during the sample period
was 12.5 years, and the average number of children below 18 years of age was 1.2.
Nurses with children below the age of 3 comprised 22% of the sample, while those
with children between the ages of 3 and 7 comprised 29% of the sample.

Verbeek and Nijman (1992) proposed simple tests for sample selection in panel
data models. One test is to include variables measuring whether the individual is
observed in the previous period, whether the individual is observed in all periods
and the total number of periods the individual is observed, see Sect. 11.4. The null
hypothesis says that these variables should not be significant in our model if there
are no sample selection problems. Another test, a Hausman-type test, compares the
fixed effects estimator from the balanced sample as opposed to an unbalanced sample.
Both tests rejected the null hypothesis of no sample selection.

Table11.4 reproduces the conditional logit model estimates as the first step of the
Kyriazidou (1997) estimator. A number of variables were used that characterized
the regions and municipalities where the individuals live (centrality, female work
participation rates, availability of kindergarten and whether there is a hospital in the
municipality). These variables were closely connected to the participation decision,
and conditional on this are assumed not to affect hours of work. Job-related vari-
ables were excluded since they were not observed for those who did not participate.
The conditional logit estimates were then used to construct kernel weights with the
bandwidth set to with h = 1. A Hausman test based on the weighted and unweighted
estimates gave a value of the test statistic (χ2

23 = 821.27) that clearly rejected the
null hypothesis of no selection. As instruments for the wage of nurses, the authors
used the financial situation of the municipality, measured by lagged net financial
surplus in preceding period. Also, the lagged mean wage of auxiliary nurses work-
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Table 11.4 Participation equation. Conditional logit Estimates

Standard errors in parentheses. ** and * is statistically different from zero at one and five per-
cent significance level, respectively. Source Askildsen, Baltagi and Holmås 2003. Reproduced by
permission of Wiley
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Table 11.5 Nurses’ Labor Supply

Ln wage 0.2078*

(0.0942)
Shift work -0.0111**

(0.0007)
Shift work 2 -0.00000

(0.00001)
Hour_35.5 -0.0397**

(0.0053)
Disable -0.2581**

(0.0261)
Age -0.0098*

(0.0048)
Age2 0.0003**

(0.00003)
Single 0.0205**

(0.0035)
Number of children -0.0991**

(0.0035)
Children < 3 -0.0495**

(0.0028)
Children 3 - 7 -0.0177**

(0.0024)
Children > 7 -0.0307**

(0.0021)
Psychiatric 0.0466**

(0.0092)
Home nursing -0.0206**

(0.0067)
Health service -0.0567**

(0.0148)
Nursing home -0.0177**

(0.0059)
Other 0.0024

(0.0078)
Nursing specialist 0.0144*

(0.0067)
Ward nurse -0.0004

(0.0076)
Senior nurse 0.0057

(0.0123)
East Norway -0.0622**

(0.0131)
South Norway -0.0802**

(0.0170)
West Norway -0.1157**

(0.0218)
Mid Norway -0.1011**

(0.0188)
Municipality size 0.0002*

(0.00007)
Constant -0.0068**

(0.0014)
Number of observations 121622

Standard errors in parentheses. ** and * is statistically different from zero at one and five percent
significance level, respectively. Source Askildsen, Baltagi and Holmås (2003). Reproduced by
permission of Wiley
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ing in the same municipality as the nurse, and each nurse’s work experience. These
variables are assumed to affect wages of nurses but not their hours of work. The
instruments pass the Hausman test of over-identifying restrictions. The results of
the Kyriazidou instrumental variable estimator are given in Table11.5. Age had a
significant negative effect. Nurses worked shorter hours as they became older but to
a diminishing degree. The effect of family variables was as expected. Being single
had a positive and significant effect on hours of work. The presence of children in
the home had a negative impact on hours of work. Nurses working in psychiatric
institutions worked longer hours compared to the base category somatic hospitals,
whereas shorter hours were supplied by nurses engaged in home nursing, as well as
in nursing homes. Labor supply was highest in the less densely populated Northern
Norway (the base category). This may reflect the fact that hours of work were not
allowed to vary as much in these areas. Compared to a staff nurse, which served as
the base work type category, nursing specialists and senior nurses all worked longer
hours. The estimated wage elasticity after controlling for individual heterogeneity,
sample selection, and instrumenting for possible endogeneity was 0.21. Individual
and institutional features were statistically significant and important for working
hours. Contractual arrangements as represented by shift work were also important
for hours of work, and omitting information about this common phenomenon will
underestimate the wage effect.

11.8 Further Reading

Das (2003) presents estimators for nonparametric panel data models with additive
fixed effects. Das analyzes a model in which the entire regressor vector, consisting
of time-varying as well as time-invariant regressors, is correlated with the individual
effect but there are insufficient exclusion restrictions to permit direct instrumental
variables estimation of the model. This is applied to the problem of estimating the
returns to education in a cohort of mature men aged 25-40 from the 1976 and 1981
waves of young men’s cohort in the National Longitudinal Survey. Log of hourly
wage is specified as a semiparametric function of education and experience, where
both variables are treated as endogenous and correlated with the unobserved indi-
vidual effects. Other time-invariant effects such as race, and time-varying variables,
such as union affiliation, marital status, and health enter additively and are assumed
to be exogenous. The nonparametric estimates indicate that the average returns to
education are 0.076 for those men with high school or less education, 0.134 for those
with 13 to 16 years of education and 0.188 for those with college or more. Although
the last estimate is not significant. This is compared to an OLS estimate of 0.081 and
an IV estimate of 0.092. Das concludes that endogeneity and nonlinearity may be
jointly important in the returns to schooling.

Wooldridge (1997) considers the estimation of multiplicative, unobserved com-
ponents panel data models without imposing a strict exogeneity assumption on the
conditioning variables. A robust method of moments estimator is proposed which
requires only a conditional mean assumption. This applies to binary choice models
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with multiplicative unobserved effects, and models containing parametric nonlin-
ear transformations of the endogenous variables. This model is particularly suited
to nonnegative explained variables, including count variables. In addition, it can
also be applied to certain nonlinear Euler equations. Wooldridge (1999) offers some
distribution-free estimators for multiplicative unobserved components panel data
models. Requiring only the correct specification of the conditional mean, the multi-
nomial quasi-conditional MLE is shown to be consistent and asymptotically normal.
This estimation method is popular for estimating fixed effects count models, see
Hausman, Hall and Griliches (1984). Wooldridge’s results show that it can be used
to obtain consistent estimates even when the dependent variable yit is not a vector
of counts. In fact, yit can be a binary response variable, a proportion, a nonnegative
continuously distributed randomvariable, or it can have discrete and continuous char-
acteristics. Neither the distribution of yit nor its temporal dependence are restricted.
Additional orthogonality conditions can be used in a GMM framework to improve
the efficiency of the estimator. Finally, Wooldridge (2000) proposes a method of
estimating very general, nonlinear, dynamic, unobserved effects panel data models
with feedback. Wooldridge shows how to construct the likelihood function for the
conditional maximum likelihood estimator in dynamic, unobserved effects models
where not all conditioning variables are strictly exogenous. A useful innovation is the
treatment of the initial conditions which offers a flexible, relatively simple alternative
to existing methods.

Hansen (1999) considers the estimation of threshold panel regressions with indi-
vidual specific effects. This is useful for situations where the regression function
is not identical across all observations in the sample. In fact, the observations are
divided into two regimes depending on whether a threshold variable qit is smaller or
larger than the threshold γ :

yit = μi + β ′
1xit1(qit � γ ) + β ′

2xit1(qit > γ ) + νi t

where 1(.) is the indicator function. The regimes are distinguished by differing slopes
β1 andβ2.Hansen (1999) proposes a least squares procedure to estimate the threshold
and regression slopes using fixed effects transformations. Non-standard asymptotic
theorywith T fixed and N → ∞ is developed to allow the construction of confidence
intervals and test of hypotheses. This method is applied to a panel of 565 U.S.
firms observed over the period 1973-87 to test whether financial constraints affect
investment decisions. Hansen finds overwhelming evidence of a double threshold
effect which separates the firms based on their debt to asset ratio. The weakness
of this approach is that it does not allow for heteroskedasticity, lagged dependent
variables, endogenous variables , and random effects.

Honoré, Vella and Verbeek (2008) give a comprehensive review of parametric and
semiparametric estimation methods for panel models with attrition, selection bias
and censoring under different distributional assumptions.

The reader is encouraged to read Chap. 6 of the Oxford Handbook of Panel Data
by Greene (2015) entitled Panel data models for discrete choice models, also Chap. 7
by Lee (2015) entitled Panel conditional and multinomial logit estimators.
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11.9 Notes

1. For the probit model

F(x ′
i tβ) = �(x ′

i tβ) =
∫ x ′

i tβ

−∞
1√
2π

e−u2/2du

and for the logit model

F(x ′
i tβ) = ex

′
i tβ

1 + ex
′
i tβ

2. Note that for this nonlinear panel data model, it is not possible to get rid of the
μi by taking differences or performing the Within transformation as in Chap.
2. Graham, Hahn and Powell (2009) show that there is no incidental parameter
problem for a panel quantile model with fixed effects and T = 2. In fact, the
maximum likelihood estimator is numerically equivalent to the least absolute
deviations estimator of the differenced model which wipes out the individual
effects. This estimator is consistent with T fixed asymptotics as long as the
regressors are strictly exogenous.

3. This is programmed in Stata as xtlogit with the fe option and will be illustrated
later on in this chapter.

4. On the other hand, if there are no random individual effects, the joint likelihood
will be the product of the marginals and one can proceed as in the usual cross-
sectional limited dependent variable case, see Greene (2003).

5. For a good read of simulation methods for limited dependent variable panel
models, see Keane (1993).

6. The main limitations of the Honoré and Kyriazidou (2000b) approach are (i)
the assumption that the errors in the underlying threshold-crossing model are
independent over time and (ii) the assumption that x ′

i2 − x ′
i3 has support in a

neighborhood of 0. The latter restriction rules out time dummies.
7. Other sufficient conditions for consistency of these estimators are given by Ver-

beek and Nijman (1996). These are derived for specific selection rules. One
interesting and practical sufficient condition that emerges is that the Within esti-
mator is consistent and free of selectivity bias if the probability of being in the
sample is constant over time. In this case, the correction for selectivity bias is
time-invariant and hence is absorbed in the individual effect term.

8. If the selection rule is unknown, identification problems arise regarding the
parameters of interest (see Verbeek and Nijman, 1996).

9. Verbeek and Nijman (1992) show that under nonresponse, the conditions for
consistency of theWithin estimator are weaker than those for the random effects
GLS estimator. This means that the Within estimator is more robust to nonre-
sponse bias than GLS.

10. It is important to point out that both Verbeek and Nijman (1992) as well as
Wooldridge (1995) assume that the unobservable effects and the idiosyncratic
errors in the selection process are normally distributed.Kyriazidou’s (1997) treat-
ment of sample selection leaves the distributions of all unobservables unspecified.
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11. Alternatively, one could condition on the set of continuouslyworking individuals,
i.e., use only the sample with positive hours of work. In this case the sample is
considered truncated (see Greene, 2003).

12. Researchers may also be interested in panel data economic relationships where
the dependent variable is a count of some individual actions or events, see
Sect. 10.6.

11.10 Problems

11.1 Fixed effects logit model. In Sect. 11.1 we considered the fixed effects logit
model with T = 2.

(a) In this problem, we look at T = 3 and we ask the reader to compute the
conditional probabilities that would get rid of the individual effects by con-
ditioning on

∑3
t=1 yit . Note that this sum can now be 0, 1, 2, or 3. (Hint:

First show that terms in the conditional likelihood function, which are con-
ditioned upon

∑3
t=1 yit = 0 or 3 add nothing to the likelihood. Then focus

on terms that condition on
∑3

t=1 yit = 1 or 2.)
(b) Show that for T = 10, one has to condition on the sum being 1, 2, . . . , 9.

One can see that the number of probability computations are increasing. To
convince yourself, write down the probabilities conditioning on

∑10
t=1 yit =

1.

11.2 Dynamic fixed effects logitmodelwith no regressors. Consider theChamberlain
(1985) fixed effects conditional logit model with a lagged dependent variable
given in (11.16). Show that for T = 3, Pr[A/yil + yi2 = 1, μi ] and therefore
Pr[B/yi1 + yi2 = 1, μi ] do not depend on μi . Note that A and B are defined
in (11.17) and (11.18), respectively.

11.3 Dynamic fixed effects logit model with regressors. Consider the Honoré and
Kyriazidou (2000b) fixed effects logit model given in (11.19).

(a) Show that for T = 3, Pr[A/x ′
i , μi ,A∪B] and Pr[B/x ′

i , μi , A∪B] both
depend on μi . This means that the conditional likelihood approach will
not eliminate the fixed effect μi .

(b) If x ′
i2 = x ′

i3, show that Pr[A/x ′
i , μi , A∪B, x ′

i2 = x ′
i3] and Pr[B/x ′

i , μi ,

A∪B,

x ′
i2 = x ′

i3] do not depend on μi .

11.4 Equivalence of two estimators of the fixed effects logit model. This is based on
Abrevaya (1997). Consider the fixed effects logit model given in (11.4) with
T = 2. In (11.10) and (11.11) we showed the conditional maximum likelihood
ofβ, call it̂βCML , can be obtained by running a logit estimator of the dependent
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variable 1(�y = 1) on the independent variables �x for the subsample of
observations satisfying yi1 + yi2 = 1.Here 1(�y = 1) is an indicator function
taking the value one if�y = 1. Therefore,̂βCML maximizes the log-likelihood

ln Lc(β) =
∑

iεϑ

[1(�y = 1) ln F(�xβ) + 1(�y = −1) ln(1 − F(�xβ))]

where ϑ = {i : yi1 + yi2 = 1}.

(a) Maximize the unconditional log-likelihood for (11.4) given by

ln L(β, μi ) =
N

∑

i=1

2
∑

t=1

[yit ln F(x ′
i tβ + μi ) + (1 − yit ) ln(1 − F(x ′

i tβ + μi ))]

with respect to μi and show that i

μ̂i =
⎧

⎨

⎩

−∞ if yi1 + yi2 = 0
−(xi1 + xi2)′β/2 if yi1 + yi2 = 1
+∞ if yi1 + yi2 = 2

(b) Concentrate the likelihood by plugging μ̂i in the unconditional likelihood
and show that

ln L(β, μ̂i ) =
∑

iεϑ

2[1(�y = 1) ln F(�x ′β/2) + 1(�y = −1) ln(1 − F(�x ′β/2))]

Hint: Use the symmetry of F and the fact that

1(�y = 1) = yi2 = 1 − yi1 and 1(�y = −1) = yi1 = 1 − yi2 for iεϑ .

(c) Conclude that ln L(β, μ̂i ) = 2 ln Lc(β/2). This shows that a scale adjusted
maximum likelihood estimator is equivalent to the conditional maximum
likelihood estimator, i.e., ̂βML = 2̂βCML . Whether a similar result hold for
T > 2 remains an open question.

11.5 Binary Response Model Regression (BRMR). This is based on problem 95.5.4
in Econometric Theory by Baltagi (1995). Davidson and MacKinnon (1993)
derive an artificial regression for testing hypotheses in a binary responsemodel.
For the fixed effects model described in (11.4), the reader is asked to derive the
BRMR to test Ho;μi = 0, for i = 1, 2, . . . , N . Show that if F(.) is the Logistic
(or Normal) cumulative distribution function, this BRMR is simply a weighted
least squares regression of logit (or probit) residuals, ignoring the fixed effects,
on the matrix of regressors X and the matrix of individual dummies. The test
statistic in this case is the explained sum of squares from this BRMR. See
solution 95.5.4 in Econometric Theory by Gurmu (1996).

11.6 Union membership. Using the Vella and Verbeek (1998) study considered in
Sect. 11.6, download their data set which is posted on the Journal of Applied
Econometrics web site and
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(a) Replicate their descriptive statistics given in Table I. Confirm that the uncon-
ditional union premium is around 15%.

(b) Replicate their random effects probit estimates of union membership given
in Table II.

(c) Replicate the wage regressions with union effects given in Table III.
(d) Replicate the wage regressions under unrestricted sorting given in Table V.

11.7 Initial Condition. Using theWooldridge (2005) study considered in Sect. 11.3,
download the data set posted on the Journal of Applied Econometrics web site
and

(a) Replicate the results given in Table I in that article using (xtprobit, re) in
Stata.

(b) Replicate the average partial effects for union membership for married and
non-marriedmen for 1986 and 1987. Verify that the estimates of state depen-
dence in union membership are 0.182 for married men and 0.173 for non-
married men, respectively.

11.8 Beer taxes and motor vehicle fatality rates. Ruhm (1996) considered the effect
of beer taxes and a variety of alcohol-control policies on motor vehicle fatality
rates, see Sect. 11.6. The data is for 48 states (excluding Alaska, Hawaii, and
the District of Columbia) over the period 1982-1988. Some of the variables
in this data set can be downloaded from the Stock and Watson (2003) web site
at www.aw.com/stock_watson. Using this data set

(a) Replicate the descriptive statistics given in Table 1 of Ruhm (1996, p. 441).
(b) Replicate to the extent possible the results in Table2 of Ruhm (1996, p. 444),

and verify that beer tax is effective in reducing motor vehicle fatality rates,
whereas the breath test law is not. How are the standard errors affected by
using the robust option for the variance–covariance matrix?

(c) Test the significance of the state and time dummies. What do you conclude?

11.9 Identification in a dynamic binary choice panel data model. This is based
on the Appendix of Honoré and Tamer (2006, pp. 627–628). Suppose that
(yi1, yi2, yi3) is a random vector such that
P(yi1 = 1/μi ) = p1(μi )

and
P(yit = 1/μi , yi1, .., yit−1) = F(μi + γ yit−1) for t = 2, 3,
where p1(μi ) is an unknown strictly increasing distribution function taking
values between 0 and 1. Show that the sign of γ is identified. (Hint:Consider
the probabilities
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P[(yi1, yi2, yi3) = (0, 1, 0)/μi ] and P[(yi1, yi2, yi3) = (0, 0, 1)/μi ]. Show
that the sign of the difference of these two probabilities identifies the sign
of γ ).

11.10 The magazine industry. Willis (2006) re-examines the study of Cecchetti
(1986) on price adjustment behavior in the magazine industry. Cecchetti
assumes that a firm’s pricing rules are fixed for non-overlapping three-year
intervals and estimates the model using a conditional logit specification a la
Chamberlain (1980). The data set consists of 38 unique magazines (mag_id)
observed over the years 1953–1979. The dependent variable “pr_ch” is a
dummy variable referring to whether the price changed between January of
the current year and January of the following year. “y_ch” refers to the number
of years since the magazine price change; “inf_ch” refers to the cumulative
change in inflation since the last price change and “mags_ch” refers to the
cumulative change in magazine industry sales since the previous price change.
The “group_id” variable corresponds to the groups used in a Chamberlain con-
ditional logit estimation. This can be downloaded from the Journal of Applied
Econometrics web site. Replicate Table1 of Willis (2006, p. 342). Column
(1) runs a logit regression; while column (2) runs the same logit regression
with magazine fixed effects; column (3) runs the Chamberlain conditional
logit model with “group_id” allowing three-year intervals for a price change;
column (5) runs a logit with magazine and time fixed effects.

11.11 Bank Failure and Multiple Liability. Grossman (2001) investigated the effect
of multiple liabilities of bank share holders on bank failure rates in U.S. states
before the Great Depression. Grossman found that double liability did reduce
bank failures in periods where bank failures were not abnormally high. How-
ever, it did not guarantee bank stability in times ofwidespreadfinancial distress.
Table2 of Grossman (2001, p. 151) runs an inverse logit regression of state
bank failures (measured by either the failure rate or the asset failure rate) in
state i at time t, on its lagged value, and the failure rate among national banks
in that state at time t as well as a dummy variable for multiple liabilities which
takes the value one if the state had double, triple, or unlimited liability for
banks for three consecutive years, and zero otherwise.

(a) Replicate the results in Table2 of Grossman (2001, p. 151) using the Bank-
Failure stata data set. How are the standard errors and significance affected
by robustifying these regressions?

(b) How are the results affected by including state and time dummies. What do
you conclude?

11.12 Female Labor force participation. This is the empirical example used in
Fernandez-Val (2009) and used as example 1 in this chapter. This data is
available in Stata as lfp_psid.
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(a) Replicate the conditional logit fe results in Table11.1 in this chapter using
xtlogit, fe.

(b) Add fixed time effects to the conditional logit fe in part (a). Test the signif-
icance of these fixed time effects.

(c) Using logitfe run the model in part (a) uncorrected for bias with no time
effects.

(d) Using logitfe run the model in part (a) uncorrected for bias with individual
and time effects.

(e) Add lagged labor force participation, so themodel is dynamic and run logitfe
as in part (d).

(f) Run the dynamic model in part (e) with analytical bias correction option
restricting the trimming parameter to 1.

(g) Run the logitfe commands with the jackknife options allowing for the
six different types of jackknife corrections described in Cruz-Gonzalez,
Fernandez-Val and Weidner (2017).

(h) Redo part (a) and (b) using xtprobit, re rather than xtlogit, fe.
(i) Redo parts (c) and (h) using probitfe rather than logitfe.

11.13 To Trade or Not to Trade. This is based on the empirical application to bilateral
trade flows between countries using data fromHelpman,Melitz andRubinstein
(2008). The data set includes trade flows for 158 countries over the period
from 1970 to 1997. This is used to fit probit and logit fe models by Cruz-
Gonzalez, Fernandez-Val and Weidner (2017) for the probability of positive
trade between country pairs in 1986. The data structure is a pseudo-panelwhere
the two dimensions index countries, with id as importers and jd as exporters.
The dependent variable trade is an indicator equal to one if country i imports
from country j, and equal to zero otherwise. The specification is a gravity
trade equationwith explanatory variables including log(distance), border, legal
origin, language, colony, currency, federal trade agreements, islands, religion,
landlock. These variables are defined in Helpman, et al. (2008) and Cruz-
Gonzalez, Fernandez-Val and Weidner (2017). However, the latter add lagged
bilateral trade to account for possible state dependence in trade decisions. The
data set is available as trade in Stata when you install probitfe and logitfe.

(a) Replicate Table1 of Cruz-Gonzalez, Fernandez-Val and Weidner (2017,
p. 534) using felogit.

(b) Replicate Table2 of Cruz-Gonzalez, Fernandez-Val and Weidner (2017,
p. 535) using feprobit.
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12Nonstationary Panels

12.1 Introduction

With the growing use of cross-country data over time to study purchasing power
parity, growth convergence, and international R&D spillovers, the focus of panel
data econometrics has shifted toward studying the asymptotics of macro-panels with
large N (number of countries) and large T (length of the time series) rather than the
usual asymptotics ofmicro-panelswith largeN and smallT . The limiting distribution
of double-indexed integrated processes has been extensively studied by Phillips and
Moon (1999), Phillips and Moon (2000). The fact that T is allowed to increase to
infinity in macro-panel data generated two strands of ideas. The first rejected the
homogeneity of the regression parameters implicit in the use of a pooled regression
model in favor of heterogeneous regressions, i.e., one for each country; see Pesaran
and Smith (1995), Im, Pesaran and Shin (2003), Pesaran, Shin and Smith (1999),
to mention a few. This literature critically relies on T being large to estimate each
country’s regression separately. This literature warns against the use of standard
pooled estimators such as FE to estimate the dynamic panel data model arguing that
they are subject to large potential bias when the parameters are heterogeneous across
countries and the regressors are serially correlated. Another strand of the literature
applied time-series procedures to panels, worrying about non-stationarity, spurious
regressions and cointegration; see the surveys by Baltagi and Kao (2000), Choi
(2015a, b), Breitung and Pesaran (2008), and Breitung (2015). Consider for example,
the Penn World Table (PWT) which have been used to study growth convergence
and purchasing power parity among various countries (https://www.rug.nl/ggdc/
productivity/pwt/). Phillips and Moon (2000) argue that the time-series components
of the variables used in the PWT, like per capita GDP growth, have strong non-
stationarity, a feature which we have paid no attention to in the previous chapters.
This is understandable given that micro-panels deal with large N and small T . With
largeN , largeT macro-panels, non-stationarity deservesmore attention. In particular,
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time-series fully modified estimation techniques that account for endogeneity of
the regressors and correlation and heteroskedasticity of the residuals can now be
combined with fixed and random effects panel estimation methods. Some of the
distinctive results that are obtained with nonstationary panels are that many test
statistics and estimators of interest have Normal limiting distributions. This is in
contrast to the nonstationary time-series literature where the limiting distributions
are complicated functionals of Weiner processes. Several unit root tests applied in
the time-series literature have been extended to panel data. When the panel data are
both heterogeneous and nonstationary, issues of combining individual unit root tests
applied on each time series are tackled by Im, Pesaran and Shin (2003), Maddala
and Wu (1999), and Choi (2001). Using panel data, one can avoid the problem
of spurious regression; see Kao (1999) and Phillips and Moon (1999). Unlike the
single time- series spurious regression literature, the panel data spurious regression
estimates give a consistent estimate of the true value of the parameter as both N and
T tend to ∞. This is because, the panel estimator averages across individuals and
the information in the independent cross-section data in the panel leads to a stronger
overall signal than the pure time-series case. Of course letting both N and T tend
to ∞ brings in a new host of issues dealing with how to do asymptotic analysis.
Most papers in this literature adopt the sequential asymptotic theory, which assumes
that T → ∞ followed by N . However, from a practitioner’s viewpoint, sequential
asymptotic theory seems somewhat artificial because one is dealing with data where
both T and N are large together. Phillips and Moon (1999) provide joint asymptotic
analysis of pooled estimators in panel regressions with nonstationary regressors
when the underlying regression disturbances follow stationary processes. Under the
additional condition,N/T → 0, they show that sequential asymptotic results for their
pooled estimators would be equivalent to the joint ones. See also Kauppi (2000) for
a joint asymptotic analysis of pooled estimators in panels containing near-integrated
regressors with heterogeneous localizing parameters.

Most applications of time-series methods applied to panels include panel unit
root tests, panel cointegration tests and the estimation of long-run average relations.
Examples from the purchasing power parity literature and real exchange rate station-
arity include O’Connell (1998), Pedroni (2001), Choi (2001), Groen and Kleibergen
(2003), Smith et al. (2004), to mention a few. On interest rates, see Moon and Perron
(2007); on health care expenditures, see McCoskey and Selden (1998), and Balt-
agi and Moscone (2010); on empirical growth, see Eberhardt and Teal (2011). On
international R&D spillovers, see Kao, Chiang and Chen (1999). On savings and
investment models, see Mark, Ogaki and Sul (2005).

However, the use of such panel data methods are not without their critics; see
Maddala, Wu and Liu (2000) who argue that panel data unit root tests do not rescue
purchasing power parity (PPP). In fact, the results on PPP with panels are mixed
depending on the group of countries studied, the period of study, and the type of
unit root test used. More damaging is the argument by Maddala, Wu and Liu (2000)
that for PPP, panel data tests are the wrong answer to the low power of unit root
tests in single time series. After all, the null hypothesis of a single unit root is dif-
ferent from the null hypothesis of a panel unit root for the PPP hypothesis. Using
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the same line of criticism, Maddala also argued that panel unit root tests did not
help settle the question of growth convergence among countries. However, it was
useful in spurring much needed research into dynamic panel data models. See also
Banerjee, Marcellino and Osbat (2004) in the empirical section of this chapter who
criticize existing panel unit root tests for assuming that cross-unit cointegrating rela-
tionships among the countries are not present. They warn that the empirical size
of these tests is substantially higher than their nominal size. Panel unit root tests
have been also criticized because they assume cross-sectional independence. This is
restrictive as macro-time series exhibit significant cross-sectional correlation among
the countries in the panel. This correlation has been modeled using a dynamic fac-
tor model by Bai and Ng (2004), Moon and Perron (2004), and Phillips and Sul
(2003). Alternative panel unit root tests that account for cross-section dependence
include Choi (2002), Chang (2002), and Pesaran (2007), to mention a few.1 In their
survey of cross-country growth empirics, Eberhardt and Teal (2011) emphasize the
importance of heterogeneity, non-stationarity, and cross-section dependence: het-
erogeneity in the production technology and in the unobservable total factor pro-
ductivity across countries, non-stationarity in the macro-time series like GDP and
capital, and cross-section dependence in macro-productivity analysis due to strong
inter-economy linkages.

