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Most recent U-Net based models have shown promising results for the challenging tasks in image
inpainting field. However, they often generate content with blurred textures and distorted structures
due to the lack of semantic consistency and texture continuity in the missing regions. In this paper,
we propose to restore the missing areas at both structural and textural levels. Our method is built upon
a U-Net structure, which repairs images by extracting semantic information from high to low resolution
and then decoding it back to the original image. Specifically, we utilize the high-level semantic features
learned in encoder to guide the inpainting of structure-aware features of its adjacent low-level feature
map. Meanwhile, low-level feature maps have clearer texture compared with high-level ones, which
can be used as a prior for textural repair of high-level feature maps. subsequently, a module is used to
fuse the two repaired feature maps (i.e., structure-aware and texture-aware features) reasonably and
obtain a feature map with reasonable semantics. Moreover, in order to learn more representative high-
level semantics feature, we design the model as a siamese network for contrastive learning.
Experiments on practical data show that our method outperforms other state-of-the-art methods.

� 2023 Published by Elsevier B.V.
1. Introduction

Image inpainting has become one of the research hotspots of
computer vision in recent years, which aims at reconstructing
the missing or damaged regions of image with reasonable and
plausible contents. This technology has been used in many practi-
cal applications due to its brilliant performance, such as restoring
corrupted photos, photo editing, and object removal (see Fig. 1
for examples). The main challenge in image inpainting lies in using
existing image content to generate a reasonable structure and tex-
ture for the damaged regions, so that the repaired image appears
natural and consistent with the original.

High-quality image inpainting requires an understanding of the
contextual information of the damaged image, and filling in the
missing area with reasonable structure and texture. Traditional
image inpainting methods fill the hole regions using uncorrupted
contents of the image by patch-based matching. These methods
always fill in the damaged regions pthch-by-patch by searching
for well-matched replacement patches in the referable part of
the image and copying them to reasonable locations. Barnes et al.
[1] propose the Patch-Match method that iteratively searches the
best matched patches from boundaries of the hole area to synthe-
size the contents of the missing parts. Jin and Ye [2] propose a
patch-based method based on annihilation property filter and
low rank structured matrix. However, these method failure to
understand the high-level semantic of the image, resulting in arti-
facts and blurry contents of the repaired image [3]. As a result, tra-
ditional patch-based methods are only applicable to image
inpainting with simple contents and single texture.

Recently, learning-based methods have seen tremendous pro-
gress and led to state-of-the-art performance in the field of image
inpainting due to its ability to effectively extract contextual infor-
mation. Among these learning-based methods, models similar to
encoder-decoder architecture are prevalent. Encoder-decoder likes
models first utilize CNN (convolution neural networks) to extract
meaningful features from low-level to high-level, and then restore
the extracted features to the original resolution. The pioneering
learning-based method is [4], which leverages CNN and autoen-
coder backbone network to both understand the content of the
entire image and produce a plausible hypothesis for hole regions.
Thereafter, Iizuka S, et al. [5] propose an image inpainting method
that automatically restore damaged regions of the image, keeping
the local and global contents consistent. Morever, in order to solve
the problem that CNN without ability to extract feature
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Fig. 1. Selected image inpainting results of our proposed method on CelebA-HQ, Places2 datasets, respectively.
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information from hole regions, Yu et al. [6] propose to use an atten-
tion module to synthesis contents for hole parts. In anddition,
many excellent methods have also been proposed to solve the
problem of image inpainting through different ideas. Nazeri K
et al. [7] suggest a two-stage adversarial edge connectivity model,
which consists of an image generator and an image finishing net-
work. Zeng et al. [8] build a pyramidal-context architecture called
PEN-NET for high-quality image inpainting. Liu et al. [9] proposed a
layer to the encoder-decoder network called coherent semantic
attention (SCA) layer for image inpainting method.

