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ABSTRACT

In this paper, we consider the statistical inference for the partially linear panel data models
with fixed effects. We focus on the case where some covariates are measured with additive
errors. We propose a modified profile least squares estimator of the regression parameter and
the nonparametric components. The asymptotic normality for the parametric component and
the rate of convergence for the nonparametric component are established. Consistent estima-
tions of the error variance are also developed. We conduct simulation studies to demonstrate the
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finite sample performance of our proposed method and we also present an illustrative empirical

application.

1. Introduction

Panel data records information on each individual unit
over time, the rich information contained in panel data
allows researchers to estimate complex models and
answer questions that may not be possible using time
series or cross-sectional data alone. Panel data analy-
sis has received a lot of attention during the last two
decades due to applications in many disciplines, such
as economics, finance, biology, engineering and social
sciences. Baltagi (2005) and Hsiao (2003) provided excel-
lent overviews of statistical inference and econometric
analysis of parametric panel data models. Semiparamet-
ric regression models reduce the high risk of misspec-
ification relative to a fully parametric model and avoid
some serious drawbacks of purely nonparametric meth-
ods such as the curse of dimensionality, difficulty of inter-
pretation, and lack of extrapolation capability. In the last
two decades, various forms of semiparametric regres-
sion models have been developed. These include the
varying-coefficient model (e.g. Zhao & Lin, 2019), the par-
tially linear regression model (e.g. Engle et al., 1986),
the varying-coefficient partially linear model (e.g. J. Fan
& Huang, 2005). The partially linear panel data models
with fixed effects is a useful tool for econometric anal-
ysis; see, e.g. Henderson et al. (2008), Hu (2014), and Li
etal. (2011).

In this paper, we consider the following partially
linear panel data models with fixed effects (e.g. Su

& Ullah, 2006):

Yii = X,-gﬂ +mWUp) +ai+ep, i=1,...
where Yj; is the response, Xj and U are of dimensions p x
1and g x 1, respectively, 8 = (B1,...,Bp)" is a vector of
p-dimensional unknown parameters, and the superscript
T denotes the transpose of a vector or matrix. m(Uy) is
a unknown function and «; is the unobserved individual
effects, ¢t is the random model error. Here, we assume ¢j;
to be i.i.d. with zero mean and finite variance o2 > 0. We
allow «; to be correlated with Xj;, and U;; with an unknown
correlation structure. Hence, model (1) is a fixed effects
model.

Measurement error data are often encountered in
many fields, including economics, biomedical sciences
and epidemiology. Simply ignoring measurement errors
(errors-in-variables), will result in biased estimators. Hand-
ing the measurement errors in covariates is generally
a challenge for statistical analysis. For the past two
decades, regression analysis with measurement errors
had much progress. A detailed study can be found in
the research of Fuller (1987), J. Fan and Truong (1993),
Liang et al. (1999), G. L. Fan et al. (2013) and so
on. A statistical analysis of model (1) with additive
measurement errors, however, still seems to be miss-
ing. The objective of the present paper is to fill this

gap.
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Specifically, we consider the following partially lin-
ear errors-in-variables panel data models with fixed
effects

Yie = Xip B+ m(Uie) + o; + €it,
Zit = Xit + nits
oomt=1,...,T. (2)

where the covariate variable Xj; is measured with addi-
tive error and is not directly observable. Instead, we
observe Zi; with where the measurement errors nj;
are independent and identically distributed, indepen-
dent of (Xit, Uit, €it), we assume that Cov(ni) = X, with
%, assumed to be known, as in the papers of Zhu
and Cui (2003), You and Chen (2006), and other. When
%, is unknown, we can estimate it by repeatedly
measuring Zi; see Liang et al. (1999) for
details.

The individual effects are often viewed as nuisance
parameters in the fixed effects panel data regression
model. Because of the diverging number of nuisance
parameters, the estimation of the parametric and nonpa-
rametric components in the partially linear panel data
models with fixed effects is no longer straightforward.
Great efforts have been made to develop suitable meth-
ods for estimations in the last few years. For the model (1),
Suand Ullah (2006) adapted a local linear dummy variable
approach to remove the unknown fixed effects. In this
paper, our aim is to extend the results in Zhou et al. (2010)
for fixed effects partially linear regression models with
errors in variables to partially linear error-in-variables
panel data models with fixed effects. we make statisti-
cal inference for the parametric 8 in partially linear panel
data models with fixed effects. Following the estimation
procedure proposed by J. Fan et al. (2005), the profile
least-squared estimations of 8 can be obtained. Based
on this, a normal-based confidence region for the para-
metric is constructed. However, because of the attenua-
tion the previously proposed estimators, the profile least
squares estimator, are no longer consistent. We propose
a modified profile least squares estimator. The resulting
estimator is shown to be consistent and asymptotically
normal. Consistently estimating the error variance is also
considered.

