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a b s t r a c t

We propose an empirical likelihood method for application to a partially linear panel data model with
fixed effects. The empirical log-likelihood ratio statistic is proved to be asymptotically chi-squared
distributed, and the asymptotic properties of estimators for both the parametric and nonparametric
components are established.
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1. Introduction

With the increasing availability of panel data, both theoretical
and applied works in panel data analysis have become more
popular in recent years. Baltagi (2005) and Hsiao (2003) provide
an excellent overview of parametric panel data analysis. To
avoid imposing the strong restrictions assumed in the parametric
panel data models, nonparametric/semiparametric panel data
models have recently receivedmuch attention, including that from
Henderson et al. (2008), Sun et al. (2009), Baltagi and Li (2002), Li
and Stengos (1996) and Su and Ullah (2006), among others.

Consider the following partially linear panel data models with
fixed effects:

Yit = µi + X τ
itβ + g(Zit) + Vit , i = 1, . . . , n, t = 1, . . . , T , (1.1)

where Xit and Zit are of dimensions p×1 and q×1 respectively,β is
a p×1 vector of unknown parameters, g(·) is an unknown smooth
function, µi (i = 1, . . . , n) are fixed effects, and Vit is the random
model error. For simplicity, we assume that (Xit , Zit) are strictly

∗ Corresponding author. Tel.: +86 10 67392179.
E-mail address: ligaorong@gmail.com (G. Li).

0165-1765/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.econlet.2011.07.014
exogenous variables. The random errors Vit are assumed to be i.i.d.
with zero mean and finite variance, and independent of µk, Xks,
and Zks for all i, k, s and t . The unobserved individual effects µi are
assumed to be i.i.d. with zero mean and finite variance σ 2

u > 0.
We allow µi to be correlated with Xit and Zit with an unknown
correlation structure. Hence, model (1.1) is a fixed effects model.
As a special case, when µi is uncorrelated with Xit and Zit , model
(1.1) becomes a random effects model.

Although many studies have focused on consistent estimation
of semiparametric panel data models with fixed effects, to our
knowledge, none has considered the empirical likelihood (EL)
method proposed by Owen (1988) in a dynamic partially linear
panel data model with fixed effects. It is well known that there are
some striking advantages for the EL method in the construction
of confidence regions for unknown parameters. For example, the
EL-based inferences do not involve covariance estimation and the
EL method determines the shape and orientation of confidence
regions based ondata. The ELmethodhas been successfully applied
to various statistical models, including for example those of Qin
and Lawless (1994), Cui and Kong (2006), Zhu and Xue (2006) and
Li et al. (2010), among others.

The purpose of this work is to apply the EL method to construct
an empirical log-likelihood ratio (ELR) statistic for the parameter
vector β , and to prove that the proposed statistic has asymptotic
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chi-squared distribution. To obtain accurate confidence regions, an
important step is to remove the fixed individual effects from the
model. The proposed approach draws support from Wang (2003),
Su andUllah (2006) and Lin andCarroll (2006) onprofile likelihood,
which is extremely useful for estimating semiparametric models.
Given the finite dimensional parameter of interest and the fixed
effect parameters, we can estimate the nonparametric part as a
function of these parameters. Then we obtain the ELR statistic by
plugging this nonparametric component into an auxiliary random
vector. In addition, by introducing the kernel-based weights, the
fixed effects are removed and an ELR statistic for the unknown
parameter of interest is suggested. We establish the asymptotic
theories for the parametric and nonparametric components by
letting n approach infinity while holding T fixed. The proposed
method also provides estimates for the fixed effects.

The work is organized as follows. In Section 2, we propose the
procedure for removing the fixed individual effects, suggest the
ELR statistic of the unknown parameters and give the estimators of
the parametric and nonparametric components. Some asymptotic
properties are established in Section 3. Concluding remarks are
presented in Section 4. The simulation studies and the technical
details are available upon request, and they are relegated to
supplementary material.

2. Methodology

Let K(·) denote a kernel function on Rq, and let H = diag
(h1, . . . , hq) be the q × q diagonal bandwidth matrix. Set KH(z) =

|H|
−1K(H−1z), where |H| is the determinant ofH . If Zit is in a small

neighborhood of z, we can approximate g(Zit) locally by a linear
function as follows:

g(Zit) ≈ g(z) + {Hg ′(z)}τ [H−1(Zit − z)], (2.1)

where g ′(z) = ∂g(z)/∂z is the q×1 vector of the first-order partial
derivatives.

