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a b s t r a c t

In this article, we consider a partially linear panel data models with fixed effects.
In order to accommodate the within-group correlation, we apply the block empirical
likelihood procedure to partially linear panel data models with fixed effects, and prove
a nonparametric version of Wilks’ theorem which can be used to construct the confidence
region for the parametric. By the block empirical likelihood ratio function, the maximum
empirical likelihood estimator of the parameter is defined and the asymptotic normality is
shown. A simulation study and a real data application are undertaken to assess the finite
sample performance of our proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Panel data analysis has received a lot of attention during the last two decades due to applications in many disciplines,
such as economics, finance, biology, engineering and social sciences. The double-index panel datamodels enable researchers
to estimate complex models and extract information which may be difficult to obtain by applying purely cross section or
time series models. There exists a rich literature on parametric linear and nonlinear panel data models. For an overview of
statistical inference and econometric analysis of parametric panel data models, we refer to the books by Baltagi (2005) and
Hsiao (2003). To avoid imposing the strong restrictions assumed in the parametric panel data models, some nonparametric
methods have been used in both panel data model estimation and specification testing (e.g., Hjellvik et al., 2004; Henderson
et al., 2008; Cai and Li, 2008). While the nonparametric approach is useful in exploring hidden structures and reducing
modeling biases, they can be too flexible to draw concise conclusions, and face the curse of dimensionality due to a large
number of covariates. To overcome these shortcomings, we use semiparametric approaches which are the compromises
between the general nonparametric modeling and fully parametric specification.

Consider the following partially linear panel data models with fixed effects:

Yit = X τitβ + g(Uit)+ υi + εit , i = 1, . . . , n, t = 1, . . . , T , (1.1)
where Yit is the response, (X τit ,Uit) ∈ Rp

×R are strictly exogenous variables, β = (β1, . . . , βp)
τ is a vector of p-dimensional

unknown parameters, and the superscript τ denotes the transpose of a vector or matrix, g(Uit) = (g1(Uit), . . . , gq(Uit))
τ is
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a q-dimensional unknown functions and υi is the unobserved individual effects. Denote by εi = (εi1, . . . , εiT ) the random
error vector of the ith subject and {εi, i = 1, . . . , n} are mutually independent with E(εi|Xit ,Uit) = 0.

Model (1.1) is called a fixed effects model if υi is correlated with Xit and (or) Uit with an unknown correlation structure.
Model (1.1) is called a random effects model if υi is uncorrelated with Xit and Uit . The fixed effects specification has the
advantage of robustness compared to the randomeffects specification (e.g., Baltagi, 2005;Horowitz and Lee, 2004). However,
the analysis of the fixed effects panel data is more challenging because of increasing number of parameters with the sample
size, yielding the famous Neyman and Scott (1948) problem. In this paper, we are concerned with the fixed effects case.

Obviously, model (1.1) includes many usual parametric, nonparametric and semiparametric regression models. For
example, when υi = 0, model (1.1) reduces to the partially linear panel data model. Many researchers have explored the
partially linear panel datamodel (e.g., Roy, 1997; Li and Ullah, 1998; You and Zhou, 2006a). Roy (1997) has used the partially
linear panel data model to study the calorie and income relationship for two years panel data of rural south India. When
υi = 0 and g = 0, the model becomes the well-known parametric panel data regression model, which has been widely
applied in economics (cf., Ahn and Schmidt, 2000; Hsiao, 2003). When υi = 0 and β = 0, the model reduces to the panel
data nonparametric model, which has been investigated by Ruckstuhl et al. (2000).

For partially linear panel datamodels, Li andUllah (1998) constructed a feasible semiparametric generalized least squares
estimator for the coefficient of the linear component and derived the asymptotic normality of the proposed estimator.
For the model (1.1), Su and Ullah (2006) adapted a local linear dummy variable approach to remove the unknown fixed
effects. In this paper, we make statistical inference for the parametric β in partially linear panel data models with fixed
effects. Following the estimation procedure proposed by Li and Ullah (1998) and Su and Ullah (2006), the least-squared
estimations of β can be obtained. Based on this, a normal-based confidence region for the parametric is constructed. But
such a construction is inconvenient because it involves estimating complex asymptotic covariance of the estimators. To end
this, we recommend using the empirical likelihood (EL) method to construct the confidence regions for β . Based on the EL
method, we can construct immediately an approximate confidence region for the regression parameter. One motivation is
that empirical likelihood inference does not involve the asymptotic covariance of the estimators, which is rather complex
structure for the partially linear panel datamodels with fixed effects. Anothermotivation is that the confidence region based
on EL approach does not impose prior constraints on the region shape, and the shape and orientation of confidence regions
are determined completely by the data. Therefore, The EL method has been used by many authors, such as Shi and Lau
(2000), Wang and Jing (1999), You and Zhou (2006b), Fan et al. (2012) and so on.