The layout of the remainder of this paper is as follows.
In Section 2, we present the estimators of the paramet-
ric component, the nonparametric component, as well as
the error variance. Assumption conditions and the main
result are given in Section 3. The simulated example is
provided in Section 4. A real-data example is given in
Section 5. All the mathematical proofs of the asymptotic
results are given in Appendix.

2. Model and methodology

To introduce our estimation, we rewrite model (1) in a
matrix format yields

Y = XB +mU) + B + ¢, (3)

where B is a nT x n matrix. For our application, the
matrix is in a specific form, B = I, ® it with ® the Kro-
necker product, I, denotes the n x n identity matrix, and
it denotes the n x 1 vector of ones. There are many
approaches to estimate the parameters {g;,j = 1,...,p}
and the functions m(-). The main idea is from the pro-
file least squares (PLS) approach proposed by J. Fan
and Huang (2005): suppose that we have a random sam-
ple {(Uit, Xit1, . . ., Xitp, Yie), i=1,...,n, t=1,..., T} from
model (3).Letd = (a7, B7)".Given 6, one canapplyalocal
linear regression technique to estimate the nonparamet-
ric component m(-) in (3). For Ut in a small neighbour-
hood of u, one can approximated m(Uj;) locally by a linear
function as below

m(Uir) ~ m(u) +m'(u)(Uig — u) = a + b(Uje — u),

where m’(u) = am(u)/du.
This leads to the following weighted local least squares
problem: find a and b to minimize

n T
>3 | e X5B —a) — la+ bt~ i}’

i=1 t=1

x Kp(Uie — ), (4)

where a and b are g-dimensional column vectors, K, (-) =
K(-/h)/h, K(-) is a kernel function and h is a sequence of
positive numbers tending to zero, called bandwidth. For
notational convenience, let

1 U11—U
Xt h
X = X1TT , Du=1]1 U1Th_u ’
Xor 1 Upr —u
h
Y14
Y=|Yir ],
Yor
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and W, = diag(Kp(U11 — u), ..., Kn(Uit — u),..., Ky
(Unt — u)). Then the solution of problem (4) is given by

[a, hb] = (DT W,Dy)~ DLWy (Y — XB — Bar).
In (3), m(Ujy) is replaced with a. Then we have

M(Uir) = (1,0)(DY, Wy, Dy,) ™' DY, Wy, (Y — XB — Ba).
(5)
Now we consider a way of removing the unknown fixed
effects motivated by a least squares dummy variable
model in parametric panel data analysis, for which we
solve the following optimization problem:

6 = arg min [Y = XB — Ba — S(Y — XB — Ba)I"
x [Y —XB — Ba — S(Y — XB — Ba)].

SupposingthatN = nT,X = (Iy — S)X,Y = (Iy — S)Y,B =
(In—S)B,

(1,0)(Df/11 WUHDUH)_]DLTJH Wu,
S= (1r0)(DITJ1TWU1TDU1T)71D61TWU1T

(1,0)(D, Wy, Du,p) ™ D, Wuyr

S

=|s57|"

SnT

we have
Y =XB + Ba +«.

By the least squares method and a slight complex com-
putation, we have

B* = (XX = X"MzX) ™' X" (1 — Mp)Y,
&= @B "B Y -Xp), (6)

where IT/IE = E(E’E)‘@T is a projection matrix of B.
However, Xj;'s can not be observed in our case and
we just have Z. If we ignore the measurement error and
replace Xj; with Z; in (6), (6) can be used to show that
the resulting estimate is inconsistent. It is well known that
in linear regression or partially linear regression, inconsis-
tency caused by the measurement error can be overcome
by applying the so-called ‘correction for attenuation’, see
Fuller (1987) and Liang et al. (1999) for more details. In

the context of partially linear regression, we introduce the
modified least squares method to estimate 8 as follows:

