
Journal of the Korean Statistical Society ( ) –

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

Empirical likelihood for semi-varying coefficient models for
panel data with fixed effects
Bang-Qiang He a,b, Xing-Jian Hong a,∗, Guo-Liang Fan b

a School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
b School of Mathematics & Physics, Anhui Polytechnic University, Wuhu 241000, China

a r t i c l e i n f o

Article history:
Received 15 August 2015
Accepted 7 January 2016
Available online xxxx

AMS 2000 subject classifications:
primary 62G15
secondary 62G20

Keywords:
Empirical likelihood
Semi-varying coefficient model
α-mixing
Confidence region

a b s t r a c t

The empirical likelihood inference for semi-varying coefficient models for panel data with
fixed effects is investigated in this paper. We propose an empirical log-likelihood ratio
function for the regression parameters in the model under α-mixing condition. The em-
pirical log-likelihood ratio is proven to be asymptotically chi-squared. We also obtain the
maximum empirical likelihood estimator of the parameters of interest, and prove that it is
the asymptotically normal under some suitable conditions. A simulation study and a real
data application are undertaken to assess the finite sample performance of our proposed
method.
© 2016 The Authors. Published by Elsevier B.V. on behalf of The Korean Statistical Society.

This is an open access article under the CC BY license
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1. Introduction

Panel data is a dataset in which a given sample of individuals is observed across time. Thus it provides multiple obser-
vations on each individual in the sample. There are two kinds of information in panel data: the cross-sectional information
reflected in the differences between subjects, and the time-series or within-subject information reflected in the changes
within subjects over time. With the increasing availability of panel data, both theoretical and applied works in panel data
analysis have become more popular in recent years. Baltagi (2005) and Hsiao (2003) provided an excellent overview of sta-
tistical inference and econometric interpretation of this widely used class of parametric panel data models. As in both the
cross-section and time-series analysis, however, parametric panel datamodelsmay bemisspecified and estimators obtained
from misspecified models are often inconsistent. To deal with this problem, some nonparametric panel data models have
been introduced and studied, such as the fixed effects nonparametric panel datamodels (Henderson, Carroll, & Li, 2008), the
random effects nonparametric panel datamodels (Henderson &Ullah, 2005) and dynamic nonparametric panel datamodels
(Cai & Li, 2008). While the nonparametric approach is useful in exploring hidden structures and reducing modeling biases,
it can be too flexible to draw concise conclusions, and faces the curse of dimensionality due to a large number of covariates.
How to circumvent the curse of dimensionality is an important topic in both nonlinear time series and panel data analysis.
Many useful approaches are developed to avoid this problem (see, recent book by Fan & Yao, 2003 for example) and various
semiparametric panel data models have been proposed. For example, Hu and Li (2011) studied semiparametric varying-
coefficient partially linear model with longitudinal data. Hu (2014) considered semi-varying coefficient model for panel
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data. Varying-coefficient models are well known in the statistic literatures and also have a lot of applications in economics
and finance (cf. Cai & Li, 2008; Fan & Zhang, 1999; Hu & Li, 2011). One of themain advantages of the varying-coefficientmod-
els is that it allows the coefficients to depend on some informative variables and then balances the dimension reduction and
model flexibility. The semi-varying coefficientmodel covers two important statisticalmodels: the varying-coefficientmodel
and the semiparametric partially linear model. Relevant studies can be found in Fan and Huang (2005), Hu (2014), You and
Zhou (2006) and so on. Hu (2014) proposed the profile likelihood procedure to estimate semi-varying coefficient model for
panel data with fixed effects.

Our aim in the paper is to apply the empirical likelihood (EL) method to construct confidence regions of β in the
semi-varying coefficient model for panel data with fixed effects. Firstly, we shall propose an empirical log-likelihood ratio
function for the regression parameter in the model under the α-mixing condition. Based on the this, one can immediately
construct an approximate confidence region for the regression parameter. One motivation is that EL inference does not
involve the asymptotic covariance of the estimators, which is rather complex structure for the semi-varying coefficient
model for panel data with fixed effects under the α-mixing condition. Another motivation is that the confidence region
based on EL approach does not impose prior constraints on the region shape, and the shape and orientation of confidence
regions are determined completely by the data. The EL method has been used by many authors up to now, such as Fan
and Liang (2010), Hu and Li (2011) Shi and Lau (2000), Wang and Jing (1999), You and Zhou (2006), among others. Most of
the above papers related to the EL method have always assumed that the data are independent and identically distributed.
However, the independence assumption for the data is not always appropriate in application, especially for sequentially
collected economic data, which often exhibit evident dependence, and α-mixing condition has been assumed by many
authors. For example, Fan, Liang, and Huang (2012) employed the EL method to construct confidence regions for partially
time-varying coefficient models with dependent observations.

Throughout this paper, we assume that

(Xit , Zit , Yit ,Uit , vit), t ≥ 1


is stationary α-mixing for each i. Recall that a

sequence {ξk, k ≥ 1} is said to be α-mixing if the α-mixing coefficient

α(n) :
def
= sup

k≥1
sup{|P(A ∩ B) − P(A)P(B)| : A ∈ F ∞

n+k, B ∈ F k
1 }

converges to zero as n → ∞, where F b
a = σ {ξi, a ≤ i ≤ b} denotes the σ -algebra generated by ξa, ξa+1, . . . , ξb. Among

variousmixing conditions used in literature, theα-mixing is reasonablyweak and is known to be fulfilled bymany stochastic
processes includingmany time seriesmodels. For example, Auestad and Tjøstheim (1990) provided illuminating discussions
on the role of α-mixing for model identification in nonlinear time series analysis. Further, Masry and Tjøstheim (1995)
showed that under some mild conditions, both autoregressive conditional heteroskedastic (ARCH) process and additive
autoregressive process with exogenous variables, which are particularly popular in finance, are stationary and α-mixing.

The rest of this paper is organized as follows. Section 2 introduces the methodology and empirical log-likelihood ratio
function for β . Assumption conditions and the main result are given in Section 3. Some simulation studies and a real-data
example are conducted in Section 4. The proofs of the main results are relegated to Section 5. In Section 6, we present a
brief discussion of the results and methods. Some preliminary lemmas, which are used in the proofs of the main results, are
collected in the Appendix.