This chapter studies the first generation panel unit root tests assuming cross-
sectional independence inSect. 12.2,while Sect. 12.3 discusses the secondgeneration
panel unit root tests allowing for cross-sectional dependence. Section12.4 studies the
spurious regression in panel models, while Sect. 12.5 considers various panel cointe-
gration tests. Section12.6 discusses estimation and inference in panel cointegration
models, while Sect. 12.7 illustrates the panel unit root tests using three examples,
the first is on purchasing power parity, the second on international R&D spillover,
and the third on OECD health care expenditures. Section12.8 gives some additional
readings.

12.2 Panel Unit Roots Tests Assuming Cross-Sectional
Independence

Testing for unit roots in time-series studies is now common practice among applied
researchers and has become an integral part of econometric courses. Testing for unit
roots in panels has beenmade popular by Levin, Lin and Chu (2002), Im, Pesaran and
Shin (2003), Harris and Tzavalis (1999), Maddala and Wu (1999), Choi (2001), and
Hadri (2000).2 Levin, Lin and Chu (2002), hereafter LLC, generalized this model
to allow for fixed effects, individual deterministic trends, and heterogeneous seri-
ally correlated errors. They assumed that both N and T tend to infinity. However,
T increases at a faster rate than N with N/T → 0. Even though this literature grew
from time-series and panel data, the way in which N , the number of cross-section
units, and T , the length of the time series, tend to infinity is crucial for determining
asymptotic properties of estimators and tests proposed for nonstationary panels; see
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Phillips and Moon (1999). Several approaches are possible including (i) sequential
limits where one index, say N , is fixed and T is allowed to increase to infinity, giving
an intermediate limit. Then by letting N tend to infinity subsequently, a sequential
limit theory is obtained. Phillips andMoon (2000) argued that these sequential limits
are easy to derive and are helpful in extracting quick asymptotics. However, Phillips
and Moon (1999) provided a simple example that illustrates how sequential limits
can sometimes give misleading asymptotic results. (ii) The second approach, used
by Levin, Lin and Chu (2002), is to allow the two indexes,N and T to pass to infinity
along a specific diagonal path in the two-dimensional array. This path can be deter-
mined by amonotonically increasing functional relation of the type T = T (N )which
applies as the index N → ∞. Phillips and Moon (2000) showed that the limit theory
obtained by this approach is dependent on the specific functional relation T = T (N )

and the assumed expansion path may not provide an appropriate approximation for
a given (T ,N ) situation. (iii) The third approach is a joint limit theory allowing both
N and T to pass to infinity simultaneously without placing specific diagonal path
restrictions on the divergence. Some control over the relative rate of expansion may
have to be exercised in order to get definitive results. Phillips and Moon argued that,
in general, joint limit theory is more robust than either sequential limit or diagonal
path limit. However, it is usually more difficult to derive and requires stronger con-
ditions such as the existence of higher moments that will allow for uniformity in
the convergence arguments. The muti-index asymptotic theory in Phillips and Moon
(1999, 2000) is applied to joint limits in which T ,N → ∞ and (T/N ) → ∞, i.e., to
situations where the time- series sample is large relative to the cross-section sample.
However, the general approach given there is also applicable to situations in which
(T/N ) → 0 although different limit results will generally be obtained in that case.

12.2.1 Levin, Lin and ChuTest

Suppose that we have a panel of countries over time. LLC argued that individual
unit root tests for each country have limited power against alternative hypotheses
with highly persistent deviations from equilibrium. This is particularly severe in
small samples. LLC suggest a more powerful panel unit root test than performing
individual unit root test for each country.

The maintained hypothesis is that

�yit = ρyi,t−1 +
pi∑

L=1

θiL�yit−L + αmidmt + εit, m = 1, 2, 3 (12.1)

with dmt indicating the vector of deterministic variables and αmi the corresponding
vector of coefficients for model m = 1, 2, 3. In particular, d1t ={empty set}; d2t =
{1}, and d3t = {1, t}. The null hypothesis is that each country time series contains a
unit root (H0: ρ = 0) against the alternative that each country time series is stationary
(H0: ρ �= 0). Since the lag order pi is unknown, LLC suggest a three-step procedure
to implement their test.
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Step 1: Perform separate augmented Dickey–Fuller (ADF) regressions for each
cross-section

�yit = ρiyi,t−1 +
pi∑

L=1

θiL�yi,t−L + αmidmt + εit m = 1, 2, 3 (12.2)

The lag order pi is permitted to vary across individuals.
For a given T , choose a maximum lag order pmax and then use the t-statistic of

θ̂iL to determine if a smaller lag order is preferred. (These t-statistics are distributed
N (0, 1) under the null hypothesis (θiL = 0), both when ρi = 0 and when ρi < 0).

Once pi is determined, two auxiliary regressions are run to get orthogonalized
residuals:

Run �yit on �yi,t−L(L = 1, . . . , pi) and dmt to get residuals êit
Run yi,t−1 on �yi,t−L(L = 1, . . . , pi) and dmt to get residuals v̂i,t−1

Standardize these residuals to control for different variances across i

ẽit = êit/σ̂εi and ṽi,t−1 = v̂it/σ̂εi

where σ̂εi = standard error from each ADF regression, for i = 1, . . . ,N .

Step 2: Estimate the ratio of long-run to short-run standard deviations. Under the
null hypothesis of a unit root, the long-run variance of (12.1) can be estimated by

σ̂2
yi = 1

T − 1

T∑

t=2

�y2it + 2
K̄∑

L=1

wK̄L

[
1

T − 1

T∑

t=2+L

�yit�yi,t−L

]
(12.3)

where K̄ is a truncation lag that can be data dependent. K̄ must be obtained in amanner
that ensures the consistency of σ̂2

yi. For a Bartlett kernel, wK̄L = 1 − (L/(K̄ + 1)).
For each country i, the ratio of the long-run standard deviation to the innovation
standard deviation is estimated by ŝi = σ̂yi/σ̂εi. The average standard deviation is
estimated by ŜN = 1

N

∑N
i=1 ŝi.

Step 3: Compute the panel test statistics. Run the pooled regression

ẽit = ρ̃vi,t−1 + ε̃it

based on NT̃ observations where T̃ = T − p − 1, and p =∑N
i=1 pi/N . p is the

average lag order of individual ADF regressions. The conventional t-statistic for
H0 : ρ = 0 is tρ = ρ̂

σ̂(̂ρ)
where

ρ̂ =
N∑

i=1

T∑

t=2+pi

ṽi,t−1̃eit

/
N∑

i=1

T∑

t=2+pi

ṽ2i,t−1

σ̂(̂ρ) = σ̂̃ε

/⎡

⎣
N∑

i=1

T∑

t=2+pi

ṽ2i,t−1

⎤

⎦
1/2
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and

σ̂2
ε̃ = 1

NT̃

N∑

i=1

T∑

t=2+pi

(̃eit − ρ̂̃vi,t−1)
2

is the estimated variance of ε̃it .
Compute the adjusted t-statistic

t∗ρ = tρ − NT̃ ŜN σ̂−2
ε̃ σ̂(̂ρ)μ∗

mT̃

σ∗
mT̃

(12.4)

where μ∗
mT̃

and σ∗
mT̃

are the mean and standard deviation adjustments provided by
Table2 of LLC. This table also includes suggestions for the truncation lag parameter
K̄ for each time series T̃ . LLC show that t∗ρ is asymptotically distributed as N (0, 1).

The asymptotics require
√
NT /T → 0 where NT emphasizes that the cross-

sectional dimension N is an arbitrary monotonically increasing function of T . LLC
argue that this is relevant for micro-panel data where T is allowed to grow slower
than NT . Other divergence speeds such as NT /T → 0 and NT /T → constant are
sufficient, but not necessary.

Computationally, the LLC method requires a specification of the number of lags
used in each cross-section ADF regression (pi), as well as kernel choices used in the
computation of SN . In addition, you must specify the exogenous variables used in
the test equations. You may elect to include no exogenous regressors, or to include
individual constant terms (fixed effects), or to employ constants and trends. LLC
panel unit root can be performed with EViews; see Table12.1 and empirical example
1 in Sect. 12.7. In Stata one can use the xtunitroot command. This is illustrated using
the Penn World Table exchange rates for OECD countries in problem 12.6. Part
(a) of that problem issues the command xtunitroot llc lnrxrate if oecd, lags(aic 10)
kernel(bartlett nwest) and finds that we can reject the null of panel unit roots for
ln(exchange rates) using the LLC test.

LLC suggest using their panel unit root test for panels of moderate size with N
between 10 and 250 and T between 25 and 250. They argue that the standard panel
proceduresmay not be computationally feasible or sufficiently powerful for panels of
this size. However, for very large T , they argue that individual unit root time-series
tests will be sufficiently powerful to apply for each cross-section. Also, for very
large N , and very small T , they recommend the usual panel data procedures. The
Monte Carlo simulations performed by LLC indicate that the normal distribution
provides a good approximation to the empirical distribution of the test statistic even
in relatively small samples and also that the panel unit root test provides dramatic
improvements in power over separate unit root tests for each cross-section.

The proposed LLC test has its limitations. The test crucially depends upon
the independence assumption across cross-sections and is not applicable if cross-
sectional correlation is present. Second, the assumption that all cross-sections have
or do not have a unit root is restrictive.

O’Connell (1998) showed that the Levin and Lin tests suffered from significant
size distortion in the presence of correlation among contemporaneous cross-sectional
error terms. O’Connell highlighted the importance of controlling for cross-sectional
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dependence when testing for a unit root in panels of real exchange rates. He showed
that, controlling for cross-sectional dependence, no evidence against the null of a
random walk can be found in panels of up to 64 real exchange rates.

Harris and Tzavalis (1999) also derived unit root tests for (12.1) with dmt =
{empty set}, {1} , or {1, t} when the time dimension of the panel T is fixed. This is
the typical case for micro-panel studies. The main results are

dmt ρ̂

{empty set} √
N (̂ρ − 1) ⇒ N

(
0, 2

T (T−1)

)

{1} √
N
(
ρ̂ − 1 + 3

T+1

)
⇒ N

(
0,

3
(
17T 2−20T+17

)

5(T−1)(T+1)3

)

{1, t} √
N
(
ρ̂ − 1 + 15

2(T+2)

)
⇒ N

(
0,

15
(
193T 2−728T+1147

)

112(T+2)3(T−2)

)
(12.5)

Harris and Tzavalis (1999) also showed that the assumption that T tends to infinity at
a faster rate thanN as in Levin, Lin andChu rather thanT fixed as in the case ofmicro-
panels yields tests which are substantially undersized and have low power especially
when T is small. In another paper, Harris and Tzavalis (2004) suggest a similar unit
root test statistic for dynamic panel data with fixed effects. The test is based on the
LM principle and is derived under the assumption that T is fixed. It is shown that
the limiting distribution of the test statistic is standard normal. The similarity of the
test with respect to both the initial conditions of the panel and the fixed effects is
achieved by allowing for a trend in the model using a parametrization that has the
same interpretation under both the null and alternative hypotheses. They re-examine
the stationarity of real stock prices and dividends across 572 U.S. companies over a
relatively short period of time, 1975–1994. Their results suggest that while real stock
prices contain a unit root, real dividends are trend stationary. This is illustrated with
Stata using thePennWorldTable exchange rates forOECDcountries in problem12.6.
Part (b) of that problem issues the Stata command xtunitroot ht lnrxrate if oecd,
demean and finds that we can reject the null of panel unit roots for ln(exchange
rates) using the Harris and Tzavalis test.

De Blander andDhaene (2012) extend the fixed T approach of Harris and Tzavalis
(1999) to the case where the errors are generated by a stationary AR(1) process. T
may be as small as 5, while still allowing for fixed effects, individual deterministic
time trends, and a homogeneousADF(1) term. The tests are based on a bias-corrected
OLS estimator of the autoregressive parameter, obtained by numerically inverting
the expression for the probability limit. This bias correction, together with an appro-
priately modified standard error, yields an asymptotically normal t-statistic under
the null hypothesis of a unit root, as N → ∞ with T fixed. They examine a weak
version of the Law of One Price in the European car market since the start of stage
three of the EMU in 1999. They find strong evidence for mean-reversion in the time
series of cross-country car (log) price differences across EMU countries.
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12.2.2 Im,Pesaran and Shin Test

The Levin, Lin and Chu test is restrictive in the sense that it requires ρ to be homoge-
neous across i. As Maddala pointed out, the null may be fine for testing convergence
in growth among countries, but the alternative restricts every country to converge at
the same rate. Im, Pesaran andShin (2003) (IPS) allow for aheterogeneous coefficient
of yit−1 and propose an alternative testing procedure based on averaging individual
unit root test statistics. IPS suggest an average of the ADF tests when uit is serially
correlated with different serial correlation properties across cross-sectional units,
i.e., the model given in (12.2). The null hypothesis is that each series in the panel
contains a unit root, i.e.,H0: ρi = 0 for all i and the alternative hypothesis allows for
some (but not all) of the individual series to have unit roots, i.e.,

H1:

{
ρi < 0 for i = 1, 2, . . . ,N1
ρi = 0 for i = N1 + 1, . . . ,N .

(12.6)

Formally, it requires the fraction of the individual time series that are stationary to
be nonzero, i.e., limN→∞(N1/N ) = δ where 0 < δ ≤ 1. This condition is necessary
for the consistency of the panel unit root test. The IPS t-bar statistic is defined as the
average of the individual ADF statistics as

t = 1

N

N∑

i=1

tρi , (12.7)

where tρi is the individual t-statistic for testing H0: ρi = 0 for all i in (12.6). In case
the lag order is always zero (pi = 0 for all i), IPS provide simulated critical values
for t̄ for different number of cross-sections N, series length T , and Dickey–Fuller
regressions containing intercepts only or intercepts and linear trends. In the general
case where the lag order pi may be nonzero for some cross-sections, IPS show that
a properly standardized t̄ has an asymptotic N (0, 1) distribution, starting from the
well-known result in time series that for a fixed N

tρi ⇒
∫ 1
0 WiZdWiZ
[∫ 1

0 W 2
iZ

]1/2 = tiT (12.8)

as T → ∞, where
∫
W (r)dr denotes a Weiner integral with the argument r sup-

pressed in (12.8). IPS assume that tiT are IID and have finite mean and variance.
Then √

N
(

1
N

∑N
i=1 tiT − 1

N

∑N
i=1 E [tiT |ρi = 0]

)

√
1
N

∑N
i=1 var [tiT |ρi = 0]

⇒ N (0, 1) (12.9)

as N → ∞ by the Lindeberg–Levy central limit theorem. Hence

tIPS =
√
N
(
t − 1

N

∑N
i=1 E [tiT |ρi = 0]

)

√
1
N

∑N
i=1 var [tiT |ρi = 0]

⇒ N (0, 1) (12.10)
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as T → ∞ followed by N → ∞ sequentially. The values of E [tiT |ρi = 0] and
var[tiT |ρi = 0] have been computed by IPS via simulations for different values of T
and p′

is. In Monte Carlo experiments, they show that if a large enough lag order is
selected for the underlying ADF regressions, then the small sample performance of
the t-bar test is reasonably satisfactory and generally better than the LLC test.

IPS can be performed with EViews; see Table12.1 and empirical example 1 in
Sect. 12.7. This is also illustrated with Stata using the Penn World Table exchange
rates for OECD countries in problem 12.6. Part (c) of that problem issues the Stata
command xtunitroot ips lnrxrate if oecd, lags(aic 10), and finds that we can reject
the null of panel unit roots for ln(exchange rates) using the IPS test.

McCoskey and Selden (1998) applied the IPS test for testing unit root for per
capita national health care expenditures (HE) and gross domestic product (GDP) for
a panel of 20 OECD countries. McCoskey and Selden rejected the null hypothesis
that these two series contain unit roots, see problem 12.6. Gerdtham and Löthgren
(2000) argued that the stationarity found by McCoskey and Selden are driven by the
omission of time trends in their ADF regression in (12.6). Using the IPS test with a
time trend, Gerdtham and Löthgren found that both HE and GDP are nonstationary.
They concluded that HE and GDP are cointegrated around linear trends.

Westerlund andBreitung (2013) emphasize important facts about theLLCand IPS
panel unit root tests, some ofwhich arewell known and others ignored by researchers.
These include the following: (1) The IPS and LLC statistics are standard normally
distributed as N → ∞ even if T is fixed; (2) The LLC test can be more powerful
than the IPS test; (3) Deterministic components need not be treated as in the Dickey
and Fuller approach; (4) Incidental trends reduce the local power of the LLC test;
(5) The initial condition may affect the asymptotic properties of the tests. (6) The
GMM approach can also be used in the unit root case; (7) Lag augmentation does
not remove the effects of serial correlation; (8) The consistency of the LLC test
depends on the long-run variance estimator; (9) Cross-section dependence leads to
deceptive inference; (10) The IPS and LLC tests fail under cross-unit cointegration;
(11) Sequential limits need not imply joint limits. They warn the researcher not
to approach the panel unit root testing problem from a too narrow and stylized
perspective.

12.2.3 Breitung’s Test

The LLC and IPS tests require N → ∞ such that N/T → 0, i.e., N should be small
enough relative to T . This means that both tests may not keep nominal size well
when either N is small or N is large relative to T . In fact, the simulation results of
Im, Pesaran and Shin (2003) show that both IPS and LLC have size distortions as
N gets large relative to T . Breitung (2000) studies the local power of LLC and IPS
test statistics against a sequence of local alternatives. Breitung finds that the LLC
and IPS tests suffer from a dramatic loss of power if individual-specific trends are
included. This is due to the bias correction that also removes the mean under the
sequence of local alternatives. Breitung suggests a test statistic that does not employ
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a bias adjustment whose power is substantially higher than that of LLC or the IPS
tests using Monte Carlo experiments. The simulation results indicate that the power
of LLC and IPS tests is very sensitive to the specification of the deterministic terms.

Breitung (2000) test statistic without bias adjustment is obtained as follows: Step
1 is the same as LLC but only�yi,t−L is used in obtaining the residuals êit and v̂i,t−1.
The residuals are then adjusted (as in LLC) to correct for individual-specific vari-
ances. Step 2, the residuals êit are transformed using the forward orthogonalization
transformation employed by Arellano and Bover (1995):

e∗
it =

√
T − t

(T − t + 1)

(
ẽit − ẽi,t+1 + · · · + ẽi,T

T − t

)
.

Also,

v∗
i,t−1 = ṽi,t−1 − ṽi,1 − t − 1

T
ṽiT with intercept and trend;

= ṽi,t−1 − ṽi,1 with intercept, no trend;

= ṽi,t−1 with no intercept or trend.

The last step is to run the pooled regression

e∗
it = ρv∗

i,t−1 + ε∗
it

and obtain the t-statistic for H0; ρ = 0 which has in the limit a standard N (0, 1)
distribution. Note that no kernel computations are required. Breitung’s test can be
performed with EViews; see Table 12.1 and empirical example 1 in Sect. 12.7. This
is also illustrated with Stata using the Penn World Table exchange rates for OECD
countries in problem 12.6. Part (d) of that problem issues the Stata command xtuni-
troot breitung lnrxrate if oecd, lags(3) robust trend and finds that we cannot reject
the null of panel unit roots for ln(exchange rates) when we include a trend using the
Breitung test.

12.2.4 Combining p-Value Tests

Let GiTi be a unit root test statistic for the ith group in (12.1) and assume that as
the time-series observations for the ith group Ti → ∞, GiTi ⇒ Gi where Gi is a
nondegenerate random variable. Let pi be the asymptotic p-value of a unit root test
for cross-section i, i.e., pi = F

(
GiTi

)
, where F(·) is the distribution function of the

random variable Gi. Maddala and Wu (1999) and Choi (2001) proposed a Fisher
type test

P = −2
N∑

i=1

ln pi (12.11)

which combines the p-values from unit root tests for each cross-section i to test for
unit root in panel data. Note that −2 ln pi has a χ2 distribution with two degrees of
freedom. This means that P is distributed as χ2 with 2N degrees of freedom as Ti →
∞ for finiteN . Maddala andWu (1999) argued that the IPS and Fisher tests relax the
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restrictive assumption of the LLC test that ρi is the same under the alternative. Both
the IPS and Fisher tests combine information based on individual unit root tests.
However, the Fisher test has the advantage over the IPS test in that it does not require
a balanced panel. Also, the Fisher test can use different lag lengths in the individual
ADF regressions and can be applied to any other unit root tests. The disadvantage
is that the p-values have to be derived by Monte Carlo simulations. Maddala and
Wu (1999) find that the Fisher test with bootstrap-based critical values performs
the best and is the preferred choice for testing nonstationarity as the null and also
in testing for cointegration in panels. Choi (2001) proposes two other test statistics
besides Fisher’s inverse chi-square test statistic P. The first is the inverse normal
test Z = 1√

N

∑N
i=1 �−1(pi) where � is the standard normal cumulative distribution

function. Since 0 � pi � 1, �−1(pi) is a N (0, 1) random variable and as Ti → ∞
for all i, Z ⇒ N (0, 1). The second is the logit test L =∑N

i=1 ln(
pi

1−pi
)where ln( pi

1−pi
)

has the logistic distribution with mean 0 and variance π2/3. As Ti → ∞ for all i,√
mL ⇒ t5N+4 where m = 3(5N+4)

π2N (5N+2)
. Choi (2001) echoes similar advantages for

these three combining p-values tests: (1) the cross-sectional dimension, N , can be
either finite or infinite, (2) each group can have different types of non-stochastic and
stochastic components, (3) the time- series dimension, T , can be different for each i,
and (4) the alternative hypothesis would allow some groups to have unit roots while
others may not.

When N is large, Choi (2001) proposed a modified P test,

Pm = 1

2
√
N

∑N

i=1
(−2 ln pi − 2) (12.12)

since E
[−2 ln pi

] = 2 and var
[−2 ln pi

] = 4.Applying the Lindeberg–Lévy central
limit theorem to (12.12) we get Pm ⇒ N (0, 1) as Ti → ∞ followed by N → ∞.

The distribution of the Z statistic is invariant to infinite N , and Z ⇒ N (0, 1) as Ti →
∞ and then N → ∞. Also, the distribution of

√
mL ≈

1√
π2N/3

∑N
i=1 ln(

pi
1−pi

) ⇒
N (0, 1) by the Lindeberg–Lévy central limit theorem as Ti → ∞ and then N → ∞.
Therefore, Z and

√
mL can be used without modification for infinite N . Simulation

results for N = 5, 10, 25, 50 and 100, and T = 50 and 100 show that the empirical
size of all the tests is reasonably close to the 0.05 nominal size when N is small. P
and Pm showmild size distortions atN = 100, while Z and IPS show the most stable
size. All tests become more powerful as N increases. The combined p-values tests
have superior size-adjusted power to the IPS test. In fact, the power of the Z test is
in some cases more than three times that of the IPS test. Overall, the Z test seems to
outperform the other tests and is recommended.

The combining p-values Fisher’s inverse chi-square test statistic P can be per-
formed with EViews; see Table 12.1 and empirical example 1 in Sect. 12.7. This
is also illustrated with Stata using the Penn World Table exchange rates for OECD
countries in problem 12.6. Part (e) of that problem issues the Stata command xtunit-
root fisher lnrxrate if oecd, dfuller lags(3) trend and finds that we can reject the null
of panel unit roots for ln(exchange rates) using the Fisher combining p-values test.
Stata performs the inverse chi-square test statistic P,the inverse normal test Z, and
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also the inverse logit test L, while EViews only computes the inverse chi-square test
statistic P.

Choi (2001) applied the combining p-values tests and the IPS test given in (12.7)
to panel data of monthly U.S. real exchange rates sampled from 1973:3 to 1996:3.
The combining p-values tests provided evidence in favor of the PPP hypothesis while
the IPS test did not. Choi claimed that this is due to the improved finite sample power
of the combination tests. Maddala and Wu (1999) and Maddala, Wu and Liu (2000)
find that the Fisher test is superior to the IPS test which in turn is more powerful than
the LLC test. They argue that these panel unit root tests still do not rescue the PPP
hypothesis. When allowance is made for the deficiency in the panel data unit root
tests and panel estimation methods, support for PPP turns out to be weak.

Choi (2002) considers four instrumental variable estimators of an error compo-
nent model with stationary and nearly nonstationary regressors. The remainder dis-
turbances follow an autoregressive process whose order as well as parameters vary
across individuals. The IV estimators considered include the Within-IV, Within-
IV-OLS, Within-IV-GLS, and IV-GLS estimators. Using sequential and joint limit
theories, Choi shows that, under proper conditions, all the estimators have normal
distributions in the limit as N and T → ∞. Simulation results show that the effi-
ciency rankings of the estimators crucially depend on the type of regressor and the
number of instruments. The Wald tests for coefficient restrictions keep reasonable
nominal size as N → ∞ and its power depends upon the number of instruments and
the degree of serial correlation and heterogeneity in the errors.

12.2.5 Residual-Based LMTest

Hadri (2000) derives a residual-based Lagrange multiplier (LM) test where the null
hypothesis is that there is no unit root in any of the series in the panel against the
alternative of a unit root in the panel. This is a generalization of the KPSS test from
time series to panel data. It is based on OLS residuals of yit on a constant, or on a
constant and a trend. In particular, Hadri (2000) considers the following twomodels:

yit = rit + εit i = 1, · · · ,N t = 1, . . . , T ;
and

yit = rit + βit + εit (12.13)

where rit = ri,t−1 + uit is a random walk. εit ∼ IIN(0, σ2
ε ) and uit ∼ IIN(0, σ2

μ) are
mutually independent normals that are IID across i and over t. Using back substitu-
tion, model (12.13) becomes

yit = rio + βit +
t∑

s=1

uis + εit = rio + βit + vit (12.14)

where vit =∑t
s=1 uis + εit . The stationarity hypothesis is simply H0; σ2

u = 0 in
which case vit = εit . The LM statistic is given by

LM1 = 1

N

(
N∑

i=1

1

T 2

T∑

t=1

S2it

)
/
σ̂2

ε
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where Sit =∑t
s=1 ε̂is are the partial sum of OLS residuals ε̂is from (12.14) and σ̂2

ε
is a consistent estimate of σ2

ε under the null hypothesis H0. A possible candidate is
σ̂2

ε = 1
NT

∑N
i=1
∑T

t=1 ε̂2it .
Hadri (2000) suggested an alternative LM test that allows for heteroskedasticity

across i, say σ2
εi. This is in fact

LM2 = 1

N

(
N∑

i=1

(
1

T 2

T∑

t=1

S2it
/
σ̂2

εi

))

The test statistic is given byZ = √
N (LM − ξ)/ζ and is asymptotically distributed as

N (0, 1),where ξ = 1
6 and ζ2 = 1

45 if the model only includes a constant, and ξ = 1
15

and ζ2 = 11
6300 , otherwise. Hadri (2000) shows using Monte Carlo experiments that

the empirical size of the test is close to its nominal 5% level for sufficiently large N
and T .

Hadri’s test can be performed with EViews; see Table 12.1 and empirical example
1 in Sect. 12.7. This is also illustratedwith Stata using the PennWorld Table exchange
rates for OECD countries in problem 12.6. Part (f) of that problem issues the Stata
command xtunitroot hadri lnrxrate if oecd, kernel(bartlett) trend and finds that we
can reject the null hypothesis of stationarity for ln(exchange rates) using the Hadri
test.