B={ZU-MpZ —nT—1)3,} ' Z70-Mp)¥. @)

Moreover, note that E(m;(Ujt)) = E[it — X B — i | Uil =
E[Yi — thﬂ — aj | Uzl and results of J. Fan et al. (2005) sug-
gest that the profile least squares estimator of the non-
parametric components m = [m(U11),...,mUiT),...,
m(U,7)]* can be achieved with the following equation

In Mg][B M ~
s wllnl=[5)e-
where Mg = B(Iy — inif;/N)(B"B)~'B. According to the

results of Opsomer and Ruppert (1997), the estimate of
m has the following form

m={l—-SMg)~ "I = 9}(Y - ZP). 8)

Sometimes, it is also necessary to estimate the error vari-
ance o2 = E(Sizr) for such tasks as the construction of
confidence regions, model-based tests, model selection
procedures, single-to-noise ratio determination and so
on. From E[Y; — X; B — Bf i — m(Ujp)1* = o' and E[Yj; —
ZLB — Braj — m(Uip)1® = o2 + B =, B, we define an esti-
mator of o2 as

(Y —ZB — )" (I — Mg)(Y — ZB — )

Gl

N(T—-1)
—B"%,B, 9)

with Mg = B(B*B)~'B.

3. Main results

In this section, we will be establishing the asymptotic
properties of the proposed estimators from the previous
section. Before formulating the main results, we first give
the following assumptions:

(A1) Therandom vector Uj has a continuous density func-

tion f(-) with abounded support /.0 < inf g f(-) <
supyy (1) < oo.

(A2) Let ®(u) = E(Xjt | U = u). The functions ®(-) and

m(-) have bounded second partial derivatives on /.

(A3) (o0, Xit, Ui, €it), i =1,...,n, t=1,...,Tareiid.There

exists some 8 > 2 such that E|Xi||?t® < oo and
Eleit|?*? < oo, where ||al| = (}_;_; a?)/?is the usual
Euclidean norm of a vector a.

(Ad4) The kernel K(v) is a symmetric probability density

function with a continuous derivative on its compact
support .

(AS)  E(Yit | Xi, Uiyai) = E(Yit | Xie, Uit, o) = Xip B+ m(Uje)

+ «j.
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(A6) ElXit|**? < 0o, ¥ = E[XieXZ] is non-singular, where
Xit = Xit — E(Xit | Ujp).

(A7) The bandwidth h satisfies h — 0, Nh® — 0 and
Nh?/(log N)2 — oo as N — oo.

Theorem 3.1: Suppose that Assumptions (A1)-(A7) hold.
For model (3), if B is the true value of the parameter, then the
proposed est/mator,B of B is asymptotically normal, namely

W(ﬁ—ﬁ)iN(o 2—‘212—‘), (10)

"N(T=1)
where £1 = [E(e — n'B)®E + 02X, + El(;n* — £,)B1%2]
and A®2 means AA”.

Further S- iﬂf ' is a consistent estimator of
71527 where E_N(T 1)ZT(I MB)Z T, and
Sy = ylZdiagVi = Z31B,... Va1 = Z5 B, Yor = 27
) + IN(E, B)7192.

Theorem 3.2: Suppose that Assumptions (A1)-(A7) hold.
Then the risk of the profile least squares m is bounded as
follows:

MSE{m|U11r-'-IU1T 'IUHT}

T ush* ., (02 + BTE,B)volU|
5(ﬁ—1>2{ 2 ER W]+ o

h* + —
+op( +Nh)

where i = [U'K(u) du, v = [ U'K?(u) du, M = [M(Ur1),

AU, ..., MUDIT, MSE{@ | Urq, ..., Ur,. .., Unr)
= & YL Y E@Ui) — mUip) | Uns, .., Unr,
UnT]Z-

Theorem 3.3: Suppose that Assumptions (A1)-(A7) hold.
Then it holds that

VNG? — 62 4 N, 0), an
where ® =E(e—n'B)*+ @B —=T)/(T—1(0?+ B2
B)>. Define W = (Y1,..., Y17, .., Ynr)* = (I = Mp)(Y —
ZB — M) and

o=(1+2-2 )
T2 T3T

1 n T 9 R N .
[NZZ‘% (6_ 7—) (‘72+:3r2n:3):|
i=1 t=1

L3-T
T—1

@2+ BT %, B),

then ® is a consistent estimator of ©.