We will use vector and matrix notation in the following. Let IT
denote an identity matrix of dimension T , and eT denote a T × 1
vector with all elements being ones. Yi = (Yi1, . . . , YiT )

τ and Vi =

(Vi1, . . . , ViT )
τ are T ×1 vectors, and Xi = (Xi1, . . . , XiT )

τ and Zi =

(Zi1, . . . , ZiT )τ are T × p and T × qmatrices, respectively. Define a
T × T diagonal matrix KH(z) = diag{KH(Zi1 − z), . . . , KH(ZiT − z)}
for each i, where KH(Zit − z) = |H|

−1K{H−1(Zit − z)} for all i and
t . Let Bit(z,H) = [1, {H−1(Zit − z)}τ ]τ be a (q + 1) × 1 vector,
Bi(z,H) = (Bi1(z,H), . . . , BiT (z,H))τ be a T × (q+ 1) matrix, and
G(z) = (g(z), (Hg ′(z))τ )τ be a (q + 1) × 1 vector.

Given µi (i = 1, . . . , n) and β,G(z) = (g(z), (Hg ′(z))τ )τ can
be estimated by minimizing

min
G∈Rq+1

n−
i=1

(Yi − eTµi − Xiβ − Bi(z,H)G(z))τKH(z)

× (Yi − eTµi − Xiβ − Bi(z,H)G(z)). (2.2)

Define the smoothing operator

S(z) =


n−

i=1

Bτ
i (z,H)KH(z)Bi(z,H)

−1 n−
i=1

Bτ
i (z,H)KH(z).

Suppose that µ = (µ1, . . . , µn)
τ and γ = (µτ , βτ )τ . Then, the

estimator for g(z) is given by

ĝ(z, γ ) = sτ (z)(Yi − eTµi − Xiβ), (2.3)

where sτ (z) = eτ S(z), and e = (1, 0, . . . , 0)τ is a (q+1)×1 vector.
Now we consider a way of removing the unknown fixed effects
motivated by a least squares dummy variable model in parametric
panel data analysis, for which we solve the following optimization
problem:
min
µ

n−
i=1

(Yi − eTµi − Xiβ − ĝ(Zi, γ ))τ

× (Yi − eTµi − Xiβ − ĝ(Zi, γ )), (2.4)
where ĝ(Zi, γ ) = (ĝ(Zi1, γ ), . . . , ĝ(ZiT , γ ))τ . Substituting (2.3)
into (2.4), taking partial derivatives with respect to µi and setting
them equal to zero, we have
µ̂i(β) = (eτ

T (IT − Si)τ (IT − Si)eT )−1

× eτ
T (IT − Si)τ (IT − Si)(Yi − Xiβ), (2.5)

where Si = (s(Zi1), . . . , s(ZiT ))τ is a T × T smoothing matrix.
Plugging (2.3) and (2.5) into (2.4) and supposing thatXi = (IT −

Si)Xi,Yi = (IT −Si)Yi,eT = (IT −Si)eT , and Mi = IT −eT (eτ
TeT )−1eτ

T ,
we introduce the following auxiliary random vector:

ηi(β) =Xτ
i
Mi(Yi −Xiβ). (2.6)

Note that E(ηi(β)) = 0 if β is the true parameter. Therefore, using
the information E(ηi(β)) = 0, the empirical log-likelihood ratio
(ELR) is defined as

l(β) = max


n−

i=1

log(npi)|pi ≥ 0, i = 1, . . . , n,
n−

i=1

pi = 1,

n−
i=1

piηi(β) = 0


. (2.7)

Using the Lagrange multiplier method, the optimal value for pi is
given by

pi =
1
n

1
1 + λτ (β)ηi(β)

, i = 1, . . . , n. (2.8)

By (2.7) and (2.8), l(β) can be represented as

l(β) = −

n−
i=1

log(1 + λτ (β)ηi(β)), (2.9)

where λ(β) is the Lagrange multiplier, and is determined by

1
n

n−
i=1

ηi(β)

1 + λτ (β)ηi(β)
= 0. (2.10)

We can obtain the maximum empirical likelihood estimator
(MELE) β̂ of β by maximizing l(β). According to Qin and Lawless
(1994), β̂ is also equal to the solution of the estimating equations∑n

i=1 ηi(β) = 0 given by

β =


n−

i=1

Xτ
i
MiXi

−1 n−
i=1

Xτ
i
MiYi, (2.11)

which is called the profile least squares estimator (PLSE) (see Su
and Ullah, 2006). Therefore, the MELE for β is identical to the PLSE.
Furthermore,we can obtain estimates ofµi (i = 1, . . . , n) and g(·),
say ĝn(z), as follows:

µ̂i = (eτ
TeT )−1eτ

T (
Yi −Xiβ̂), i = 1, . . . , n (2.12)

and

ĝn(z) = sτ (z)(Yi − eT µ̂i − Xiβ̂). (2.13)

3. Asymptotic properties

To present the asymptotic properties in this section, we first
list the following regularity conditions. We then present the
asymptotic distribution of −2l(β) and the asymptotic normality
of the resulting estimators.