The usual empirical likelihoodmethod cannot be applied, however, to partially linear panel datamodelswith fixed effects
due to correlation within groups. To accommodate the within-group correlation, we apply the block empirical likelihood
procedure proposed by You et al. (2006) to model (1.1), establish a block empirical log-likelihood ratio for the parametric
component, and derive a nonparametric version of Wilks’ theorem which can be used to construct the block empirical
likelihood confidence region with asymptotically correct coverage probability for the parametric component.

The rest of this paper is organized as follows. Section 2 introduces the methodology and empirical log-likelihood ratio
function for β . Assumptions and the main result are given in Section 3. Some simulation studies and a real-data example
are conducted in Section 4. The proofs of the main results are relegated to Section 5.

2. The model and methodology

To introduce our estimation, we assume that model holds with the restriction
n

i=1 υi = 0. Let υ = (υ2, . . . , υn)
τ and

υ0 = (−
n

i=2 υi, υ2, . . . , υn)
τ . We rewrite model (1.1) in a matrix format yields

Y = Xβ + g(U)+ Mυ + ε, (2.1)

whereM = [−in−1 In−1]
τ
⊗ iT is an nT × (n−1)matrix, In denotes the n×n identity matrix, and in denotes the n×1 vector

of ones. There are many approaches to estimating the parameters {βj, j = 1, . . . , p} and the functions {gi(·), i = 1, . . . , q}.
Themain idea is from the profile least squares approach proposed by Fan andHuang (2005): suppose that we have a random
sample {(Uit , Xit1, . . . , Xitp, Yit), i = 1, . . . , n, t = 1, . . . , T } from model (2.1). Let θ = (υτ , βτ )τ . Given θ , one can apply a
local linear regression technique to estimate the nonparametric component {gj(·), j = 1, . . . , q} in (2.1). For Uit in a small
neighborhood of u, one can approximate gj(Uit) locally by a linear function as below

gj(Uit) ≈ gj(u)+ g ′

j (u)(Uit − u) ≡ aj + bj(Uit − u), j = 1, . . . , q,

where g ′

j (u) = ∂gj(u)/∂u. This leads to the following weighted local least-squares problem: find {(aj, bj), j = 1, . . . , q} to
minimize

n
i=1

T
t=1


Yit − X τitβ − υi


−

q
j=1


aj + bj(Uit − u)

2

Kh(Uit − u), (2.2)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a sequence of positive numbers tending to zero, called bandwidth.
Simple calculation yields that

(ĝ1(u), . . . , ĝq(u), hĝ ′
1(u), . . . , hĝ ′

q(u))
τ

= (DτuWuDu)
−1DτuWu(Y − Xβ − Mυ),
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where

X =


X τ11
...

X τ1T
...

X τnT

 , Du =



1
U11 − u

h
...

...

1
U1T − u

h
...

...

1
UnT − u

h


, Y =


Y11
...

Y1T
...

YnT

 ,

andWu = diag(Kh(U11 − u), . . . , Kh(U1T − u), . . . , Kh(UnT − u)).
Then we can estimate g(u) by

ĝ(u, β) = (Iq, 0q×q)(DτuWuDu)
−1DτuWu(Y − Xβ − Mυ).

Let N = nT ,Ω = (Iq, 0q×q)(DτuWuDu)
−1DτuWu, and the [(i − 1)T + t]th element ofΩ be ωit(u). Then according to Chiou

and Müller (1999), we have

ωit(u) =

1
N Kh(Uit − u)[AN2(u)− (Uit − u)AN1(u)]

AN0(u)AN2(u)− A2
N1(u)

,

where ANs(u) =
1
N

n
i=1
T

t=1 Kh(Uit − u)(Uit − u)s, s = 0, 1, 2.
Now we consider a way of removing the unknown fixed effects motivated by a least squares dummy variable model in

parametric panel data analysis, for which we solve the following optimization problem:

θ̂ = argmin
θ


Y − Xβ − Mυ −Ω(Y − Xβ − Mυ)

τ
[Y − Xβ − Mυ −Ω(Y − Xβ − Mυ)]. (2.3)