4. Simulation studies

In this section, we carry out some simulation experiments
to study the finite sample performance of the estimators
,a m and 52, which are defined in Section 2. Firstly, we
consider the following partially linear errors-in-variables
panel data models with fixed effects:

Yie = Xi B+ m(Ui) + o + €it,
Zit = Xit + i,
.aomt=1,...,T, (12)

where B = (81,827 = (1,+/2)7/+/3, m(Uy) = cos(2r
Uo,  UeUO, 1), Xie = (i, Xi)™ ™ N((1, 1), diag
(4,4)), aj = pX; + w; with p = 0.5, 1 and w;~N(0, 1) for
i=12...,nand X; = %Zfﬂ Xit1. We use p to control
the correlation between «j and Xj. The measurement error
nie~N(0, =,) where we take X, = 0.22, and 0.4%/, to
represent different levels of measurement error.

In our simulations, we took the sample sizes (n,T) =
(50, 4), (50,6), (100, 4) and (100, 6), respectively, and we
choose the Epanechnikov kernel K(u) = 2 (1 — u?)I{ju| <
1}. The ‘leave-one-subject-out’ cross-validation band-
width CV(h) is obtained by minimizing

1 n T A
N ZZ (Yir — Xit B

i=1 t=1

CV(h) = M Uin)?,

where B[,] and my;(Ujr) are estimators of 8 and m(Uy),
respectively, which are computed with all of the measure-
ments but not the ith subject. We consider 500 replica-
tions with the nominal level 1 — o« = 0.95. We calculate
the sample means and standard deviations (SD) of the
proposed estimators for the parametric components 31,
B2, and error variance o2 in Section 2. In order to com-
pare the proposed modified PLS estimation method for
the parametric component and estimator of the error
variance with the existing method, we also calculate the
sample means and SD of the modified PLS estimators and
naive estimators (neglecting the measurement errors).
The naive estimators for (81, 82)7 and o2 are defined as

B={Z7U-MpZ) ' Z 1 - W)Y,
and

) T . .
U—W(Y—Zﬂ—m) (I=Mp)(Y —ZB —m),

where
m={l—(—SMg)~"(I = SH}(Y — ZP).

Simulation results are summarized in Tables 1 and 2. From
Tables 1 and 2, we make the following observations:
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Zy (nT) B B2 62 B B2 4
0.221, (50,4) Mean 0.5797 0.8201 0.9852 0.5810 0.8221 0.9452
SD 0.0199 0.0210 0.1156 0.0201 0.0217 0.1270
(50,6) Mean 0.5791 0.8189 0.9912 0.5795 0.8206 0.9510
SD 0.0173 0.0165 0.0991 0.0197 0.0186 0.1011
(100,4) Mean 0.5782 0.8173 0.9927 0.5785 0.8193 0.9525
SD 0.0154 0.0159 0.0814 0.0156 0.0161 0.0946
(100,6) Mean 0.5772 0.8165 0.9941 0.5716 0.8164 0.9539
SD 0.0109 0.0126 0.0636 0.0112 0.0128 0.0790
0.421, (50,4) Mean 0.5840 0.8250 0.9848 0.5868 0.8234 0.8320
SD 0.0247 0.0218 0.1210 0.0251 0.0247 0.2099
(50,6) Mean 0.5834 0.8193 0.9875 0.5833 0.8220 0.8311
SD 0.0196 0.0183 0.0997 0.0198 0.0192 0.1920
(100,4) Mean 0.5816 0.81817 0.9913 0.5828 0.8254 0.8345
SD 0.0174 0.0170 0.0868 0.0179 0.0177 0.1869
(100,6) Mean 0.5794 0.8174 0.9928 0.5812 0.8256 0.8258
SD 0.0125 0.0135 0.0650 0.0132 0.0135 0.1841
Table 2. Sample means and SD of modified PLS estimators and naive estimators when p = 1.
Zy (nT) B B2 62 B B2 &2
0.221 (50,4) Mean 0.5794 0.8173 0.9854 0.5797 0.8264 0.9552
SD 0.0234 0.0268 0.1228 0.0255 0.0270 0.1356
(50,6) Mean 0.5792 0.8184 0.9841 0.5806 0.8204 0.9670
SD 0.0203 0.0217 0.1027 0.0204 0.0218 0.1125
(100,4) Mean 0.5785 0.8176 0.9879 0.5770 0.8198 0.9479
SD 0.0156 0.0162 0.0997 0.0157 0.0163 0.1059
(100,6) Mean 0.5764 0.8174 0.9933 0.5768 0.8194 0.9542
SD 0.0134 0.0143 0.0663 0.0146 0.0149 0.0805
0.421, (50,4) Mean 0.5844 0.8250 0.9805 0.5825 0.8256 0.8302
SD 0.0260 0.0243 0.1147 0.0268 0.0258 0.2049
(50,6) Mean 0.5832 0.8247 0.9832 0.5837 0.8255 0.8340
SD 0.0204 0.0216 0.0845 0.0217 0.0206 0.1908
(100,4) Mean 0.5799 0.8160 0.9891 0.5794 0.8214 0.8390
SD 0.0182 0.0168 0.0839 0.0172 0.0171 0.1860
(100,6) Mean 0.5792 0.8174 0.9910 0.5802 0.8236 0.8644
SD 0.0139 0.0144 0.0739 0.0155 0.0151 0.1778