Shin and Snell (2006) propose amean groupKPSS test statistic based on themean
of theKPSS stationarity test statistics fromeach panel unit. These are computed using
parametric estimations of the long-run variance of the underlying serially correlated
disturbances. Using both sequential and joint asymptotic theory, they show that
the proposed statistic has a standard normal limiting distribution under the null
hypothesis of stationarity. They also emphasize that the joint asymptotic approach
predicts that unless N/T is small, the asymptotics will fail. This is confirmed by
their Monte Carlo experiments.

Extensive simulations have been conducted to explore the finite sample perfor-
mance of panel unit root tests. Choi (2001), for example, studied the small sample
properties of IPS t-bar test in (12.7) and Fisher’s test in (12.11). Choi’smajor findings
were the following:

1. The empirical sizes of the IPS and the Fisher tests are reasonably close to their
nominal size 0.05 whenN is small. But the Fisher test shows mild size distortions
at N = 100, which is expected from the asymptotic theory. Overall, the IPS t-bar
test has the most stable size.

2. In terms of the size-adjusted power, the Fisher test seems to be superior to the IPS
t-bar test.

3. When a linear time trend is included in the model, the power of all tests decrease
considerably.

Karlsson and Löthgren (2000) compare the LLC and IPS tests for various size
panels. They warn that for large T , panel unit root tests have high power and there
is the potential risk of concluding that the whole panel is stationary even when there
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is only a small proportion of stationary series in the panel. For small T , panel unit
root tests have low power and there is the potential risk of concluding that the whole
panel is nonstationary even when there is a large proportion of stationary series in
the panel. They suggest careful analysis of both the individual and panel unit root
test results to fully assess the stationarity properties of the panel.

Hlouskova andWagner (2006) perform a large-scaleMonte Carlo to study the size
and power of first generation panel unit root and stationarity tests. LLC, Harris and
Tzavalis (1999), Breitung (2000), IPS, Maddala and Wu (1999), Hadri (2000), and
Hadri and Larsson (2005) tests are considered. Size and power comparisons are per-
formed for various values of (N , T ) varying over the range (10, 15, 20, 25, 50, 100,
200) and various values ofmoving average and first-order autoregressive parameters.
They find that the panel stationarity tests of Hadri (2000), Hadri and Larsson (2005)
perform poorly. The null hypothesis of stationarity is rejected as soon as sizeable
serial correlation of either the moving average or first-order autoregressive type are
present. The picture for the panel unit root tests shows no dominant performance of
one test over the others for all cases considered.

12.3 Panel Unit Roots Tests Allowing for Cross-Sectional
Dependence

Pesaran (2004) suggests a simple test of error cross-section dependence (CD) that is
applicable to a variety of panel models including stationary and unit root dynamic
heterogeneous panels with short T and large N . The proposed test is based on an
average of pair-wise correlation coefficients of OLS residuals from the individual
regressions in the panel rather than their squares as in the Breusch–Pagan LM test:

CD =
√

2T

N (N − 1)

⎛

⎝
N−1∑

i=1

N∑

j=i+1

ρ̂ij

⎞

⎠

where ρ̂ij =∑T
t=1 eitejt/(

∑T
t=1 e

2
it)

1/2(
∑T

t=1 e
2
jt)

1/2,with eit denoting theOLS resid-
uals based on T observations for each i = 1, . . . ,N . Under the null hypothesis
of cross-section independence CD ∼ N (0, 1). Monte Carlo experiments show that
the standard Breusch–Pagan LM test performs badly for N > T panels, whereas
Pesaran’s CD test performs well even for small T and largeN . This can be computed
in Stata using the command xtcd. This is illustrated using the Penn World Table
exchange rates for OECD countries in problem 12.6, part (g). The Stata command
xtcd lnrxrate if oecd yields an observedCD test statistic of 56.55 which is significant.

Dynamic factor models have been used to capture cross-section correlation. In
fact, factor models have been used to study world business cycles as well as common
macro-shocks like international financial crises or oil price shocks. Factor models
also offer a significant reduction in the number of sources of cross-sectional depen-
dence in panel data, and they allow for heterogeneous response to common shocks
through heterogeneous factor loadings. For example, Moon and Perron (2004) con-
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sider the following model:

yit = αi + y0it
y0it = ρiy

0
i,t−1 + εit

where εit are unobservable error terms with a factor structure and αi are fixed effects.
εit is generated byM unobservable random factors ft and idiosyncratic shocks eit as
follows:

εit = �′
ift + eit

where�i are nonrandom factor loading coefficient vectors and the number of factors
M is unknown. Each εit contains the common random factor ft , generating the cor-
relation among the cross-sectional units of εit and yit . The extent of the correlation
is determined by the factor loading coefficients �i, i.e., E(yityjt) = �′

iE(ft f ′
t )�j.

Moon and Perron treat the factors as nuisance parameters and suggest pooling defac-
tored data to construct a unit root test. Let Q� be the matrix projecting onto the
space orthogonal to the factor loadings. The defactored data is YQ� and the defac-
tored residuals eQ� no longer have cross-sectional dependence, where Y is a T × N
matrix whose ith column contains the observations for cross-sectional unit i.

Let σ2
e,i be the variance of eit , w

2
e,i be the long-run variance of eit , and λe,i be the

one-sided long-run variance of eit . Also, let σ2
e , w

2
e , and λe be their cross-sectional

averages, and φ4
e be the cross-sectional average of w

4
e,i. The pooled bias-correlated

estimate of ρ is

ρ̂+
pool = tr(Y−1Q�Y ′) − NTλN

e

tr(Y−1Q�Y ′−1)

where Y−1 is the matrix of lagged data. Moon and Perron suggest two statistics to
test H0; ρi = 1 for all i = 1, . . . ,M against the alternative hypothesis HA; ρi < 1
for some i. These are

ta =
√
NT (̂ρ+

pool − 1)
√

2φ4
e

w4
e

and

tb = √
NT (̂ρ+

pool − 1)

√
1

NT 2 tr (Y−1Q�Y ′−1)
w2
e

φ4
e
.

These tests have a standard N (0, 1) limiting distribution where N and T tend to
infinity such that (N/T ) → 0.Moon and Perron also show that estimating the factors
by principal components and replacing w2

e and φ4
e by consistent estimates lead to

feasible statistics with the same limiting distribution.
Phillips and Sul (2003) consider the following common time factor model on the

disturbances that can impact individual series differently

uit = δiθt + εit

where θt ∼ IIN(0, 1) across time. δi are “idiosyncratic share” parameters that mea-
sure the impact of the common time effects on series i. εit ∼ IIN(0, σ2

i ) over t, with
εit independent of εjs and θs for all i �= j and for all s, t. This model is in effect a
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one-factor model which is independently distributed over time. E(uitujs) = δiδj and
there is no cross-sectional correlation if δi = 0 for all i, and identical cross-section
correlation when δi = δj = δ0 for all i, j. Phillips and Sul propose an orthogonal-
ization procedure based on iterated method of moments estimation to eliminate the
common factor which is different from principal components. They suggest a series
of unit root tests based on these orthogonalized data. The statistic that performs best
in their simulation is a combination of p-values of individual unit root tests as in Choi
(2001), i.e., Z = 1√

N

∑N−1
i=1 �−1(pi). The sum is over N − 1 components, since the

orthogonalization they propose reduces the cross-sectional dimension by 1. The null
hypothesis is rejected for large values of the Z-statistic.

Bai and Ng (2004) consider the following dynamic factor model:

yit = αi + �′
ift + y0it

y0it = ρiy
0
i,t−1 + εit

They test separately the stationarity of the factors and the idiosyncratic compo-
nent. To do so, they obtain consistent estimates of the factors regardless of whether
residuals are stationary or not. They accomplish this by estimating factors on first-
differenced data and cumulating these estimated factors. Bai andNg suggest pooling
results from individual ADF tests on the estimated defactored data by combining p-
values as in Maddala and Wu (1999) and Choi (2001):

Pc
ê = −2

∑N
i=1 ln pcê(i) − 2N√

4N

d→ N (0, 1)

where pcê(i) is the p-value of the ADF test (without any deterministic component)
on the estimated idiosyncratic shock for cross-section i. The Bai and Ng (2004) test
is available in EViews and is applied to the purchasing power parity example in
Sect. 12.7.

Choi (2002) uses an error component model given by

yit = αi + ft + y0it
y0it = ρiy

0
i,t−1 + εit .

This is a restricted factor model where the cross-sections respond homogeneously to
the single common factor ft in contrast to the factor models considered above. Choi
suggests demeaning the data by GLS as in Elliott, Rothenberg and Stock (1996)
and taking cross-sectional means to obtain a new variable ỹit � y0it − y0i1 which is
independent in the cross-sectional dimension as both N and T tend to infinity. Choi
combines p-values from individual ADF tests as in Choi (2001). The resulting tests
have a standard N (0, 1) distribution. In addition, Choi suggests using an ADF test
for the hypothesis that the common component ft is nonstationary. To do so, he
proposes using the cross-sectional means (at each t) of the residuals from the GLS
regression used to demean the data, i.e.,

f̂t = 1

N

N∑

i=1

(yit − α̂i).

Pesaran (2007) suggests a simplerwayof getting rid of cross-sectional dependence
than estimating the factor loading. Hismethod is based on augmenting the usual ADF
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regression with the lagged cross-sectional mean and its first difference to capture the
cross-sectional dependence that arises through a single factor model. This is called
the cross-sectionally augmented Dickey–Fuller (CADF) test. This simple CADF
regression is

�yit = αi + ρ∗
i yi,t−1 + d0yt−1 + d1�yt + εit

where yt is the average at time t of all N observations. The presence of the lagged
cross-sectional average and its first-difference accounts for the cross-sectional depen-
dence through a factor structure. If there is serial correlation in the error term or the
factor, the regression must be augmented as usual in the univariate case, but lagged
first differences of both yit and yt must be added which leads to

�yit = αi + ρ∗
i yi,t−1 + d0yt−1 +

p∑

j=0

dj+1�yt−j +
p∑

k=1

ck�yi,t−k + εit

where the degree of augmentation can be chosen by an information criterion or
sequential testing. After running this CADF regression for each unit i in the panel,
Pesaran averages the t-statistics on the lagged value (called CADFi) to obtain the
CIPS statistics

CIPS = 1

N

N∑

i=1

CADFi.

The joint asymptotic limit of the CIPS statistic is nonstandard and critical values are
provided for various choices of N and T . The t-tests based on this regression should
be devoid of �′

ift in the limit and therefore free of cross-sectional dependence. The
limiting distribution of these tests are different from the Dickey–Fuller distribution
due to the presence of the cross-sectional average of the lagged level. Pesaran uses
a truncated version of the IPS test that avoids the problem of moment calculation.
In addition, the t-tests are used to formulate a combination test based on the inverse
normal principle. Experimental results show that these tests perform well. The CIPS
test can be performed with Stata using the command multipurt which uses xtfisher
and producesMaddala andWu (1999) p-values aswell as CIPS test. This is illustrated
using the Penn World Table exchange rates for OECD countries in problem 12.6.
Part (h) of that problem issues the Stata command multipurt lnrxrate if oecd, lags(3)
and finds that we cannot reject the null hypothesis of panel unit root for ln(exchange
rates) using the CIPS test. EViews also has the CIPS test and this is applied to the
purchasing power parity example in Sect. 12.7.

Baltagi, Bresson and Pirotte (2007) study the performance of several panel unit
root tests when spatial effects are present that account for cross-section correlation.
See Chap. 13 for a review of spatial correlation in panel data. Unlike factor models,
the structure of the spatial dependence can be related to location and distance, both
in a geographic space as well as a more general economic or social network space.
Using some commonly used spatial error processes, the spatial autoregressive (SAR)
and the spatial moving average (SMA) error process and the spatial error components
model (SEC), Baltagi, Bresson and Pirotte (2007) performMonte Carlo simulations
to compare the performance of panel unit root tests. These include first generation
panel unit root tests that ignore cross-section correlation like LLC, IPS, Breitung
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(2000), the Maddala and Wu test (1999), and the Choi tests (2001), also, second
generation panel unit root tests that account for cross-section correlation including
the Chang IV test (2002), the Choi (2002) test, the Phillips and Sul test (2003), and
the Pesaran test (2007). Note that while the alternative hypothesis may be different
among these panel unit root tests, the null hypothesis is the same:H0 : ρi (= ρ) = 1,
for all i = 1, 2, . . . ,N . The results show that there can be considerable size distor-
tions in panel unit root tests when spatial dependence is present. Tests that explicitly
allow for the cross-sectional dependence have better performance than other classic
panel unit root tests that assume cross-sectional independence. For the SAR specifi-
cation, we get the largest size distortions of the panel unit root tests. In contrast, the
SMA specification of cross-sectional dependence leads to lower size distortions. For
the applied econometrician, the message from these experiments is that size distor-
tions of panel unit root tests is highly sensitive to the underlying spatial dependence
specification and to the sparseness of the spatial weight matrix.

Gengenbach, Palm and Urbain (2010) compare the small sample performance of
several panel unit root tests that account for cross-section dependence with up to
two common factors. These include Pesaran (2007), Moon and Perron (2004), Bai
and Ng (2004), among others. They also apply these tests to an empirical study of
purchasing power parity. Among their findings is that the test procedures of Bai and
Ng (2004),Moon and Perron (2004) exhibit size distortions if the number of common
factors is misspecified.

Wang et al. (2010) generalize the nonlinear IV panel unit root test of Chang
(2002) to the case where there exist some common factors in the panel. Following
Bai and Ng (2004), they eliminate cross-sectional dependence using the method of
principal components. Next, they apply Chang (2002) nonlinear IV test to the treated
data. They show that this modified Chang test, like the original Chang test, has a
standard normal limiting distribution under the null hypothesis of panel unit root.
Their simulation results suggest that this modified test performs better than Chang’s
original test when the cross-sectional dependence is moderate to high.

12.4 Spurious Regression in Panel Data

Kao (1999) and Phillips and Moon (1999) derived the asymptotic distributions of
the least squares dummy variable estimator and various conventional statistics from
the spurious regression in panel data.

Suppose that yt and Xt are unit root nonstationary time-series variables with long-
run variance matrix

� =
(

�yy �yx

�xy �xx

)

Then β = �yx�
−1
xx can be interpreted as a classical long-run regression coefficient

relating the two nonstationary variables yt and Xt . When � has deficient rank, β
is a cointegrating coefficient because yt − βXt is stationary. Even in the absence of
time-series cointegration, β is a measure of a statistical long-run correlation between
yt and Xt . Phillips and Moon (1999) extend this concept to panel regressions with
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nonstationary data. In this case, heterogeneity across individuals i can be charac-
terized by heterogeneous long-run covariance matrices �i. Then �i are randomly
drawn from a population with mean � = E(�i). In this case

β = E(�yixi )E(�xixi )
−1 = �yx�

−1
xx

is the regression coefficient corresponding to the average long-run covariance
matrix �.

Phillips and Moon (1999) study various regressions between two panel vectors
that may or may not have cointegrating relations, and present a fundamental frame-
work for studying sequential and joint limit theories in nonstationary panel data.
The panel models considered allow for four cases: (i) panel spurious regression,
where there is no time-series cointegration, (ii) heterogeneous panel cointegration,
where each individual has its own specific cointegration relation, (iii) homogeneous
panel cointegration where individuals have the same cointegration relation, and (iv)
near-homogeneous panel cointegration, where individuals have slightly different
cointegration relations determined by the value of a localizing parameter. Phillips
and Moon (1999) investigated these four models and developed panel asymptotics
for regression coefficients and tests using both sequential and joint limit arguments.
In all cases considered, the pooled estimator is consistent and has a normal limiting
distribution. In fact, for the spurious panel regression, Phillips and Moon (1999)
showed that under quite weak regularity conditions, the pooled least squares esti-
mator of the slope coefficient β is

√
N consistent for the long-run average relation

parameter β and has a limiting normal distribution. They also showed that a limiting
cross-section regression with time averaged data is also

√
N consistent for β and has

a limiting normal distribution. This is different from the pure time-series spurious
regression where the limit of the OLS estimator of β is a nondegenerate random
variate that is a functional of Brownian motions and is therefore not consistent for β.
The idea in Phillips and Moon (1999) is that independent cross-section data in the
panel adds information and this leads to a stronger overall signal than the pure time-
series case. Pesaran and Smith (1995) studied limiting cross-section regressions with
time averaged data and established consistency with restrictive assumptions on the
heterogeneous panel model. This differs from Phillips and Moon (1999) in that the
former use an average of the cointegrating coefficients which is different from the
long-run average regression coefficient. This requires the existence of cointegrat-
ing time-series relations, whereas the long-run average regression coefficient β is
defined irrespective of the existence of individual cointegrating relations and relies
only on the long-run average variance matrix of the panel. Phillips and Moon (1999)
also showed that for the homogeneous and near-homogeneous cointegration cases, a
consistent estimator of the long-run regression coefficient can be constructed which
they call a pooled FM estimator. They showed that this estimator has faster conver-
gence rate than the simple cross-section and time- series estimators. Pedroni (2000)
and Kao and Chiang (2000) also investigated limit theories for various estimators of
the homogeneous panel cointegration regression model. See also Phillips and Moon
(2000) for a concise review. In fact, the latter paper also shows how to extend the
above ideas to models with individual effects in the data generating process. For the
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panel spurious regression with individual-specific deterministic trends, estimates of
the trend coefficients are obtained in the first step and the detrended data is pooled
and used in least squares regression to estimate β in the second step. Two different
detrending procedures are used based on OLS and GLS regressions. OLS detrending
leads to an asymptotically more efficient estimator of the long-run average coeffi-
cient β in pooled regression than GLS detrending. Phillips and Moon (2000) explain
that “the residuals after time series GLS detrending have more cross section varia-
tion than they do after OLS detrending and this produces great variation in the limit
distribution of the pooled regression estimator of the long run average coefficient.”

Moon and Phillips (1999) investigate the asymptotic properties of the Gaussian
MLE of the localizing parameter in local to unity dynamic panel regression models
with deterministic and stochastic trends. Moon and Phillips find that for the homo-
geneous trend model, the GaussianMLE of the common localizing parameter is

√
N

consistent, while for the heterogeneous trends model, it is inconsistent. The latter
inconsistency is due to the presence of an infinite number of incidental parameters
(as N → ∞ ) for the individual trends. Unlike the fixed effects dynamic panel data
model where this inconsistency due to the incidental parameter problem disappears
as T → ∞, the inconsistency of the localizing parameter in the Moon and Phillips
model persists even when both N and T go to infinity. Moon and Phillips (2000)
show that the local to unity parameter in a simple panel near-integrated regression
model can be consistently estimated using pooled OLS. When deterministic trends
are present, pooled panel estimators of the localizing parameter are asymptotically
biased. Some techniques are developed to obtain consistent estimates of this localiz-
ing parameter but only in the region where it is negative. These methods are used to
show how to perform efficient trend extraction for panel data. They are also used to
deliver consistent estimates of distancing parameters in nonstationary panel models
where the initial conditions are in the distant past. The joint asymptotics in the paper
rely on N/T → 0, so that the results are most relevant in panels where T is large
relative to N .

Consider the nonstationary dynamic panel data model

yit = αi,0 + αi,1t + y0it
y0it = βy0i,t−1 + ui,t

with β = exp(c/T ). Moon and Phillips (2000) focused on estimating the localizing
parameter c in β which characterizes the local behavior of the unit root process.
Information about c is useful for the analysis of the power properties of unit root
tests, cointegration tests, the construction of confidence intervals for the long-run
autoregressive coefficient, the development of efficient detrending methods, and the
construction of point optimal invariant tests for a unit root and cointegrating rank.
Moon and Phillips (2000) show that when c ≤ 0, it is possible to estimate this local
parameter consistently using panel data. In turn, they show how to extract the deter-
ministic trend efficiently using this consistent estimate of c.

Sun (2004) proposed a new class of estimators of the long-run average relationship
in nonstationary panel time series. The estimators are based on the long-run average
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variance estimate using bandwidth equal to T . It is shown that the new estimators
are consistent and asymptotically normal under both the sequential limit, wherein
T → ∞ followed by N → ∞, and the joint limit where T , N → ∞ simultaneously.
The rate condition for the joint limit to hold is relaxed to N 1/2/T → 0, which is
less restrictive than the rate condition N/T → 0, as imposed by Moon and Phillips
(1999).

12.5 Panel Cointegration Tests

Like the panel unit root tests, panel cointegration tests can be motivated by the
search for more powerful tests than those obtained by applying individual time-
series cointegration tests. The latter tests are known to have low power especially
for short T and short span of the data which is often limited to post-war annual data.
In the case of purchasing power parity and convergence in growth, economists pool
data on similar countries, like G7, OECD or Euro countries, in the hopes of adding
cross-sectional variation to the data that will increase the power of unit root tests or
panel cointegration tests.

12.5.1 Residual-Based DF and ADFTests (KaoTests)

Consider the panel regression model

yit = x′
itβ + z′itγ + eit, (12.15)

where yit and xit are I(1) and non-cointegrated. For zit = {μi}, Kao (1999) proposed
DF- and ADF-type unit root tests for eit as a test for the null of no cointegration. The
DF-type tests can be calculated from the fixed effects residuals

êit = ρ̂eit−1 + νit, (12.16)

where êit = ỹit − x̃
′
it β̂ and ỹit = yit − yi.. In order to test the null hypothesis of no

cointegration, the null can be written as H0: ρ = 1. The OLS estimate of ρ and the
t -statistic are given as

ρ̂ =
∑N

i=1
∑T

t=2 êit̂eit−1∑N
i=1
∑T

t=2 ê
2
it

and

tρ =
(̂ρ − 1)

√∑N
i=1
∑T

t=2 ê
2
it−1

se
, (12.17)
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where s2e = 1
NT

∑N
i=1
∑T

t=2 (̂eit − ρ̂̂eit−1)
2 . Kao proposed the following four DF

type tests:

DFρ =
√
NT (̂ρ − 1) + 3

√
N√

10.2
,

DFt = √
1.25tρ + √

1.875N ,

DF∗
ρ =

√
NT (̂ρ − 1) + 3

√
N σ̂2

ν

σ̂2
0ν√

3 + 36σ̂4
ν

5σ̂4
0ν

,

and

DF∗
t =

tρ +
√
6N σ̂ν

2σ̂0ν√
σ̂2
0ν

2σ̂2
ν

+ 3σ̂2
ν

10σ̂2
0ν

,

where σ̂2
ν = ∑̂yy − ∑̂yx

∑̂−1
xx and σ̂2

0ν = �̂yy − �̂yx�̂
−1
xx . While DFρ and DFt are

based on the strong exogeneity of the regressors and errors, DF∗
ρ and DF∗

t are for
the cointegration with endogenous relationship between regressors and errors. For
the ADF test, we can run the following regression:

êit = ρ̂eit−1 +
p∑

j=1

ϑj�̂eit−j + νitp. (12.18)

With the null hypothesis of no cointegration, theADF test statistics can be constructed
as

ADF =
tADF +

√
6N σ̂ν

2σ̂0ν√
σ̂2
0ν

2σ̂2
ν

+ 3σ̂2
ν

10σ̂2
0ν

(12.19)

where tADF is the t-statistic of ρ in (12.18). The asymptotic distributions ofDFρ,DFt ,
DF∗

ρ ,DF
∗
t , andADF converge to a standard normal distributionN (0, 1) by sequential

limit theory. Kao (1999) cointegration test can be performed with EViews; see Table
12.3 and empirical example 2 in Sect. 12.7.

12.5.2 Residual-Based LMTest

McCoskey and Kao (1998) derived a residual-based test for the null of cointegration
rather than the null of no cointegration in panels. This test is an extension of the LM
test and the locally best invariant (LBI) test for an MA unit root in the time-series
literature. Under the null, the asymptotics no longer depend on the asymptotic prop-
erties of the estimating spurious regression, rather the asymptotics of the estimation
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of a cointegrated relationship are needed. For models which allow the cointegrating
vector to change across the cross-sectional observations, the asymptotics depend
merely on the time-series results as each cross-section is estimated independently.
For models with common slopes, the estimation is done jointly and therefore the
asymptotic theory is based on the joint estimation of a cointegrated relationship in
panel data.

For the residual based test of the null of cointegration, it is necessary to use an
efficient estimation technique of cointegrated variables. In the time-series literature a
variety of methods have been shown to be efficient asymptotically. These include the
fullymodified (FM)-OLS estimator and the dynamic least squares (DOLS) estimator.
For panel data, Kao and Chiang (2000) showed that both the FM and DOLSmethods
can produce estimators which are asymptotically normally distributed with zero
means.

The model presented allows for varying slopes and intercepts:

yit = αi + x′
itβi + eit, (12.20)

xit = xit−1 + εit (12.21)

eit = γit + uit, (12.22)

and
γit = γit−1 + θuit,

where uit are IID
(
0,σ2

u

)
. The null hypothesis of cointegration is equivalent to θ = 0.

The test statistic proposed by McCoskey and Kao (1998) is defined as follows:

LM =
1

N

∑N
i=1

1

T 2

∑T
t=1 S

2
it

σ̂2
e

, (12.23)

where Sit is partial sum process of the residuals, Sit =∑t
j=1 êij, and σ̂2

e is defined
in McCoskey and Kao. The asymptotic result for the test is

√
N (LM − μν) ⇒ N (0, σ2

ν). (12.24)

Themoments,μν andσ2
ν, can be found throughMonteCarlo simulation. The limiting

distribution of LM is then free of nuisance parameters and robust to heteroskedas-
ticity. However, simulation studies have shown that the asymptotic theory often pro-
vides a poor approximation to the empirical test distribution; seeWesterlund (2005b,
2006a). Also, this test is not equipped to deal with cross-sectional dependence.West-
erlund (2006a) proposes a simple procedure to reduce the size distortions of the panel
LM test for cointegration suggested by McCoskey and Kao (1998). The procedure
splits the sample into even and odd numbered observations, and applies the panel
LM test to each subsample. The two tests are then combined using the Bonferroni
principle. The Monte Carlo evidence suggests that this procedure can lead to sub-
stantial reduction in size distortions when the equilibrium errors are autoregressive.
Westerlund (2006c) also extends the McCoskey and Kao (1998) LM test by allow-
ing for the possibility of multiple structural breaks in both the level and trend of a
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cointegrated panel regression. Test statistics are derived when the locations of the
breaks are known a priori and when they are determined endogenously from the data.
Westerlund applies these tests to re-examine the solvency of the current account, and
finds evidence of cointegration between saving and investment once a level break is
accommodated.

For another application, see McCoskey and Kao (1998) who revisited the rela-
tionship between urbanization levels and output. In fact, they tested the long-run
stability of a production function including urbanization using nonstationary panel
data techniques. They applied the IPS test described in Sect. 12.2.2, and the LM test
given by (12.23). Their results show that a long-run relationship between urbaniza-
tion, output per worker, and capital per worker cannot be rejected for the sample
of 30 developing countries or the sample of 22 developed countries over the period
1965–89. They do find, however, that the sign and magnitude of the impact of urban-
ization vary considerably across the countries. These results offer new insights and
potential for dynamic urban models rather than the simple cross-section approach.

12.5.3 Pedroni Tests

Pedroni (2000, 2004) also proposed several tests for the null hypothesis of no coin-
tegration in a panel data model that allow for considerable heterogeneity. His tests
can be classified into two categories. The first set is similar to the tests discussed
above, and involve averaging test statistics for cointegration in the time series across
cross-sections. For the second set, the averaging is done in pieces so that the limiting
distributions are based on limits of piecewise numerator and denominator terms.