Supposing that X = (InT − Ω)X , Y = (InT − Ω)Y , M = (InT − Ω)M , we have υ = (MτM)−1Mτ (Y − Xβ). LetH = InT − M(MτM)−1Mτ , we can obtainHMυ = 0. Hence, the fixed effects term Mυ is eliminated in (2.3). Let eit be the
nT × 1 vector with its {(i − 1)T + t}th element being 1 and others 0. We state the approximate residuals as the following:

r̂it(β) = eτitH(Yit −X τitβ).
Similar to Owen (1990) and Shi and Lau (2000), we can treat {r̂it(β), i = 1, . . . , n; t = 1, . . . , T } as a random sieve

approximation of the sequence of random errors {εit , i = 1, . . . , n; t = 1, . . . , T }. In order to deal with the correlation
within groups, we use the block empirical likelihood procedure proposed by You et al. (2006). Similar to You et al. (2006),
the profile empirical likelihood for β is defined as

Ln(β) = sup
 n

i=1

npi|
n

i=1

pi
T

t=1

XiteτitH(Yit −X τitβ) = 0, pi ≥ 0,
n

i=1

pi = 1

. (2.4)

For a given β , a unique maximum exists, provided that 0 is inside the convex hull of the points ψi(β) =
T

t=1
XiteτitH(Yit −X τitβ), i = 1, . . . , n. The maximum of (2.4) may be found via the method of Lagrange multiplier. The optimal value for pi

satisfying (2.4) may be shown to pi =
1

n[1+λτψi(β)]
. We define the corresponding profile block empirical log-likelihood ratio

as

LRn(β) = −

n
i=1

log{1 + λτψi(β)}, (2.5)

where λ(β) is determined by

1
n

n
i=1

ψi(β)

1 + λτψi(β)
= 0. (2.6)

We show in the next section that if β is the true parameter vector, LRn(β) is asymptotically chi-square distributed.
Maximizing {LRn(β)} can obtain the maximum block empirical likelihood estimator (MBELE)β of β . According to Qin and
Lawless (1994),β is also equal to the solution of the estimating equations

1
n

n
i=1

T
t=1

X τit eτitH(Yit −X τitβ) = 0. (2.7)

The solution of the estimating equation (2.7) is the usual profile least squares estimator. Therefore, the MBELE of β is
identical to the profile least squares estimator, which is given by

β =

1
n

n
i=1

T
t=1

X τit eτitHXit

−1 1
n

n
i=1

T
t=1

X τit eτitHYit .
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3. The asymptotic result

In this section, we will show that if β is the true parameter vector, LRn(β) is asymptotically χ2-distributed. Before
formulating the main results, we first give the following some assumptions.

(A1) The random vector Uit has a continuous density function f (·) with a compact support U on R. 0 < infu∈Uf (u) ≤

supu∈Uf (u) < ∞.
(A2) Letm(u) = E(Xit |Uit = u). The functionsm(u) and g(u) are twice continuously differentiable on U.
(A3) (υi, Xi,Ui, εi), i = 1, . . . , n, are i.i.d. There exists some δ > 2 such that E∥Xit∥

2+δ < ∞ and E|εi|
2+δ < ∞, where

∥a∥ = (


i=1 a
2
i )

1/2 is the usual Euclidean norm of a vector a.
(A4) The kernel K(v) is a symmetric probability density function with a continuous derivative on its compact support U.

(A5) E|X̆it |
2+δ < ∞, Ψ =

T
t=1[X̆it(X̆it −

T
s=1

X̆is
T )

τ
] is positive definite, where X̆it = Xit − E(Xit |Uit).

(A6) E(Yit |Xi,Ui, υi) = E(Yit |Xit ,Uit , υit) = Xitβ + g(Uit)+ υi.
(A7) The bandwidth h satisfies h → 0, nh8

→ 0 and nh2/(logn)2 → ∞ as n → ∞.

(A8) As k → ∞, P

0 ∈ ch

T
t=1
X1teτitH(Y1t −X τ1tβ), . . . ,T

t=1
XkteτitH(Ykt −X τktβ) → 1 where ‘‘ch’’ denotes the convex

hull of a set in Rp.

Remark 3.1. Assumptions (A1)–(A8) while look a bit lengthy, are actually quite mild and can be easily satisfied. (A1)–(A6)
can be founded in Su and Ullah (2006). (A7) is assumed in Hu (2014). (A8) has been used by many authors (e.g., Shi and Lau,
2000; You et al., 2006).

Theorem 3.1. Suppose that (A1)–(A8) hold. For model (2.1), if β0 is the true value of the parameter, then LRn(β0)
d

→ χ2
p ,

as n → ∞, where χ2
p is a standard chi-square random variable with p degrees of freedom and

d
→ stands for convergence in

distribution.