(3) When p increases, the proposed estimator behave
better than those of the naive estimators. The SD
becomes a little bit bigger.

(1) There is a clear difference between the SD of the
naive estimators and those of the proposed estima-
tors. We think this difference is caused by the mea-
surement errors.

(2) The modified profile least squares estimators for
the parametric component and the estimator of the
error variance are asymptotically unbiased and have
smaller SD than those of the naive estimators.

From Figure 1, we can see that the modified profile
least squares estimator of the nonparametric component
outperforms the naive profile least squares estimator. The
latter is biased.

25 T T T T 2 T T T T

05F N

-1 L L

0 0.2 0.4 0 0.2 0.4 0.6 0.8 1

Figure 1. The estimators of nonparametric component m(-) with (n, ) = (50,4) and X,, = 0.2 (left panel) and X,, = 0.4 (right panel).
cos(2mt) (solid curve), the proposed estimator (dotted curve) and the naive estimator (dot-dashed curve).
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5. Real-data analysis

To examine the performance of the proposed method,
we analyse a climate data set from the UK met office
web site: http://www.metoffice.gov.uk/climate/uk/. The
dataset contains mean maximum temperature (in Cel-
sius degrees), mean minimum temperatures, total rain-
fall (in millimetres), total raindays > 1.0 mm, total sun-
shine duration (in hours) and days of air frost (in days)
from 37 stations covering UK. The objectives of the study
are to describe the common trend in the mean maxi-
mum temperature series and the relationship of the mean
maximum temperatures with total rainfall and total sun-
shine during the period of January 2006 to December
2015. Data from 16 stations are selected according to
data availability. This dataset has been studied by D. G.
Lietal. (2011).

Let Y;; be the log-transformed mean maximum tem-
perature in tth month in station i, X;; be the log-
transformed total sunshine duration in tth month in sta-
tion i, because of the measuring mechanism, Xi;; can
only observe the surrogate variables Z;;. X5j; be the log-
transformed total rainfall in tth month in station i, X3j: be
the log-transformed total raindays > 1.0 mmin tth month
in station i, respectively. We consider the following model:

Yie = X1ieB1 + Xoie B2 + XzieB3 + m(Uip) + o + i,
Zyit = X1t + it

where Ui =t/T, aj = pX; for i=1,2,...,n, and X;
% 2121 Xit1. The measurement error 1;;~N(0, £,) where
we take X, = 0.22/,. A natural question is whether the
coefficient of total sunshine duration, the total rainfall
and the total raindays > 1.0 mm are statistically signif-
icant. To answer this question, the proposed PLR tests
are employed. As a result, The PLR tests statistic are
An(B1) = 80.12, An(B2) = 0.8490 and An(B3) = 5.1266,

0.1

respectively. Which provides stark evidence that the vari-
ables X3 and Xz are significant for the mean maximum
temperature at the 0.1 significant level, and which indi-
cates that the coefficient of the variables Xj; is zero. We
apply the modified least squares method in Section 2 to
models (5.1), and obtain the estimators of parameter g =
(B1,B3) as B = (0.6861,0.2365) with SD = 0.040. which
shows that the total raindays > 1.0 mm has no signifi-
cant effect on the mean maximum temperature, but total
sunshine duration is highly positively associated with the
mean maximum temperature. In other words, longer sun-
shine during tends to result in higher maximum temper-
atures. In addition, the estimators of m(-) are shown in
Figure 2.