The aforementioned learning-based methods have made great
progress in image inpainting and produced promising results com-
pared with traditional methods. However, the damaged parts of
the image in real scene is always large, and appear in various unex-
pected shapes and positions, which greatly increase the difficulty
of image inpainting. In other words, without sufficient semantic
guidance and the hole area is completely invalid, encoder-
decoder models have tremendous challenge to learn powerful fea-
tures [10,11]. Therefore, these CNN-based methods have to
increase the number of networks layers or increase the size of con-
volution kernel, so as to ensure the strong ability of feature extrac-
tor [12]. As a result, this kind of naive way heavily increase the
computational cost and can not guarantee that the learned features
are accurate [13]. Another shortcoming of CNN-based methods is
that convolution networks have ineffectiveness in modeling long-
term correlations between distant contents [14,15]. For instance,
to allow a pixel being influenced by the content of 64 pixels away,
it requires at least 6 layers of 3 � 3 convolutions with dilation fac-
tor 2 or equivalent [16]. Furthermore, CNN-based methods fail to
fully consider the correlation between structure and texture of
the image, resulting in the inconsistent appearances.

To address above issues, we propose a self-supervised siamese
network with contrastive learning named Contrastive Structure
and Texture Fusion Network (CSTFNet) to conduct image inpaint-
ing. Specifically, in order to solve the problem that the hole regions
are completely invalid, a two-stage inpainting strategy is intro-
duced to reconstruct structure and texture respectively. these
two-stage methods first use an encoder-decoder architecture to
generate coarse result in first stage, and design elaborate network
for exquisite texture generation in second stage. In fine inpainting
phase, CSTFNet simulates the process of image inpainting by
2

human, i.e., predict the structure of the hole regions from high-
level semantic features while analyze the texture of the hole area
from low-level semantic features. For example, when we repair a
damaged image, we will first see the overall contextual informa-
tion of the image to judge the general structure of the damaged
parts, and then fill a reasonable texture according to the know tex-
ture around the damaged regions. Consequently, CSTFNet com-
bined with the characteristic of feature extraction of CNN (i.e.,
the deeper the number of layers represents the higher-level fea-
tures) repairs the structure and texture respectively. To be specific,
CSTFNet actually repair each layer of features in the feature pyra-
mid extracted by CNN. The structural repair of each feature layer
is guided by its adjacent higher-level feature while textural repair
is affected by its adjacent lower-level feature. Moreover, in order to
learn more representative features to guide the repair process of
the structure, we propose to use the contrastive learning pattern
to train our backbone network. We highlight our contributions as
follows.

1. We propose a siamese inpainting network based on contrastive
learning for free-form image inpainting, which greatly improves
the network’s feature learning for damaged images.

2. We propose a novel structure and texture inpainting module
that effectively uses high-level features to guide low-level fea-
tures in repairing the structure and transferring texture details
to high-level features.

3. Our method achieves promising inpainting results with rich
texture information and reasonable structure on three public
datasets against state-o-the-art image inpainting methods.

2. Related Works

2.1. Image Inpainting

Non-learning-based methods. This kind of works mainly fall
into two categories: patch-based methods and diffusion-based
methods. The patch-based methods mainly copy the content of
the background regions to the missing parts by calculating the sim-
ilarity between patches. The typical patch-based method is pro-
posed by T. Ruºi¢and A. Piºurica [17], which leverage Markov
Random Field (MRF) to search the best matching patch. Kawai
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et al. [18] propose a method based on selecting target objects and
restricting search background, which is able to remove the object
from an image. Ding et al. [19] proposed a patch-based method
for image inpainting using Non-local Texture Matching and Non-
linear Filtering. In order to solve the problem of high computa-
tional cost of calculating block similarity, Barnes et al. [1]
propose a randomized nearest-neighbor patch matching strategy.
These methods mainly are difficult to extract high-level semantic
information of images, and thus cannot guarantee the final satis-
factory results.

Diffusion-based methods attempt to propagate the known con-
tents to the hole regions under smooth constraints, which is gener-
ally used to repair small image damage. The majority of these
duffusion-based methods are based on the Partial Differential
Equation (PDE) and the variational method [20]. The first to use
diffusion-based method for image inpainting is [13] proposed by
Bertalmio et al.. They iteratively apply anisotropic diffusion in
the process of inpainting the image. Li et al. [21] calculates the dif-
fusion coefficient by considering the distance and direction
between the pixel in the hole regions and its neighbor pixels. How-
ever, this kind of methods only consider the pixel around the dam-
aged regions, resulting in suffer from blurring artifacts.