As a consequence of the theorem, confidence regions for the parameter β0 can be constructed. More precisely, for any
0 ≤ α < 1, let cα be the 1 − α quantile of χ2 distribution such that P(χ2

p > cα) ≤ 1 − α. Then ℓEL(α) = {β ∈ Rp
:

LRn(β0) ≤ cα} constitutes a confidence region for β0 with asymptotic coverage probability 1 − α because the event that
β0 belongs to ℓEL(α) is equivalent to the event that LRn(β0) ≤ cα .

Maximizing {−LRn(β0)} can obtain the maximum empirical likelihood estimator (MELE)β of β0. Write

Ψ =
1
n

n
i=1

T
t=1

Xit

Xit −

T
s=1

Xis

T

τ
. (3.1)

If the matrix Ψ is invertible, with the similar proof Theorem 1 in Qin and Lawless (1994) and Theorem 2 in Xue and Zhu
(2008), then MELEβ of β0 can be represented as

β = Ψ−1 1
n

n
i=1

T
t=1

X τit eτitHYit + op

n−

1
2


.

Then the asymptotic normality ofβ is stated in the following theorem.

Theorem 3.2. Suppose that (A1)–(A8) hold, if β0 is the true value of the parameter, then we have
√
n(β − β0)

d
→ N(0, V ),

where V = Ψ−1ΘΨ−1,Θ =
T

t=1
T

s=1 E


X̆it(X̆is −
T

l=1
X̆il
T )

τ

(εitεis)


.

To construct confidence regions, we can obtain Ψ−1ΘΨ−1 as the estimator of Ψ−1ΘΨ−1, where Ψ is defined in (3.1),
Θ̂ =

1
n

n
i=1
T

t=1
T

s=1
Xit(Xit −

T
s=1

Xis
T )

τεitεis andεit =Yit −X τitβ −υi. By Theorem 3.2, we obtain that

[Ψ−1ΘΨ−1
]
−1/2√n(β − β0)

d
→ N(0, Ip), (3.2)

or

(β − β0)
τn[Ψ−1ΘΨ−1

]
−1(β − β0)

d
→ χ2

p . (3.3)

Thus, a confidence region for β0 can be obtained from (3.2) and (3.3).
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Table 1
CP of confidence regions for (β1, β2) based on the BEL and the AN with nominal confidence level 0.95.

ρ 1 − α (n, T ) CPBE CPAN ρ 1 − α (n, T ) CPBE CPAN

0.5 0.95 (50,4) 0.940 0.890 1 0.95 (50,4) 0.923 0.810
(50,6) 0.945 0.912 (50,6) 0.935 0.855
(80,4) 0.951 0.917 (80,4) 0.948 0.890
(80,6) 0.956 0.935 (80,6) 0.950 0.912

Note: ‘‘CPBE and CPAN ’’ denote the CP based on the BEL and the AN, respectively.

Table 2
CP and AL of the confidence intervals based on the BEL and the AN with nominal confidence level 0.95.

Para ρ (n, T ) CE CN AE AN ρ (n, T ) CE CN AE AN

β1 0.5 (50,4) 0.935 0.895 0.1246 0.2309 1 (50,4) 0.931 0.770 0.1279 0.2541
(50,6) 0.942 0.903 0.1146 0.1851 (50,6) 0.939 0.798 0.1049 0.2018
(80,4) 0.950 0.921 0.1078 0.1806 (80,4) 0.941 0.807 0.0992 0.1931
(80,6) 0.957 0.928 0.0899 0.1418 (80,6) 0.949 0.865 0.0816 0.1518

β2 (50,4) 0.938 0.670 0.1376 0.2363 (50,4) 0.924 0.654 0.1532 0.2541
(50,6) 0.941 0.780 0.1231 0.1853 (50,6) 0.937 0.712 0.1324 0.2034
(80,4) 0.946 0.823 0.1152 0.1803 (80,4) 0.941 0.810 0.1267 0.1900
(80,6) 0.954 0.895 0.0956 0.1415 (80,6) 0.947 0.853 0.1087 0.1512

Note: ‘‘CE and CN ’’ denote the CP based on the BEL and the AN, respectively; ‘‘AE and AN ’’ denote the AL based on the BEL and the AN, respectively.

4. Numerical studies

4.1. Simulation study

In this section, we carry out some simulation experiments to illustrate the finite sample performance of the proposed
block empirical likelihood (BEL) method over the asymptotically normal (AN).

Firstly, we consider the following partially linear panel data models with fixed effects:

Yit = X τitβ + g(Uit)+ υi + εit , i = 1, . . . , n, t = 1, . . . , T , (4.1)

where β = (β1, β2)
τ

= (1,
√
2)τ/

√
3, g(Uit) = sin(2πUit), Uit ∼ U(0, 1), υi = ρŪi +wi with ρ = 0.5, 1 andwi ∼ N(0, 1)

for i = 2, 3, . . . , n, and υi = −
n

i=2 υi, Ūi =
1
T

T
t=1 Uit . We use ρ to control the correlation between υi and Ūi.