The first set of statistics includes a form of the average of the Phillips and Ouliaris
(1990) statistic:

Z̃ρ =
N∑

i=1

∑T
t=1(êit−1�êit − λ̂i)

(
∑T

t=1 ê
2
it−1)

, (12.25)

where êit is estimated from (12.15), and λ̂i = 1
2

(
σ̂2
i − ŝ2i

)
, for which σ̂2

i and ŝ2i
are individual long-run and contemporaneous variances of the residual êit . For his
second set of statistics, Pedroni defines four panel variance ratio statistics. Let �̂i be
a consistent estimate of�i, the long-run variance–covariance matrix. Define L̂i to be
the lower triangular Cholesky composition of �̂i such that in the scalar case L̂22i =
σ̂ε and L̂11i = σ̂2

u − σ̂2
uε

σ̂2
ε

is the long-run conditional variance. Here we consider only

one of these statistics:

Zt
ρ̂NT

=
∑ N

i=1

∑T
t=2 L̂

−2
11i(êit−1�êit − λ̂i)√

σ̃2
NT (
∑N

i=1
∑ T

t=2L̂
−2
11i ê

2
it−1)

, (12.26)

where σ̃NT = 1

N

∑N
i=1

σ̂2
i

L̂211i
.
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It should be noted that Pedroni bases his test on the average of the numerator and
denominator terms, respectively, rather than the average for the statistic as a whole.
Using results on convergence of functionals of Brownian motion, Pedroni finds the
following result:

Zt
ρ̂NT

+ 1.73
√
N ⇒ N (0, 0.93).

Note that this distribution applies to the model including an intercept and not
including a time trend. Asymptotic results for other model specifications can be
found in Pedroni (2000). The intuition on these tests with varying slopes is not
straightforward. The convergence in distribution is based on individual convergence
of the numerator and denominator terms. What is the intuition of rejection of the
null hypothesis? Using the average of the overall test statistic allows more ease in
interpretation: rejection of the null hypothesis means that enough of the individual
cross-sections have statistics “far away” from the means predicted by theory were
they to be generated under the null.

Pedroni (1999) derived asymptotic distributions and critical values for several
residual-based tests of the null of no cointegration in panels where there are multiple
regressors. The model includes regressions with individual-specific fixed effects and
time trends. Considerable heterogeneity is allowed across individual members of the
panel with regards to the associated cointegrating vectors and the dynamics of the
underlying error process. By comparing results from individual countries and the
panel as a whole, Pedroni (2001) rejects the strong PPP hypothesis and finds that no
degree of cross-sectional dependency would be sufficient to overturn the rejection of
strong PPP. Pedroni (1999, 2004) cointegration tests can be performed with EViews;
see Table 12.4 and empirical example 2 in Sect. 12.7.

12.5.4 Likelihood-Based Cointegration Test

Larsson, Lyhagen and Löthgren (2001) presented a likelihood-based (LR) panel test
of cointegrating rank in heterogeneous panel models based on the average of the
individual rank trace statistics developed by Johansen (1995). The proposed LR-bar
statistic is very similar to the IPS t-bar statistic in (12.7)–(12.10). In Monte Carlo
simulation, Larsson, Lyhagen and Löthgren investigated the small sample properties
of the standardized LR-bar statistic. They found that the proposed test requires a large
time-series dimension. Even if the panel has a large cross-sectional dimension, the
size of the testwill be severely distorted. EViews computes aFisher-typeMaddala and
Wu (1999) combiningp-values cointegration test based on the Johansen cointegration
trace test and maximum eigenvalue test; see Table 12.5 and empirical example 2
in Sect. 12.7. Larsson and Lyhagen (2007) extend Larsson, Lyhagen and Löthgren
(2001) to the case where cross-sectional correlation is allowed.

Groen and Kleibergen (2003) proposed a likelihood-based framework for cointe-
grating analysis in panels of a fixed number of vector error correction models. This
improves on Larsson, Lyhagen and Löthgren (2001) since it allows cross-sectional
correlation. Maximum likelihood estimators of the cointegrating vectors are con-
structed using iterated generalized method of moments (GMM) estimators. Using
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these estimators, Groen and Kleibergen construct likelihood ratio statistics to test
for a common cointegration rank across the individual vector error correction mod-
els, both with heterogeneous and homogeneous cointegrating vectors. Groen and
Kleibergen (2003) applied this likelihood ratio test to a data set of exchange rates
and appropriate monetary fundamentals. They found strong evidence for the validity
of the monetary exchange rate model within a panel of vector correction models for
three major European countries, whereas the results based on individual vector error
correction models for each of these countries separately are less supportive.

Banerjee, Marcellino and Osbat (2004) show that both univariate andmultivariate
panel cointegration tests can be substantially over-sized in the presence of cross-unit
cointegration. They argue that the panel cointegration literature assume a unique
cointegrating vector in each unit, either homogeneous (Kao 1999) or heterogeneous
(Pedroni 1999) across the units of the panel. Also, the studies by Groen and Kleiber-
gen (2003) and Larsson, Lyhagen and Löthgren (2001) that developed techniques, a
la Johansen’s maximum likelihood method, allow for multiple cointegrating vectors
in each unit. However, these models allow for cross-unit dependence through the
effects of the dynamics of short run, but no account is taken of the possibility of
long-run cross-unit dependence induced by the existence of cross-unit cointegrating
relationships. Banerjee, Marcellino and Osbat (2004) show through Monte Carlo
simulations that the consequences of using panel cointegrated methods when the
restriction of no cross-unit cointegration is violated are dramatic. They also con-
firm the gains in efficiency when the use of the panel approach is justified. Hence,
they suggest testing for the validity of no cross-unit cointegration hypothesis prior
to applying panel cointegration methods. Specifically, they recommend the extrac-
tion of the common trends from each unit using the Johansen ML method, and then
testing for cointegration among these trends to rule out the existence of cross-unit
cointegration. Their simulation results show that this procedure works well in prac-
tice.

Gengenbach, Palm and Urbain (2006) analyze the properties of Kao (1999) and
Pedroni (1999) tests for non-cointegration under cross-sectional correlation using the
unobserved common factor structure of Bai and Ng (2004). They show that under
this common factor model, these test statistics are no longer asymptotically normal,
and converge at the rate T rather than

√
NT . They suggest extracting the common

factors and individual components from the observed data directly and then testing
for no cointegration using residual-based panel tests applied to the defactored data.

12.5.5 Finite Sample Properties

McCoskey and Kao (1998) conducted Monte Carlo experiments to compare the size
and power of different residual-based tests for cointegration in heterogeneous panel
data: varying slopes and varying intercepts. Two of the tests are constructed under
the null hypothesis of no cointegration. These tests are based on the average ADF
test and Pedroni’s pooled tests in (12.25)–(12.26). The third test is based on the null
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hypothesis of cointegration which is based on the McCoskey and Kao LM test in
(12.23). The test of the null hypothesis was originally proposed in response to the
low power of the tests of the null of no cointegration, especially in the time-series
case. Further, in cases where economic theory predicted a long-run steady- state
relationship, it seemed that a test of the null of cointegration rather than the null
of no cointegration would be appropriate. The results from the Monte Carlo study
showed that the McCoskey and Kao LM test outperforms the other two tests.

Gutierrez (2003) performed Monte Carlo experiments and compared some of the
panel cointegration tests proposed by Kao (1999), Pedroni (2000), Larsson, Lyha-
gen and Löthgren (2001). The Kao and Pedroni tests assume that either all the
relationships are not cointegrated or all the relationships are cointegrated, while the
Larsson, Lyhagen and Löthgren (2001) test assumes that all N cross-sections have
at most r cointegrating relationships against the alternative of a higher rank. Gutier-
rez (2003) finds that for a large T panel, when the power of these tests is high, the
whole panel may be erroneously modeled as cointegrated when only a small fraction
of the relationships are actually cointegrated. Also, for a small T panel, when the
power of these tests is low, there is a risk of modeling the whole panel as not cointe-
grated even when a large fraction of the relationships are actually cointegrated. For
N = 10, 25, 100;T = 10, 50, 100 and the proportion of cointegrated relationships
varying between 0, 0.1, 0.2, . . . , 1, Gutierrez (2003) finds that for small T = 10,
and as N increases, Kao’s tests show higher power than the Pedroni tests. But, this
power is still fairly low even when N = 100. As T gets large, the Pedroni tests have
higher power than the Kao tests. Both tests performed better than the the Larsson,
Lyhagen and Löthgren (2001) LR-bar test.

Wagner and Hlouskova (2010) compare the performance of both single equation
and system panel cointegration tests. The tests considered include those of Pedroni
(1999, 2004), Westerlund (2005a), Larsson, Lyhagen and Löthgren (2001), Breitung
(2005). Among the single equation tests for the null hypothesis of no cointegration
two of Pedroni’s tests applying the ADF principle perform best, whereas all other
tests are severely undersized and have very low power in many circumstances. This
power was dismal for T ≤ 25. Pedroni’s tests are also the ones least affected by the
presence of an I(2) component, short-run cross-sectional correlation or cross-unit
cointegration. Both of Westerlund’s tests were severely undersized. The system tests
show very bad performance for the small values of T . They also suffer to a certain
extent from a too large cross-sectional dimension. The use of finite sample correc-
tion factors only partly overcomes these problems. Both system tests are sensitive
with respect to the presence of an I(2) component and are not very sensitive with
respect to stable autoregressive roots approaching the unit circle. The studied forms
of cross-sectional correlation and cross-unit cointegration do not lead to a sizeable
deterioration of the tests’ performance compared to the baseline case.
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12.6 Estimation and Inference in Panel CointegrationModels

For panel cointegrated regressionmodels, the asymptotic properties of the estimators
of the regression coefficients and the associated statistical tests are different from
those of the time-series cointegration regression models. Some of these differences
have been emphasized byKao andChiang (2000), Phillips andMoon (1999), Pedroni
(2000, 2004) and Mark and Sul (2003), to mention a few. The panel cointegration
models are directed at studying questions that surround long-run economic relation-
ships typically encountered in macroeconomic and financial data. Such a long-run
relationship is often predicted by economic theory and it is then of central interest to
estimate the regression coefficients and test whether they satisfy theoretical restric-
tions. Phillips and Moon (1999) and Pedroni (2000) proposed a fully modified (FM)
estimator, while Kao and Chiang (2000) propose an alternative approach based on a
panel dynamic least squares (DOLS) estimator.

Kao and Chiang (2000) consider the following panel regression:

yit = x′
itβ + z′itγ + uit, (12.27)

where {yit} are 1 × 1, β is a k × 1 vector of the slope parameters, zit is the deter-
ministic component, and {uit} are the stationary disturbance terms. {xit} are k × 1
integrated processes of order one for all i, where

xit = xit−1 + εit .

The assumption of cross-sectional independence is maintained. Under these specifi-
cations, (12.27) describes a system of cointegrated regressions, i.e., yit is cointegrated
with xit . The OLS estimator of β is

β̂OLS =
[

N∑

i=1

T∑

t=1

x̃it̃x
′
it

]−1 [ N∑

i=1

T∑

t=1

x̃it̃yit

]
. (12.28)

It is easy to show that

1

N

∑N
i=1

1
T 2

∑T
t=1 x̃it̃x

′
it

p→ lim
N→∞

1

N

∑N
i=1 E [ζ2i] , (12.29)

and
1

N

N∑

i=1

1

T

T∑

t=1

x̃it ũit ⇒ lim
N→∞

1

N

N∑

i=1

E [ζ1i] (12.30)

using sequential limit theory, where

zit E [ζ1i] E [ζ2i]
0 0 1

2
1 0 0
μi − 1

2�εui + �εui
1
6�εi

(μi, t) − 1
2�εui + �εui

1
15�εi

(12.31)
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and

�i =
[

�ui �uεi

�εui �εi

]

is the long-run covariance matrix of
(
uit, ε′

it

)′, also �i =
[

�ui �uεi

�εui �εi

]
is the one-

sided long-run covariance. For example, when zit = {μi} , we get
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where �ε = lim
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This shows that β̂OLS is inconsistent using panel data. This is in sharp contrast with
the consistency of β̂OLS in time series under similar circumstances. In order to deal
with this bias, Kao and Chiang (2000) suggest a fully modified (FM) and DOLS
estimators in a cointegrated regression and show that their limiting distribution is
normal. Phillips and Moon (1999) and Pedroni (2000) also obtained similar results
for the FM estimator. The reader is referred to the cited papers for further details.
Kao and Chiang also investigated the finite sample properties of the OLS, FM, and
DOLS estimators. They found that (i) the OLS estimator has a non-negligible bias in
finite samples, (ii) the FM estimator does not improve much over the OLS estimator,
while (iii) the DOLS estimator may be more promising than OLS or FM estimators
in estimating the cointegrated panel regressions.

Kao, Chiang and Chen (1999) apply the asymptotic theory of panel cointegration
developed by Kao and Chiang (2000) to the Coe and Helpman (1995) international
R&D spillover regression. Using a sample of 21 OECD countries and Israel, they
re-examine the effects of domestic and foreign R&D capital stocks on total factor
productivity of these countries. They find that OLS with bias correction, the fully
modified (FM), and the dynamic OLS (DOLS) estimators produce different predic-
tions about the impact of foreign R&D on total factor productivity (TFP) although all
the estimators support the result that domestic R&D is related to TFP. Kao, Chiang
and Chen (1999) empirical results indicate that the estimated coefficients in the Coe
and Helpman’s regressions are subject to estimation bias. Given the superiority of
the DOLS over FM as suggested by Kao and Chiang (2000), Kao, Chiang and Chen
(1999). leaned toward rejecting the Coe and Helpman hypothesis that international
R&D spillovers are trade related. FM and DOLS can be performed with EViews; see
Tables12.6 and 12.7 and empirical example 2 in Sect. 12.7.

Kauppi (2000) developed a new joint limit theory where the panel data may be
cross-sectionally heterogeneous in a general way. This limit theory builds upon the
concepts of joint convergence in probability and in distribution for double-indexed
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processes by Phillips andMoon (1999) and develops new versions of the law of large
numbers and the central limit theorem that apply in panels where the data may be
cross-sectionally heterogeneous in a fairly general way. Kauppi demonstrates how
this joint limit theory can be applied to derive asymptotics for a panel regression
where the regressors are generated by a local to unit root with heterogeneous localiz-
ing coefficients across cross-sections.Kauppi discusses issues that arise in the estima-
tion and inference of panel cointegrated regressions with near-integrated regressors.
Kauppi shows that a bias corrected pooled OLS for a common cointegrating param-
eter has an asymptotic normal distribution centered on the true value irrespective of
whether the regressor has near or exact unit root. However, if the regression model
contains individual effects and/or deterministic trends, then Kauppi’s bias corrected
pooled OLS still produces asymptotic bias. Kauppi also shows that the panel FM
estimator is subject to asymptotic bias regardless of how individual effects and/or
deterministic trends are contained if the regressors are nearly rather than exactly
integrated. This indicates that much care should be taken in interpreting empirical
results achieved by the panel cointegration methods that assume exact unit roots
when near unit roots are equally plausible.

Choi (2002) studied instrumental variable estimation for an error component
model with stationary and nearly nonstationary regressors. In contrast to the time-
series literature, Choi (2002) shows that IV estimation can be used for panel data with
endogenous and nearly nonstationary regressors. To illustrate, consider the simple
panel regression

yit = α + βxit + uit,

where xit is nearly nonstationary, uit is I(0), and zt is an instrumental variable yielding
the panel IV (Within) estimator

β̂IV =
[

N∑

i=1

T∑

t=1

(xit − xi.) (zit − zi.)

]−1 [ N∑

i=1

T∑

t=1

(
yit − yi.

)
(zit − zi.)

]

Choi (2002) shows
√
NT (̂βIV − β) has the weak limit as T → ∞ of a standard-

ized sum (over i = 1, . . . ,N ) of zero mean random variables divided by a standard-
ized sum of random variables. Thus when N is large, and proper conditions hold, the
central limit theorem can be applied which leads to the asymptotic normality result
for the panel estimator. In time series, standard hypothesis testing cannot be per-
formed based on the corresponding IV estimator for β. The same intuition holds for
Within-IV-OLS, IV-GLS, and Within-IV-GLS estimators discussed in Choi (2002).
For panel regressions that allow for cross-section correlation, one can use the SUR
approach in the panel unit root test for fixed N , see Mark, Ogaki and Sul (2005) who
adopt this approach and show that the dynamic GLS estimator is most efficient. In
fact, Mark, Ogaki and Sul (2005) show that dynamic SUR is feasible for balanced
panels where N , the number of cointegrating relationships, is much smaller than
T . They show that it is applicable for both heterogeneous as well as homogeneous
cointegrating vectors. They apply this approach to the estimation of long-run cor-
relations between national investment and saving for a small panel of 12 OECD
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countries observed over 100 quarters 1970.1–1995.4. They show that the long-run
slope coefficients in the saving–investment regressions are very close to one for most
countries and hence they do not reject the hypothesis that the solvency condition is
not violated. They also apply this method to analyzing the cointegrating regressions
of the future spot exchange rate on the current forward exchange rate. Their data
are spot and 30-day forward exchange rates for the Pound, Deutschmark, and Yen
relative to the U.S. dollar from January 1975 to December 1996. They find that the
slope coefficient in this cointegrating regression to be insignificantly different from
one. Hence they conclude that the evidence for non-stationarity of excess returns is
less compelling.

Breitung (2005) proposed a two-step estimation procedure for the estimation of
a common cointegrating vector across individuals. He considers a panel VAR setup
where the long-run relationships are identical for all cross-section units. In the first
step, the parameters are estimated individually as in LLC, and in the second step, the
common long-run parameters are estimated from a pooled regression. A likelihood
ratio test for the long-run parameters as well as a test for the number of cointegrating
relationships is suggested. Monte Carlo results show that this parametric approach is
more effective in reducing the small sample bias than the FMOLS of Pedroni (2000)
and Phillips and Moon (1999) or the DOLS of Kao and Chiang (2000).

Westerlund (2005a) develops two variance ratio tests that extend Breitung’s time-
series tests to the panel case. These tests are nonparametric and allow for individual-
specific short-run dynamics, individual-specific intercept and trend terms, as well
as individual- specific slope parameters. Both tests are designed to test the null
hypothesis of no cointegration. One test is designed to test the alternative hypothesis
that the panel is cointegrated as a whole, while the other one is designed to test
the alternative hypothesis that the fraction of cointegrated units is positive. These
tests are compared in a Monte Carlo setup with tests proposed by Pedroni (2004).
The results indicate that these tests have small size distortions and good power
against highly autoregressive alternatives. TheWesterlund (2005a) cointegration test
is available in Stata using the command xtcointest. This also provides Kao’s (1999)
and Pedroni’s (1999, 2004) cointegration tests. Westerlund (2005c) examines the
small-sample performance of several information-based criteria that can be employed
to facilitate data-dependent endogeneity correction in the estimation of cointegrated
panel regressions. The Monte Carlo evidence suggests that these information-based
criteria generally perform well when T > 50. The Schwarz Information Criterion
and the Posterior Information Criterion perform the best in terms of the correct
selection frequency. Also, the evidence suggests that the criterion with best small-
sample performance also leads to the best performing estimator.

Wagner and Hlouskova (2010) also compare the performance of both single equa-
tion and system panel cointegration estimators. The estimators considered include
those developed by Phillips and Moon (1999), Pedroni (2000), Kao and Chiang
(2000), Mark and Sul (2003), Pedroni (2001), Breitung (2005). In the case of one-
dimensional cointegrating spaces, the DOLS estimator outperforms all other estima-
tors, both single equation and system estimators, even for large samples. The DOLS
estimator is also the least sensitive estimator with respect to the stable root approach-
ing the unit circle, I(2) component, cross-sectional correlation, and cross-unit coin-
tegration. For small values of T ≤ 25 and smallN ≤ 10, the system estimators are in
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many cases outperformed by the single equation estimators. Hlouskova and Wagner
present finiteT mean and variance correction factors and corresponding response sur-
face regressions for the panel cointegration tests presented in Pedroni (1999, 2004),
Westerlund (2005b), Larsson, Lyhagen and Löthgren (2001) and Breitung (2005).

In many applications, one is not only interested in the hypothesis of cointegration,
but also whether the individual cointegration parameters can be regarded as equal.
Mark and Sul (2003) suggest testing the null hypothesis of equal parameters versus
the general heterogeneous alternative by means of a simple Wald test. Westerlund
and Hess (2011) argue that theWald test has a tendency to be size distorted, rejecting
the null hypothesis too frequently. They suggest a new poolability test based on a
Hausman (1978) test comparing two estimators of the cointegration parameters—
one individual and one pooled. They test the monetary exchange rate model studied
byRapach andWohar (2004). Their results suggest that, although there is evidence of
homogeneity across a majority of the countries, the subpanels considered by Rapach
and Wohar (2004) are not suitable for pooling. They also reject the monetary model
when fitted to those countries for which the null of poolability was not rejected.

12.7 Empirical Examples

12.7.1 Example 1: Purchasing Power Parity

Banerjee, Marcellino and Osbat (2005) survey the empirical literature on the validity
of the purchasing power parity (PPP). The strong version of PPP tests whether the
real exchange rate is stationary. A common finding is that PPP holds when tested in
panel data, but not when tested on a country-by-country basis. The usual explanation
is that panel tests for unit roots are more powerful than their univariate counterparts.
Banerjee, Marcellino and Osbat (2005) offer an alternative explanation. Their results
indicate that this mismatch may be due simply to the over-sizing that is present when
cointegrating relationships link the countries of the panel together. Existing panel
unit root tests assume that cross-unit cointegrating relationships among the countries
are not present. Banerjee, Marcellino and Osbat (2005) show through simulations
that when this assumption is violated, the empirical size of the tests is substantially
higher than the nominal level and the null hypothesis of a unit root is rejected too often
when it is true. They demonstrate this using quarterly data on real exchange rates
for the period 1975:1–2002:4 for 18 OECD countries. Computing the ADF test on a
country-by-country basis using bothUS andGermany in turn as numeraire, Banerjee,
Marcellino and Osbat (2005) fail to reject the null hypothesis of a unit root for each
country at any choice of lag length except for France and Korea, when Germany
is the numeraire. The panel unit roots (assuming no cross-country cointegration)
on the other hand reject the null of unit root in 13 out of 16 cases with the US
as numeraire. These 16 cases correspond to four tests and four different lag-length
choices. The four tests include two versions of the IPS test on (t and LM ), the LLC
test, and the Maddala and Wu (1999) Fisher test. If Germany is the numeraire, the
corresponding rejections are in 12 out of 16 cases. Using critical values adjusted for
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the presence of cross-country cointegration, these rejections decrease. For example,
with 14 bivariate cointegrating relationships, the unit root hypothesis is rejected in
only 2 out of 16 cases with the US as the numeraire and never with Germany as the
numeraire. The authors conclude that this finding warns against the “automatic” use
of panel methods for testing for unit roots in macroeconomic time series.

Table 12.1 performs panel unit root tests on the Banerjee, Marcellino and Osbat
(2005) data on real exchange rates withGermany as the numeraire. This is done using
EViews. This data was kindly provided by Chiara Osbat. The EViews options allow
for the choice of exogenous variables, in this case, the inclusion of individual effects,
also, the automatic selection of maximum lags, or the choice of a user-specified lag.
In fact, Table 12.2 performs these panel unit root tests with a user-specified lag
of 1. Note that EViews performs the LLC, Breitung, IPS, and Fisher-type tests of
Maddala and Wu (1999) and Choi (2001) using ADF and Phillips–Perron- type
individual unit root tests. Both Tables12.1 and 12.2 confirm the results in Banerjee,
Marcellino and Osbat (2005), i.e., that all panel unit root tests that assume cross-

Table 12.1 Panel Unit Root Test (Automatic lag) for Real
Exchange Rates: Germany as a Numeraire
Pool unit root test: Summary
Sample: 1975Q1 2002Q4
Series: RER_AUSTRIA, RER_BELGIUM, RER_CANADA

RER_DENMARK, RER_FINLAND, RER_FRANCE
RER_GREECE, RER_ITALY, RER_JAPAN, RER_KOREA
RER_NETHERLANDS, RER_NORWAY, RER_PORTUGAL
RER_SPAIN, RER_SWEDEN, RER_SWITZ, RER_UK, RER_US

Exogenous variables: Individual effects
Automatic selection of maximum lags
Automatic selection of lags based on SIC: 0 to 8
NeweyWest bandwidth selection using Bartlett kernel

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -1.83839 0.0330 18 1970
Breitung t-stat -3.06048 0.0011 18 1952

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -3.42675 0.0003 18 1970
ADF - Fisher Chi-square 63.6336 0.0030 18 1970
PP - Fisher Chi-square 58.1178 0.0112 18 1998

Null: No unit root (assumes common unit root process)
Hadri Z-stat 9.43149 0.0000 18 2016

** Probabilities for Fisher tests are computed using an asympotic Chi
-square distribution. All other tests assume asymptotic normality.
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Table 12.2 Panel Unit Root Test (lag = 1) for Real Exchange
Rates: Germany as a Numeraire
Pool unit root test: Summary
Sample: 1975Q1 2002Q4
Series: RER_AUSTRIA, RER_BELGIUM, RER_CANADA,

RER_DENMARK, RER_FINLAND, RER_FRANCE,
RER_GREECE, RER_ITALY, RER_JAPAN, RER_KOREA,
RER_NETHERLANDS, RER_NORWAY, RER_PORTUGAL,
RER_SPAIN, RER_SWEDEN, RER_SWITZ, RER_UK, RER_US

Exogenous variables: Individual effects
User specified lags at: 1
NeweyWest
bandwidth selection using Bartlett kernel
Balanced observations for each test

Cross-
Method Statistic Prob.** sections Obs
Null: Unit root (assumes common unit root process)
Levin, Lin & Chu t* -1.71432 0.0432 18 1980
Breitung t-stat -2.86966 0.0021 18 1962

Null: Unit root (assumes individual unit root process)
Im, Pesaran and Shin W-stat -3.04702 0.0012 18 1980
ADF - Fisher Chi-square 59.3350 0.0085 18 1980
PP - Fisher Chi-square 58.1178 0.0112 18 1998

Null: No unit root (assumes common unit root process)
Hadri Z-stat 9.43149 0.0000 18 2016

** Probabilities for Fisher tests are computed using an asympotic Chi
-square distribution. All other tests assume asymptotic normality.

section independence and include individual effects reject the null hypothesis of a
common unit root. EViews also computes the Hadri (2000) residual-based LM test
which reverses the null hypothesis. In this case, it rejects the null hypothesis of
no unit root in any of the series in the panel in favor of a common unit root in the
panel. However, using EViews, Pesaran’s (2007) CIPS test assuming cross-section
dependence yields a t-stat of −2.08 which has a p-value larger than 0.10. This test
does not reject the null hypothesis of common unit root. Also, the Bai and Ng (2004)
unit root test allowing for common factors among the 18 countries does not reject he
null hypothesis of no cointegration among the 18 countries. Problem 12.3 asks the
reader to replicate these results and check their sensitivity to user-specified lags as
well as the choice of Germany or the U.S. as the numeraire

Drine and Rault (2008) apply panel cointegration techniques to examine the
robustness of PPP using a sample of 80 developed and developing countries. They



12.7 Empirical Examples 371

classify these countries according to three criteria: The development level and the
geographic zone, the nature of the exchange rate regime (fixed versus more flexible),
and the level of inflation (low versus high). They implement several panel unit root
tests including IPS, Hadri (2000), Choi (2015b) andMoon and Perron (2004), as well
as Pedroni (2001) panel cointegration tests. They find that strong PPP is verified for
OECD countries and weak PPP for the Middle East and North African countries.
However, in African, Asian, Latin American, and Central and Eastern European
countries, PPP does not seem relevant to characterize the long-run behavior of the
real exchange rate.