Learning-based methods. Learning-based methods have seen a
surge in the explosive development of deep learning in recent
years. These methods generally extract meaningful semantic infor-
mation from the damaged images, and fill the damaged parts with
reasonable and realistic contents according to the powerful ability
of feature learning. The pioneering work to introduce the deep
learning into the field of image inpainting is [4], which proposes
to use the network structure of combining the encoder-decoder
network and generative adversarial network (GAN) [22] for image
inpainting. This method mainly extracts and decodes the features
of damaged images through CNN, and obtains high fidelity image
by leveraging reconstruction loss and adversarial loss to train the
model. Iizuka et al. [5] propose to employ two kinds of adversarial
loss (i.e., global adversarial and local adversarial loss) to improve
the fidelity of the reconstructed images. Whereas, only using
CNN to repair large holes will lead to structural distortions and
blurring because CNN has no ability to extract the feature of dam-
aged parts. Therefore, in order to fill in the hole regions with rea-
sonable contents, Yu et al. [6] add an attention layer to the
vanilla encoder-decoder networks to effectively extract contents
from background regions to fill the missing parts. Specifically,
method [6] first obtains a rough repaired image through a
coarse-inpainting network, then calculates the similarity of con-
tents between hole and background regions. Subsequently, the
contents of hole regions are generated by combining the back-
ground contents according to the similarity. In addition, there are
many excellent learning-based image inpainting methods. Liu
et al. [23] propose partial convolutions with automatic mask
updating strategy for image inpainting, which enormously reduces
the influence of invalid pixels on the results. Liu et al. [24] use CNN
to extract the structure and texture features of the image respec-
tively, and then provide supplementary information for the deco-
der through feature equalization for image generation. Yu et al.
[25] propose to use gated convolution in image inpainting to auto-
matically learn the soft mask and the dynamic feature mechanism
of each channel at each spatial position from the data.

2.2. Contrastive Learning

Contrastive learning is a way of self supervised learning, which
uses positive or negative image pairs to learn representations. It
does this by reducing the distance between the representations
of positive image pairs while narrowing the similarity of two neg-
ative representations [26]. Instance discrimination method [27]
3

generates two positive samples from a any given image through
data augmentation, and then inputs the two augmentations into
the encoder to obtain two latent representations. Afterwards, the
latent representations encoded from the same image are regarded
as positive pairs while the representations obtained from different
samples are considered as negative pairs. At the same time, con-
trastive loss is leveraged to draw positive pairs closer and alienate
negative pairs. Tian et al. [28] extents contrastive learning to
multi-view data and propose a multi-view contrastive learning
method named CMC. Specifically, CMC takes the different views
of the same sample as positive pairs, and trains model as same
as aforementioned instance discrimination method. Chen et al.
[29] propose to add a projection layer behind the encoder of con-
trastive learning, which can learn powerful features that have bet-
ter performance in downstream tasks. He et al. [30] improve the
training of contrastive learning by storing representations from a
momentum encoder instead of the trained network [31]. however,
creating positive and negative sample pairs requires a great quan-
tity of computing and storage resources. Hence, some studies
began to focus on contrastive learning without negative pairs. Grill
et al. [32] propose a new method called BYOL that focuses only on
the similarity of samples and representations. BYOL transforms the
previous contrastive learning from a comparative problem to a
prediction problem by introducing a prediction head and stop gra-
dient. In addition, Chen et al. [33] also propose a simple siamese
network (SimSiam) to learning high-quality feature representation
without using either negative sample pairs or a momentum
encoder.
3. Proposed Method