C1. E‖Xit‖
4 < ∞ and sup1≤i≤n E‖Vit‖

4 < ∞. Suppose that σ 2

(x, z) = Var(Yit |Xit = x, Zit = z) and σ 2(z) = Var(Yit |Zit = z).
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σ 2(x, z) and σ 2(z) are uniformly bounded from infinity and zero.
The error Vi = (Vi1, . . . , ViT )

τ has a positive definite covariance
matrix Ωi = E(ViVτ

i ).
C2. E(Yit |Xi, Zi, µi) = E(Yit |Xit , Zit , µi) = µi + X τ

itβ + g(Zit).
C3. Zit has a continuous density function ft(·) with compact

support Cf on Rq. ft(·) is bounded away from zero and infinity on
Cf for each t = 1, . . . , T .

C4. Suppose that p(z) = E(Xit |Zit = z). The functions g(·) and
p(·) have bounded second partial derivatives on Cf .

C5. Suppose that X it = Xit − E(Xit |Zit). Φ =
∑T

t=1 E{X it [X it −∑T
s=1 X is/T ]

τ
} is positive definite.

C6. The kernel function K(·) is a continuous density with
compact support on Rq. All odd order moments of K vanish.

C7. Let |H| = h1 · · · hq be the determinant of H and suppose

that ‖H‖ =

∑q
j=1 h

2
j . As n → ∞, ‖H‖ → 0, n|H|

2
→ ∞, ‖H‖

4

|H|
−1

→ 0 and n|H|‖H‖
4

→ c ∈ [0, ∞).
These conditions are quite mild and similar conditions can be

found in Su andUllah (2006) and Sun et al. (2009). In order to study
the asymptotic properties, suppose that f (z) =

∑T
t=1 ft(z), V it =

Vit −
1
T

∑T
s=1 Vis, σ

2
t (z) = E[V

2
it |Zit = z], and σ 2(z) =

∑T
t=1

σ 2
t (z)ft(z).

Theorem 1. Suppose Conditions C1–C7 hold. If β0 is the true value
of the parameter β , then −2l(β0) is asymptotically chi-squared
distributed with p degrees of freedom as n → ∞.

As a consequence of this result, confidence regions for the
parameter β can be constructed. For any given 0 < α < 1, there
exists cα such that P(χ2

p > cα) = α; then

Iα(β) = {β ∈ Rp
| −2l(β) ≤ cα}

constitutes a confidence region for β with asymptotic coverage
1 − α.

The following theorems state the asymptotic behavior of
the MELE and the estimator for the nonparametric component
proposed in Section 2, respectively.

Theorem 2. Suppose Conditions C1–C7 hold. Then as n → ∞, we
have
√
n(β̂ − β)

L
−→ N(0, Φ−1ΛΦ−1),

where ‘‘
L

−→’’ denotes the convergence in distribution, Φ is defined in
condition C5, and Λ = E(X

τ

i ΩiXi) with Xi = (X i1, . . . , X iT )
T .

To make inferences on β using Theorem 2, a plug-in esti-
mator of the limiting variance of β̂ is needed. The consistent
estimator of Φ−1ΛΦ−1 is given by Φ̂−1Λ̂Φ̂−1, where Φ̂ =

(nT )−1∑n
i=1
∑T

t=1 X̂it(X̂it−
∑T

l=1 X̂il/T )τ , Λ̂ = n−1∑n
i=1 X̂

τ
i V̂iV̂τ

i X̂i,

X̂i = (X̂i1, . . . , X̂iT )
τ , X̂ τ

it = X τ
it − sτ (Zit)X , and V̂it = Yit − X τ

it β̂ −

ĝn(Zit) − µ̂i.

Theorem 3. Suppose Conditions C1–C7 hold. Then as n → ∞, we
have
n|H|


ĝn(z) − g(z) − b(z)

 L
−→ N(0, Σg(z)),

where b(z) =
1
2 tr


Rq uuτK(u)du(Hg ′′(z)H)

and Σg(z) = f −2(z)

σ 2(z)


Rq K 2(u)du.

From Theorem 3, it is easy to see that the resulting nonpara-
metric estimator has the same asymptotic distribution as that in
Su and Ullah (2006). Theorem 3 can be used to construct the point-
wise confidence band for g(z).

4. Concluding remarks

This article considers the empirical likelihood inferences for the
partially linear panel data model with fixed effects. By using a
local linear regression approach and the kernel-based weights, the
fixed effects are removed and the ELR statistic for the unknown
parameters of interest in the model is suggested. It is shown
that asymptotically the proposed ELR statistic has a chi-squared
distribution under some suitable conditions, and hence it can
be used to construct the confidence region of the parameters.
In addition, we also establish the asymptotic normality of the
resultingMELE for the parametric component and the estimator for
the nonparametric component. In the supplementary material, a
modified ‘‘leave-one-subject-out’’ cross-validation method is used
to select the optimal bandwidth automatically, and a simulation
study is provided to assess the performance of the proposed
method and compare it with the PLS method. The simulation
study indicates that, in terms of coverage probabilities of the
confidence regions, the proposedmethod performs better than the
PLS method. The methods described here can be easily extended
to various panel data models with fixed effects. These and other
extensions are the subject of ongoing research.
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