2. The model and methodology

This paper considers the following semi-varying coefficient model for panel data with fixed effects:

Yit = Zτ
itβ + X τ

itα(Uit) + µi + υit , i = 1, . . . , n, t = 1, . . . , T , (2.1)

where Yit is the response, (Zit , Xit) ∈ Rp
× Rq and Uit ∈ R are strictly exogenous regressors, β = (β1, . . . , βp)

τ

is a vector of p-dimensional unknown parameters, and the superscript τ denotes the transpose of a vector or matrix.
α(Uit) = (α1(Uit), . . . , αq(Uit))

τ is a q-dimensional vector of unknown functions andµi is the unobserved individual effects,
υit is the randommodel error. Here, we assume µi to be i.i.d. with zero mean and finite variance σ 2 > 0. We allow µi to be
correlated with Zit , Xit , and Uit with an unknown correlation structure.

To introduce our estimation, we assume that model holds with the restriction
n

i=1 µi = 0. Let µ = (µ2, . . . , µn)
τ and

µ0 = (−
n

i=2 µi, µ2, . . . , µn)
τ . We rewrite model (2.1) in a matrix format yields

Y = Zβ + Xα(U) + Hµ + V , (2.2)

where H = [−in−1 In−1] ⊗ iT is an nT × (n− 1) matrix. In denotes the n× n identity matrix, and in denotes the n× 1 vector
of ones. There are many approaches to estimating the parameters {βj, j = 1, . . . , p} and the varying coefficient functions
{αi(·), i = 1, . . . , q}. The main idea is from the profile least squares approach proposed by Fan and Huang (2005): suppose
that we have a random sample {(Uit , Zit1, . . . , Zitp, Xit1, . . . , Xitq, Yit), i = 1, . . . , n, t = 1, . . . , T } from model (2.1). Let
θ = (µτ , βτ )τ . Given θ , one can apply a local linear regression technique to estimate the varying coefficient functions
{αj(·), j = 1, . . . , q} in (2.1). For Uit in a small neighborhood of u0, one can approximate αj(Uit) locally by a linear function

αj(Uit) ≈ αj(u0) + α′

j(u0)(Uit − u0) ≡ aj + bj(Uit − u0), j = 1, . . . , q,
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where α′

j(u) = ∂αj(u)/∂u. This leads to the following weighted local least-squares problem: find {(aj, bj), j = 1, . . . , q} to
minimize

n
i=1

T
t=1


Yit − Zτ

itβ − µi


−

q
j=1


aj + bj(Uit − u0)


Xit

2

Kh(Uit − u0), (2.3)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a sequence of positive numbers tending to zero, called bandwidth.
Simple calculation yields

(α̂1(u), . . . , α̂q(u), hâ′
1(u), . . . , hâ′

q(u))τ = (Dτ
uWuDu)

−1Dτ
uWu(Y − Zβ − Hµ),

where

Z =


Zτ
11
...

Zτ
1T
...

Zτ
nT

 , X =


X τ
11
...

X τ
1T
...

X τ
nT

 , Du =



X τ
11

U11 − u
h

X τ
11

...
...

X τ
1T

U1T − u
h

X τ
1T

...
...

X τ
nT

UnT − u
h

X τ
nT


,

Y = (Y11, . . . , Y1T , . . . , YnT )
τ andWu = diag(Kh(U11 − u), . . . , Kh(U1T − u), . . . , Kh(UnT − u)).

The profile likelihood estimator of parameter θ is given by

θ̂ = argmin
θ


Y − Zβ − Hµ − S(Y − Zβ − Hµ)

τ
[Y − Zβ − Hµ − S(Y − Zβ − Hµ)], (2.4)

where the smoothing matrix S is

S =



(X τ
11 0τ

q )(D
τ
U11

WU11DU11)
−1Dτ

U11
WU11

...

(X τ
1T 0τ

q )(D
τ
U1T

WU1TDU1T )
−1Dτ

U1T
WU1T

...

(X τ
nT 0τ

q )(D
τ
UnT

WUnTDUnT )
−1Dτ

UnT
WUnT

 =


s11
...

s1T
...

snT

 . (2.5)

Let M = (mτ
1, . . . ,m

τ
n)

τ ,mi = (xi1α(Ui1), . . . , xiTα(UiT )), Zi = (Zτ
i1, . . . , Z

τ
iT )

τ , Yi = (Yi1, . . . , YiT )
τ ,Z = (InT − S)Z ,H = (InT − S)H ,Y = (InT − S)Y , µ = (HτH)−1Hτ (Y −Zβ) and Λ = InT − H(HτH)−1Hτ . We introduce the following

auxiliary random vector:

ηi(β) =ZiΛ(Yi −Ziβ), i = 1, . . . , n. (2.6)

Note that E(ηi(β)) = 0 ifβ is the true parameter. Therefore, similar toOwen (1990),wedefine an empirical log-likelihood
ratio as follows.

logLn(β) = −2max
 n

i=1

log(npi) :

n
i=1

piηi(β) = 0, pi ≥ 0,
n

i=1

pi = 1

. (2.7)

By the Lagrange multiplier method, one can obtain that pi =
1

n[1+λτ ηi(β)]
, and logLn(β) can be represented as

logLn(β) = 2
n

i=1

log{1 + λτηi(β)}, (2.8)

where λ is determined by

1
n

n
i=1

ηi(β)

1 + λτηi(β)
= 0. (2.9)
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3. The asymptotic result

In this section, we will show that if β is the true parameter vector, logLn(β) is asymptotically χ2-distributed. Before
formulating the main results, we first give the following some assumptions.
(A1) The kernel K(v) is a symmetric probability density function with a continuous derivative on its compact support

[−1, 1].
(A2) The random variable U has a bounded support Ω . The matrix Γ (U)=E(ZZτ

|U) is nonsingular for each U ∈ Ω .
G(U)=E(XX τ

|U), Γ −1(U) and Φ(U)=E(ZX τ
|U) are all Lipschitz continuous.