In this section, we introduce our new image inpainting algo-
rithm called CSTFNet (Contrastive Structure and Texture Fusion
Network). Fig.2 shows the pipeline of our proposed CSTFNet.
Specifically, CSTFNet is a two stage (i.e., coarse-to-fine) network.
In the first stage, U-Net like model is leveraged to roughly repair
the damaged image and obtain a coarse result. In the second stage,
a siamese encoder-decoder network is used for contrastive learn-
ing, which repairs two different masked images in a forward pro-
cess. Moreover, the encoder of siamese network learn feature
pyramid from coarse images, and then repair the feature maps of
each layer from structural and textural levels respectively. Subse-
quently, the two kinds of repaired feature maps will be fused
through the feature fusion module, and added to each layer of
decoders by skip connecting. Finally, high-fidelity images output
from refinement network. In the following, we describe the pro-
posed network and loss functions in detail.
3.1. Coarse Inpainting

Fig. 2 shows the network structure of coarse inpainting that
similar to U-Net [34]. Our coarse inpainting network (NETc)
employs an encoder-decoder architecture with skip connection.
Eight downsampling and upsampling operations make up the
backbone of the coarse inpainting network (NETc). Specifically,
The input of coarse inpainting net (NETc) is a damaged image with
its corresponding binary mask. Subsequently, The masked image
and mask are sent to encoder of coarse inpainting network (NETc)
and then decoded to the coarse repaired image. In the coarse
inpainting network (NETc), all convolution operations use convolu-
tion kernel with size of 3 and stride of 2. The output of coarse
inpainting network (NETc) is often blurred in the hole regions
due to the influence of invalid pixel values of miss parts. Subse-
quently, the coarse image will be sent to refinement net for sec-
ondary inpainting.



Fig. 2. Overview of our proposed framework.
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In the phase of training, we adopt pixel-wise reconstruction loss
and adversarial loss to optimize the parameters of coarse inpaint-
ing network (NETc). We use L1 loss for the pixel-wise
reconstruction.

LChole ¼
XC

out � Igt
� �

� 1�Mð Þ
��� ���

1

sum 1�Mð Þ ð1Þ

LCvalid ¼
XC

out � Igt
� �

�M
��� ���

1

sum Mð Þ ð2Þ

Where LChole; L
C
valid are reconstruction loss of damaged regions and

background regions respectively. Igt is the ground-truth image, M
is the binary indicator matrix, and � represents element-wise pro-
duct operation. The overall pixel-wise reconstruction of the whole
image is denoted as:

LCr ¼ LChole þ aLCvalid ð3Þ
Where a is a trade-off parameter.

For adversarial loss, we use the least square loss [35], the corre-
sponding loss functions for the coarse inpainting network and dis-
criminator are define as [36]:

ICrec ¼ ICin � 1�Mð Þ þ ICout �M ð4Þ

LD ¼ 1
2
EI�pdata Ið Þ D Igt

� �� 1
� �2h i1

2
EIrec�pIrec Irecð Þ D ICrec

� �� �2� �
ð5Þ

LCG ¼ EIrec�pIrec Irecð Þ D ICrec
� �

� 1
� �2� �

ð6Þ

Where ICrec is the reconstruction image. The total loss for coarse

inpainting network (NETc) is LC ¼ LChole þ aLCvalid þ bLCG , and we set
a ¼ 6 and b ¼ 0:1 in our experiments.

3.2. Refinement Inpainting

The refinement net can be divided into four parts: 1) contrastive
learning architecture. In order to extract powerful features and
contextual information for structure-aware inpainting, CSTFNet
leverages contrastive learning to improve the ability of feature
extraction of the encoder. 2) structure-aware and texture-aware
4

inpainting (STI). CSTFNet follow the hypothesis that high-level
semantic is able to guide the inpainting of structure for low-level
semantic. In addition, texture-aware inpainting simulates the pro-
cess of structure inpainting. What is different is that this module
assumes that low-level semantic can guide the inpainting of
high-level semantic in texture features. 3) structure and texture
fusion. We propose STF module to fuse the structure-aware and
texture-aware information learned from above two modules.