From Figure 2, we can see that from the beginning of
2006 to the end of 2008, there is an upward trend in the
monthly mean maximum temperatures. Thereafter, there
is a slight decrease from the beginning of 2009 to the
end of 2011. Then from the beginning of 2013 to the end
of 2015, there is an increase in the maximum tempera-
tures. From Figure 2, we also can see that the modified
profile least squares estimator of the nonparametric com-
ponent outperforms the naive local profile least squares
estimator. The latter has a greater volatility.

6. Conclusion

In this paper, we have studied the estimation of a par-
tially linear errors-in-variables panel data models with
fixed effects. When measurement errors are ignored, the
usual profile least squares lead to biased estimators of the
parametric and nonparametric components. To deal with
this problem, we have proposed a modified profile least
squares estimator for the parametric and nonparamet-
ric components by correcting the attenuation. We have
showed that they were consistent and asymptotically
normal.

0.08}
0.06
0.04f /
0.02f PR o~

of e k
-0.02h._ .~

-0.04

0.25

0.2

0.1

0.05 ) S

0 -

-0.05

~0.06 " " " " " " " "
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

-0 " " " " " " " "
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 2. The estimators of nonparametric component m(-) with %, = 0.2 (left panel) and X, = 0.4 (right panel). The proposed
estimator (dot-dashed curve) and the naive estimator (dotted curve).
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Appendix. Proofs of the main results

In order to establish this theorem, we need to show some
useful lemmas. For the convenience and simplicity, let ¥y =
[ukK(ydt, cn = {log(1/h)/(Nh)}'/2 +h? and set @) =
EXX|U).

Lemma A.1: Suppose that Assumptions (A1)-(A5) hold. Then

1 1 0
sup —D'W,D, =f O, (cn),
Uig N uubu (v <0 02) + Op(cn)

1
sup —~DiW,X = FWEX | U)(1 0)T + Op(cw).
UeP N

Proof: Note that
n T

DY KnUi—u

i=1 t=1
n T

>y (U”h_ ”) K (Ue — u)

i=1 t=1

DLW,D, =

n T Uie — u
ZZ( - )Khwn—u)

i=1 t=1
n T

L 2
ZZ(U"h “) Kn(Use — u)

i=1 t=1

Each element of the above matrix is in the form of a ker-
nel regression. Similar to the proof of Lemma A.2 in J. Fan
and Huang (2005), we can derive the desired result. |

Lemma A.2: Suppose that Assumptions (A1)-(A7) hold, we have
T, ~oxp T—1
NZ —MpZ— 5 (X + X)),

where T = E{[X — EX|UWI*IX — EX | U)]}.
Proof: Similarto the proof of LemmaA.3inHeetal.(2020). W

Lemma A.3: Under the conditions of Theorem 3.1, we have

1~ ~
21U = Wig) (1 = S)m = Op(cn).
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Proof: By Lemma A.1 and a similar proof to that of Lemma A.2,
we have

(I=S)m = Op(cn).

Defining € = (Qu1,..., 7., Q1) = (| = M) (I — Hm, we
have
= ZZQM < ,”(, —SymI? = 0,(cR),
i=1 t=1
and

1~ ~
21U = Wig)( = S)m

1 n T
N 2 2 itlkie = ©Uie) + it + Op(cn)]

i=1 t=1
T

_I n
N 2 > itlkie = ©(Uio) + niel + Op(R).

i=1 t=1

We now deal with the first term. By Assumption (A6), it is easy to
see that

n T 2

B D D0 2l — (U + i

i=1 t=1

n T
<cN2Y D Q=0

i=1 t=1

Hence, Lemma A.3 holds. |

) = op(1).

Lemma A.4: Under the conditions of Theorem 3.1, we have

1 ~ p

— 77— M) —S)e > N( , AT+ % )).
\/N B n

Proof: By Lemma A.1,we have Se = Op(cy). Similar to the proof

of Lemma A.3 and under Assumption (A7), we have \}ZT (e

M~B)Ss = O(ch) = 0p(1). Therefore, by Lemma A.2 and the
central limit theorem, we have

1~ 1~ o~
ﬁzf (I — Mz)(I — S)e = sz(/ — Mg)e + 0p(1)

LY N(O,

Lemma A.5: Under the conditions of Theorem 3.1, we have

JT -
-

-1 5 )
cX(Z+%,)).