12.7.2 Example 2: International R&D Spillover

Coe andHelpman (1995) studied the international R&D spillover phenomenon using
a sample of 21 OECD countries and Israel, observed over the period 1971–1990.
Kao, Chiang and Chen (1999) re-examine the effects of domestic and foreign R&D
capital stocks, (denoted by RD and FRD) on total factor productivity (TFP) of these
countries using panel cointegration estimationmethods. The data can be downloaded
from https://sites.google.com/site/chihwakao/programs. Using EViews, it is easy to
verify that panel unit root tests with individual effects for log(TFP), log(RD), and
log (FRD) do not reject the common panel unit roots hypothesis for all 3 series
considered.However, one can also show that these results are sensitive to the inclusion
of both individual effects and individual linear trends. This is explored in more detail
in Exercise 12.3 in Baltagi (2009). Table12.3 shows that the panel cointegration
test of Kao (1999) rejects the null hypothesis of no cointegration. Table12.4 shows
that the panel cointegration tests of Pedroni (2000) reject the null hypothesis of no

Table 12.3 Kao Residual Cointegration Test: LTFP LRD LFRD

Kao Residual Cointegration Test
Series: LTFP LRD LFRD

Sample: 1971 1990
Included observations: 440
Null Hypothesis: No cointegration
Trend assumption: No deterministic trend
Automatic lag length selection based on SIC with a max lag of 4
NeweyWest automatic bandwidth selection and Bartlett kernel

t-Statistic Prob.
ADF -2.305756 0.0106

Residual variance 0.000543
HAC variance 0.000662

https://sites.google.com/site/chihwakao/programs
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Table 12.4 Pedroni Residual Cointegration Test: LTFP LRD LFRD
Pedroni Residual Cointegration Test
Series: LTFP LRD LFRD
Sample: 1971 1990
Included observations: 440
Crosssections included: 22
Null Hypothesis: No cointegration
Trend assumption: No deterministic trend
Automatic lag length selection based on SIC with a max lag of 3
NeweyWest automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)
Weighted

Statistic Prob. Statistic Prob.
Panel v-Statistic 0.429844 0.3337 -0.588507 0.7219
Panel rho-Statistic -0.587120 0.2786 -0.679037 0.2486
Panel PP-Statistic -2.011444 0.0221 -2.208595 0.0136
Panel ADF-Statistic -4.878134 0.0000 -4.717842 0.0000

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho-Statistic 1.710431 0.9564
Group PP-Statistic -0.709493 0.2390
Group ADF-Statistic -5.068813 0.0000

cointegration in 5 out of 11 tests using the 5% significance level. Table12.5 shows
that the Fisher panel Johansen cointegration trace test (andmaximumeigenvalue test)
using individual effects reject the null of no cointegration aswell as the nulls of atmost
1 or 2 cointegrating relationships. Table12.6 gives the FMOLS results estimating the
cointegrating relationship reported in Table4, column (i) of Kao, Chiang and Chen
(1999, p. 701). All coefficients estimates are positive and statistically significant.
Table12.7 gives the DOLS results estimating the cointegrating relationship reported
in Table5, column (i) of Kao, Chiang and Chen (1999, p. 702). Only domestic R&D
is statistically significant.

12.7.3 Example 3:OECD Health Care Expenditures

Hansen and King (1996) studied the stationarity properties of real per capita health
care expenditures (HCE) and real per capita gross domestic product (GDP) for 20
OECD countries over the period 1960–1987. All variables were expressed in log-
arithms. This was done on a country-by-country basis. Their conclusion was that
these variables are nonstationary, and inference based on regressions relating HCE
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Table 12.5 Johansen Fisher Panel Cointegration Test: LTFP LRD LFRD
Series: LTFP LRD LFRD
Sample: 1971 1990
Included observations: 440
Trend assumption: Linear deterministic trend
Lags interval (in first differences): 1 1
Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue)

Hypothesized Fisher Stat.* Fisher Stat.*
No. of CE(s) (from trace test) Prob. (from max-eigen test) Prob.

None 220.0 0.0000 156.6 0.0000
At most 1 108.4 0.0000 83.83 0.0003
At most 2 96.41 0.0000 96.41 0.0000

Table 12.6 Fully Modified Least Squares (FMOLS): International R&D Spillover.
Dependent Variable: LTFP
Method: Panel Fully Modified Least Squares (FMOLS)
Sample (adjusted): 1972 1990
Periods included: 19)
Crosssections included: 22
Total panel (balanced) observations: 418
Panel method: Pooled estimation
Cointegrating equation deterministics: C
Coefficient covariance computed using default method
Longrun covariance estimates (Bartlett kernel, User bandwidth = 6.0000)

Variable Coefficient Std. Error t-Statistic Prob.

LRD 0.082285 0.017282 4.761208 0.0000
LFRD 0.114299 0.029055 3.933886 0.0001

R-squared 0.608057 Mean dependent var -0.016188
Adjusted R-squared 0.585177 S.D. dependent var 0.031833
S.E. of regression 0.020503 Sum squared resid 0.165622
Durbin-Watson stat 0.286816 Long-run variance 0.001347

to GDP is misleading and spurious. McCoskey and Selden (1998) challenged this
finding by applying the IPS panel unit root test to this data finding the hypothesis of
panel unit roots is rejected when individual effects are included, but not rejecting this
hypothesis when individual effects and individual time trends are included. Problem
12.5 asks the reader to verify these results. Table12.8 shows that the panel cointegra-
tion tests of Pedroni (2000) including both individual effects and individual linear
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Table 12.7 Dynamic Least Squares (DOLS): International R&D Spillover
Dependent Variable: LTFP
Method: Panel Dynamic Least Squares (DOLS)
Sample (adjusted): 1974 1989
Periods included: 16)
Crosssections included: 22
Total panel (balanced) observations: 352
Panel method: Pooled estimation
Cointegrating equation deterministics: C
Fixed leads and lags specification (lead=1, lag=2)
Coefficient covariance computed using default method
Longrun variances (Bartlett kernel, Newey-West fixed bandwidth) used for coefficient covariances

Variable Coefficient Std. Error t-Statistic Prob.

LRD 0.109353 0.023067 4.740719 0.0000
LFRD 0.047674 0.037756 1.262690 0.2082

R-squared 0.933006 Mean dependent var -0.018867
Adjusted R-squared 0.851464 S.D. dependent var 0.034316
S.E. of regression 0.013225 Sum squared resid 0.034632
Long-run variance 0.000156

trends reject null hypothesis of no cointegration between HCE and GDP in 3 out of
11 tests at the 5% significance level. Table12.9 shows that the Fisher panel Johansen
cointegration trace test (and maximum eigenvalue test) including both individual
effects and individual linear trends reject the null hypothesis of zero or at most 1
cointegrating relationships between HCE and GDP.

12.8 Further Reading

Pesaran, Shin and Smith (1999) derived the asymptotics of a pooled mean group
(PMG) estimator. The PMG estimation constrains the long-run coefficients to be
identical, but allows the short run and adjustment coefficients as the error variances
to differ across the cross-sectional dimension. Binder, Hsiao and Pesaran (2005)
considered estimation and inference in panel vector autoregressions (PVARs) with
fixed effects when T is finite and N is large. A quasi-maximum likelihood estimator
as well as unit root and cointegration tests are proposed based on a transformed like-
lihood function. This QMLE is shown to be consistent and asymptotically normally
distributed irrespective of the unit root and cointegrating properties of the PVAR
model. The tests proposed are based on standard chi-square and normal distributed
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Table 12.8 Pedroni Residual Cointegration Test: GDP HCE
Pedroni Residual Cointegration Test
Series: HCE GDP
Sample: 1960 1987
Included observations: 560
Cross-sections included: 20
Null Hypothesis: No cointegration
Trend assumption: Deterministic intercept and trend
Automatic lag length selection based on SIC with a max lag of 5
Newey-West automatic bandwidth selection and Bartlett kernel

Alternative hypothesis: common AR coefs. (within-dimension)
Weighted

Statistic Prob. Statistic Prob.
Panel v -Statistic 1.048933 0.1471 0.901342 0.1837
Panel rho -Statistic -0.791082 0.2144 -0.198255 0.4214
Panel PP -Statistic -2.017957 0.0218 -1.192514 0.1165
Panel ADF -Statistic -3.627153 0.0001 -2.552095 0.0054

Alternative hypothesis: individual AR coefs. (between-dimension)

Statistic Prob.
Group rho -Statistic 1.457425 0.9275
Group PP -Statistic 0.153874 0.5611
Group ADF -Statistic -1.284771 0.0994

Table 12.9 Johansen Fisher Panel Cointegration Test: GDP HCE
Series: GDP HCE
Sample: 1960 1987
Included observations: 560
Trend assumption: Linear deterministic trend
Lags interval (in first differences): 1 1
Unrestricted Cointegration Rank Test (Trace and Maximum Eigenvalue)

Hypothesized Fisher Stat.* Fisher Stat.*

No. of CE(s) (from trace test) Prob. (from max-eigen test) Prob.

None 140.7 0.0000 103.3 0.0000

At most 1 117.2 0.0000 117.2 0.0000
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statistics. Binder, Hsiao and Pesaran (2005) also show that the conventional GMM
estimators based on standard orthogonality conditions break down if the underlying
time series contain unit roots. Monte Carlo evidence is provided which favors MLE
over GMM in small samples.

Granger and Hyung (1999) consider the problem of estimating a dynamic panel
regression model when the variables in the model are strongly correlated with
individual-specific size factors. For a large N cross-country panel with small T , the
size variable could be country-specific like its area or time-varying like population or
total income. They show that if the size is not explicitly taken into account, one gets
a spurious regression. In particular, they show that implementing unit root tests is
likely to lead to the wrong decision. Moreover, if the size variable is slightly varying
over time or its distribution has thick tails (such as a panel of countries including
Luxembourg and Cyprus as well as China and India), post-sample predictions will
be biased. A pooling model appears to fit well in sample, but forecast poorly out-
of-sample if the individual-specific size factor has a fat-tailed distribution. A panel
model with individual-specific effects could be problematic if the panel series has
a very short time-dimension. Since individual constant terms are estimated poorly,
the forecasts based on them are poor. These problems may be more serious if the
individual-specific factor is not constant but time-varying.

Hall, Lazarova and Urga (1999) proposed an approach based on principal com-
ponents analysis to test for the number of common stochastic trends driving the
nonstationary series in a panel data set. The test is consistent even if there is a mix-
ture of I(0) and I(1) series in the sample. This makes it unnecessary to pretest the
panel for unit root. It also has the advantage of solving the problem of dimensionality
encountered in large panel data sets.

Lazarova, Trapani and Urga (2007) consider the case of nonstationary hetero-
geneous panels where N is finite and where each unit cointegrates. In this case, a
large number of conditions have to be satisfied for cointegration to be preserved
in the aggregate relationship. These conditions are not likely to hold in practice. If
cointegration does not carry through the aggregation process, the macro-estimates
are not consistent and the information provided by the macro-summary is meaning-
less. However, if these conditions are mildly violated, the aggregate relationship is
said to be “approximately cointegrated”, in the sense that the aggregate data may
only have small nonstationary components, and the strictly speaking spuriousmacro-
relationship is observationally equivalent to a cointegration equation. Lazarova, Tra-
pani and Urga (2007) derive a measure of the degree of non-cointegration of the
aggregate estimates, and explore its asymptotic properties for finite N and large T .

Hecq, Palm and Urbain (2000) extend the concept of serial correlation common
features analysis to nonstationary panel data models. This analysis is motivated both
by the need to study and test for common structures and co-movements in panel
data with autocorrelation present and by an increase in efficiency due to pooling.
The authors propose sequential testing procedures and test their performance using
a small-scale Monte Carlo. Concentrating upon the fixed effects model, they define
homogeneous panel common feature models and give a series of steps to implement
these tests. These tests are used to investigate the liquidity constraints model for 22
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OECD and G7 countries. The presence of a panel common feature vector is rejected
at the 5% nominal level.

Murray and Papell (2000) propose a panel unit roots test in the presence of struc-
tural change. In particular, they propose a unit root test for non-trending data in
the presence of a one-time change in the mean for a heterogeneous panel. The date
of the break is endogenously determined. The resultant test allows for both serial
and contemporaneous correlation, both of which are often found to be important in
the panel unit roots context. Murray and Papell conduct two power experiments for
panels of non-trending, stationary series with a one-time change in means and find
that conventional panel unit root tests generally have very low power. Then they
conduct the same experiment using methods that test for unit roots in the presence
of structural change and find that the power of the test is much improved.

Bai (2010) studies the problem of structural change for panel data with an
unknown common break point. Some examples of common breaks in panel data
include the following: A credit crunch or debt crisis that may affect every com-
pany’s stock returns or country’s GDP growth, and an oil price shock may impact
every country’s output. A tax policy change which may alter each firm’s investment
incentive. A fad or fashion which can influence consumption habits. A health scare
which can affect people’s exercise, smoking, and drinking habits. Other examples
include an emergence of new technology, a discovery of a new medicine, or the
implementation of a new governmental program. While it may be difficult to iden-
tify a break point with a single series, Bai (2010) shows that it is much easier to locate
the common break point using a number of series together. This panel data approach
to the estimation of break point allows for heterogeneous means for each series. For
example, the effect of an oil price shock on economic growth varies from country to
country, depending on whether an economy is oil importing or exporting as well as
on the extent of its oil consumption. The magnitude of change in the mean growth
rate can be positive for some countries and negative for some others. In the uni-
variate time-series case, the break point cannot be consistently estimated, no matter
how large the sample. Bai (2010) shows that with panel data it is possible to obtain
consistent estimates, as the number of series N goes to infinity. In a univariate setting,
it is impossible to identify the break point when a regime has a single observation,
because the change can be mistaken with an unusual realization of the disturbance
term. With panel data, Bai (2010) shows that consistency is attainable even when a
regime has a single observation. This property is especially useful when the objective
is to locate as quickly as possible the onset of a new regime or the turning point,
without the need of waiting for many observations from the new regime.

Im, Lee and Tieslau (2005) propose a panel unit-root LM test whose asymptotic
distribution is not affected by the presence of structural shifts. This result holds under
a mild condition that N/T → k, where k is any finite constant. They apply their test
to the purchasing power parity (PPP) hypothesis allowing for a maximum of two
structural shifts for each time series. For a panel of 6, 12, 15, and 21 countries, with
monthly and quarterly real exchange rates from April 1973 to December 1999, they
find in all cases, strong evidence for PPP.
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Westerlund (2005b) proposes a residual-based test of the null hypothesis of panel
cointegration that allows for mixtures of cointegrated and spurious alternatives. The
test is an extension of the CUSUM test proposed in the time-series context, which is
based on measuring the fluctuation in the regression residuals. The intuition behind
the test is that if the series are cointegrated, then the residuals should be stable
and their fluctuations reflect only equilibrium errors. Thus, the null hypothesis of
cointegration should be rejected whenever there is excessive fluctuation in the resid-
ual series. The proposed test is shown to be asymptotically normal under the null
hypothesis that is free of nuisance parameters and it is robust to heteroskedasticity. He
applies the CUSUM test to the international R&D spillover regressions of Coe and
Helpman (1995). He finds no evidence of homogenous cointegration, but rather that
total factor productivity is heterogeneously cointegrated with foreign and domestic
R&D capital stocks. Westerlund (2006b) also proposes four simple tests for the null
hypothesis of no panel cointegration in the presence of a single unknown level break
for each individual regression. The tests are general enough to allow for endogenous
regressors, serial correlation, and heterogeneous breaks of unknown timing. Using
sequential limit arguments, the distributions of these tests are found to be normal and
free of nuisance parameter dependencies. Critical values for up to five regressors are
provided and a small Monte Carlo study is conducted to investigate the finite sample
properties of these tests. The results show that these tests have small size distortions
and good power. Westerlund (2007) builds on the result in time series that failure of
the common factor restriction can cause significant loss of power for residual-based
cointegration tests. In fact, he proposes four panel tests to test the null hypothesis of no
cointegration by testing whether the error correction term in a conditional error cor-
rectionmodel is equal to zero. If the null hypothesis of no error correction is rejected,
then the null hypothesis of no cointegration is also rejected. These tests are able to
accommodate individual-specific short-run dynamics, including serially correlated
error terms and non-strictly exogenous regressors, individual-specific intercept and
trend terms, as well as individual-specific slope parameters. A bootstrap procedure
is also proposed to handle applications with cross-sectionally dependent data. West-
erlund re-examines the evidence relating international health care expenditures and
GDP using a panel consisting of 20 OECD countries over the period 1970–2001. He
finds that the two series are cointegrated once the possibility of an invalid common
factor restriction has been accounted for.

Choi and Chue (2007) study subsampling hypothesis tests for panel data that may
be nonstationary, cross-sectionally correlated, and cross-sectionally cointegrated.
The subsampling approach to hypothesis testing allows the regressors to be station-
ary or nonstationary with unit roots, or they may be a mixture of both types. It
also allows for cross-sectional correlation that need not be estimated. This implies
that there is less chance of size distortions due to misspecification, say from pro-
cedures assuming factor structures. Cross-sectional cointegration is also allowed
without requiring knowledge of the cointegration coefficients and ranks. The sub-
sampling approach provides approximations to the finite sample distributions of the
tests without estimating nuisance parameters. The tests include panel unit root and
cointegration tests as special cases. The number of cross-sectional units is assumed
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to be finite and that of time-series observations infinite. It is shown that subsampling
provides asymptotic distributions that are equivalent to the asymptotic distributions
of the panel tests. In addition, the tests using critical values from subsampling are
shown to be consistent.

Kapetanios (2007) adopts the factor-based cross-sectional dependence paradigm
of Bai and Ng (2004) to handle panel unit root tests, but suggests alternative factor
extraction methods. These include the dynamic principal component method and the
parametric state-space dynamic approach. A Monte Carlo study of these methods
for multiple and persistent factors is undertaken. Previous simulation work in the
literature has mainly focused on single serially uncorrelated factors to introduce
cross-sectional dependence in panel data sets which may be restrictive. Simulation
results suggest that the presence of multiple factors with persistent dynamics pose
a significant problem for the available factor-based panel unit root tests. The actual
rejection probabilities exceed the nominal significance level and in some cases it is
preferable not to correct at all for cross-sectional dependence. The number of factors
is of importance as well. Multiple factors are less easily extracted and have a further
adverse impact on inference. Kapetanios suggests that a reasonable alternative to the
factor-based tests seems to be the use of the Pesaran (2007) test in a number of cases.

Pesaran (2006) suggests that linear combinations of unobserved factors can be
well approximated by cross-section averages of the dependent variable and the
observed regressors. This leads to the Common Correlated Effects (CCE) estimator
that can be computed by running standard panel regressions augmented with the
cross-section averages of the dependent and independent variables. The CCE pro-
cedure does not require the number of unobserved factors to be smaller than the
number of observed cross-section averages. This can be implemented with Stata
using the xtmg command with option cce. Kapetanios, Pesaran and Yamagata (2011)
extend this work to the case where the unobservable common factors follow unit
root processes. Their analysis does not require a priori knowledge of the number of
unobserved factors. It only requires that the number of unobserved factors remains
fixed as the sample size increases. Their Monte Carlo experiments show that the
CCE estimator is robust to a wide variety of data generation processes.

Serlenga and Shin (2007) develop a generalized Hausman–Taylor (HT) estimator
for a heterogeneous panel with unobserved common time- specific factors. Specifi-
cally, this paper extends the correlated common effect pooled (CCEP) estimator of
Pesaran (2006) in order to deal with time invariant as well as country invariant regres-
sors. This is applied to the estimation of a gravity equation of bilateral trade among
15 EUmember countries over the period 1960–2001. Empirical results show that this
heterogeneous approach yields more sensible results than assuming homogeneous
fixed time effects.

Moon and Perron (2007) study non-stationarities in a panel of 25 monthly Cana-
dian and U.S. interest rates of different maturities and risk, spanning the period
January 1985 to April 2004. They find significant cross-sectional correlation among
the series in the panel, andmodel this cross-sectional dependence as a linear dynamic
factor model. They then decompose the panel into common and idiosyncratic com-
ponents, and analyze these in turn. Moon and Perron find that interest rates are
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characterized by a single nonstationary factor and some stationary idiosyncratic
components, and conclude that the series are cointegrated. The results also suggest
that the dominant factor in the interest rate panel is a level factor that is highly cor-
related with all rates and could be the result of inflationary expectations. The second
factor has an interpretation as a slope factor, that is the differential between a long
rate and a short rate since it affects short and long rates differently and might be a
measure of the business cycle.

Sarafidis andRobertson (2009) consider the impact of error cross-sectional depen-
dence (modeled as a factor structure) on FE and GMM estimators in the context of
a dynamic panel data model. They show that the standard moment conditions used
by these estimators are invalid, and as a result these estimators are inconsistent as
N → ∞ for a fixed T . Transforming the data in terms of deviations from time-
specific averages helps to reduce the asymptotic bias of the estimators, unless the
factor loadings have mean zero. Monte Carlo results suggest that the bias of these
estimators can be severe to the extent that the standard FE estimator is not gener-
ally inferior anymore in terms of root median square error. Time-specific demeaning
alleviates the problem, although the effectiveness of this transformation decreases
when the variance of the factor loadings is large.

Westerlund (2008) develops two new panel cointegration tests of the null hypoth-
esis of no cointegration that can be applied under very general conditions. These
tests are based on a Hausman-type test comparing two estimators of a unit root in the
residuals of an estimated regression. These tests are based on defactored residuals
correcting for factors that are common across units. The asymptotic distributions of
these tests are shown to be normal. Results from a small Monte Carlo study suggest
that the tests have small size distortions and greater power than other popular panel
cointegration tests. Using quarter panel data for 20 OECD countries observed over
the period 1980–2004, Westerlund (2008) finds that the Fisher effect, stating that
inflation and nominal interest rates should cointegrate with a unit slope on inflation,
cannot be rejected once the panel evidence on cointegration has been taken into
account.

Bai (2009) considers a panel data regression with large N and T that has unob-
servable multiple interactive effects, which are correlated with the regressors. The
disturbance term is given by

uit = λ′
iFt + εit i = 1, . . .N , t = 1, . . . , T .

where λi is an (r × 1) vector of factor loadings andFt is an (r × 1) vector of common
factors. The emphasis here is on the heterogeneous impact of the common macro-
shocks Ft on each country. When the common shocks have homogeneous effects,
i.e., λi = λ for all i, the model collapses to the usual fixed time effects. Similarly, in
a Mincer wage equation, the interactive effects could be the result of changing prices
for a vector of unmeasured skills. If the prices are constant over time, the standard
individual fixed-effectsmodel is obtained. Bai derives an interactive effects estimator
that is

√
NTconsistent. He also suggests a Hausman test for testing additive versus

interactive effects.
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Baltagi, Kao and Liu (2008) study the asymptotic properties of standard panel
data estimators including OLS, FE and FD, and GLS estimators when both T and N
are large. This is done in the context of a simple panel regression model with error
component disturbanceswhere both the regressor and the remainder disturbance term
are assumed to be autoregressive and possibly nonstationary. They show that all the
estimators have asymptotic normal distributions and have different convergence rates
dependent on the non-stationarity of the regressors and the remainder disturbances.
In fact, when the error term is I(0) and the regressor is I(1), the FE estimator is
asymptotically equivalent to the GLS estimator and OLS is less efficient than GLS
(due to a slower convergence speed). However, when the error term and the regressor
are I(1), GLS is more efficient than the FE estimator since GLS is

√
NTconsistent,

while FE is
√
N consistent. This implies that GLS is the preferred estimator under

both cases (i.e., regression error is either I(0) or I(1)). Monte Carlo experiments
show that the loss in efficiency of the OLS, FE, and FD estimators relative to true
GLS can be substantial.

Demetrescu, Hassler and Tarcolea (2006) suggest a modification of Choi (2001)
inverse normal combination test given as Z in Sect. 12.2.4 that relaxes the assumption
of independent individual time series. They show that under certain conditions, this
test performs better than the Maddala and Wu (1999) combination test given in
(12.11) and Chang (2002) nonlinear IV unit root test. Also, Sheng and Yang (2013)
employ a truncated product statistic for combination tests which truncate some large
pi-values (they used pi < 0.1). This truncation reduces the impact of large pi-values
which may affect the power of the usual combination tests. They show that their
truncated product test outperforms the Pesaran’s (2007) test and the Demetrescu,
Hassler and Tarcolea (2006) test.

For seasonal panel unit root tests, see Ottero, Smith and Giulietti (2007). This
test allows for cross-sectional dependence using bootstrapping and Peasran’s (2007)
approach.

The reader is referred to Chaps. 12 and 15 of the Oxford Handbook of Panel Data.
Chapter 12 is entitled panel cointegration by Choi (2015b) and Chap. 15 is entitled
The analysis of macroeconomic panel data by Breitung (2015). For a thorough and
up to date treatment of unit root testing, see Choi (2015a), especially Chap. 7 on
panel unit roots.We close this chapter with a quote fromChoi (2015a, p.222): “There
seems to be no consensus yet on how best we can test for unit roots and stationarity
for dependent panels. Each method developed thus far works well within its model
specification, but it becomes less appealing under other specifications”.

12.9 Notes

1. Early special issues on nonstationary panels includeBanerjee (1999) in theOxford
Bulletin of Economics and Statistics, Baltagi, Fomby and Hill (2000) in the
Advances in Econometrics. See also two special issues of the Journal of Applied
Econometrics, discussing cross-section dependence in panel data models, edited
by Baltagi and Pesaran (2007) and the other by Bai, Baltagi and Pesaran (2016)



382 12 Nonstationary Panels

and one special issue of Econometric Reviews edited by Baltagi and Maasoumi
(2013).

2. The Levin, Lin and Chu (2002) paper has its origins in a Levin and Lin working
paper in 1992, and most early applications in economics were based on the latter
paper. In fact, this panel unit root test was commonly cited as the Levin–Lin test.

12.10 Problems

12.1 A simple linear trend model with error components. This is based on problem
97.2.1 in Econometric Theory by Baltagi and Krämer (1997). Consider the
following simple linear trend: model

yit = α + βt + uit i = 1, 2, . . . ,N , and t = 1, 2, . . . , T ,

where yit denotes the gross domestic product of country i at time t. The distur-
bances follow the one-way error component model given by

uit = μi + νit,

where μi ∼ IID(0,σ2
μ) denote the random country (time-invariant) effects and

νit ∼ IID(0,σ2
ν) denote the remainder effects. These error components are

assumed to be independent of each other and among themselves. Our inter-
est focuses on the estimates of the trend coefficient β, and the estimators to
be considered are ordinary least squares (OLS), first difference (FD), the fixed
effects (FE) estimator, assuming the μi’s are fixed effects, and the generalized
least squares estimator (GLS), knowing the true variance components, which
is the best linear unbiased estimator in this case.
(a) Show that the OLS, GLS, and FE estimators of β are identical and given
by β̂GLS = β̂OLS = β̃FE =∑N

i=1
∑T

t=1 yit(t − t)/N
∑T

t=1(t − t)2 where t =∑T
t=1 t/T .

(b) Show that the variance of the OLS, GLS, and FE estimators of β is given
by var(̂βGLS) = var(̂βOLS) = var(̃βFE) = 12σ2

ν/NT (T 2 − 1) and is therefore
O(N−1T−3).
(c) Show that this simple linear trendmodel satisfies the necessary and sufficient
condition for OLS to be equivalent to GLS.
(d) Show that the FD estimator of β is given by β̂FD =∑N

i=1(yiT − yi1)/N (T −
1) with var(̂βFD) = 2σ2

ν/N (T − 1)2 of O(N−1T−2).
(e) What do you conclude about the asymptotic relative efficiency of FD with
respect to the other estimators of β as T → ∞? Hint: See solution 97.2.1 in
Econometric Theory by Song and Jung (1998). Also, use the fact that

∑T
t=1 t

2 =
T (T + 1)(2T + 1)/6 and

∑T
t=1 t = T (T + 1)/2.