3.2.1. Contrastive Learning
We propose self-supervised contrastive learning network con-

sists of two shared weights encoder and decoder. The core idea
of contrastive learning is that two observations of the same con-
cept should produce the same outputs [33]. Base on the distin-
guishing feature of contrastive learning and the uniqueness of
image inpainting task, we design to treat the same image with dif-
ferent masks as a pair of positive samples and use them as input of
the siamese network in contrastive learning. The detailed structure
of our contrastive learning module is shown in Fig.3. It can be seen
from the figure that an image with two different masks (i.e., x1 and
x2) is fed into the siamese network and then passed through enco-
der f, projector layer g as well as a predictor MLP head h respec-
tively. Denoting the two output vectors as p1 ¼ h g f x1ð Þð Þð Þ and
z1 ¼ g f x2ð Þð Þ. Hence, the contrastive loss is expresses as minimiz-
ing the cosine similarity of the two vectors.

D p1; z2ð Þ ¼ � p1

p1k k2
� z2
z2k k2

ð7Þ

Where �k k2 is l2-norm. This is equivalent to the mean squared error
of l2-normalized vectors, up to a scale of 2. Following, we define a
symmetrized loss as:

l ¼ 1
2
D p1; z2ð Þ þ 1

2
D p2; z1ð Þ ð8Þ

This is defined for each image, and the total loss is averaged over all
images [33]. However, Optimizing the siamese network at the same
time will lead to the collapse of the model when two samples are
mapped to the same point in the low dimensional space. Therefore,
stop-gradient operation is leveraged to guarantee that the model
can be trained normally. We implement it by modifying (1) as
D p1; stopgrad z2ð Þð Þ. This means that z2 does not backpropagate gra-
dients and update weights during training. Similarly, the form in (2)
is implemented as:



Fig. 3. Contrastive learning module.
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l ¼ 1
2
D p1; stopgrad z2ð Þð Þ þ 1

2
D p2; stopgrad z1ð Þð Þ ð9Þ

Here the encoder on x1 receives no gradient from z1 in the first term,
but it receives gradients from p1 in the second term (and vice versa
for x2).
3.2.2. Structure-aware and Texture-aware Features Inpainting
We observe that deep layer extracts high-level semantic infor-

mation (structural information) while shallow layer extracts
detailed information (textural information) in convolution neural
networks (CNNs). Base on this characteristic of CNNs, we propose
to use two separated branches to repair the hole regions in feature
map from structure and texture levels respectively. Specifically, For
the feature map of a certain layer in CNNs, we use its adjacent dee-
per feature map to guide it to repair structure and use its adjacent
shallower feature map to guide inpainting of texture. We denote
the feature repaired from structural level as structure-aware fea-
ture while feature repaired from textural level as texture-aware
feature. As shown in Fig.2, structure-aware and texture-aware fea-
tures are respectively generated at each layer of encoder from the
relative direction of CNNs (i.e., texture-aware features are gener-
ated from shallow to deep, and structure-aware features are gener-
ated from deep to shallow). Under the assumption that pixels with
similar semantics should have similar structures and textures, an
structure and texture inpainting module is applied at each layer
to learn region affinity from high/low-level semantic features, thus
the learned region affinity can further guide feature transfer inside/
outside missing regions in an adjacent layer with higher/lower
resolution.

The specific inpainting process of structure-aware and texture-
aware inpainting (STI) is shown in Fig.4, given two adjacent feature
maps in feature pyramid. Feature map with large resolution repre-
sents low-level feature at shallow layer, while feature maps with
low resolution contains higher-level semantic information. In addi-
tion, the feature map of each layer contains a part of missing
regions (black area) that needs to be repaired because the missing
regions do not provide useful information in the convolution pro-
cess. We define the missing regions in feature map as the result
of scaling down the original mask according to the pixel ratio
between the feature map and the original image. Moreover, We
use attention mechanism to fill the missing regions, that is, the
5

content of the missing regions are formed by combining the con-
tent of the background regions according to the attention value.