Al = SMY(I — SM)T] = ! + Op(cn),

where L(A) denotes the eigenvalue of matrix A.

Proof: Because M = B(ly — inif,/N)(B"B)~"'B" = 11, & (iri%) —
Nini§ and Siy = iy, it is easy to show that

_ 1 . 1.
SMS? ?S[l,, ® (iTip)1S* — NINIITV

1 1. 1 .
= ?S <I - NINIIIV> ST+ ?S[I,, & (itit) — N1S*

1 ! 1ii’AK+K+K
T NNN—1 2 3.

For the term K3, we have

N N 1
K= ) S

I=1 k=1

illn @ (iTiT) — NicSik

1 T T n-1
= ? Z Z 12;51(sn+i)sj(sn+k)‘
s

I=1 k=1ks1 s=
By Lemma A.1, we have

n—1

Z Si(sn+i)Sj(sn-+k)
s=0

B nii kn (Uisntiy — u) kn(Uisnky) — U
- Nf(u) Nf (u)

)} [1 4+ Op(cn)l
5=0

! [1+ Op(cn)],
T

which holds uniformly fori,j=1,...

[1 + Op(cp)] =

,n.Hence

(Kp)j = = Z Z NT[1+op(cn>1_ [1+op(cN)1

/ 1 k=1kl
or
T—11
(Ky) = TNININ [1 4+ Op(cn)] = —K3[1 + Op(cn)].
Therefore,

SMS™ = K1 + K3Op(cn)-
It is obvious that the eigenvalues of Kj satisfy 0 < A(K;y) < 17
Similar to the proof of Lemma A.5 in J. Fan et al. (2005), we have

AL — SMY(I — SM)T] > ([ + Op(cn).

[
Proo[ofl'heorem 3.1.: Since Y = Ea + )N(,B +({—-Sm+7¥and
(I = Mz)B = 0, by the definition of 8, we have
B—B=I121—-MZ—nT -1z, "Z°(1 - Mp)[X —2)8
+ (= Sm+3 +[Z°( - Mp)Z
—n(T =1, 'n(T - 1%,
=" - Mp)Z —n(T -1z,
(2T =My X = DB +Z7 (1 = Mp) (1 = Sym
+Z7(I — Mg)E +n(T — 1) Z, Al
By Lemmas A.2-A.4, we obtain
77— Mp)(X —=2)B = —Z" (I — Mg)nB + Op(cn).

Therefore, applying Lemma A.1 and the fact (A + aB)~! — A~
asa — 0, we have

-1 —1
VNB - p) = [ - 2]
25U = Mg) (e — nB) + n(T — 1), + 0p(1)
T-1_1" -
=[Tz} (X — EX U — M) (e — nB)

+ 07 (I = Mg)e + {n(T — 1T, — n° (I — M)} B]
+0p(1)
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T-1_7"
= [TE] ~J+op(M).
Note that
Cov(J) = EI(X — EX | U)(I — M) (e — np)1®?
+El* (I — Mg)el®?
+EIN(T = DB, — 0" (I - Mp)np1®>.
Therefore,

lim Cov (LJ> = E{E(e — 1B’ 4+ 0%%
W) ! '

n— 00

T-1
+ELom" — =,)B1%?) = TEL

Invoking the Slutsky theorem and the central limit theorem,
we obtain the desired result. The proof of £~ '%; £~ being a
consistent estimatorof 13,21 is straight forward. We here
omit the details. |

Proof of Theorem 3.2.: According to the definition of m, we
have
m={l—(-SMg)" 'l = $)}(Bor + m + &)
= (I — SMg) ™' S(I — Mg)Basj + {I — (I — SM) ™" (I — $)}m
+ {1 == SMg)~' (I = )}e.

Because Y ;o =0, it is easy to show that (/ — SMg)~1S(I —
Mp)Baj = 0. Then we have

m—m=—(—SMg)" 'l —S)m + {I — (1 = SMg) "' (| — S }e
and

1 o
MSE@) = £ — SMg) Y —Sm|

1 )1 2
+NIIE{’—(/—5M3) (I=9fel* =L + L.