In our simulations, we took the sample sizes (n, T ) = (50, 4), (50, 6), (80, 4) and (80, 6), respectively, and we choose
the Epanechnikov kernel K(u) =

3
4 (1 − u2)I{|u| ≤ 1}. The ‘‘leave-one-subject-out’’ cross-validation bandwidth CV (h) is

obtained by minimizing

CV (h) =
1
N

n
i=1

T
t=1


Yit − X τit β̂[i] − ĝ[i](Uit)

2
,

where β̂[i] and ĝ[i](Uit) are estimators of β and g(Uit) which are computed with all of the measurements but not the ith
subject. We consider 500 replications with the nominal level 1− α = 0.95. The numerical results are reported in Tables 1–
3, where Table 1 reports some representative coverage probabilities (CP) of confidence regions for (β1, β2), Table 2 reports
the CP and average lengths (AL) of confidence intervals for β1 and β2, and Table 3 reports the average biases and standard
deviations (SD) of the proposed MBELE for the parametric components β1 and β2.

From Tables 1 and 2, we see that the method based on the BEL performs better than the AN method since the BEL
method gives higher CP and shorter AL of confidence intervals than the AN method. Also, it is obvious to see that the CP
of the confidence regions/intervals tend to increase and the AP decrease as the sample size (n, T ) become larger. It is also
interesting to note that the CP of the confidence intervals tend to decrease and the AL increase as ρ gets larger. In addition,
it can be seen from Table 3 that the proposed estimators of the parametric components are asymptotically unbiased and
have small SD. Further, it is reasonable that the average biases and SD decrease as the sample size increases.

4.2. Application to CD4 data

We now apply the proposed procedure to the CD4 data from the Multi-Center AIDS Cohort study. The dataset contains
the human immunodeficiency virus (HIV) status of 283 homosexual men who were infected with HIV during the follow-up
period between 1984 and 1991. Details about the related design, methods and medical implications of the Multi-Center
AIDS Cohort study have been described by Kaslow et al. (1987). This dataset has been studied by many authors, such as
Xue and Zhu (2007) and Zhou and Lin (2014). Although all the individuals were scheduled to have clinical visits semi-
annually for taking the measurement of CD4 percentage, due to the various reasons, some individuals missed scheduled
visits, which resulted in unequal numbers of measurements and different measurement times across individuals. We select
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Table 3
The finite sample average biases and SD of the proposed MBELE for the parametric components β1 and β2 .

(n, T ) β1 β2

ρ = 0.5 ρ = 1 ρ = 0.5 ρ = 1
Bias SD Bias SD Bias SD Bias SD

(50,4) 0.0019 0.0536 0.0021 0.0837 0.0026 0.0609 −0.0021 0.0571
(50,6) −0.0013 0.0520 −0.0016 0.0523 0.0014 0.0531 0.0023 0.0528
(80,4) 0.0007 0.0461 0.0009 0.0471 0.0010 0.0452 0.0014 0.0508
(80,6) 0.0001 0.0404 0.0006 0.0426 0.0006 0.0418 0.0008 0.0438

Fig. 1. Application to CD4 data. The 95% confidence regions based on the AN (dotted curve) and BEL (solid curve) for β = (β1, β2).

158 individuals in which there have the first six measurements. Hence, we can obtain equal numbers of measurements for
each individuals.

Let tij be the time for years of the tth measurement of the ith individual after HIV infection, Yit be the ith individual’s
CD4 cell percentage at time tij. We take two covariates for the study: X1it , the ith individual’s preCD4 percentage measured
at time tij; X2it , the individual’s smoking status, which takes binary values 1 or 0, according to whether an individual is a
smoker or nonsmoker. We consider the following model:

Yit = X1itβ1 + X2itβ2 + g(Uit)+ υi + εit , i = 1, . . . , n, t = 1, . . . , T , (4.2)

where Uit = tij/T and υi is a state-specific effect that may include time, religion, race and education. υi = ρŪi + wi with
Ūi =

1
T

T
t=1 Uit and wi ∼ N(0, 1). β1 and β2 describe the effects for pre-infection CD4 percentage and cigarette smoking.

Using the BEL and ANmethods, we obtained 1−α = 0.95 confidence regions for (β1, β2) that are presented in Fig. 1. These
figures show that BEL gives smaller confidence regions than the AN does, and the BEL confidence regions become deviation
from the center as ρ = 0 gets ρ = 0.5.

5. Proofs of the main result

For the convenience and simplicity, let ϑk =

ukK(u)dt and P = (InT −Ω)τ (InT −Ω).