The attention is usually computed by region affinity between
patches outside/inside missing regions. STI module divided each
feature map into an equal number of patches, which are respec-
tively from the missing regions and background regions. Subse-
quently, STI calculates the cosine similarity between patches
inside and outside missing regions:

amn ¼ pm

pmk k2
;

pn

pnk k2

	 

ð10Þ

Where pm is the m-th patch extracted from outside missing regions,
pm is the n-th patch extracted from inside the mask. Then softmax is
applied on the similarities to obtain the attention score for each
patch:

an;m ¼ exp amnð ÞXN
m¼1

exp amnð Þ
ð11Þ

After obtaining the attention score from a certain feature map, the
holes in its adjacent high/low-level feature map can be filled with
context weighted by the attention score. Specifically, the repair of
structure-aware features uses the attention score obtained from
its adjacent deeper feature map, while the repair of texture-aware
features refers to attention from its shallower layer. The repair of
feature map can be seen as the process of pixel reconstruction using
attention scores:

pn ¼
XN
m¼1

an:mpm ð12Þ

Where pn is the n-th patch to be filled in missing regions. After cal-
culating all patches, we can finally obtain a filled feature map. In
particular, all these operations can be formulated into convolution
operations for end-to-end training [6].

3.2.3. Structure-aware and Texture-aware Features Fusion
This module is proposed to further combine the structure-awre

and texture-aware features generated by the above STI module. It
exchanges messages between the two kinds of information, which
fuse structure and texture smoothly. Fig.5 illustrates the proposed
STF module. Specifically, we use simple concatenate and convolu-



Fig. 4. Structure-aware and texture-aware features inpainting (STI).

Fig. 5. Structure-aware and texture-aware features fusion (STF).
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tion operations to fuse the structure-aware and texture-aware fea-
tures. Then, through the CBMA [37] module, the preliminarily
fused features Fp focus on local information from the spatial and
channel levels respectively.

Fp ¼ CBAM Con C Ft; Fsð Þð Þð Þ ð13Þ
Where C represents concatenate operation, Con is a convolution
layer with the kernel size of 3. After getting the preliminarily fused
features Fp, the deep interaction between structure and texture is
achieved by concatenate, convolving and multiplying it with
structure- and texture- aware features respectively, and finally
the integrated feature map is formed.

Fu ¼ Con2 C Ft � Con C Ft; Fp
� �� �

; Fs � Con C Fs; Fp
� �� �� �� � ð14Þ

Where Con is a convolution layer with the kernel size of 3 and Con2
is a convolution layer with the kernel size of 1, � denotes element-
wise multiplication. The integrated feature Fu obtained from each
6

layer of the encoder will be added to each layer of the correspond-
ing decoder by skip connection.

3.2.4. Loss Function
We train our refinement net with a series of loss functions,

including reconstruction loss, perceptual loss, style loss, con-
trastive loss and adversarial loss so that the finally generated
image looks more visually realistic.

Reconstruction Loss. We adopt the l1 distance as the recon-
struction loss to measure the similarity between the final output
result XR

out and the ground-truth image, which is the same as Eq.
(1) and Eq. (2).

LRhole ¼
XR

out � Igt
� �

� 1�Mð Þ
��� ���

1

sum 1�Mð Þ ð15Þ
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LRvalid ¼
XR

out � Igt
� �

�M
��� ���

1

sum Mð Þ ð16Þ

LRr ¼ LRhole þ aLRvalid ð17Þ
Perceptual Loss. We utilize the perceptual loss lper to capture

the high-level semantics [38] by computing the l1 distance
between the feature spaces of generated image and groundtruth
through ImageNet-pretrained VGG-16 backbone, which can be
written as:

lper ¼ E
X
i

/i XR
out

� �
� /i Igt

� ���� ���
1

" #
ð18Þ

Where /i �ð Þ; i ¼ 1;2; . . . ;5 is the feature map of i-th layer of VGG-16,
which are ReLu1 1;ReLu2 1;ReLu3 1;ReLu4 1 and ReLu5 1.