(A3) {αj(·), j = 1, . . . , q} have the continuous second derivative in U ∈ Ω .
(A4) (i) {Xit , Yit , Zit ,Uit , vit} are independent and identically distributed across the i index for each fixed t , and strictly

stationary over t for each fixed i.
(ii) For each fixed i, the processes {Xit , Yit , Zit ,Uit , vit} are a stationary sequence ofα-mixingwith themixing coefficient

satisfying the condition α(k) = O(k−κ), where κ =
(2+δ)(1+δ)

δ
and δ > 2.

(A5) There exists some δ > 2 such that E∥Xi∥
2+δ < ∞, E∥Zi∥2+δ < ∞, E∥vi∥

2+δ < ∞, where ∥ · ∥ is the L2-distance.
(A6) Let N = nT , the bandwidth h satisfies Nh → ∞,Nh6

→ 0, (logN)κ+1/2N−((κ−
1
2 )− 1

2δ )T
κ+1

δ hκ−3
→ 0. where κ and δ

are defined in A4(ii) above.
(A7) E|Z̆it |2+δ < ∞, Ψ =

T
t=1[Z̆it(Z̆it −

T
s=1

Z̆is
T )τ ] is positive definite, where Z̆it = Zit − G−1(u)Φ(u)Xit .

Remark 3.1. Assumptions (A1)–(A7) which look a bit lengthy, are actually quite mild and can be easily satisfied. (A1)–(A3)
can be founded in Fan and Huang (2005). (A4)–(A5) have been used by many authors (see Cai & Li, 2008; Chen, Gao, & Li,
2013 for example). (A7) has been used by Hu (2014). The technical conditions of (A6) are easily satisfied. For example, when
T ∼ N1/5 and h ∼ N−θ , it can be shown that Nh → ∞,Nh6

→ 0, and (logN)κ+1/2N−((κ−
1
2 )− 1

2δ )T
κ+1

δ hκ−3
→ 0 are all

satisfied when 1
6 < θ < 1

5 .

Theorem 3.1. Suppose that (A1)–(A7) hold. For model (2.1), if β is the true value of the parameter, then logLn(β)
d

→ χ2
p ,

as n → ∞, where χ2
p is a standard chi-square random variable with p degrees of freedom and

d
→ stands for convergence in

distribution.

As a consequence of the theorem, confidence regions for the parameter β can be constructed. More precisely, for any
0 ≤ α < 1, let cα be such that P(χ2

p > cα) ≤ 1−α. Then ℓEL(α) = {β ∈ Rp
: logLn(β) ≤ cα} constitutes a confidence region

for β with asymptotic coverage α because the event that β belongs to ℓEL(α) is equivalent to the event that logLn(β) ≤ cα .
Maximizing {− logLn(β)} can obtain the maximum empirical likelihood estimator (MELE) β of β . Write Ψ =

1
n

n
i=1
T

t=1
Zτ
it (
Zit −

T
s=1

Zis
T ). If the matric Ψ is invertible, with the similar proof theorem 1 in Qin and Lawless (1994),

then MELEβ of β can be represented as

β = Ψ −1 1
n

n
i=1

Zτ
i ΛYi + op


n−

1
2


.

Then the asymptotic normality ofβ is stated in the following theorem.

Theorem 3.2. Suppose that (A1)–(A7) hold. Then we have
√
n(β − β)

d
→ N(0, V ), where V = Ψ −1ΘΨ −1, Θ =T

t=1
T

s=1 E


Z̆it(Z̆is −
T

l=1
Z̆il
T )τ


(vitvis)


.

4. Numerical studies

4.1. Simulation study

In this section, we carry out a simulation study to show the finite sample performance of the proposed EL confidence
regions of β .

Firstly, we consider the following semi-varying coefficient model for panel data with fixed effects:

Yit = Zτ
itβ + Xit,1α1(Uit) + Xit,2α2(Uit) + µi + υit , i = 1, . . . , n, t = 1, . . . , T , (4.1)

where β = (β1, β2)
τ

= (1,
√
2)τ/

√
3, α1(Uit) = sin(2πUit), α2(Uit) = cos(πUit), Uit ∼ U(0, 1), µi = ρŪi + wi with

ρ = 0.5, 1 and wi ∼ N(0, 1) for i = 2, 3, . . . , n, and µi = −
n

i=2 µi, Ūi =
1
T

T
t=1 Uit . We use ρ to control the correlation

between µi and Ūi. Xit and Zit are generated by the AR(1) model as follows,

υit = 0.5υit−1 + εi, εi
i.i.d
∼ N(0, 0.252),

Xit,1 = 0.6Xit−1,1 + ui,1, Xit,2 = 0.4Xit−1,2 + ui,2,

Zit,1 = 0.8Zit−1,1 + ei,1, Zit,2 = 0.2Zit−1,2 + ei,2,
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Table 1
Coverage probabilities (CP) of confidence regions for (β1, β2) based on the EL and the NA with nominal confidence level 1 − α = 0.90 and 0.95.

ρ 1 − α (n, T ) CPEL CPNA ρ 1 − α (n, T ) CPEL CPNA

0.5 0.90 (50, 4) 0.881 0.683 1 0.90 (50, 4) 0.874 0.693
(100, 2) 0.876 0.670 (100, 2) 0.866 0.706
(100, 4) 0.892 0.716 (100, 4) 0.882 0.713

0.95 (50, 4) 0.929 0.848 0.95 (50, 4) 0.928 0.835
(100, 2) 0.926 0.832 (100, 2) 0.920 0.810
(100, 4) 0.936 0.856 (100, 4) 0.934 0.854

Note: ‘‘CPEL and CPNA ’’ denote the coverage probabilities based on the EL and the NA, respectively.

Table 2
Coverage probabilities (CP) and average lengths (AL) of the confidence intervals based on the EL and the NA with nominal confidence level 1 − α = 0.90
and 0.95.