12.2 International R&D spillover. Download the International R&D spillovers panel
data set used by Kao, Chiang and Chen (1999) along with the GAUSS subrou-
tines from https://sites.google.com/site/chihwakao/programs.

https://sites.google.com/site/chihwakao/programs
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Using this data set, replicate the following results:
(a) Perform the panel unit root tests on total factor productivity, domestic R&D,
and foreign R&D capital stocks. Show that the null hypothesis of panel unit
roots is not rejected for all three variables.
(b) Perform the Kao (1999) and Pedroni (2000) panel cointegration tests on
the regression relating total factor productivity to domestic and foreign R&D
stocks. Show that the null hypothesis of no cointegration is rejected.
(c) Estimate the cointegrating relationship using FMOLS of Phillips and Moon
(1999) and Pedroni (2000) andDOLSofKao andChiang (2000). This replicates
Tables4 and 5, columns (i) of Kao, Chiang and Chen (1999, pp. 701–702).

12.3 Purchasing Power Parity. Using the Banerjee, Marcellino and Osbat (2005)
quarterly data set on real exchange rate for 18 OECD countries over the period
1975:1–2002:4.
(a) Replicate the panel unit root test in Table12.1 with Germany as the
numeraire. Check the sensitivity of these results to a user-specified lag of
1, 2, 3, and 4. Compare with Table8 of Banerjee, Marcellino and Osbat (2005).
(b) Perform the panel unit root test as in Table12.1 but now with the U.S. as the
numeraire. Check the sensitivity of these results to a user-specified lag of 1, 2,
3, and 4. Compare with Table8 of Banerjee, Marcellino and Osbat (2005).
(c) Perform the individual ADF unit root tests on a country-by- country basis
for both parts (a) and (b). Compare with Table7 of Banerjee, Marcellino and
Osbat (2005). What do you conclude?
(d) Check the sensitivity of the results in parts (a) and (b) when both individual
effects and individual linear trends are included.
(e) Perform the Pesaran (2007) CIPS test and the Bai and Ng (2004) unit root
test. What do you conclude?

12.4 Panel unit root tests:GDPofG7 countries. Using the EViewsG7 countrieswork
file (Poolg7) containing theGDP of Canada, France, Germany, Italy, Japan, UK,
and US.
(a) Perform the panel unit root tests using individual effects in the deterministic
variables.
(b) Check the sensitivity of these results to a user-specified lag of 1, 2, 3, and
4. Show that all tests are in agreement about the possibility of a common unit
root for all series.
(c) Check the sensitivity of the results in parts (a) and (b) when both individual
effects and individual linear trends are included.

12.5 Health care expenditures. This problem is based on theHansen andKing (1996)
data set and the replication by McCoskey and Selden (1998). Hansen and King
(1996) studied the stationarity properties of real per capita health care expen-
ditures (HCE) and real per capita gross domestic product (GDP) for 20 OECD
countries over the period 1960–1987. All variables were expressed in loga-
rithms. This was done on a country-by-country basis. Their conclusion was that
these variables are nonstationary and inference based on regressions relating
HCE to GDP are misleading and spurious. McCoskey and Selden (1998) chal-
lenged this finding by applying the IPS panel unit root test to this data finding the
hypothesis of panel unit roots is rejected when individual effects are included,
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but not rejecting this hypothesis when individual effects and individual time
trends are included. Using EViews, replicate the following results:
(a) Perform the panel unit root tests on HCE and GDP when individual effects
are included.
(b) Check the sensitivity of these results when both individual effects and indi-
vidual linear trends are included.
(c) Perform the Pedroni test including individual effects and individual linear
trends in the deterministic variables.
(d) Perform the Fisher panel Johansen cointegration trace and maximum eigen-
value tests including individual effects and individual linear trends in the deter-
ministic variables.

12.6 Penn World Table. Using the PennWorld Table exchange rates in Stata (webuse
pennxrate):
(a) Perform the LLC panel unit root tests for ln(exchange rates) for OECD
countries with trend and without trend. This can be done using the command
xtunitroot llc lnrxrate if oecd, lags(aic 10) kernel(bartlett nwest) trend.
(b) Perform the Harris and Tzavalis panel unit root tests for ln(exchange rates)
for OECD countries with trend and without trend. This can be done using the
command xtunitroot ht lnrxrate if oecd, demean trend.
(c) Perform the IPS panel unit root tests for ln(exchange rates) for OECD coun-
tries with trend and without trend. This can be done using the command xtuni-
troot ips lnrxrate if oecd, lags(aic 3) trend.
(d) Perform the Breitung panel unit root tests for ln(exchange rates) for OECD
countries with trend and without trend. This can be done using the command
xtunitroot breitung lnrxrate if oecd, lags(3) robust trend.
(e) Perform the combining p-values Fisher panel unit root tests for ln(exchange
rates) for OECD countries with trend and without trend. This can be done using
the command xtunitroot fisher lnrxrate if oecd, dfuller lags(3) trend.
(f) Perform the Hadri panel stationarity tests for ln(exchange rates) for OECD
countries with trend and without trend. This can be done using the command
xtunitroot hadri lnrxrate if oecd, kernel(bartlett) trend.
(g) Compute the average correlation coefficients and Pesaran’s CD test for
ln(exchange rates) for OECD countries. This can be done using the command
xtcd lnxrate if oecd.
(h) Perform the Maddala and Wu (1999) and Pesaran (2007) CIPS panel unit
root tests for ln(exchange rates) for OECD countries with trend and without
trend. This can be done using the Stata command multipurt lnrxrate if oecd,
lags(3).

12.7 Black markets for foreign exchange. Luintel (2000) studies the behavior of real
exchange rates (relative to the US dollar) using monthly data obtained from
the black markets for foreign exchange of eight Asian developing countries.
The sample period is 1958:1–1989:6. The data is available from the Journal of
Applied Econometrics data archives.
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(a) Plot this real exchange rate data for each country, i.e., replicate Fig. 1 of
(Luintel, 2000, p. 166).
(b) Replicate Table III of (Luintel, 2000, p. 166). This performs ADF unit root
tests on the real exchange rate for each country separately.
(c) Perform the panel unit root tests on the real exchange rate for these 8 coun-
tries. Compare with Table IV of (Luintel, 2000, p. 173).What do you conclude?

12.8 Inflation rates. Culver and Papell (1997) test for unit roots using the inflation
rates of 13 OECD countries. With individual country tests, they find evidence
of stationarity in only four of the thirteen countries. However, they reject the
unit root hypothesis both for a panel of all thirteen countries and for a number
of smaller panels consisting of as few as three countries. The inflation rate is
calculated by differencing the logarithm of the consumer price index. This data
was obtained from the International Monetary Fund’s International Financial
Statistics. All series start in February 1957 and end in September 1994. The
data is available from the Journal of Applied Econometrics data archives. (a)
ReplicateTable I onp. 437ofCulver andPapell (1997). Show that using theADF
test (with the lag levels provided in that table), the null hypothesis of unit root
can be rejected at the 5% level for only three of the thirteen countries: France,
Netherlands, and Japan, and can be rejected at the 10% level for Norway. (b)
Perform the panel unit root tests (with individual country effects but no trend)
provided by EViews. Show that the conclusion is basically the same as that
reached by Culver and Papell (1997). Their results reported in Table III on
p.442 indicate rejection of the null hypothesis of unit root for all countries.
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13Spatial PanelDataModels

13.1 Introduction

In randomly drawn samples at the individual level, one does not usually worry about
cross-section correlation. However, when one starts looking at a cross-section of
countries, regions, states, counties, etc., these aggregate units are likely to exhibit
cross-sectional correlation that have to be dealt with. There is an extensive literature
using spatial statistics that deals with this type of correlation. These spatial depen-
dencemodels are popular in regional science andurban economics.More specifically,
these models deal with spatial interaction (spatial autocorrelation) and spatial struc-
ture (spatial heterogeneity) primarily in cross-section data; see Anselin (1988) for
a nice introduction to this literature. Spatial dependence models may use a metric
of economic distance which provides cross-sectional data with a structure similar
to that provided by the time index in time series. With the increasing availability
of micro- as well as macro-level panel data, spatial panel data models are becom-
ing increasingly attractive in empirical economic research. See Case (1991), Baltagi
and Li (2004), Driscoll and Kraay (1998), Baltagi, Egger and Pfaffermayr (2007),
for a few applications. Economists are interested in spillover effects and externali-
ties. Spatial models allow simple econometric methods for modeling these spillover
effects. For example, you spend more money on police in one neighborhood, you
may increase the crime in an adjacent neighborhood. This externality is dependent
on contiguity of the neighborhoods, their common borders, or the distance between
these neighborhoods. The same idea can be applied for the analysis of welfare or
trade. If California is generous in providing welfare to its residents, this may attract
welfare recipients from adjacent states. Gravity models of trade use distance, com-
mon border, common language, culture and history, common colonizer, common
currency, to see if these things enhance trade. These may be interpreted as distances
that are economic, historic, or cultural in nature. In sum, these metrics can be used
in a spatial economic model to explain crime or trade or dependency on welfare. See
Elhorst (2014) and Lee and Yu (2015) for recent surveys of spatial panel models.
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13.2 Spatial Error Component RegressionModel

One can model the spatial correlation as well as the heterogeneity across countries
using a spatial error component regression model:

yti = X ′
tiβ + uti , i = 1, .., N ; t = 1, · · · , T , (13.1)

where yti is the observation on the i th country for the t th time period, Xti denotes the
k × 1vector of observations on the non-stochastic regressors, anduti is the regression
disturbance. In vector form, the disturbance vector of (13.1) is assumed to have
random country effects as well as spatially autocorrelated remainder disturbances;
see Anselin (1988):

ut = μ + εt (13.2)

with
εt = λWN εt + νt (13.3)

where μ′ = (μ1, · · · , μN ) denote the vector of random country effects which are
assumed to be IIN(0, σ2

μ). λ is the scalar spatial autoregressive coefficient with
| λ |< 1. WN is a known N × N spatial weight matrix whose diagonal elements
are zero. WN also satisfies the condition that (IN − λWN ) is nonsingular. ν ′

t =
(νt1, · · · , νt N ), where νti is assumed to be IIN(0,σ2

ν) and also independent of μi .
One can rewrite (13.3) as

εt = (IN − λWN )−1νt = B−1νt (13.4)

where B = IN − λWN and IN is an identity matrix of dimension N . The model
(13.1) can be rewritten in matrix notation as

y = Xβ + u (13.5)

where y is now of dimension NT × 1, X is NT × k, β is k × 1, and u is NT × 1.
X is assumed to be of full column rank and its elements are assumed to be bounded
in absolute value. Equation (13.2) can be written in vector form as follows:

u = (ιT ⊗ IN )μ + (IT ⊗ B−1)ν (13.6)

where ν ′ = (ν ′
1, · · · , ν ′

T ). Under these assumptions, the variance–covariance matrix
for u is given by

� = σ2
μ(JT ⊗ IN ) + σ2

ν(IT ⊗ (B ′B)−1) (13.7)

This matrix can be rewritten as

� = σ2
ν

[
J̄T ⊗ (TφIN + (B ′B)−1) + ET ⊗ (B ′B)−1

]
= σ2

ν� (13.8)

where φ = σ2
μ/σ2

ν , J̄T = JT /T and ET = IT − J̄T . Using results in Wansbeek and
Kapteyn (1982), �−1 is given by

�−1 = J̄T ⊗ (TφIN + (B ′B)−1)−1 + ET ⊗ B ′B. (13.9)
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Also, |�| = |TφIN + (B ′B)−1| · |(B ′B)−1|T−1. Under the assumption of normal-
ity, the log-likelihood function for this model was derived by Anselin (1988, p. 154)
as

L = −NT

2
ln 2πσ2

ν − 1

2
ln |�| − 1

2σ2
ν

u′�−1u

= −NT

2
ln 2πσ2

ν − 1

2
ln[|TφIN + (B ′B)−1|] + (T − 1)

2
ln |B ′B|

− 1

2σ2
ν

u′�−1u (13.10)

with u = y − Xβ. For a derivation of the first-order conditions of MLE as well
as the LM test for λ = 0 for this model, see Anselin (1988). As an extension to
this work, Baltagi, Song and Koh (2003) derived the joint LM test for spatial error
correlation as well as random country effects. Additionally, they derived conditional
LM tests, which test for random country effects given the presence of spatial error
correlation. Also, spatial error correlation given the presence of random country
effects. These conditional LM tests are an alternative to the one-directional LM tests
that test for random country effects ignoring the presence of spatial error correlation
or the one-directional LM tests for spatial error correlation ignoring the presence of
random country effects. Extensive Monte Carlo experiments are conducted to study
the performance of these LM tests as well as the corresponding Likelihood Ratio
tests. Baltagi et al. (2007) generalize the Baltagi, Song and Koh (2003) paper by
allowing for serial correlation over time for each spatial unit and spatial dependence
across these units at a particular point in time. In addition, the model allows for
heterogeneity across the spatial units through random effects. Testing for any one of
these symptoms ignoring the other two is shown to lead to misleading results. For R
programs implementing these LM spatial panel tests derived by Baltagi et al. (2007),
seeMillo and Piras (2012) and their spatial panel linear model (splm) package. These
tests are applied to the Munnell (1990) data set used in example 3 of Chap. 2 but
now with spatial correlation across states.

Baltagi, Song and Kwon (2009) extend these LM statistics to a panel data regres-
sion model with heteroskedastic as well as spatially correlated disturbances. A joint
LM test for homoskedasticity and no spatial correlation is derived. In addition, a
conditional LM test for no spatial correlation given heteroskedasticity, as well as a
conditional LM test for homoskedasticity given spatial correlation, are also derived.
These LM tests are compared with marginal LM tests that ignore heteroskedasticity
in testing for spatial correlation, or spatial correlation in testing for homoskedastic-
ity. Monte Carlo results show that these LM tests as well as their LR counterparts,
performwell even for small N and T. However, misleading inference can occur when
using marginal rather than joint or conditional LM tests when spatial correlation or
heteroskedasticity is present. Using Monte Carlo experiments, Baltagi and Pirotte
(2010) show that test of hypothesis based on the standard panel data estimators that
ignore spatial dependence of the SAR(1) or SMA(1) type can lead to misleading
inference, especially when the spatial coefficients are large.
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As an alternative to theMLE, generalizedmethod ofmoments have been proposed
for spatial cross-section models by Conley (1999) and Kelejian and Prucha (1999).
Frees (1995) derives a distribution-free test for spatial correlation in panels. This
is based on Spearman-rank correlation across pairs of cross-section disturbances.
Driscoll and Kraay (1998) show through Monte Carlo simulations that the presence
of evenmodest spatial dependence can impart large bias toOLS standard errors when
N is large. They present conditions under which a simple modification of the stan-
dard nonparametric time-series covariance matrix estimator yields estimates of the
standard errors that are robust to general forms of spatial and temporal dependence
as T → ∞. However, if T is small, they conclude that the problem of consistent
nonparametric covariance matrix estimation is much less tractable. Parametric cor-
rections for spatial correlation are possible only if one places strong restrictions on
their form, i.e., knowing WN . For typical micro-panels with N much larger than
T , estimating this correlation is impossible without imposing restrictions, since the
number of spatial correlations increases at the rate N 2, while the number of obser-
vations grow at rate N . Even for macro-panels where N = 100 countries observed
over T = 20–30 years, N is still larger than T and prior restrictions on the form of
spatial correlation are still needed.

ML estimation, even in its simplest form entails substantial computational prob-
lemswhen the number of cross-sectional units N is large. Kelejian and Prucha (1999)
suggested a generalized moments (GM) estimation method which is computation-
ally feasible even when N is large. Kapoor, Kelejian and Prucha (2007) generalized
this GM procedure from cross-section to panel data and derived its large sample
properties when T is fixed and N → ∞.

The basic regressionmodel is the same as in (13.5), however, the disturbance term
u follows the first-order spatial autoregressive process

u = λ(IT ⊗ WN )u + ε (13.11)

with
ε = (ιT ⊗ IN )μ + ν (13.12)

where μ, ν, and WN were defined earlier. This is different from the Anselin (1988)
specification described in (13.2) and (13.3) since it also allows the individual coun-
try effects μ to be spatially correlated. While the two data generating processes look
similar, they imply different spatial spillover mechanisms. For example, consider the
question of cross-country dependence. Some countries were colonized by the British
and therefore speakEnglish and their financial institutions, laws, and governancemay
have been influenced by the British. This is a transmission of spatial effects through
the individual country time-invariant effect. Countries are also affected by common
global factors like macro-shocks and financial crisis and Tsunamis. Whereas the
Anselin model assumes that spillovers are inherently time-varying, the KKP process
assumes the spillovers to be time-invariant aswell as time-variant. For example, firms
located in the neighborhood of highly productive firmsmay get time-invariant perma-
nent spillovers affecting their productivity in addition to the time-variant spillovers
as in the Anselin model.
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Defining ū = (IT ⊗ WN )u, ū = (IT ⊗ WN )ū and ε̄ = (IT ⊗ WN )ε, Kapoor,
Kelejian and Prucha (2007) suggest a GM estimator based on the following six
moment conditions

E[ε′Qε/N (T − 1)] = σ2
ν

E[ε̄′Qε̄/N (T − 1)] = σ2
ν tr(W ′

NWN )/N

E[ε̄′Qε/N (T − 1)] = 0

E(ε′Pε/N ) = Tσ2
μ + σ2

ν = σ2
1

E(ε̄′P ε̄/N ) = σ2
1 tr(W ′

NWN )/N

E(ε̄′Pε/N ) = 0 (13.13)

From (13.11), ε = u − λū and ε̄ = ū − λū, substituting these expressions in (13.13)
we obtain a system of six equations involving the second moments of u, ū, and
ū. Under the random effects specification considered, the OLS estimator of β is
consistent. Using β̂OLS , one gets a consistent estimator of the disturbances û = y −
X β̂OLS . The GM estimator of σ2

1, σ
2
ν , and λ is the solution of the sample counterpart

of the six equations in (13.13).
Kapoor, Kelejian and Prucha (2007) suggest three GM estimators. The first

involves only the first three moments in (13.13) which do not involve σ2
1 and yield

estimates of λ and σ2
ν . The fourth moment condition is then used to solve for σ2

1
given estimates of λ and σ2

ν . Kapoor, Kelejian and Prucha (2007) give the conditions
needed for the consistency of this estimator as N → ∞. The second GM estimator is
based upon weighing the moment equations by the inverse of a properly normalized
variance–covariance matrix of the sample moments evaluated at the true parameter
values. A simple version of this weighting matrix is derived under normality of the
disturbances. The third GM estimator is motivated by computational considerations
and replaces a component of the weightingmatrix for the second GM estimator by an
identity matrix. They perform Monte Carlo experiments comparing MLE and these
three GM estimation methods. They find that on average, the RMSE of ML and
their weighted GM estimators are quite similar. However, the first unweighted GM
estimator has a RMSE that is 14–17% larger than that of the weighted GM estima-
tors. For an application of this GM estimator to foreign direct investment (FDI), see
Baltagi, Egger and Pfaffermayr (2007). Fingleton (2008) extends the GM estimator
of Kapoor, Kelejian and Prucha (2007) to the Spatial Moving Average panel data
model. The generalizedmoments estimator has the advantage that is computationally
less demanding than MLE, especially as N gets large.

While the Anselin model seems restrictive in that it does not allow permanent
spillovers through the individual firm effects, the KKP approach is restrictive in
the sense that it does not allow for a differential intensity of spillovers of the per-
manent and transitory shocks. Baltagi, Egger and Pfaffermayr (2013) suggested a
generalized spatial panel model which encompasses the Anselin (1988) and Kapoor,
Kelejian and Prucha (2007) models and allows for spatial correlation in the individ-
ual and remainder error components that may have different spatial autoregressive
parameters. They derive the maximum likelihood estimator (MLE) for this more
general spatial panel model when the individual effects are assumed to be random.
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This in turn allows the researcher to test whether this generalized model reduces to
(i) the Anselin model, (ii) the Kapoor, Kelejian and Prucha model, or (iii) a simple
random effects model that ignores the spatial correlation in the residuals. Baltagi,
Egger and Pfaffermayr (2013) derive the corresponding LM and LR tests for these
three hypotheses and compare their size and power performance using Monte Carlo
experiments.

In fact, Baltagi, Egger and Pfaffermayr (2013) consider the following generalized
spatial error components model:

y = Xβ + u

u = Zμu1 + u2
u1 = ρ1WNu1 + μ

u2 = ρ2Wu2 + ν.

This is a balanced panel linear regression model given in (13.5). Zμ = ιT ⊗ IN
denotes the design matrix for the (N × 1) vector of random individual effects u1. ιT
is a (T × 1) vector of ones and IN is an identity matrix of dimension N . The vector of
individual effects μ is assumed to be i .i .d.N (0, σ2

μIN ), while the (n × 1) vector of
remainder disturbances ν is assumed to be i .i .d.N (0, σ2

νIn) . If ρ1 = 0 and ρ2 = λ,
this reverts to the Anselin (1988) random effects spatial panel model given in (13.2)
and (13.3). If ρ1 = ρ2 = 0, this reverts to the random effects panel model with no
spatial correlation. If ρ1 = ρ2, this reverts to the Kapoor, Kelejian and Prucha (2007)
model given in (13.11) and (13.12). Of course, the elements of μ and ν are assumed
to be independent of each other. In this generalized spatial error components model,
both u1 and u2 are spatially correlated involving the same spatial weight matrix
WN for each time period, but with different spatial autocorrelation parameters ρ1
and ρ2, respectively.WN exhibits zero diagonal elements, the remaining entries are
usually assumed to decline with distance. The eigenvalues of WN are bounded and
smaller than 1 in absolute value. The latter assumption holds for the row normalized
WN . It also holds for the maximum-row normalized spatial weights matrices. This
assumption also implies that all row and column sums ofWN are uniformly bounded
in absolute value. In addition, we assume that |ρr | < 1 for r = 1, 2. The data are
ordered such that i = 1, ..., N is the fast index and t = 1, ..., T is the slow one. The
spatial weights matrix for the panel is then given byW = IT ⊗ WN , which is block
diagonal and of dimension (n × n).

Baltagi, Egger and Pfaffermayr (2013) consider the following test of hypotheses:

H A
0 : ρ1 = ρ2 = 0 vs. H A

1 : at least one of the ρ1 or ρ2 �= 0

HB
0 : ρ1 = ρ2 vs. H

B
1 : ρ1 �= ρ2

HC
0 : ρ1 = 0 vs. HC

1 : ρ1 �= 0 (13.14)

First, they test H A
0 ; ρ1 = ρ2 = 0, to see whether there is no spatial correlation in the

error term. If H A
0 is not rejected, the pretest estimator reverts to the random effects

MLE. In case H A
0 is rejected, they test HB

0 ; ρ1 = ρ2. If HB
0 is not rejected, the pretest

estimator reverts to the KKPMLE. Otherwise, ρ1 �= ρ2. Next, they test HC
0 ; ρ1 = 0.

In case HC
0 is not rejected, the pretest estimator reverts to the Anselin MLE. If HC

0
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is rejected, the pretest estimator reverts to the MLE of the general model considered
by Baltagi, Egger and Pfaffermayr (2013). In other words,

β̂ pretest = β̂RE,MLE if H A
0 is not rejected

= β̂KKP,MLE if H A
0 is rejected, and HB

0 is not rejected

= β̂Anselin,MLE if H A
0 and HB

0 are rejected, and HC
0 is not rejected

= β̂General,MLE if H A
0 and HB

0 and HC
0 are rejected. (13.15)

It has to be emphasized that the pretest estimator becomes the MLE of the general
model when all three hypotheses are rejected. Also, it is the MLE of the RE model
when H A

0 is not rejected. Hence changing the sequence of tests for HB
0 and HC

0
will not affect the number of times the pretest estimator reverts to the MLE of the
RE or General model. This affects only the number of times the pretest estimator
reverts to the Anselin or KKP ML estimators. In using the same data set to select
the estimator to use based on a series of tests makes the statistical properties of
the resulting pretest estimator difficult to derive. Given that the researcher does not
know the true model, Baltagi, Egger and Pfaffermayr (2008) recommend the pretest
estimator which performed well in Monte Carlo experiments no matter what the true
underlying model. In fact this pretest estimator was a close second in MSE perfor-
mance to the true MLE. Additionally, the Monte Carlo experiments shed some light
on the performance of the Anselin MLEwhen the true model is KKP, and vice versa.
Ignoring spatial correlation in panel data and performing RE MLE leads to consid-
erable loss in MSE efficiency. When the true model is a general spatial panel model
with ρ1 �= ρ2 �= 0, both KKP and Anselin MLE impose wrong restrictions on the ρ
parameters, which in turn, introduce bias and lead to bad MSE performance of the
resulting MLEs. Fortunately, this does not translate fully into bad MSE performance
for the regression coefficients. The pretest estimator of the regression coefficients
always performs better than the misspecified MLE and is recommended in practice.

For Stata programs implementing the Generalized Spatial Panel Random Effects
model of Baltagi, Egger and Pfaffermayr (2013), see xsmle by Belotti, Hughes and
Piano Mortari (2017) with an application to residential demand for electricity cov-
ering the 48 states in the continental United States plus the district of Columbia for
the period 1990–2010. Note that Belotti, Hughes and Piano Mortari (2017) use this
empirical example to illustrate the fixed effects spatial panel model specifications.
We will use their data set to illustrate the Generalized Spatial Panel Random Effects
model.

Empirical Example:Residential Demand for Electricity. The dependent variable
is the log of residential electricity sales, and it is modeled as a function of log real
per-capita income, log of real average residential price of electricity, log of housing
units per capita, log of cooling degree and heating degree days. The Stata data set
is available as state_spatial_dbf.dta. Using a rook W matrix for spatial contiguity
of the 48 states in the continental United States plus the district of Columbia, xsmle
allows us to estimate the Generalized Spatial Panel Random Effects model with
the option (model (gspre)) and error(1) giving ρ1 �= ρ2 �= 0. These are reported as
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Table 13.1 Generalized spatial panel random effects model

φ = ρ2 and λ = ρ1. Table 13.1 gives the Generalized Spatial Panel Random Effects
results where both ρ1 and ρ2 are significant with estimated values of 0.40 and 0.45.
All regression coefficients are significant with the right sign. Table 13.2 gives the
Anselin (1988) Spatial AutoregressiveRandomEffects results where ρ2 is set to zero,
so that there is no spatial correlation in the individual effects, and ρ1 is significant
with an estimated value of 0.40. Again, all regression coefficients are significant
with the right sign. This is done with the option (model (gspre)) and error(3). Table
13.3 gives the KKP Spatial Autoregressive Random Effects results where ρ1 = ρ2
with an estimated value of 0.40. Again, all regression coefficients are significant with
the right sign. This is done with the option (model (gspre)) and error(4). Note that
this is maximum likelihood estimation and not GMM as KKP intended. Based on
the log-likelihood values reported, one can compute the Likelihood Ratio tests. The
results do not reject the KKP model vs. the Generalized model. However, it does
reject the Anselin model vs. the Generalized model. So one can conclude that there
is spatial correlation in the error across the states of magnitude 0.40, and one cannot
reject that this spatial effect is of the same magnitude in the individual effects as
well as in the remainder disturbances. The income elasticity of residential demand
for electricity is 0.37 and the price elasticity is −0.28, both are significant.

Lee and Yu (2012) extend the Generalized Spatial Panel model by Baltagi,
Egger and Pfaffermayr (2008, 2013) to include a spatial lag on the dependent vari-
able as well as serial correlation in the remainder term disturbances. This encom-
passes a lot of panel and spatial models considered in the literature. We deal with
the spatial lag on the dependent variable in the next Sect. 13.3. Baltagi and Liu
(2016) consider the random effects case of this generalized model and derive the
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Table 13.2 Anselin (1988) spatial autoregressive model with random effects

Table 13.3 KKP (2007) spatial autoregressive model with random effects
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Goldberger (1962) BLUP term for forecasting s periods ahead for the i-th cross-
sectional unit. Forecasting with spatial panels will be discussed in Sect. 13.4.