Style Loss. In order to reduce the influence of artifacts that
resemble checkerboard produced by the transposed convolution
layer of the decoder, we introduce style loss To mitigate this effect.

lstyle ¼ E
X
i

ui XR
out

� �
�ui Igt

� ���� ���
1

" #
ð19Þ

where ui �ð Þ ¼ /T
i /i denotes the Gram matrix constructed from the

above-mentioned five activation maps.
Contrastive Loss.
We use contrastive loss to improve the learning ability of the

encoder. To be exact, we respectively calculate the contrastive loss
between the lantent representations of encoder and the feature
maps of each layer of decoder in siamese network. The contrastive

loss lEcon of lantent representations is similar to Eq. (9). Moreover,
The contrastive loss between the feature maps generated by each
layer of decoder is expressed as:

lDcon ¼
X
i

X1
i � X2

i

��� ���
2

ð20Þ

Where X1
i and X2

i are two feature maps obtained from the decoder
of i-th layer in siamese network.
Table 1
Quantitative comparisons of our method with five advanced inpainting methods on CELEB

CELEBA-HQ

Masks 1–10% 10–20%

PSNR+ PEN 31.717 26.072
RN 35.354 30.514
RFR 34.563 28.895
CTSDG 36.523 30.570
LGNet 37.013 31.120
OURs 37.221 31.237

SSIM+ PEN 0.956 0.906
RN 0.972 0.958
RFR 0.970 0.945
CTSDG 0.976 0.957
LGNet 0.983 0.960
OURs 0.986 0.962

MSE� PEN 0.010 0.019
RN 0.006 0.012
RFR 0.005 0.013
CTSDG 0.005 0.012
LGNet 0.004 0.011
OURs 0.004 0.010

LPIPS� PEN 0.046 0.106
RN 0.051 0.053
RFR 0.019 0.056
CTSDG 0.019 0.057
LGNet 0.018 0.052
OURs 0.017 0.049
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Adversarial Loss. Adversarial loss is mainly used to select the
most realistic solution when there are infinite solutions to the ill-
posed problem of image inpainting. We choose the same training
strategy as that of coarse network for the adversarial loss of refine-
ment network, and the adversarial loss of refinement network is

calculated as lRG.
To summarize, the objective for refinement network is:

lR ¼ lRr þ kperlper þ kstylelstyle þ kcon1l
E
con þ kcon2l

D
con þ kGl

R
G. Therefore, our

proposed inpainting network CSTFNet is trained in an ‘‘end-to-
end” manner, and the final training loss is the summation of losses
of two sub-networks and a discriminator, i.e., lC þ lR þ lD.

Algorithm1: Pseudo code of CSTFNet

Input: XC
in: input masked image

Min: input mask
Output: XR

out: inpainted image
1: while i smaller than IterNumdo

2: XC
out  coarse net XC

in;Min

� �
3: Xdown1; ::;Xdown6ð Þ  Encoding XC

out

� �
4: Xstructure

down

� � Structure Inpainting Xdownð Þ
5: Xtexture

down

� � Texture Inpainting Xdownð Þ
6: Xfusion

down

� �
 STF Xstructure

down ;Xtexture
down

� �
7: XR

out  Decoding skipconnect Xfusion
down ;Xup

� �� �
8: i iþ 1
9: end while
10: return XR

out
4. Experiment

In this section, we conduct quantitative and qualitative experi-
ments to prove the superiority of our method against state-of-the-
A-HQ dataset. + Higher is better. � Lower is better.

20–30% 30–40% 40–50% 50–60%

23.748 22.410 21.089 19.456
27.204 24.854 23.608 21.446
26.303 23.960 22.115 19.553
28.331 26.363 24.774 21.981
28.212 26.646 24.691 22.565
28.723 26.801 24.926 22.783
0.857 0.810 0.755 0.691
0.932 0.887 0.839 0.781
0.905 0.860 0.808 0.730
0.936 0.907 0.871 0.799
0.925 0.909 0.868 0.826
0.937 0.916 0.877 0.832
0.031 0.041 0.054 0.073
0.021 0.034 0.042 0.056
0.022 0.034 0.049 0.075
0.018 0.023 0.031 0.049
0.019 0.024 0.033 0.045
0.017 0.022 0.030 0.044
0.154 0.198 0.245 0.296
0.095 0.124 0.149 0.196
0.086 0.105 0.139 0.189
0.079 0.091 0.122 0.179
0.080 0.069 0.097 0.121
0.074 0.064 0.090 0.120
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art image inpainting methods, and explain our experimental set-
tings, the datasets, competing methods, and implementation
details. In addition, we also conduct ablation experiments to eval-
uate and analyze our proposed model.