ρ Para (n, T ) 1 − α = 0.90 1 − α = 0.95
CE CN AE AN CE CN AE AN

0.5 β1 (50, 4) 0.885 0.770 0.2890 0.5844 0.944 0.895 0.3804 0.7471
(100, 2) 0.870 0.738 0.3786 0.5891 0.932 0.870 0.5427 0.7588
(100, 4) 0.895 0.795 0.2309 0.5006 0.946 0.916 0.3199 0.7282

β2 (50, 4) 0.884 0.623 0.3713 0.8436 0.932 0.705 0.4943 1.0681
(100, 2) 0.882 0.610 0.4586 0.7579 0.925 0.697 0.5971 0.9659
(100, 4) 0.887 0.650 0.2993 0.7525 0.938 0.745 0.4102 0.9137

1 β1 (50, 4) 0.850 0.778 0.3286 0.9286 0.934 0.868 0.4847 1.2076
(100, 2) 0.836 0.766 0.4220 0.9361 0.926 0.906 0.6329 1.3677
(100, 4) 0.872 0.815 0.2672 0.9057 0.945 0.910 0.3373 1.1380

β2 (50, 4) 0.864 0.732 0.4321 1.3571 0.930 0.868 0.6275 1.7960
(100, 2) 0.855 0.742 0.4982 1.3260 0.923 0.860 0.7315 1.6739
(100, 4) 0.882 0.764 0.3243 0.8871 0.936 0.870 0.4816 1.6095

Note: ‘‘CE and CN ’’ denote the coverage probabilities based on the EL and the NA, respectively; ‘‘AE and AN ’’ denote the average lengths based on the EL
and the NA, respectively.

where ui = (ui,1, ui,2)
τ i.i.d

∼ N((0, 0)τ , diag(1, 1)) and ei = (ei,1, ei,2)τ
i.i.d
∼ N((0, 0)τ , diag(1, 1)). It is easy to verify that

{Xit , Zit , υit} is stationary and α-mixing.
In the simulation below, we choose the kernel function K(u) =

15
16 (1 − u2)2I{|u| ≤ 1}. The ‘‘leave-one-subject-out’’

cross-validation bandwidth hCV is obtained by minimizing

CV (h) =
1
N

n
i=1

T
t=1


Yit − Zτ

it β̂i − X τ
it α̂i(Uit)

2
,

where (β̂1, β̂2)
τ and α̂j(Uit) with j = 1, 2 are estimators of (β1, β2)

τ and αj(Uit) with j = 1, 2 respectively, which are
computed with all of the measurements but not the ith subject.

We present a consistent estimator of the covariance of β̂ in Theorem3.2. A consistent estimator ofΘ is given by replacing
β with β̂ , namely,

Θ̂ =
1
n

n
i=1

T
t=1

Zit Zit −

T
s=1

Zis
T

τ

(Yit −Zit β̂)(Yit −Zτ
it β̂)τ



and a consistent estimator of Ψ =
1
n

n
i=1
T

t=1
Zit(Zit −

T
s=1

Zis
T )τ . Therefore, an 1 − α level confidence region based

normal approximation is ℓNA(α) =

β̂ − z α

2
Ψn−1Θ̂, β̂ + z α

2
Ψn−1Θ̂


.

We consider two approaches to compute the coverage probabilities (CP) and the average lengths (AL) of the confidence
intervals for individual βi (i = 1, 2): the empirical likelihood (EL) and the normal approximation (NA). The sample sizes
(n, T ) are chosen to be (50, 4), (100, 2) and (100, 4) respectively. The CP and AL of the confidence intervals for βi (i = 1, 2)
are calculated based on 500 replications with the nominal level 1 − α = 0.90 and 0.95, respectively. Some representative
CP of confidence regions for (β1, β2) are reported in Table 1. Simultaneously, we give the CP and AL of confidence intervals
for β1 and β2 in Table 2 with the nominal level 1 − α = 0.90 and 0.95, respectively.

From Tables 1 and 2, we can be seen that the method based on the EL performs better than the NA method since the EL
method gives higher coverage probabilities and shorter average lengths of confidence intervals than the NA method. Also,
it is obvious to see that the CP of the confidence regions/intervals tend to increase and the AL decrease as the sample size
(n, T ), especially T , becomes larger. It is also interesting to note that the coverage probabilities of the confidence intervals
tend to decrease and the AL increase as ρ gets larger.
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Fig. 1. The plots of confidence regions based on the NA (dot-dashed curve) and EL (dotted curve) for β = (β1, β2).

4.2. Application to CD4 data

To examine the performance of the proposed method, we analyze a CD4 data from the Multi-Center AIDS Cohort study.
The dataset contains cigarette smoking status, age at HIV infection, pre-infection CD4 percentage and repeatedly measured
post-infection CD4 percentage of 283 homosexual men who were infected with HIV during the follow-up period between
1984 and 1991. Details about the related design, methods and medical implications of the Multi-Center AIDS Cohort study
have been described by Kaslow, Ostrow, Detels, Polk, and Rinaldo (1987). This dataset has been studied by many authors,
such as Huang, Wu and Zhou (2002), Xue and Zhu (2007) and Zhou and Lin (2014). Although all the individuals were
scheduled to have clinical visits semi-annually for taking the measurement of CD4 percentage, due to the various reasons,
some individuals missed scheduled visits, which resulted in unequal numbers of measurements and different measurement
times across individuals. We select 158 individuals in which there have the first six measurements. Hence, we can obtain
equal numbers of measurements for each individuals.

The objectives of the study are to describe the trend of the mean CD4 percentage depletion over time and to evaluate the
effects of cigarette smoking, the pre-HIV infection CD4 percentage, and age at HIV infection on the mean CD4 percentage
after infection. Let Yit be the ith individual’s CD4 percentage measured at time t , Zit1 be 1 or 0 if the ith individual ever or
never smoked cigarettes, respectively, after the HIV infection. Zit2 be the ith individual’s CD4 percentage measured at time
t . We consider the following model:

Yit = Zit1β1 + Zit2β2 + Xit,1α1(Uit) + Xit,2α2(Uit) + µi + υit , i = 1, . . . , n, t = 1, . . . , T , (4.2)

where Xit,1, the baseline CD4 percentage, represents the mean CD4 percentage after the infection, Xit,2 represents age at
HIV infection on the mean CD4 percentage after infection, and β1 and β2 describe the effects for cigarette smoking and pre-
infection CD4 percentage, respectively, on the post-infection CD4 percentage at time t . A profile least square estimator of
(β1, β2) is (−0.0372, 0.7795), which shows that cigarette smoking of HIV infection has no significant effect on the post-
infection CD4 percentage, but preCD4 percentage is highly positively associated with post-infection CD4 percentage, which
basically agree with that was discovered by Huang et al. (2002), Xue and Zhu (2007) and Zhou and Lin (2014). Using the EL
and NA methods, we obtained 1− α = 0.95 confidence regions for (β1, β2) that are presented in Fig. 1. These figures show
that EL gives more smaller confidence regions than the NA does, and the confidence regions become wider as ρ gets larger.