Baltagi and Pirotte (2010) extend theKapoor,Kelejian and Prucha (2007)method-
ology to the SUR error component panel data model with SAR disturbances. They
compare the performance of the proposed fixed and random spatial SUR estimators
to the maximum likelihood (ML) estimator for the SUR spatial panel model using
Monte Carlo experiments. Baltagi and Bresson (2011) propose maximum likelihood
estimators for the panel seemingly unrelated regressions with both spatial lag and
spatial error components. They also derive joint and conditional Lagrange multi-
plier tests for spatial autocorrelation and random effects for this spatial SUR panel
model. The small sample performance of the proposed estimators and tests are exam-
ined using Monte Carlo experiments. An empirical application to hedonic housing
prices in Paris illustrates these methods. The proposed specification uses a system
of three SUR equations corresponding to three types of flats within 80 districts of
Paris over the period 1990–2003. They test for spatial effects and heterogeneity and
find reasonable estimates of the shadow prices for housing characteristics.

Baltagi, Egger andKesina (2016) extend theHausman andTaylor (1981) approach
studied in Chap. 7 to allow for a saptial SAR(1) error term. Unlike the spatial
fixed effects (SFE) estimator, the spatial Hausman and Taylor (SHT) estimator does
not wipe out the time-invariant variables. Instead, it uses the Between variation of
the time-varying exogenous variables to instrument for endogenous time-invariant
regressors. It also uses the GM estimation methodology of Kapoor, Kelejian and
Prucha (2007). This estimation method is used to assess the role of intra-sectoral
spillovers in total factor productivity across Chinese producers in the chemical indus-
try. It uses a rich panel data set of 12,552 firms observed over the period 2004–2006.
The paper finds evidence of positive spillovers across chemical manufacturers and a
large and significant detrimental effect of public ownership on total factor productiv-
ity. The paper also presents variants of the SHT estimator in the spirit of Amemiya
and MaCurdy (1986) as well as Breusch, Mizon and Schmidt (1989) studied in
Chap. 7.

In a companion paper, Baltagi, Egger and Kesina (2012) study the small sample
performance of various estimators applied to this spatial Hausman–Taylor model
using Monte Carlo experiments. This paper generalizes the pretest estimator sug-
gested by Baltagi, Bresson and Pirotte (2003), and studied in Chap. 4, to account
for spatial correlation. This pretest estimator reverts to the spatial RE estimator if
the standard Hausman test based on the SFE versus the spatial RE estimators is not
rejected. It reverts to the SHT estimator if the choice of strictly exogenous regressors
is not rejected by a second Hausman over-identification test based on the difference
between the SFE and SHT estimators. If both tests are rejected, then the pretest
estimator reverts to the SFE estimator. Monte Carlo experiments show that the spa-
tial pretest estimator is a viable estimator and performs reasonably well in RMSE
but should not be used for simple test of hypothesis. The SFE estimator is a con-
sistent estimator, but its disadvantage is that it does not allow the estimation of the
coefficients of the time-invariant regressors. When there is endogeneity among the
regressors, there is substantial bias in spatial OLS and SRE estimators and both yield
misleading inference.
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13.3 Spatial Lag Panel Data RegressionModel

Baltagi and Liu (2011) considered the following spatial lag panel data model:

y = λWy + Xβ + u,

u = Zμμ + ν, (13.16)

where y is of dimension NT × 1, X is NT × k, β is k × 1, and u is NT × 1. X
is assumed to be exogenous of full column rank and its elements are assumed to
be asymptotically bounded in absolute value. Ordering the data first by time (with
index t = 1, ..., T ) and then by individual units (with index i = 1, ..., N ), we get
W = IT ⊗ WN , where the (N × N ) spatial weight matrix WN has zero diagonal
elements and is row normalized with its entries usually declining with distance. This
in turn results in row and column sums ofWN that are uniformly bounded in absolute
value. In addition the column sums of WN , as well as the row and column sums of
(IN − λWN )−1 are bounded uniformly in absolute value by some finite constant.
We also assume that λ is bounded in absolute value, i.e., |λ| < 1. The random error
component structure is as described in Chap. 2, but now Zμ = ιT ⊗ IN denoting
the selector matrix for the (N × 1) random vector of individual effects μ which is
assumed to be i.i.d. (0,σ2

μ IN ). Recall that ιT is a vector of ones of dimension T
and IN is an identity matrix of dimension N . ν is a vector of NT × 1 remainder
disturbances which is assumed to be i.i.d. (0, σ2

ν INT ). Also, μ and ν are independent
of each other and the regressor matrix X .

This is a panel data version of the cross-section spatial lag model considered
by Kelejian and Prucha (1998) and Lee (2003). Let A = IT ⊗ AN where AN =
IN − λWN , then one can write

y = A−1 (Xβ + u) .

Note that
E

[
Wyu′] = E

[
W A−1 (Xβ + u) u′] = W A−1� �= 0,

where � = E
(
uu′). The spatially lagged dependent variable Wy is correlated

with the disturbance u. Therefore, the OLS estimator will be inconsistent. Let
Z = (X ,Wy) and δ = (β,λ)′, the model in Eq. (13.16) can be written as

y = Zδ + u. (13.17)

In the cross-section spatial autoregressive model, Kelejian and Prucha (1998) sug-
gested a two-stage least square estimator (2SLS) based on feasible instruments like
H = (

X ,WX ,W 2X
)
which yield

δ̂2SLS = [
Z ′PH Z

]−1
Z ′PH y, (13.18)

where PH = H
(
H ′H

)−1
H ′ denotes the projection matrix using H . They show that

this 2SLS estimator is consistent under some general regularity conditions for this
model. Let J̄T = JT /T , where JT is a matrix of ones of dimension T . Also, let
ET = IT − J̄T , and define P to be the projection matrix on Zμ, i.e., P = J̄T ⊗ IN ,
and Q = INT − P = ET ⊗ IN . Premultiply Eq. (13.17) by Q to obtain

ỹ = λW ỹ + X̃β + ũ. (13.19)
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This follows from the fact that QW = (ET ⊗ IN )(IT ⊗ WN ) = (ET ⊗ WN ) =
(IT ⊗ WN )(ET ⊗ IN ) = WQ. Applying 2sls to this Q transformed panel spatial
lag model, we get the fixed effects spatial 2SLS (FE-S2SLS) estimator of δ based
upon H̃ = (

X̃ ,W X̃ ,W 2 X̃
) = (

QX , QWX , QW 2X
) = QH . We denote this by

δ̂FE−S2SLS . Note that the s2 of this FE-S2SLS provides a consistent estimate σ̂2
ν

of σ2
ν . Similarly, one could premultiply Eq. (13.17) by P to obtain

y = λW y + Xβ + u. (13.20)

This follows from the fact that PW = ( J̄T ⊗ IN )(IT ⊗ WN ) = ( J̄T ⊗ WN ) = (IT ⊗
WN )( J̄T ⊗ IN ) = WP. Applying 2sls to this P transformed panel spatial lag
model, we get the Between effects spatial 2SLS (BE-S2SLS) estimator of δ based
upon H = (

X ,WX ,W 2X
) = (

PX , PW X , PW 2X
) = PH . We denote this by

δ̂BE−S2SLS . Note that the s2 of this BE-S2SLS provides a consistent estimate σ̂2
1

of σ2
1 = Tσ2

μ + σ2
ν . As shown in Chap. 2, the variance–covariance matrix of u

is � = E
(
uu′) = σ2

1P + σ2
νQ, and �−1/2 =

(
σ−1
1 P + σ−1

ν Q
)
. Left multiply Eq.

(13.17) by �−1/2, we get
y∗ = Z∗δ + u∗, (13.21)

where y∗ = �−1/2y, u∗ = �−1/2u, and Z∗ = �−1/2Z = �−1/2(X ,Wy) = (X∗,
�−1/2Wy

) = (
X∗,W�−1/2y

) = (X∗,Wy∗). The last expression follows from the

fact that �−1/2W =
(
σ−1
1 PW + σ−1

ν QW
)

=
(
σ−1
1 WP + σ−1

ν WQ
)

= W�−1/2.

This means that Eq. (13.21) can also be written as

y∗ = λWy∗ + X∗β + u∗. (13.22)

Applying 2sls to this �−1/2 transformed panel spatial lag model, we get the
random effects spatial 2SLS estimator (RE-S2SLS) of δ given by

δ̂RE−S2SLS = [
Z∗′PH∗ Z∗]−1

Z∗′PH∗ y∗ (13.23)

where

H∗ = (
X∗,WX∗,W 2X∗) = (

�−1/2X ,W�−1/2X ,W 2�−1/2X
)

= (
�−1/2X , �−1/2WX ,�−1/2W 2X

) = �−1/2H .

Using the results in Chap. 7, one can similarly derive a spatial error component
2SLS estimator (SEC-2SLS) as follows: Leftmultiply Eq. (13.19) by H̃ ′, and (13.20)
by H̄ ′, and stack the system of two equations recognizing that they estimate the same
δ, we get (

H̃ ′ ỹ
H̄ ′y

)
=

(
H̃ ′ Z̃
H̄ ′Z

)
δ +

(
H̃ ′ũ
H̄ ′u

)
,

where E

(
H̃ ′ũ
H̄ ′u

)
= 0 and Var

(
H̃ ′ũ
H̄ ′u

)
=

[
σ2

ν H̃
′ H̃ 0

0 σ2
1 H̄

′ H̄

]
. This follows from the

fact that Q� = σ2
νQ, and P� = σ2

1P, with QP = 0. Performing GLS on this two
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equation system, we get the spatial error component two-stage least squares (SEC-
2SLS) estimator:

δ̂SEC−2SLS =
(
Z̃ ′PH̃ Z̃

σ2
ν

+ Z
′
PH̄ Z

σ2
1

)−1 (
Z̃ ′PH̃ ỹ

σ2
ν

+ Z
′
PH̄ y

σ2
1

)

=
(
σ−2

ν Z ′PH̃ Z + σ−2
1 Z ′PH̄ Z

)−1 (
σ−2

ν Z ′PH̃ y + σ−2
1 Z ′PH̄ y

)
,

(13.24)

using the fact that Q and P are idempotent. Using a similar argument as in Chap. 7,
one can show that δ̂SEC−2SLS is a matrix weighted combination of δ̂FE−S2SLS and
δ̂BE−S2SLS weighting each by the inverse of their variance–covariance matrix and
such that the weights add up to the identity matrix. A feasible SEC-2SLS estimator
can be obtained by substituting σ̂2

ν and σ̂2
1 into Eq. (13.24). Following a similar argu-

ment as in Cornwell, Schmidt and Wyhowski (1992), one can show that δ̂SEC−2SLS
can also be obtained as 2SLS from the �−1/2 transformed equation in (13.21) using

B =
(
H̃ , H̄

)
as instruments. To show this, note that PB = PH̃ + PH̄ using the fact

that H̃ and H̄ are orthogonal to each other. This means that Z∗′PB Z∗ = Z∗′PH̃ Z∗ +
Z∗′PH̄ Z∗ = σ−2

ν Z ′PH̃ Z + σ−2
1 Z ′PH̄ Z , since Q�−1/2 = σ−1

ν Q, and P�−1/2 =
σ−1
1 P. Similarly, Z∗′PB y∗ = Z∗′PH̃ y∗ + Z∗′PH̄ y∗ = σ−2

ν Z ′PH̃ y + σ−2
1 Z ′PH̄ y.

Therefore, δ̂SEC−2SLS given by Eq. (13.24) can be obtained as 2SLS on (13.21)

using B =
(
H̃ , H̄

)
as instruments.

Lee (2003) argued that in the cross-section spatial model, the optimal instruments
for estimating δ in Eq. (13.17) is

E (Z) = E [X ,Wy] = (
X ,W A−1Xβ

)
.

Therefore, a Lee (2003) type optimal instruments for estimating δ in the �−1/2

transformed panel autoregressive spatial model in Eq. (13.21) is

E
(
Z∗) = E

(
�−1/2Z

) = E
[
�−1/2 (X ,Wy)

] = (
�−1/2X , �−1/2W A−1Xβ

)
,

and the resulting best spatial 2SLS estimator is given by Baltagi and Liu (2011)

δ̂BS−2SLS = (
H∗′
b Z∗)−1

H∗′
b y∗, (13.25)

where H∗
b = (

�−1/2X , �−1/2W A−1Xβ
)
. A feasible version of this estimator is

based on consistent estimators of σ2
1, σ

2
ν , λ, and β, respectively.

Similarly, one can extend Baltagi (1981) error component 2SLS estimator to
this panel spatial lag model using H∗

b as instruments. Left multiply Eq. (13.21)

by
(
H̃∗
b , H̄∗

b

)′
, where H̃∗

b = QH∗
b = σ−1

ν

(
QX , QW A−1Xβ

)
, and H̄∗ = PH∗

b =
σ−1
1

(
PX , PW A−1Xβ

)
, we get the two equation system recognizing that they esti-

mate the same δ: (
H̃∗′
b y∗

H̄∗′
b y∗

)
=

(
H̃∗′
b Z∗

H̄∗′
b Z∗

)
δ +

(
H̃∗′
b u∗

H̄∗′
b u∗

)
,
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where E

(
H̃∗′
b u∗

H̄∗′
b u∗

)
= 0 and Var

(
H̃∗′
b u∗

H̄∗′
b u∗

)
=

[
H̃∗′
b H̃∗

b 0
0 H̄∗′

b H̄∗
b

]
. Performing GLS

on this system, we obtain the spatial error component best 2SLS estimator (SEC-
B2SLS):

δ̂SEC−B2SLS =
(
Z∗′PH̃∗

b
Z∗ + Z∗′PH̄∗

b
Z∗)−1 (

Z∗′PH̃∗
b
y∗ + Z∗′PH̄∗

b
y∗)

=
(
σ−2

ν Z ′PH̃∗
b
Z + σ−2

1 Z ′PH̄∗
b
Z
)−1 (

σ−2
ν Z ′PH̃∗

b
y + σ−2

1 Z ′PH̄∗
b
y
)

.

(13.26)

The second equality uses the fact that Q�−1/2 = σ−1
ν Q and P�−1/2 = σ−1

1 P. This
SEC-B2SLS estimator can also be obtained from the �−1/2 transformed equation

in (13.21) using B =
(
H̃∗
b , H̄∗

b

)
as instruments. In fact, H̃∗

b and H̄∗
b are orthog-

onal to each other, since QP = 0. Hence, PB = PH̃∗
b

+ PH̄∗
b
. This also implies

that Z∗′PB Z∗ = Z∗′PH̃∗
b
Z∗ + Z∗′PH̄∗

b
Z∗ and Z∗′PB y∗ = Z∗′PH̃∗

b
y∗ + Z∗′PH̄∗

b
y∗.

Therefore, δ̂SEC−B2SLS given by Equation (13.26) is the same as 2SLS on (13.21)

using B =
(
H̃∗
b , H̄∗

b

)
as instruments.

Note that these 2SLS estimators are easy to apply using standard software. In fact,
one can easily extend the ec2sls procedure in Stata for panels to the spatial panel
case. Note also that SEC-2SLS and SEC-B2SLS use twice the instruments used by
their counterparts RE-S2SLS and BS-2SLS. Although the set of instruments in the
former is completely spanned by those for the latter estimators, these may yield
smaller empirical standard errors in small samples.

Also, it is important to note that the above estimation procedures can be easily
extended to handle right hand side endogenous regressors in the spatial lag model
described in Eq. (13.16); see Baltagi and Deng (2015). In addition, Baltagi and Deng
(2015) derive spatial EC3SLS estimators for a two equation simultaneous model
with spatial lag and random effects in each equation. Spatial EC3SLS estimators can
handle endoegeneity, spatial lag dependence, heterogeneity as well as cross equation
correlation. This is done by utilizing the Kelejian and Prucha (1998) and Lee (2003)
type instruments from the cross-section spatial autoregressive literature andmarrying
them to theEC3SLS estimator derived byBaltagi (1981) for a systemof simultaneous
panel data equations; see Chap. 7. Monte Carlo experiments are conducted to study
the small sample properties of spatial EC2SLS as well as spatial EC3SLS estimators.
The results indicate that, for the single equation spatial EC2SLS estimators, there
is a slight gain in efficiency when Lee (2003) type rather than Kelejian and Prucha
(1998) instruments are used. However, there is not much difference in efficiency
between these instruments for spatial EC3SLS estimators.

Debarsy and Ertur (2010) derive LM and LR tests designed to discriminate
between spatially autocorrelated disturbances versus a spatially lagged dependent
variable in the context of fixed effects spatial panel data model. They combine a
spatial lag model with spatially autocorrelated disturbances of order one, labeled
SARAR, in a fixed effects spatial panel data setting. They derive joint, marginal as
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Table 13.4 Fixed effects SARAR for residential electricity demand

well as conditional LM and LR tests, under the assumption of normality of the dis-
turbances. They show that these tests perform well using Monte Carlo experiments.
For Stata programs that implement maximum likelihood methods for the fixed and
random effects spatial panel model, see the xsmle command by Belotti, Hughes and
Piano Mortari (2017). We used it in the Empirical Example to illustrate the General-
ized Spatial Panel Random Effects model of Baltagi, Egger and Pfaffermayr (2013).
Here, we continue with this example of residential electricity demand and apply it to
a SARAR model with fixed effects and illustrate the Debarsy and Ertur (2010) LR
tests for this empirical study.

Empirical Example (continued): Residential Electricity Demand. xsmle can
estimate a spatially autocorrelated errormodel (SEM)described as theAnselin (1988)
model in (13.1)–(13.3). Also, a spatial autoregressive model (SAR) which we pre-
sented in Sect. 13.3 as a spatial lag model described in (13.6). When we have both
a spatial lag as well as a spatial error model, Debarsy and Ertur (2010) called it
(SARAR). The model is given by (13.16) (with spatial lag coefficient ρ) but with
error given by (13.2) and (13.3) (with spatial error coefficient λ). Belotti, Hughes
and Piano Mortari (2017) call it the spatial autocorrelated model (SAC). This can be
done for both random effects as well as fixed effects. Table 13.4 gives the SARAR
or SAC model with fixed effects. The results are obtained by specifying the (model
(sac)) option and using the same rook W matrix for the error as well as the spa-
tial lag. This replicates the SAC fixed effects results in Table 5 of Belotti, Hughes
and Piano Mortari (2017, p. 174). Note that ρ is the spatial lag coefficient and it is
estimated at 0.36 and is significant, while λ is the spatial coefficient on the spatial
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error and it is estimated at 0.02 and is insignificant. One can also get estimates of
the direct and indirect effects; see LeSage and Pace (2009). Problem 13.3 asks the
reader to replicate Table 5 of Belotti, Hughes and PianoMortari (2017, p. 174) which
gives the fixed effects estimates without any spatial correlation, the SEM, SAR, and
SAC, all with fixed effects. Given these results, one can perform the LR tests of
Debarsy and Ertur (2010) with fixed effects. The log-likelihood values are given in
the xsmle output. The marginal LR for (Ha

0 : ρ = 0) is based on the log-likelihood
of FE-SAR vs. the log-likelihood of FE: −2(2029.91 − 2108.54) = 157.3 which is
χ2
1. The Marginal LR for (Hb

0 : λ = 0) is based on the log-likelihood of FE-SEM
vs. the log-likelihood of FE: −2(2029.91 − 2071.08) = 82.34 which is χ2

1. The
Joint LR for (Hc

0 : ρ = λ = 0) is based on the log-likelihood of FE-SAC vs. the log-
likelihood of FE:−2(2029.91 − 2108.56) = 157.3which isχ2

2. The Conditional LR
for (Hd

0 : λ = 0/ρ) is based on the log-likelihood of FE-SAR vs. the log-likelihood
of FE-SAC: −2(2108.54 − 2108.56) = 0.04 which is χ2

1. The Conditional LR for
(He

0 : ρ = 0/λ) is based on the log-likelihood of FE-SEM vs. the log-likelihood of
FE-SAC: −2(2071.08 − 2108.56) = 74.96 which is χ2

1. The results for the fixed
effects specification reject that ρ = 0, but do not reject that λ = 0 using the condi-
tional LR test.

Mutl and Pfaffermayr (2010) propose a spatial Hausman test to compare the
fixed effects and random effects SARAR panel model. A small Monte Carlo study
shows that this test works well even in small panels. Debarsy (2012) extends the
Mundlak (1978) approach considered in Chap. 7 to the spatial panel data model.
This adds an auxiliary regression for the random individual effects that is a function
of the explanatory variables averaged over time plus their spatial weighted average.
A likelihood ratio (LR) test that assesses the significance of the correlation between
regressors and individual effects is proposed, and its properties are investigated using
Monte Carlo simulations.

Note that the SAR spatial models can allow for a spatial weighted term on some
or all of the exogenous variables. This is dubbed the spatial Durbin model (SDM).
This does not introduce any new complications for estimation and testing, but will
affect the direct and indirect effects of a change in one unit of the exogenous variable
on the dependent variable; see LeSage and Pace (2009). Problem 13.3 part (e) asks
the reader to apply the SDM with fixed effects to the residential electricity demand
example.

Spatial panel models can be generalized to include the lagged value of the depen-
dent variable, thereforemaking it dynamic. In addition one can add a spatial weighted
term for the lagged dependent variable. In Stata, xsmle allows the estimation of
a dynamic specification by implementing the bias-corrected maximum likelihood
approach described in Yu, de Jong and Lee (2008). Briefly, Yu, de Jong and Lee
(2008) study the asymptotic properties of quasi-maximum likelihood estimators for
spatial dynamic panel data with fixed effects when both the number of individuals
N and the number of time periods T are large. They cover both the stationary and
nonstationary cases. When the roots in the DGP are not all unitary, the estimators’
rates of convergence will be the same as the stationary case, and the estimators can
be asymptotically normal. In fact, for the distribution of the common parameters,
when T is asymptotically large relative to N , the estimators are

√
NT consistent and
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asymptotically normal, with the limiting distribution centered around 0. When N is
asymptotically proportional to T , the estimators are

√
NT consistent and asymp-

totically normal, but the limiting distribution is not centered around 0. When N is
large relative to T , the estimators are consistent with rate T , and have a degenerate
limiting distribution. Compared to the stationary case, the estimators’ rate of con-
vergence will be the same, but the asymptotic variance matrix will be driven by the
nonstationary component and it is singular. Consequently, a linear combination of
the spatial and dynamic effects can converge at a higher rate. They also propose a
bias correction which performs well when T grows faster than N 1/3. Problem 13.3
part (f) asks the reader to estimate a dynamic SAR and dynamic SDM with fixed
effects for the residential electricity demand example. This adds the lagged value of
the dependent variable to the model with option dlag(1) in xsmle. Problem 13.3 part
(g) checks the sensitivity of the results in part (d) by adding both the lagged value
of the dependent variable and the spatial lag value of the dependent variable with
option dlag(3) in xsmle. Table 13.5 gives the results of a dynamic SAR with only the
lagged dependent variable. This replicates the third column labeled dynamic SAR in
Table 5 of Belotti, Hughes and Piano Mortari (2017, p. 174). This shows that lagged
residential electricity sales is significant, while log real per-capita income is now
insignificant.

Table 13.5 Dynamic SAR with fixed effects for residential electricity demand
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13.4 Forecasts Using Panel Data with Spatial Error Correlation

The literature on forecasting is rich with time-series applications, but this is not the
case for spatial panel data applications. Exceptions are Baltagi and Li (2004, 2006)
with applications to forecasting sales of cigarette and liquor per capita for U.S. states
over time. In order to explain how spatial autocorrelation may arise in the demand
for cigarettes, we note that cigarette prices vary among states primarily due to varia-
tion in state taxes on cigarettes. Border effect purchases not included in the cigarette
demand equation can cause spatial autocorrelation among the disturbances. In fore-
casting sales of cigarettes, the spatial autocorrelation due to neighboring states and
the individual heterogeneity across states is taken explicitly into account. Baltagi and
Li (2004) derive the best linear unbiased predictor for the random error component
model with spatial correlation using a simple demand equation for cigarettes based
on a panel of 46 states over the period 1963–92. They compare the performance
of several predictors of the states demand for cigarettes for one year and five years
ahead. The estimators whose predictions are compared include OLS, fixed effects
ignoring spatial correlation, fixed effects with spatial correlation, random effects
GLS estimator ignoring spatial correlation, and random effects estimator accounting
for the spatial correlation. Based on the RMSE criteria, the fixed effects and the
random effects spatial estimators gave the best out of sample forecast performance.

Using Goldberger’s (1962) results on best linear unbiased predictor (BLUP) stud-
ied in Chap. 2, Baltagi and Li (2004, 2006) derived the BLUP correction term when
both error components and spatial autocorrelation are present and εt follows a SAR
process; see (13.1)–(13.3). The predictor for the SAR is given by

ŷi,T+τ = Xi,T+τ β̂MLE + φ
(
ι′T ⊗ l ′iC

−1
1

)
ûMLE

= Xi,T+τ β̂MLE + Tφ

N∑
j=1

c1, j u j .,MLE (13.27)

where φ = σ2
μ/σ2

ν, c1 j is the j th element of the i th row of C−1
1 with C1 =[

TφIN + (
B ′B

)−1
]
and u j .,MLE = ∑T

t=1 ût j,MLE/T . In other words, the BLUP

of yi,T+τ adds to Xi,T+τ β̂MLE a weighted average of the MLE residuals for the
N individuals averaged over time. The weights depend upon the spatial matrix WN

and the spatial autoregressive coefficient λ. To make these predictors operational,
we replace φ and λ by their estimates from the RE-spatial MLE with SAR. When
there are no random individual effects, so that σ2

μ = 0, then φ = 0 and the BLUP
prediction terms drop out completely from Eq. (13.27). In these cases, � reduces to

σ2
v

[
IT ⊗ (

B ′B
)−1

]
for SAR, and the correspondingMLE for these models yield the

pooled spatial MLE with SAR remainder disturbances. This result can be extended
to the spatial moving average model (SMA); see Baltagi, Bresson and Pirotte (2012).

For the Kapoor, Kelejian and Prucha (2007) model described in (13.11) and
(13.12), the BLUP of yi,T+τ for the SAR-RE also modifies the usual GLS fore-
casts by adding a fraction of the mean of the GLS residuals corresponding to the i th
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individual. More specifically, the predictor is given by

ŷi,T+τ = Xi,T+τ β̂FGLS +
(

σ2
μ

σ2
1

)
bi

(
ι′T ⊗ BN

)
ûFGLS

= Xi,T+τ β̂FGLS +
(

σ2
μ

σ2
1

)
(
ι′T ⊗ l ′i

)
ûFGLS (13.28)

where bi is the i th row of the matrix B−1
N . This holds because bi

(
ι′T ⊗ BN

) =
(1 ⊗ bi )

(
ι′T ⊗ BN

) = (
ι′T ⊗ l ′i

)
where l ′i is the i th row of IN as defined above.

B−1
N BN = IN and therefore bi BN = l ′i . This proof applies to both the Kapoor, Kele-

jian and Prucha (2007) SAR-RE specification and the Fingleton (2008) SMA-RE
specification. Therefore, the BLUP of yi,T+τ for the SAR-RE and the SMA-RE,
like the usual RE model with no spatial effects, modifies the usual GLS forecasts
by adding a fraction of the mean of the GLS residuals corresponding to the i th indi-
vidual. While the predictor formula is the same, the MLEs for these specifications
yield different estimates which in turn yield different residuals and hence different
forecasts.

The results of the Monte Carlo study by Baltagi, Bresson and Pirotte (2012) find
that when the true DGP is RE with a SAR or SMA remainder disturbances, estima-
tors that ignore heterogeneity/spatial correlation perform badly in RMSE forecasts.
Accounting for heterogeneity improves the forecast performance by a big margin
and accounting for spatial correlation improves the forecast but by a smaller margin.
Ignoring both, leads to the worst forecasting performance. Heterogeneous estima-
tors based on averaging perform worse than homogeneous estimators in forecasting
performance. This performance improves with a larger sample size and seems robust
to the type of spatial error structure imposed on the remainder disturbances. These
Monte Carlo experiments confirm earlier empirical studies that report similar find-
ings.