Lemma 5.1. Suppose that conditions (A1)–(A8) hold. Then we have

E

g(Uit)−

n
k=1

T
l=1

ωkl(Uit)g(Ukl)


2

= O(h4). (5.1)

Proof. Write

ωit(u) =

1
N Kh(Uit − u)[AN2(u)− (Uit − u)AN1(u)]

AN0(u)AN2(u)− A2
N1(u)

=
VNit(u)
VN(u)

, (5.2)

where VNit(u) =
1
N Kh(Uit − u)[AN2(u) − (Uit − u)AN1(u)], VN(u) = AN0(u)AN2(u) − A2

N1(u). Let u = Ukl, k = 1, . . . , n; l =

1, . . . , T . Note that
n

k=1
T

l=1 VNit(u)(Uit − u) = 0 and
n

k=1
T

l=1 VNit(u) = VN(u). Write G(Uit , u) = g(Uit) − g(u)
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+ g ′(u)(Uit − u). A simple calculation yields

g(Uit)−

n
k=1

T
l=1

ωkl(Uit)g(Ukl) =

n
k=1

T
l=1

VNit(u)G(Uit , u)

VN(u)
. (5.3)

Let EUit (χn) be the conditional expectation of χn given Uit , and denote χn = Or(an), if E(|χn|
r) = O(arn). Using the

Cauchy–Schwarz inequality, we can obtain

Or(an)Or(bn) = Or/2(anbn), (5.4)

χn = EUit [χn] + O4

(E|χn − EUit [χn]|

4)1/4

. (5.5)

By condition (A1), we know that supuf (u) < ∞. Then ∃L > 0, for any y and u, |f (y)− f (u)| 6 L|y−u|. For ANs(u), s = 0, 1, 2,
we can obtain that

EUit [ANs(u)] = E


1
N

n
i=1

T
j=1

(Uit − u)sKh(Uit − u)



=


(Uit − u)sKh(Uit − u)f (Uit)dUit = hs


usK(u)du[f (u)+ O(h)]

= hsf (u)ϑs[1 + O(h)]. (5.6)

By Theorem 1 in Yang (2001), it is easy to obtain

E

|ANs(u)− EUit [ANs(u)]|4


≤

c
N4

Nh4s−3


|usK(u)|4du[Ef (u)+ Lh] +
c
N4

E

Nh2s−3


u2sK 2(u)du[Ef (u)+ Lh]


= O(N−3h4s−3)+ O(N−2h2s−2). (5.7)

Combining (5.5) and (5.7), we obtain

ANs(u) = EUit [ANs(u)] + O4(hs(Nh)−1/2) = hsf (u)ϑs[1 + O4(h + (Nh)−1/2)], s = 0, 1, 2. (5.8)

From (5.4) and (5.8), we can derive

VN(u) = AN0(u)AN2(u)− A2
N1(u) = h2f 2(u)ϑs[1 + O2(h + (Nh)−1/2)]. (5.9)

Let VNh(u) =
1
h2
VN(u), V (u) = f 2(u)ϑs. Since U is a compact set, using (5.6) and Dvoretzky inequality, and invoking the

standard method of dealing with the kernel density estimation, we can derive, for arbitrary ε > 0,

P{supu∈U|VNh(u)− V (u)| > ε} ≤ c exp(−γNh2).

Because the series


∞

N=1 exp(−γNh
2) < ∞, for any γ > 0, by hypothesis, an application of the Borel–Cantelli lemma

proves that

supu∈U|VNh(u)− V (u)| → 0, a.s. (5.10)

From Condition (A1), we know that infu∈U f (u) > c0 > 0, Therefore, when n is large enough, we have

inf
u∈U

|VNh(u)| > inf
u∈U

|V (u)| − supu∈U|VNh(u)− V (u)| > ϑ2c20 > 0, a.s. (5.11)

A simple calculation yields

n
k=1

T
l=1

VNit(u)G(Uit , u) =
1
N

n
k=1

T
l=1

G(Uit , u)Kh(Uit − u)AN2(u)

−
1
N

n
k=1

T
l=1

G(Uit , u)(Uit − u)Kh(Uit − u)AN1(u). (5.12)
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Similar to the proof of (5.8), for s = 0, 1, we have

1
Nh2+s

n
k=1

T
l=1

G(Uit , u)(Uit − u)sKh(Uit − u)

= h−(2+s)EUit [G(Uit , u)(Uit − u)sKh(Uit − u)] + O4((Nh)−1/2) = dNs + O4((Nh)−1/2), (5.13)

|dNs| ≤ c


|u|s+2K(u)du[f (u)+ O(h)] = O(1).