5. Proofs of the main result

For the convenience and simplicity, let εN = {(Nh)−1 logN}
1/2, cN = εN + h2, ϑk =


tkK(t)dt , vk =


tkK 2(t)dt

and W = (InT − S)τ (InT − S). Note that S = (s11, . . . , s1T , . . . , snT )τ . Denote a typical entry of s(u) by sit(u) =

(Xit 0)(Dτ
uWuDu)

−1DitKh(Uit − u). Define Nit(u, j) = XitX τ
it (

Uit−u
h )jKh(Uit − u), Rit(u, j) = Xit(

Uit−u
h )jKh(Uit − u)Yit .

Lemma 5.1. Suppose that conditions (A1)–(A6) hold. Then we have

sup
u∈[−1,1]

 1N
n

i=1

T
t=1

Nit(u, j) − G(u)f (u)ϑj

 = OP(cN), (5.1)

sup
u∈[−1,1]

 1N
n

i=1

T
t=1

Rit(u, j) − Φ(u)f (u)ϑj

 = OP(cN). (5.2)
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Proof. To prove (5.1), it suffices to show that

sup
u∈[−1,1]

 1N
n

i=1

T
t=1

{Nit(u, j) − E[Nit(u, j)]}

 = OP [(Nh)−1 logN]
1
2 (5.3)

and

sup
u∈[−1,1]

|E[Nit(u, j)] − G(u)f (u)ϑj| = OP(h2). (5.4)

By conditions (A2), we have

E


1
N

n
i=1

T
t=1

XitX τ
it


Uit − u

h

j

Kh(Uit − u)


= E


XitX τ

it


Uit − u

h

j

Kh(Uit − u)



=


G(Uit)


Uit − u

h

j

Kh(Uit − u)f (Uit)dUit = [G(u) + O(h)]


ujK(u)du[f (u) + O(h)]

= G(u)f (u)ϑj + O(h2),

which implies that (5.4) holds.
Let us now turn to the proof of (5.3). We need only to show that

sup
u∈[−1,1]

 1N
n

i=1

T
t=1

{Nit(u, j) − E[Nit(u, j)]}

 = o(l(N)εN), (5.5)

for any l(N) → ∞, as N → ∞. The main idea in proving (5.5) is to consider covering of the compact interval D = [−1, 1]
by a finite number of subinterval Wk, which are centered at wk with length ξn = o(h2). Denote the total number these
intervals by Γn. Then Γn = O(ξ−1

n ). It is easy to show that

sup
u∈[−1,1]

 1
N

n
i=1

T
t=1

{Nit(u, j) − E[Nit(u, j)]}
 = max

1≤k≤Γn
sup
u∈Wk

 1
N

n
i=1

T
t=1

{Nit(u, j) − E[Nit(u, j)]}


≤ max
1≤k≤Γn

sup
u∈Wk

 1
N

n
i=1

T
t=1

{Nit(u, j) − Nit(wk, j)}
+ max

1≤k≤Γn

 1
N

n
i=1

T
t=1

{Nit(wk, j) − E(Nit(wk, j))}


+ max
1≤k≤Γn

sup
u∈Wk

 1
N

n
i=1

T
t=1

{E[Nit(wk, j)] − E(Nit(u, j))}
 = Π1 + Π2 + Π3. (5.6)

Noting that k(·) is Lipschitz continuous by assumption (A1) and taking ξn = O(εNh2), we have

E(Π1) ≤ C
ξn

h2
E[G(u)] = O(εN) = o(l(N)εN). (5.7)

From (5.5) we find immediately that

E(Π3) = o(l(N)εN). (5.8)

For Π2, we apply the truncation method, Define

Ḡit = XitX τ
it


∥XitX τ

it∥ ≤ CN
1
δ


and Ḡc

it = Git − Ḡit .

It is easy to check that

Π2 ≤ max
1≤k≤Γn

 1N
n

i=1

T
t=1

(Ḡit − E[Ḡit ])Kh(Uit − wk)


+ max

1≤k≤Γn

 1N
n

i=1

T
t=1

(Ḡc
it − E[Ḡc

it ])Kh(Uit − wk)

 = Π21 + Π22. (5.9)
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By the

P(Π22 > l(N)εN) ≤

n
i=1

T
t=1

P

∥XitX τ

it∥ > l(N)N
1
δ



=

n
i=1

T
t=1

 E∥XitX τ
it∥

δ
l(N)N

1
δ

δ

 = O


1
l(N)δ


= o(1).

Thus, we have

Π22 = op(l(N)εN). (5.10)

Observe that

|(Ḡit − E[Ḡit ])Kh(Uit − wk)| ≤
2N

1
δ l(N)

h
for any i, t.

By taking q = [T 1+1/δεN ] and Bernstein inequality for α-mixing processes (see Lemma A.4), we have, for any

P

 1T
T

t=1

(Ḡit − E[Ḡit ])Kh(Uit − sl)

 > l(N)εN



≤ 4 exp(−l(N)ε2
NTh) + C


2l(N)N

1
δ

[l(N)εNh]

 1
2 

T 1+ 1
δ εN

 
T−

1
δ ε−1

N

−κ

= 4 exp

−

l(N)

n
logN


+ C(logN)κ+

1
2 N−


κ+

1
2


−

1
2δ


T 1+ κ+1

δ hκ−1.

By conditions (A6), which implies that

P(|Π21| > l(N)εN) ≤ P


max
1≤k≤Γn

max
1≤i≤n

 1T
T

t=1

(Ḡit − E[Ḡit ])Kh(Uit − wk)

 > l(N)εN


≤ CΓnN−l(N)

+ CnΓn(logN)κ+1/2N−


κ+

1
2


−

1
2δ


T 1+ κ+1

δ hκ−1

= o(1) + O

(logN)κ+1/2N−


κ−

1
2


−

1
2δ


T

κ+1
δ hκ−3


= o(1).