Baltagi, Fingleton and Pirotte (2014) focus on the estimation and predictive per-
formance of several estimators for the dynamic and autoregressive spatial lag panel
data model with spatially correlated disturbances. A dynamic spatial generalized
method of moments estimator is proposed based on Kapoor, Kelejian and Prucha
(2007) andArellano andBond (1991). Themain idea is tomix non-spatial and spatial
instruments to obtain consistent estimates of the parameters. Monte Carlo experi-
ments find that when the true model is a dynamic first-order spatial autoregressive
specification with SAR-RE disturbances, estimators that ignore the endogeneity of
the spatial lag and the endogeneity of the lagged dependent variable perform badly
in terms of bias and RMSE. Accounting for heterogeneity and endogeneity improves
the forecast performance by a big margin. Accounting for spatial correlation in the
disturbances also improves the forecast, but by a smaller margin.
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13.5 Panel Unit Root Tests and Spatial Dependence

Baltagi, Bresson and Pirotte (2007) studied the performance of panel unit root tests
when spatial effects are present that account for cross-section correlation. Monte
Carlo simulations show that there can be considerable size distortions in panel unit
root tests when the true specification exhibits spatial error correlation.

Panel data unit root tests have been proposed as alternative more powerful tests
than those based on individual time-series unit roots tests; see Chap. 12. One of the
advantages of panel unit root tests is that their asymptotic distribution is standard
normal. This is in contrast to individual time-series unit roots which have non-
standard asymptotic distributions. But these tests are not without their critics. The
first generation panel unit root tests assumed cross-section independence. These tests
include the one proposed by Levin, Lin and Chu (2002), hereafter denoted by LLC,
where the null hypothesis is that each individual time series contains a unit root
against the alternative that each time series is stationary. As Maddala pointed out,
the null may be fine for testing convergence in growth among countries, but the
alternative restricts every country to converge at the same rate. Im, Pesaran and Shin
(2003), hereafter denoted by IPS, allow for heterogeneous panels and propose panel
unit root tests which are based on the average of the individual ADF unit root tests
computed from each time series. The null hypothesis is that each individual time
series contains a unit root while the alternative allows for some but not all of the
individual series to have unit roots. One major criticism of both the LLC and IPS
tests is that they require cross-sectional independence. This is a restrictive assumption
given the cross-section correlation and spillovers across countries, states and regions.

Maddala and Wu (1999) and Choi (2001) proposed combining the p-values from
the individual unit root ADF tests applied to each time series. Once again, these tests
follow a standard normal limiting distribution. They have the advantage that N , the
number of cross-sections, can be finite or infinite; the time series can be of different
length; and the alternative allows some groups to have unit roots while others may
not.

Second generation panel unit root tests that try to account for cross-sectional
dependence in panels include the following: Chang (2002) who explored the nonlin-
ear IV methodology to solve the inferential difficulties in the panel unit root testing
which arise from the intrinsic heterogeneities and dependencies of panel models.
Chang (2002) suggests an average of individual nonlinear IV t-ratio statistics of
the autoregressive coefficient obtained from using an integrable transformation of
the lagged level as instrument. These methods assume cross-sectional correlation in
the innovation terms driving the autoregressive processes. Choi (2002), on the other
hand, generalizes the three unit root tests (inverse chi-square, inverse normal, and
logit) to the casewhere the cross-sectional correlation ismodeled by error component
models. The tests are formulated by combining p-values from the ADF test applied
to each individual time series whose stochastic trend components and cross-sectional
correlations are eliminated using GLS-demeaning and GLS-detrending. Choi (2002)
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shows that the combination tests have a standard normal limiting distributions under
the sequential asymptotics T → ∞ and N → ∞.

To avoid the restrictive nature of cross-section demeaning procedure, Bai and Ng
(2004), and Phillips and Sul (2003), among others, propose dynamic factor models
by allowing the common factors to have differential effects on cross-section units.
Phillips and Sul’s model is a one-factor model where the factor is independently
distributed across time. They propose a moment-based method to eliminate the com-
mon factor which is different from principal components. More specifically, in the
context of a residual one-factor model, Phillips and Sul (2003) provide an orthogo-
nalization procedure which in effect asymptotically eliminates the common factors
before preceding to the application of standard unit root tests. Pesaran (2007) sug-
gests a simple way of getting rid of cross-sectional dependence that does not require
the estimation of factor loading. His method is based on augmenting the usual ADF
regression with the lagged cross-sectional mean and its first difference to capture the
cross-sectional dependence that arises through a single-factor model.

Baltagi, Bresson and Pirotte (2007) run Monte Carlo simulations to compare the
empirical size of panel unit root tests with and without spatial error dependence.
The structure of the dependence is based on some commonly used spatial error
processes: the spatial autoregressive (SAR) and the spatial moving average (SMA)
error process and the spatial error components model (SEC). For each experiment,
they perform nine panel unit root test statistics: the Levin, Lin and Chu (2002)
test, the Breitung (2000) test, the Im, Pesaran and Shin (2003) test, the Maddala
and Wu (1999) test, the Choi (2001, 2002) test with and without cross-sectional
correlation, the Chang (2002) IV test, the Phillips and Sul (2003) test and the Pesaran
(2007) test. The experiments include a case of no spatial correlation as well as four
types of spatial correlation (SAR, SMA, SEC1, and SEC3), with two values of the
parameters indicating weak versus strong spatial dependence. They also consider ten
weight matrices, differing in their degree of sparseness, four pairs of (N , T ) and two
models including individual effects and individual deterministic trends. Even with
this modest design, the total number of experiments considered is 1600. They find
that ignoring spatial dependence when present can seriously bias the size of panel
unit root tests.

13.6 Panel Data Tests for Cross-Sectional Dependence

Consider the heterogeneous panel data model:

yit = x ′
i tβi + uit , for i = 1, ..., N ; t = 1, ..., T , (13.29)

where i indexes the cross-sectional units and t the time-series observations. yit is
the dependent variable and xit denotes the exogenous regressors of dimension k × 1
with slope parameters βi that are allowed to vary across i . uit is allowed to be cross-
sectionally dependent but is uncorrelated with xit . Let Ut = (u1t , · · · , uNt )

′. The
N × 1 vectors U1,U2, · · · ,UT are assumed iid N (0, �u) over time. Let σi j be the
(i, j)th element of the N × N matrix �u . The errors uit (i = 1, ..., N ; t = 1, ..., T )
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are cross-sectionally dependent if �u is non-diagonal, i.e., σi j �= 0 for i �= j . The
null hypothesis of cross-sectional independence can be written as

H0 : σi j = 0 for i �= j,

or equivalently as
H0 : ρi j = 0 for i �= j, (13.30)

where ρi j is the correlation coefficient of the errors with ρi j = σi j√
σ2
i σ

2
j

. Under the

alternative hypothesis, there is at least one nonzero correlation coefficient ρi j , i.e.,
Ha : ρi j �= 0 for some i �= j .

The OLS estimator of yit on xit for each i , denoted by β̂i , is consistent. The
corresponding OLS residuals ûi t defined by ûi t = yit − x ′

i t β̂i are used to compute
the sample correlation ρ̆i j as follows:

ρ̆i j =
(

T∑
t=1

û2i t

)−1/2 (
T∑
t=1

û2j t

)−1/2 T∑
t=1

ûi t û j t . (13.31)

In the fixed N case and as T → ∞, the Breusch and Pagan’s (1980) LM test can be
applied to test for the cross-sectional dependence in heterogeneous panels. In this
case it is given by

LMBP = T
N−1∑
i=1

N∑
j=i+1

ρ̆2i j .

This is asymptotically distributed under the null as a χ2 with N (N − 1)/2 degrees
of freedom.

Stata has programmed the Breusch and Pagan (1980) test for cross-section cor-
relation after performing xtreg, fe or xtgls. The command is xttest2, and it provides
estimates of the pairwise correlation between the residuals of any pair of cross-
sections i and j = 1, .., N ;as well as the LM statistic. It requires N to be smaller
than T. Note that it is not based on OLS residuals of each cross-section as LMBP but
it is based on the fixed effects residuals of the pooled model. Table 13.6 gives the
results for the Grunfled data with N = 10 and T = 20. The test statistic is 246.329
and is distributed as χ2 with N (N − 1)/2 degrees of freedom. In this case, it is χ2

45,
and the null is rejected.

However, this Breusch-Pagan LM test statistic is not applicable when N → ∞.
In this case, Pesaran (2004) proposes a scaled version of the LMBP test given by

CDlm =
√

1

N (N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̆2i j − 1

)
. (13.32)

Pesaran (2004) shows that CDlm is asymptotically distributed as N (0, 1), under the
null, with T → ∞ first, and then N → ∞. However, as pointed out by Pesaran
(2004), for finite T , E[T ρ̆2i j − 1] is not correctly centered at zero, and with large N ,
the incorrect centering of the CDlm statistic is likely to be accentuated. Thus, the
standard normal distribution may be a bad approximation of the null distribution of
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Table 13.6 The Breusch-Pagan (1980) test for zero correlation for the Grunfeld data

theCDlm statistic in finite samples, and using the critical values of a standard normal
may lead to big size distortion. Using finite sample approximations, Pesaran, Ullah
and Yamagata (2008) rescale and recenter the CDlm test. The new LM test, denoted
as PUY’s LM test, is given by

PUY’s LM =
√

2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

(T − k)ρ̆2i j − μT i j

σT i j
, (13.33)

where

μT i j = 1

T − k
tr [E(MiMj )]

is the exact mean of (T − k)ρ̆2i j and

σ2
T i j = {tr [E(MiMj )]}2a1T + 2tr{E[(MiMj )

2]}a2T
is its exact variance. Here,

a1T = a2T − 1

(T − k)2
,

a2T = 3

[
(T − k − 8)(T − k + 2) + 24

(T − k + 2)(T − k − 2)(T − k − 4)

]2
,

Mi = I − Xi (X ′
i Xi )

−1X ′
i , where Xi = (xi1, · · · , xiT )′ contains T observations on

the k regressors for the i-th individual regression. PUY’s LM is asymptotically dis-
tributed as N (0, 1), under the null, with T → ∞ first, and then N → ∞. Moscone
and Tosetti (2009) survey cross-sectional dependence tests in panels. They examine
tests based on the sample pairwise correlation coefficient, as well as tests based on
the theory of spacing. Using Monte Carlo experiments, they show that tests based
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on the average of pairwise correlation coefficients work well when the alternative
hypothesis is a factor model with nonzero mean loadings. Tests based on spacing are
powerful in identifying various forms of strong cross-section dependence, but have
low power when they are used to capture spatial correlation.

Baltagi, Feng and Kao (2012) consider the fixed effects homogeneous panel data
model

yit = α + x ′
i tβ + μi + vi t , for i = 1, ..., N ; t = 1, ..., T (13.34)

where μi denotes the time-invariant individual effect. The k × 1 regressors xit could
be correlated with μi , but are uncorrelated with the idiosyncratic error vi t . This is a
standard model in the applied panel data literature and differs from (13.29) in that
the β′

i s are the same, and heterogeneity is introduced through the μ′
i s. Using the

following asymptotics:

Assumption 1 N
T → c ∈ (0, ∞ ) as (N , T ) → ∞, where c is a nonzero bounded

constant.
and the following standard assumptions:

Assumption 2 (i) The N × 1 vectors of idiosyncratic disturbances Vt = (v1t , · · · ,

vNT )′, t = 1, ..., T , are iid N (0, �ν) over time; (ii) E[vi t |xi1, ..., xiT ] = 0 and
E[vi t |x j1, ..., x jT ] = 0, i = 1, · · · , N , t = 1, · · · , T ; (iii) For the demeaned regres-
sors x̃i t = xit − 1

T

∑T
s=1 xis ,

1
T

∑T
t=1 x̃i t ,

1
T

∑T
t=1 x̃i t x̃

′
j t are stochastic bounded for

all i = 1, · · · , N and j = 1, · · · , N , and lim(N ,T )→∞ 1
NT

∑N
i=1

∑T
t=1 x̃i t x̃

′
i t exists

and is nonsingular.

Under these assumptions, the Within estimator β̃ is
√
NT -consistent. This esti-

mator is obtained by regressing ỹi t = yit − 1
T

∑T
s=1 yis on x̃i t . The corresponding

Within residuals given by v̂i t = ỹi t − x̃ ′
i t β̃ are used to compute the sample correla-

tion ρ̂i j as follows:

ρ̂i j =
(

T∑
t=1

v̂2i t

)−1/2 (
T∑
t=1

v̂2j t

)−1/2 T∑
t=1

v̂i t v̂ j t . (13.35)

The scaled version of the LMBP test suggested by Pesaran (2004) but now applied
to the fixed effects model is given by

LMP =
√

1

N (N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̂2i j − 1

)
. (13.36)

This replaces ρ̆i j with ρ̂i j , and it now tests the null given in (13.30) only applied to
the remainder disturbance vi t . This LMP test, for the fixed effects model (13.36),
suffers from the same problems discussed by Pesaran (2004) for the corresponding
CDlm statistic (13.32) for the heterogeneous panel model. Baltagi, Feng and Kao
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(2012) show that it will exhibit substantial size distortions due to incorrect centering
when N is large. Unlike the finite sample adjustment in Pesaran, Ullah and Yamagata
(2008), this paper derives the asymptotic distribution of the LMP statistic under the
null as (N , T ) → ∞, and proposes a bias-corrected LM test. The asymptotics are
done using high dimensional inference from the statistics literature. Baltagi, Feng
and Kao (2012) find that in a fixed effects panel data model, after subtracting a
constant that is a function of N and T , the LMP test is asymptotically distributed,
under the null, as a standard normal. Therefore, a bias-corrected LM test is proposed.

Theorem 1 Under Assumptions 1, 2 and the null hypothesis of no cross-section
dependence

LMP − N

2(T − 1)
d→ N (0, 1).

The asymptotics are derived under the joint asymptotics of (N , T ) → ∞ with
N/T → c ∈ (0,∞).

Based on this result, Baltagi, Feng and Kao (2012) propose a bias-corrected LM
test statistic given by:

LMBC = LMP − N

2(T − 1)
=

√
1

N (N − 1)

N−1∑
i=1

N∑
j=i+1

(
T ρ̂2i j − 1

)
− N

2(T − 1)
.

(13.37)
Under the null, the limiting distribution of the bias-corrected LM test is standard
normal.

Monte Carlo simulations are used to examine the empirical size and power of
our bias-corrected LM test defined in (13.37) for a static panel data model. They
compare its performance with that of Pesaran (2004) CD test given by

Pesaran’s CD =
√

2T

N (N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̆i j ,

and PUY’s LM test given in (13.33). The sample correlations ρ̆i j are computed using
OLS residuals; see (13.31). They also include the John (1972) test for the null of
sphericity discussed in Baltagi, Feng and Kao (2011).

Note that Hoyos and Sarafidis (2006) programmed Pesaran’s CD test in Stata but
applied to fixed effects or random effects residuals, i.e., after performing xtreg, fe, or
re. Since this is based on the sum rather than the sum of squares of the correlations
across any pairs of cross-section residuals, the command xtcsd reports the average of
the absolute values of these estimated correlations. This is performed in Table 13.7
for the Grunfeld data. The average absolute value is 0.439 and indicates cross-section
correlation for the fixed effects residuals across the firms. Pesaran’s CD test on the
fixed effects residuals rejects zero correlation across any pair of firms.
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Table 13.7 The Pesaran CD test using fixed effects residuals for the Grunfeld data

Sphericity means that �ν is proportional to the identity matrix. The John (1972)
test statistic is given by

J = T ( 1
N tr Ŝ)−2 1

N tr(Ŝ
2) − T − N

2
− 1

2
− N

2(T − 1)

where Ŝ = 1
T

∑T
t=1 V̂t V̂

′
t is the N × N sample covariance matrix computed using

the Within residuals V̂t = (v̂1t , ..., v̂Nt )
′. tr Ŝ is the trace of the matrix Ŝ. Under

normality and homoskedasticity, the John test can be used to test for cross-sectional
dependence. However, John’s test is not robust to heteroskedasticity, and rejection
of the null hypothesis using the John test could be due to heteroskedasticity or cross-
sectional dependence. For this reason, the John test is included in the experiments
only under the homoskedastic case. The John test is not recommended for testing
cross-section dependence when heteroskedasticity is present. The simulation results
show that the bias-corrected LM test successfully controls for size distortions as N
gets large relative to T . It also maintains reasonable power under the alternative of
a factor model or spatial model. However, Baltagi, Feng and Kao (2012) find that
the proposed LM test is not robust to slope heterogeneity. More importantly, the
simulation results show that the bias-corrected LM test can be applied in typical
micro-panel data case with large N and small T .

Eviews programmed the Breusch-Pagan LM statistic for no cross-section depen-
dence as well as Pesaran’s scaled LM version, the Bias-corrected scaled LM of
Baltagi, Feng and Kao (2012), and Pesaran’s CD test. Applying it to the Grunfeld
fixed effects residuals, we get Table 13.8. All tests statistics reject the null of no
cross-section dependence. Note that Pesaran CD generated by EViews is the same
as that in Table 13.7 by Stata. Also, the Breusch-Pagan test is the same as Table 13.6
by Stata.

Baltagi and Moscone (2010) reconsider the long-run economic relationship
between health care expenditure and income using a panel of 20 OECD coun-
tries observed over the period 1971–2004. In particular, the paper studies the non-
stationarity and cointegration properties between health care spending and income.
This is done in a panel data context controlling for both cross-section dependence and
unobserved heterogeneity. Cross-section dependence is modeled through a common
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Table 13.8 Cross-Section dependence tests using EViews for the Grunfeld fixed effects residuals

Residual Cross-Section Dependence Test
Null hypothesis: No cross-section dependence (correlation) in residuals
Equation: EQFE
Periods included: 20
Cross-sections included: 10
Total panel observations: 200
Cross-section effects were removed during estimation

factor model and through spatial dependence. The average correlation coefficient for
the first difference of the logarithm of health care expenditure and income are 0.48
and 0.55, respectively. The corresponding CDlm statistics are 73.8 and 97.3, respec-
tively. Both of which are statistically significant. The IPS, Breitung, and CIPS panel
unit root tests are applied and the null hypothesis of panel unit roots is not rejected
for the variables under study. Heterogeneity is handled through fixed effects in a
panel homogeneous model and through a panel heterogeneous model. FE, Spatial
MLE, and CCEP estimation are employed. The last method is the Common Corre-
lated Effects (CCE) method suggested by Pesaran (2006). Here, the cross-section
averages of the dependent variable and regressors are included in the heterogeneous
panel regression. The CCE pooled (CCEP) estimator is the average of the slope
coefficients. The FE estimate of the income elasticity is 0.899 compared to 0.896
for spatial MLE and 0.674 for CCEP. These results corroborate the hypothesis that
health care is a necessity good.

Baltagi, Kao and Peng (2016) modify Pesaran’s CD test to account for serial
correlation of an unknown form in the error term. They derive the limiting distribution
of this test as (N , T ) → ∞. The test statistic is distribution free and allows for
unknown forms of serial correlation in the errors. Monte Carlo simulations show
that existing tests for cross-sectional correlation encounter size distortions with serial
correlation in the errors, but the proposed test has good size and power for large panels
with serial correlation in the errors.

Sarafidis, Yamagata and Robertson (2009) propose a new testing procedure for
detecting error cross-section dependence after estimating a linear dynamic panel data
model with regressors using FD-GMM and System GMM. The test is valid when N
is large relative to T . Finite sample simulation-based results suggest that their tests
perform well, particularly the version based on system GMM. This approach allows
one to examine whether any error cross-section dependence remains after including
timedummies (or after transforming the data in termsof deviations from time-specific
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averages). This transformation will wipe out common effects, unless their impact
differs across cross-sectional units (heterogeneous cross-section dependence).

Pesaran and Tosetti (2011) study large panel data sets where even after condition-
ing on common observed effects the cross-section units might remain dependently
distributed. This could be due to unobserved common factors and/or spatial effects.
They introduce the concepts of time-specific weak and strong cross-section depen-
dence and show that the commonly used spatial models are examples of weak cross-
section dependence. Pesaran (2006) common correlated effects (CCE) estimator for
panel data models with a multifactor error structure continues to provide consistent
estimates of the slope coefficient, even in the presence of spatial error processes. For
an extensive survey of cross-section dependence in large panels, see Chap. 1 of the
Oxford Handbook of Panel Data, by Chudik and Pesaran (2015).

13.7 Computational Note

For R programs implementing both maximum likelihood and generalized moments
estimators in the context of fixed as well as random effects spatial panel data mod-
els, see the splm package by Millo and Piras (2012). These spatial panel estimation
methods are applied to the Munnell (1990) data set used in example 3 of Chap. 2 but
now with spatial correlation across states. For Stata programs (using the command
xsmle), one gets maximum likelihood methods applied to various static and dynamic
spatial panel models with fixed and random effects, see Belotti, Hughes and Piano
Mortari (2017), with an application to residential demand for electricity for a panel
of 48 states plus the district of Columbia over the period 1990–2010. These were
used in the Empirical Example in this chapter. Stata also has an spxtreg command
which is applied to the homicide data of Messner et al. (2000). This data covers 1412
counties for the census years 1960–1990. Formatlab programs for spatial panel mod-
els, see Elhorst (2014) at https://spatial-panels.com/software/. These programs are
demonstrated using the cigarette data example used in Chapter 8. Also, for Bayesian
spatial methods not covered in this textbook, see LeSage and Pace (2009) for a text-
book treatment of this subject. These are programmed with Matlab at www.spatial-
econometrics.com.

13.8 Problems

13.1 Prediction in the spatially autocorrelated error component model. This is based
on problem 99.2.4 in Econometric Theory by Baltagi and Li (1999). Consider
the panel data regression model described in (13.1) with random country effects
and spatially autocorrelated remainder disturbances described by (13.2) and
(13.3). Using the Goldberger (1962) best linear unbiased prediction results dis-
cussed in Sect. 2.5, Eq. (2.37), derive the BLUP of yi,T+S for the ith country at
period T + S for this spatial panel model. Hint: see solution 99.2.4 in Econo-
metric Theory by Song and Jung (2000).

https://spatial-panels.com/software/
www.spatial-econometrics.com
www.spatial-econometrics.com
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13.2 Random effects and spatial autocorrelation with equal weights. This is based
on Baltagi (2006). Consider the panel data regression model described in (13.1)
with random individual effects and spatially autocorrelated remainder distur-
bances described by (13.2) and (13.3). In this special case, W is an N × N
weighting matrix with zero elements across the diagonal, and equal elements
(1/(N − 1)) off the diagonal. In other words, the disturbance for each unit is
related to an average of the (N − 1) disturbances of the remaining units. Such
a weighting matrix would naturally arise if all units are neighbors to each other
and there is no other reasonable or observable measure of distance between
them. W can be written as W = JN

(N−1) − IN
(N−1) .

(a) Show that GLS on this model can be obtained using an OLS regression
of y∗

ti = (yti − θ1yt . − θ2y.i + θ3y..) on X∗ similarly defined. Here, yt .
denotes the sample average over individuals; y.i denotes the sample average
over time; and y.. denotes the average over the entire sample. The θ′s are
scalars which depend on N , λ, and the variance components σ2

μ and σ2
ν .

(b) Show that if there is no spatial autocorrelation, i.e., λ = 0, then y∗
ti reduces

to (yti − θ2y.i ).This is the familiar Fuller and Battese (1973) random effects
transformation that was obtained in Chap. 2; see problem 2.4. Show that if
there are no random effects, i.e., σ2

μ = 0, and N → ∞, then y∗
ti = (yti −

λyt .)
(c) Show that in the cross-section spatial regression model with (T = 1) and

equal weight matrix, OLS is equivalent to GLS as long as there is a constant
in the regression.

(d) For the spatial panel regression with equal weights, show that two special
cases where OLS is equivalent to GLS, are the following: (i) the trivial case
where σ2

μ = 0 and λ = 0; and (ii) when the matrix of regressors X is invari-
ant across time. Baltagi (2006) showed that these results for the equal weight
matrix hold whether we use the spatial autoregressive (SAR) specification
for the disturbances, or the spatial moving average (SMA) specification
described in Anselin (1988), or the spatial error components (SEC) spec-
ification described in Kelejian and Robinson (1995), or the Kapoor, Kelejian
and Prucha (2007) panel data regressionmodelwith spatially correlated error
components.

13.3 Residential Demand for Electricity. Belotti, Hughes and Piano Mortari (2017)
estimated residential demand for electricity covering the 48 states in the con-
tinental United States plus the district of Columbia for the period 1990–2010.
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(a) Replicate Tables 13.1, 13.2 and 13.3 using xsmle in Stata showing the maxi-
mum likelihood estimates of the Generalized Spatial Panel Random Effects
model as well as its special cases of the Anselin and KKP random effects
models.

(b) Using the log-likelihood values of these models, test the null that the KKP
model restriction is satisfied. Test the null that the Anselin model restriction
is satisfied. What do you conclude?

(c) Replicate some of the results in Table 5 of Belotti, Hughes and PianoMortari
(2017, p. 174). In particular, the first column labeled FE which esimates the
residential electricity demand model using fixed effects estimates without
any spatial correlation. The second column labeled SAR which estimates a
spatial lag model on the dependent variable only. The sixth column labeled
SAC, which estimates a SARAR model. The seventh column labeled SEM
which estimates a spatial error model as in Anselin (1988), all with fixed
effects.

(d) Given the results in part (c), one can use the log-likelihood values to perform
the LR tests of Debarsy and Ertur (2010). In particular, you are asked to
compute the joint LR test for the spatial lag coefficient ρ as well as the
spatial error coefficient λ are zero. This null hypothesis is represented by
(Hc

0 : ρ = λ = 0) in the text. Also, themarginal LR tests for (Ha
0 : ρ = 0) as

well as (Hb
0 : λ = 0). Finally, the conditional LR tests for (Hd

0 : λ = 0/ρ)

as well as (He
0 : ρ = 0/λ). What do you conclude?

(e) Replicate the Spatial Durbin Model (SDM) results given in column 4 of
Table 5 of Belotti, Hughes and Piano Mortari (2017, p. 174). Test the extra
spatial Durbin term using the LR test. This can be done by comparing the
log-likelihood of SDM with that of SAR.

(f) Replicate the dynamic version of the Spatial Durbin Model (dynamic SDM)
results given in column 5 of Table 5 of Belotti, Hughes and Piano Mortari
(2017, p. 174). Also, the dynamic version of the Spatial Autoregressive
Model (dynamicSAR) results given in column3ofTable 5 ofBelotti,Hughes
and Piano Mortari (2017, p. 174). This is Table 13.5 in this chapter. Test the
dynamic terms using the LR test comparing the log-likelihood of SAR with
that of dynamic SAR.Also, the LR test comparing SDMwith dynamic SDM.
Finally, test the spatial Durbin term, as in part (e) but now for the dynamic
model using the LR test comparing the log-likelihood of dynamic SDMwith
that of dynamic SAR. These LR tests are reported in the first 3 rows of Table 6
of Belotti, Hughes and PianoMortari (2017, p. 175).What do you conclude?

(g) Check the sensitivity of the results in part (f) by adding both the lagged value
of the dependent variable and the spatial lag value of the dependent variable
with option dlag(3) in xsmle. What do you conclude?

13.4 For the Grunfeld example, replicate Tables 13.6, 13.7 and 13.8, i.e., (i) obtain
the Breusch and Pagan test based on the fixed effects residuals using Stata’s
command xttest2. (ii) obtain Pesaran’s CD test based on fixed effects residuals
using Stata’s command xtcsd. (iii) Finally using EViews obtain the Breusch-
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Pagan test, Pesaran’s CD test, PUY’s LM test which appears in EViews as
Pesaran scaled LM test, also the Baltagi, Feng and Kao (2012) Bias-corrected
scaled LM test, all based on fixed effects residuals. What do you conclude?

13.5 Test for cross-section dependence for the Gasoline example (as in problem
13.4). Do the same for the Public Capital example. What do you conclude?
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