Combining (5.8), (5.12) and (5.13), we obtain

n
k=1

T
l=1

VNit(u)G(Uit , u) = h4f (u)ϑ2dN0 + O2(h + (Nh)−1/2). (5.14)

This together with Eq. (5.9), we conclude that

E


n
k=1

T
l=1

VNit(u)G(Uit , u)

VN(u)

2 ≤ ch−4E


n

k=1

T
l=1

VNit(u)G(Uit , u)

2

= O(h4). (5.15)

Hence, the prove of Lemma 5.1 is completed.

Lemma 5.2. Suppose that conditions (A1)–(A8) hold. Then

(a) ωit(u) = o(1). (5.16)

(b) (MτPM)−1
= (MτM)−1

+ O(ζn) = T−1In + O(ζn) (5.17)

for sufficiently large n. where ζn =

√
lnn
nh

iniτn .

Proof. (a) Similar to the proof of (5.14), we have

E[VNit(Uit)] = N−1h4f (u)ϑ2[1 + O2(h + (Nh)−1/2)]. (5.18)

Combining (5.9), we can prove (5.16).
(b)MτPM = Mτ (InT −Ω)τ (InT −Ω)M = MτM − MτΩM − MτΩτM + MτΩτΩM = ∆11 −∆12 −∆13 +∆14. By (a),

we can show that the (i, j)th element of∆1l is [∆1l]ij = o(1), l = 2, 3, 4. Similar to the proof of Lemma A.2 in Su and Ullah
(2006). We can prove (MτPM)−1

= (MτM)−1
+ O(ζn) = T−1In + O(ζn).

Lemma 5.3. Suppose that conditions (A1)–(A8) hold. Then

(a) n−1X τPX
p

→

T
t=1


(Xit − E(Xit |Uit))(Xit − E(Xit |Uit))

τ

.

(b) n−1X τPM(MτM)−1MτPX
p

→
1
T

T
t=1

T
s=1


(Xit − E(Xit |Uit))(Xis − E(Xis|Uis))

τ

.

(c)
1
n

n
i=1

T
t=1

X τit eτitHXit
p

→ Ψ .

Proof. (a), (b) are the direct result of the Lemma A.3 in Su and Ullah (2006).
(c) By (a), (b) and Lemma 5.2,

1
n

n
i=1

T
t=1

X τit eτitHXit =
1
n

n
i=1

T
t=1

X τit eτit(InT − M(MτM)−1Mτ )Xit

=
1
n

n
i=1

T
t=1

X τitXit −
1
n

n
i=1

T
t=1

X τitM(MτM)−1MτXit

= n−1X τPX − n−1X τPM(MτM)−1MτPX
p

→ Ψ .
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Lemma 5.4. Suppose that conditions (A1)–(A8) hold. Then

(a) n−1/2X τPε
p

→ n−1/2
n

i=1

T
t=1

(Xit − E(Xit |Uit))εit + op(1).

(b) n−1/2X τPM(MτM)−1MτPε
p

→ n−1/2 1
T

n
i=1

T
t=1

T
s=1

(Xit − E(Xit |Uit))εis + oP(1).

Proof. (a), (b) are the direct result of the Lemma A.6 in Su and Ullah (2006).

Lemma 5.5. Under the conditions of Theorem 3.1, we have

1
√
N

n
i=1

ψi(β)
d

→ N(0,Θ).

Proof. By the definition of ψi(β), we have

1
√
n

n
i=1

ψi(β) =
1

√
n

n
i=1

T
t=1

XiteτitH(InT −Ω)εit

+
1

√
n

n
i=1

T
t=1

XiteτitH

g(Uit)−

n
k=1

T
l=1

ωkl(Uit)g(Ukl)


= I1n + I2n.

By Lemma 5.3, it is easy to show E(I1n) = 0, Var(I1n) = Θ , and I1n satisfies the conditions of the Cramér–Wold device and
the Lindeberg condition. Using the central limits theorem, we have I1n

d
→ N(0,Θ). Similar to the proof of lemma A.5 in Su

and Ullah (2006), we have 1
√
n
X τ (I −H)g(U) = op(1). Then it is easy to get that

I2n =
1

√
n

n
i=1

T
t=1

XiteτitHg(Uit) = op(1).

Therefore, the proof is completed.

Lemma 5.6. Under the conditions of Theorem 3.1, Let Bit =XiteτitH we have

V =
1
n

n
i=1

T
t=1

BitBτit(Yit −Xitβ)(Yit −Xitβ)
τ p

→ Θ.

Proof.