Thus, we have

Π21 = op(l(N)εN). (5.11)

By Eqs. (5.5)–(5.11), we know that (5.3) holds. Combining (5.3) and (5.4), we obtain (5.1). The same argument can be used
to prove (5.2). Hence, the proof of Lemma 5.1 is completed.

Lemma 5.2. Suppose that conditions (A1)–(A6) hold. Then

(a) sit = O


1
Nh


.

(b) (HτWH)−1
= (HτH)−1

+ O(ζn) = T−1In + O(ζn) for sufficiently large n, where ζn =

√
lnn
nh

iniτn .

Proof. (a) By the law of large numbers and Lemma 5.1, N−1Dτ
uWuDu = f (u)G(u) ⊗


1 0
0 µ2


{1 + OP(cn)}, consequently,

sit(u) = N−1(Xit 0)[N−1Dτ
uWuDu]

−1DitKh(Uit − u) = N−1Kh(Uit − u)f −1(u){1 + OP(cn)} = O( 1
Nh ).

(b) HτWH = Hτ (InT − S)τ (InT − S)H = HτH −Hτ SH −Hτ SτH +Hτ Sτ SH = Ω11 −Ω12 −Ω13 +Ω14. By (a), we can show
that the (i, j)th element of Ω1l is [Ω1l]ij = O( 1

Nh ), l = 2, 3, 4. Similar to the proof of Lemma A.2 in Su and Ullah (2006). We
can prove (HτWH)−1

= (HτH)−1
+ O(ζn) = T−1In + O(ζn).
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Lemma 5.3. Suppose that conditions (A1)–(A7) hold. Let eit is the nT × 1 vector having 1 in the it entry and all other entries 0 .
Then

(a) Ziteτ
itWvit = (Zit − G−1(u)Φ(u)Xit)vit + oP(1).

(b) Ziteτ
itWH(HτH)−1HτWvit =

1
T

T
s=1

(Zit − G−1(u)Φ(u)Xit)vis + oP(1).

(c) Let Bit =Ziteτ
itΛ(InT − S)vit , Then Var


1

√
N

n
i=1

T
s=1

Bit


d

→ ∆.

Proof. (a), (b) are the direct results of the Lemma 4.5 in Hu (2014).
(c) By (a) and (b), we have Ziteτ

itΛ(InT − S)vit =Zitvit + op(1). Clearly, E(Bit) = 0 and

Var


1

√
N

n
i=1

T
t=1

Bit


=

1
T

T
t=1

Var(Bit) +
2
T

T−1
t=1

(T − t)cov(Bi1, Bi(t+1)) = J1 + J2.

By Lemma 4.6 in Hu (2014), it is easy to obtain J1 = Var(Ziteτ
itΛ(InT − S)vit)

d
→ ∆. Hence, in order to prove (c), it suffices to

show J2 = o(1). Let dn be a sequence of positive integers such that dnh → 0. Define

J21 =
2
T

dn−1
l=1

|Cov(Bi1, Bil)| and J22 =
2
T

T
l=dn

|Cov(Bi1, Bil)|.

From (A5) and (A7), by the choice of dn, we have

J21 =
2
T

dn−1
l=1

|Cov(Bi1, Bil)| ≤
2dn
T

E|Zi1Zilvi1vil| ≤ C
2dn
T

= o(1).

Next we consider the upper bound of J22. To this end, by using Lemma A.2, we obtain

|Cov(Bi1, Bil)| ≤ C[E|Bi1|
2+δ

]
1

2+δ [E|Bil|
2+δ

]
1

2+δ [α(l)]
δ

2+δ .

From (A4) and (A5), by the choice of dn, we have

J22 =
2
T

T
l=dn

|Cov(Bi1, Bil)| ≤
C
T

∞
l=dn

[α(l)]
δ

2+δ ≤
C
T

∞
l=dn

d−(1+δ)
n = o(1).

Therefore, J2 = o(1). This completes the proof of (c).

Lemma 5.4. Under the conditions of Theorem 3.1, we have

1
√
N

n
i=1

ηi(β)
d

→ N(0, ∆).

Proof. By the definition of ηi(β), we have

1
√
N

n
i=1

ηi(β) =
1

√
N

n
i=1

T
t=1

Ziteτ
itΛ(InT − S)vit +

1
√
N

n
i=1

T
t=1

Ziteτ
itΛ[Xitα(uit) − sτitM]

= I1n + I2n.

First, we verify that I1n
d

→ N(0, ∆). In view of the Cramér–Wold device, it is sufficient to show that for any d × 1 vector
a = (a1, a2, . . . , ad)τ ≠ 0,

aτ I1n =
1

√
N

n
i=1

T
t=1

aτZiteτ
itΛ(InT − S)vit =

1
√
N

n
i=1

T
t=1

Bit → N(0, aτ1a). (5.12)

To prove (5.12), we employ the Doob’s small-block and large-block technique. Partition the set {1, 2, . . . , T } into 2qn + 1
subsets with large-block of size r = rT and small-block of size s = sT . Set q = qT = [

T
rT+sT

] and define the random variables,
for 0 ≤ j ≤ q,

πij =

km+r−1
t=km

Bit , ξij =

lm+s−1
t=lm

Bit , and ζiq =

n
t=q(r+s)+1

Bit
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where km = (m − 1)(r + s) + 1, lm = (m − 1)(r + s) + r + 1,m = 1, . . . , q. Then

1
√
N

n
i=1

T
t=1

Bit =
1

√
N

 n
i=1

q
j=0

πij +

n
i=1

q
j=0

ξij +

n
i=1

ζiq


=

1
√
N

{Sn,1 + Sn,2 + Sn,3}.