Similar to the proof of Theorem 3 in J. Fan et al. (2005), we obtain

T Mzh Vi 4
VS g @l toh D
and
! TV Eysu— Mgl
SRR TN ’
T o +,BTE,]/3 _
- S( — Mg)S
o st s
T o2+ 7%, .
< 1y N tr(SS°). (A2)

By the law of large numbers, we have

" v 1 v|U]| 1
tr(SST) = — — ) === —,
165 ;:;Nhf(un) o (Nh) ho % (Nh)
which, together with (A1) and (A2), Theorem 3.2 holds. |

Proof of Theorem 3.3.: By (9) and (I — Mg)B =0, 52 can be

decomposed as
~2 _

T Iy
[N(T )(8—77/3) (I = Mg)(e — nB) — ﬂrinﬂ}

T -~ o ~
+ m[x(lg _IB) +m—m] (I_MB)[X(,B - ,3)

. 2T = .
+m—m]+m[x(ﬂ—ﬁ)+m—m]
(I — Mg)(e — nB)
=I1y + Iy + Is.
Therefore,
M—o’= (e~ nB)"(—Mg)e —nB)
A VT np B)(e —np

- (02 + /’S\EZnB\)

and

T
NT = (8 —nB)* (I — Mg)(z — np)

T ~ —~
= N(Ti—)(g —nB)* </N - */T ® /n/,r,) (e —np)

N(T Z{Z(Sn—mrﬂ) —[Z(Slr—n:rﬁ)} }

n

.
:N(T—1)§A

Because ¢jr and n; are i.i.d, we have

T T 2
~ 1 ~
EA=E {Z(Sir —nieP)? - = [Z(sn - n,-fﬂ)} }

t=1 t=1

= (T -1 + B Z,8).
Then, by some simple calculation, we have

Var(A) = E(A)? — (E(A))?

2
T R 1T R 2
= ‘Z(ﬁir —nieh)? — = |:Z(8ir - mrﬁ)}

t=1 t=1
— (T =) (0% + B7%,B)?
= TE(sic — nieB)* + T(T — 1) (0% + BTZ,8)°

3T(T—-1)

1 -~ 1
+ B —nieP)* + = (0% + T2 )

2T — )+ T(T = 10?4 75,57
T it — nieB) + T( o+ B 71/3)

—(T=1)%0? + B"E,B)°

T2 2T+ T
= f (eie — mieB)*
YL Ao L z,B)%.
Therefore,
Var(Ily — o) = ~E(ei — ‘,4/3\)4—1—37(0 + 7%, 8)?
1 N it — Nit NT—1) n
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By the same argument as proving Theorem 3 of Zhou
et al. (2010), we can show that H;:op(N‘%), i=2,3.
Equation (11) holds.

We now show the consistency of ©.To simplify the notation,
we write

PR -
Bit =Xz (B—B) — 7 ;Xﬁ (B —B)+mUp) —mUyp)
1< 1 o
=72 MU+ ) M)
t=1 t=1

and ¢ir = sic — B — 1 S (it — nieB). Then

n T

n T n T
DD MZEE DI WL DI
i=1 t=1 i=1 t=1 i=1 t=1
n T

n T
+4%ZZ§?EH+61NZZ§,%E,%

i=1 t=1 i=1 t=1
1 n T
=3
+4— Citc'd't
N § E i
i=1 t=1

=h+hLh+l3+J4+ s

For J;, we have

T

T 4
1 ~ 1 ~
h=7 ;E |:€ir —mieh = 7 D (it - nnﬁ)} +0p(1)

t=1

T 4
~ 1 ~
= Eeir —nieP)* + = [Z(Sir - Uirﬂ)i|
t=1

T

2
6 5|1 N
+ = Z E(eit — nieB)? |:T (it — 77;rﬂ)i|
t=1

t=1

4 L1 .
— 55 D Eteic —niep)’ [T D eir — mﬁ)}
t=1 t=1
4

4 [ -
- [Z(Sit - Uitﬁ):| +op(1)

t=1

6 3 4 a4
=(1+ 5 -5 — 7 )ECi— )

7 7T
+ 32T (62 (02 + BT, B)
—\|6—=) (o .
T—1 T "

Moreover, according to Holder inequality and the fact that
N, 2121 81 = 0p(1), we can show that J; = 0,(1) for s =
2,3,4 and 5. Thus, the consistency result of ® follows. |
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