V =
1
n

n
i=1

T
t=1

BitBτit [g(Uit)+ (InT −Ω)εit ][g(Uit)+ (InT −Ω)εit ]
τ

=
1
n

n
i=1

T
t=1

BitBτit [(InT −Ω)εit ][(InT −Ω)εit ]
τ
+

1
n

n
i=1

T
t=1

BitBτitg(Uit)[(InT −Ω)εit ]
τ

+
1
n

n
i=1

T
t=1

BitBτit [(InT −Ω)εit ]g(Uit)
τ
+

1
n

n
i=1

T
t=1

BitBτitg(Uit)g(Uit)
τ

= Λ1 +Λ2 +Λ3 +Λ4.

By the law of large numbers, we can derive that Λ1
d

→ Θ . By Lemma 5.4 and Cauchy–Schwarz inequality, it can prove
Λj

d
→ Θ, j = 2, 3, 4, Lemma 5.6 is proved.

Lemma 5.7. Under the conditions of Theorem 3.1, we have

(i) max
1≤i≤n

∥ψi(β)∥ = op(n1/2), (5.19)

(ii) λ(β) = Op(n−1/2). (5.20)
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Proof. Similar to the arguments given by Owen (1988), from Eq. (2.6) and Lemmas 5.5 and 5.6, we can easily verify Eq.
(5.20). We now prove (5.19).

max
1≤i≤n

∥ψi(β)∥ ≤ max
1≤i≤n

 T
t=1

XiteτitH(InT −Ω)εit

+ max
1≤i≤n

 T
t=1

XiteτitH

g(Uit)−

n
k=1

T
l=1

ωkl(Uit)g(Ukl)


= Π1 +Π2.

ForΠ1, note that E[
T

t=1
T

s=1
XiteτitH(InT −S)vitXiseτisH(InT −S)vis] = Θs,s+o(1) < ∞, whereΘs,s denotes the sth diagonal

element ofΘ . Bit is independent and identically distributed across the i index for each fixed t . By lemma 3 in Owen (1990),
we obtainΠ1 = oP(n1/2). Now see the second termΠ2, by the Markov inequality, we obtain

P(Π2 > n1/2) ≤
1
n

n
i=1

E
 T

t=1

XiteτitHg(Uit)

2
=

1
n

n
i=1

E
 T

t=1

T
s=1

XitXiseτitHg(Uit)eτisHg(Uit)


≤

1
n

n
i=1

T
t=1

T
s=1


E
XiteτitHg(Uit)

21/2EXiseτisHg(Uit)
21/2

= op(1) → 0.

Therefore,Π2 = op(n1/2) and max1≤i≤n ∥ψi(β)∥ = op(n1/2).

Proof of Theorem 3.1. By (2.6), we have

1
n

n
i=1

ψi(β)

1 + λτψi(β)
=

1
n

n
i=1

ψi(β0)−
1
n

n
i=1

ψi(β)ψ
τ
i (β)λ+

1
n

n
i=1

ψi(β)[λ
τψi(β)]

2

1 + λτψi(β)
= 0. (5.21)

Applying the Taylor expansion, from (2.5), we obtain that

LRn(β) = 2
n

i=1


λτψi(β)−

[λτψi(β)]
2

2


+ op(1). (5.22)

In view of Lemmas 5.5–5.7, we have1n
n

i=1

ψi(β)[λ
τψi(β0)]

2

1 + λτψi(β)

 ≤
1
n

n
i=1

∥ψi(β)∥
3
∥λ∥2

|1 + λτψi(β)|

≤ ∥λ∥2 max
1≤i≤n

∥ψi(β)∥
1
n

n
i=1

∥ψi(β)∥
2

= Op(n−1)op(n1/2)Op(1) = op(n−1/2),

which, together with (5.21), yields that
n

i=1[λ
τψi(β)]

2
=
n

i=1 λ
τψi(β)+ op(1) and

λ =

 n
i=1

ψi(β)ψ
τ
i (β)

−1 n
i=1

ψi(β0)+ op(n−1/2).

Then, by (5.22), we have

LRn(β) =

 1
√
n

n
i=1

ψi(β)
τ1

n

n
i=1

ψi(β)ψ
τ
i (β)

−1 1
√
n

n
i=1

ψi(β)


+ op(1),

which, combining with Lemmas 5.5 and 5.6, proves Theorem 3.1.

Proof of Theorem 3.2. Following the similar arguments as were used in the proof of Theorem 2 in Xue and Zhu (2008), we
have

β − β0 = Ψ−1 1
n

n
i=1

ψi(β)+ op(n−1/2).

By Lemma 5.3, we can prove Ψ P
→ Ψ by the law of large numbers. Together with Lemma 5.4 and the Slutsky Theorem, we

complete the proof of Theorem 2.
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