In order to prove (5.12), it suffices to show the following: as N → ∞,

1
N
E(Sn,2)2 → 0,

1
N
E(Sn,3)2 → 0, (5.13)E exp


itSn,1


−

q
m=1

E exp(itπij)

 → 0, (5.14)

Var[(N)−1/2Sn,1] → aτ1a, (5.15)

1
N

n
i=1

q
j=1

E[π2
ij I|πij| > ϵ

√
n) → 0, ∀ϵ > 0. (5.16)

Relation (5.13) implies that Sn,2/
√
N and Sn,3/

√
N are asymptotically negligible in probability; (5.14) shows that the

summandsπj in Sn,1/
√
N are asymptotically independent, and (5.15) and (5.16) are the standard Lindeberg–Feller conditions

for asymptotic normality of Sn,1/
√
N for the independent setup.

First, we establish (5.13). For this purpose, we choose the large-block size rT by rT = [T 1/t
] and the small-block size by

sT = [T 1/(1+t)
], where t is given in Condition (A4) and [x] denotes the integer part of x. Then, it can easily be shown from

Condition (A4) that:

sT
rT

→ 0,
rT
n

→ 0, and qTα(sT ) ≤ CT−1/(t+1)t
→ 0. (5.17)

Observe that

1
N
E(Sn,2)2 =

q
j=0

Var(ξij) + 2


0≤j1<j2≤q

Cov(ξij1 , ξij2) ≡ Π1 + Π2. (5.18)

It follows from stationarity and Lemma 5.3 that

Π1 = qnVar(ξij) = qnVar


sT
j=1

Bij


= qT sT [aτ1a + o(1)]. (5.19)

Next consider the term Π2. Letrj = j(rn + sn), thenrj −ri ≥ rT for all j2 > j1, we therefore have

|Π2| ≤


0≤j1<j2≤q

sT
j1=1

sT
j2=1

|Cov(Brj+rT+j1 ,
Brj+rT+j2) ≤

T−rn
j1=1

T
j2=j1+rT

|Cov(Bij1 ,
Bij2)|.

By stationarity and Lemma 5.3, we have

|Π2| ≤ 2T
n

j=rT+1

|Cov(Bi1,Bij)| = o(T ). (5.20)

Hence, by (5.17)–(5.20), we have

1
N
E(Sn,2)2 = O

qT sT
T


+ o(1) = o(1). (5.21)

As to 1
N E(Sn,3)2, from (A4) and (A7). It follows that

1
N
E(Sn,3)2 =

1
N

n
i=1

T
i=q(r+s)+1

Var(Bi) +
1
N

n
i=1


q(r+s)+1≤j1<j2≤T

cov(Bij1 ,
Bij2)

≤ c1
T − q(r + s)

T
+ c2


q(r+s)+1≤j1<j2≤T

cov(Bij1 ,
Bij2) = o(1). (5.22)

Combining (5.21) and (5.22), we establish (5.13).
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To establish (5.14), according to Lemma A.1, we haveE exp

it

qT
j=1

πij


− Π

qT
j=1E


exp(itπij)

 ≤ 16
T
rT

α(sT ),

which goes to zero as T → ∞ by (5.17).
As for (5.15), by stationarity, (5.17) and Lemma 5.3, it is easily seen that

q
j=0

E(π2
ij ) = qTE(π2

i1) = qT rT
1
rT

Var
 rT

j=0

Bij


→ aτΣa.

It remains to establish (5.16). For this purpose, by employing Lemma A.3, we have

E[π2
ij I|πij| > ϵ

√
T ) ≤ cT−

δ
2 E
km+r−1

t=km

Bit

2+δ

≤ cT−
δ
2


r1+

δ
2 max

1≤t≤T
[E(Bit)

4
]
2+δ
4 + r1+ϵ1 [E(Bit)

4
]
2+δ
4


≤ cT−

δ
2


c1r1+

δ
2 + c2r1+ϵ1


.

Thus, by the definition of r , we obtain

1
N

n
i=1

q
j=1

E[π2
ij I|πij| > ϵ

√
T ) ≤ cT−1− δ

2


c1r1+

δ
2 + c2r1+ϵ1


= op(1).

Hence, I1n
d

→ N(0, ∆) holds. Similar to the proof of Lemma 4.4 in Hu (2014), we have 1
√
N

n
i=1
T

t=1
Ziteτ

itΛ[Xitα(uit) −

sτitM] = op(1). Then it is easy to get that I2n = op(1). Therefore, the proof of Lemma 5.4 is completed.

Lemma 5.5. Under the conditions of Theorem 3.1, we have

1
√
N

n
i=1

ηi(β)ητ
i (β)

p
→ ∆.

Proof. We also use the notations in the proof of Lemma 5.4, and denote Rit =Ziteτ
itΛ[Xitα(uit) − sτitM], then

1
√
N

n
i=1

ηi(β)ητ
i (β) =

1
√
N

n
i=1

T
t=1

BitBτ
it +

1
√
N

n
i=1

T
t=1

RitRτ
it +

1
√
N

n
i=1

T
t=1

BitRτ
it

+
1

√
N

n
i=1

T
t=1

RitBτ
it = Ξ1 + Ξ2 + Ξ3 + Ξ4.

One can similarly obtain that Ξ1
p

→ ∆ by the law of large numbers and Ξv

p
→ 0, v = 2, 3, 4. Thus, the proof of Lemma 5.5

is completed.

Lemma 5.6. Under the conditions of Theorem 3.1, we have

(i) max
1≤i≤n

∥ηi(β)∥ = op(N1/2), (5.23)

(ii) λ(β) = Op(N−1/2). (5.24)

Proof. Similar to the arguments given Owen (1988), from Eq. (2.9) and Lemmas 5.4 and 5.5, we can easily verify Eq. (5.24).
We now prove (5.23).

max
1≤i≤n

∥ηi(β)∥ ≤ max
1≤i≤n

 T
t=1

Ziteτ
itΛ(InT − S)vit

+ max
1≤i≤n

 T
t=1

Ziteτ
itΛ[Xitα(uit) − sτitM]


= M1 + M2.
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ForM1, note that E[
T

t=1
T

s=1
Ziteτ

itΛ(InT −S)vitZiseτ
isΛ(InT −S)vis] = ∆s,s+o(1) < ∞, where∆s,s denotes the sth diagonal

element of ∆. Bit is independent and identically distributed across the i index for each fixed t . By Lemma 3 in Owen (1990),
we obtainM1 = oP(N1/2). Now see the second termM2, by the Markov inequality, we obtain

P(M2 > N1/2) ≤
1
N

n
i=1

E
 T

t=1

Ziteτ
itΛ[Xitα(uit) − sτitM]

2
=

1
N

n
i=1

E
 T

t=1

T
s=1

ZitZiseτ
itΛ[Xitα(uit) − sτitM]eτ

isΛ[Xisα(uis) − sτisM]


≤

1
N

n
i=1

T
t=1

T
s=1


E
Ziteτ

itΛ[Xitα(uit) − sτitM]
21/2EZiseτ

isΛ[Xisα(uis) − sτisM]
21/2

= op(1) → 0.

Therefore,M2 = op(N1/2) and max1≤i≤n ∥ηi(β)∥ = op(N1/2).

Proof of Theorem 3.1. Applying the Taylor expansion, from (2.8), we obtain that

logLn(β) = 2
n

i=1


λτηi(β) −

[λτηi(β)]2

2


+ op(1). (5.25)

By (2.9), it follows that

0 =
1
n

n
i=1

ηi(β)

1 + λτηi(β)

=
1
n

n
i=1

ηi(β0) −
1
n

n
i=1

ηi(β)ητ
i (β)λ +

1
n

n
i=1

ηi(β)[λτηi(β)]2

1 + λτηi(β)
. (5.26)

In view of Lemmas 5.4–5.6, we have1n
n

i=1

ηi(β)[λτηi(β0)]
2

1 + λτΛi(β)

 ≤
1
n

n
i=1

∥ηi(β)∥3
∥λ∥

2

|1 + λτηi(β)|

≤ ∥λ∥
2 max
1≤i≤n

∥ηi(β)∥
1
n

n
i=1

∥ηi(β)∥2
= Op(N−1)op(N1/2)Op(1) = op(N−1/2),

which, together with (5.26), yields that
n

i=1[λ
τηi(β)]2 =

n
i=1 λτηi(β) + op(1) and

λ =

 n
i=1

ηi(β)ητ
i (β)

−1 n
i=1

ηi(β0) + op(N−1/2).

Then, by (5.25), we have

logLn(β) =

 1
√
n

n
i=1

ηi(β)
τ1

n

n
i=1

ηi(β)ητ
i (β)

−1 1
√
n

n
i=1

ηi(β)


+ op(1),

which, combining with Lemmas 5.4 and 5.5, proves Theorem 3.1.

Proof of Theorem 3.2. Following the similar arguments aswere used in the proof of theorem 2 in Hu and Li (2011), we have

β − β = Ψ −1 1
n

n
i=1

ηi(β) + op(n−1/2).

By Lemma 5.3, we can prove Ψ P
→ Ψ by the law of large numbers. Together with Lemma 5.4 and the Slutsky Theorem, this

proves Theorem 2.

6. Conclusion and discussion

In the current paper, the EL method was applied to semi-varying coefficient models for panel data with fixed effects. By
using a local linear regression approach and weighted local least-squares method, the fixed effects were removed and the
EL statistic for the unknown parameter in the model was constructed. At the same time, we assumed that the observations
were stationaryα-mixing. The empirical log-likelihood ratiowas proven to be asymptotically chi-squared.We also obtained
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the maximum EL estimator for the parameter of interest, and proved it followed asymptotically normal distribution. The
simulation study indicated that, in terms of coverage probabilities and average lengths of the confidence regions, the
proposedmethod performed better than the NAmethod. An application to a real dataset had been also included. In addition,
an interesting topic of further research is that the case of the covariates has measurement errors.
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Appendix

This appendix states some lemmas, which are used in the proofs of the main results in Section 5. Let {Zi, i ≥ 1} be a
stationary α-mixing sequence of random variables with mixing coefficients {α(m)}.

Lemma A.1 (Volkonskii & Rozanov, 1959). Let U1, . . . ,Un be α-mixing random variables measurable with respect to the
σ -algebra F

j1
i1

, . . . , F
jm
im , respectively, with 1 ≤ i1 < j1 < · · · < jm ≤ n, il+1 − jl ≥ w ≥ 1 and |Uj| ≤ 1 for l, j = 1, 2, . . . ,m.

Then E m
j=1

Uj


−

m
j=1

EUj

 ≤ 16(m − 1)αw,

where F b
a = σ {Ui, a < i ≤ b} denotes σ -field generated by Ua+1,Ua+2, . . . ,Ub, αw is the mixing coefficient.

Lemma A.2 (Hall & Heyde, 1980, Corollary A.2, p. 278). Suppose that X and Y are random variables such that E|X |
p <

∞, E|Y |
q < ∞, where p, q > 1, p−1

+ q−1 < 1. Then

|EXY − EXEY | ≤ 8∥X∥p∥Y∥q


sup

A∈σ(X),B∈σ(Y )

|P(A ∩ B) − P(A)P(B)|
1−p−1

−q−1

.

Lemma A.3 (Yang, 2007, Theorem 2.2). Let λ > 2, µ > 0, EZi = 0 and E|Zi|
λ+µ < ∞. Suppose that α(n) = O(n−r) for

r > λ(λ + µ)/(2µ). Then, for any given ε > 0, there exists constant C = C(r, µ, ε, λ) such that E max1≤k≤n |
k

i=1 Zi|
λ

≤

C{nε
n

i=1 E|Zi|
λ
+ (
n

i=1 ∥Zi∥
2
λ+µ)λ/2

}.

Lemma A.4 ((Fan & Yao, 2003), Theorem 2.18(ii), p. 73). Suppose that P(|Xt | ≤ b) = 1. Then
(ii) For each q = 1, . . . , [n/2] and ε > 0,

P(|Sn| > nε) ≤ 4 exp

−

ε2q
8v2(q)


+ 22


1 +

4b
ε

 1
2

qα


n
2q


,

where v2(q) = 2σ 2(q)/p2 + bε/2, p = n/(2q), and

σ 2(q) = max
0≤j≤2q−1

E ([jp] + 1 − jp)X1 + X2 + · · · + X[(j+1)p[jp]] + (jp + p − [jp + p])X[(j+1)p]−[jp]+1
2 .
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