4.1. Experimental Settings

Datasets. We evaluate our mothod on three public datasets,
which are commonly used for image inpainting tasks.

Places2 dataset [39]: A large-scale scene recognition dataset
that contains over 8,000,000 images from over 365 scenes
Table 2
Quantitative comparisons of our method with five advanced inpainting methods on PARIS

PARIS STREET

Masks 1–10% 10–20%

PSNR+ PEN 31.230 28.021
RN 31.354 28.544
RFR 33.967 29.300
CTSDG 33.501 30.715
LGNet 34.630 30.371
OURs 34.426 30.761

SSIM+ PEN 0.947 0.922
RN 0.952 0.924
RFR 0.965 0.942
CTSDG 0.961 0.953
LGNet 0.980 0.954
OURs 0.976 0.955

MSE� PEN 0.054 0.017
RN 0.010 0.018
RFR 0.008 0.014
CTSDG 0.008 0.012
LGNet 0.005 0.012
OURs 0.006 0.011

LPIPS� PEN 0.056 0.084
RN 0.051 0.083
RFR 0.035 0.069
CTSDG 0.039 0.065
LGNet 0.028 0.063
OURs 0.030 0.063

Table 3
Quantitative comparisons of our method with five advanced inpainting methods on PLAC

PLACE2

Masks 1–10% 10–20%

PSNR+ PEN 33.031 27.823
RN 34.368 30.115
RFR 38.125 32.425
CTSDG 34.022 30.194
LGNet 38.125 32.425
OURs 38.987 32.598

SSIM+ PEN 0.970 0.926
RN 0.973 0.936
RFR 0.971 0.929
CTSDG 0.972 0.940
LGNet 0.988 0.964
OURs 0.990 0.969

MSE� PEN 0.005 0.014
RN 0.005 0.011
RFR 0.005 0.013
CTSDG 0.004 0.010
LGNet 0.003 0.007
OURs 0.003 0.006

LPIPS� PEN 0.047 0.108
RN 0.047 0.080
RFR 0.041 0.091
CTSDG 0.043 0.075
LGNet 0.011 0.031
OURs 0.010 0.030
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collected from the natural world. We elaborately selected 10000
outdoor landscape images to build our dataset, of which 9000 for
training set and the remaining 1000 for testing.

CelebA-HQ dataset [40]: The high-quality version of the CelebA
[41] consists of 30,000 face images. We randomly select 27,000 for
training and the remaining 3,000 for testing.

Paris StreetView dataset [42]: This dataset consists of 15,000
images collected from street views of Paris. We build training
and testing sets according to the original settings.

During training and testing, we used the irregular mask dataset
provided by Liu et al. [23]. The irregular mask data contains 6 cat-
STREET dataset. + Higher is better. � Lower is better.

20–30% 30–40% 40–50% 50–60%

26.325 24.326 22.143 20.542
26.004 24.004 22.570 21.073
26.668 24.698 22.732 20.625
27.678 25.886 23.751 21.478
28.023 25.927 24.343 21.911
28.634 26.783 24.382 22.086
0.876 0.824 0.715 0.605
0.882 0.852 0.788 0.726
0.894 0.848 0.788 0.706
0.921 0.882 0.822 0.746
0.919 0.894 0.834 0.761
0.925 0.902 0.836 0.764
0.025 0.037 0.057 0.078
0.023 0.042 0.053 0.069
0.025 0.036 0.051 0.075
0.022 0.032 0.049 0.065
0.020 0.030 0.042 0.062
0.019 0.029 0.041 0.060
0.119 0.184 0.254 0.356
0.124 0.174 0.217 0.372
0.120 0.223 0.239 0.396
0.118 0.185 0.221 0.342
0.115 0.171 0.214 0.389
0.107 0.156 0.206 0.307

E2 dataset. + Higher is better. � Lower is better.

20–30% 30–40% 40–50% 50–60%

25.428 23.936 22.509 21.159
27.987 26.365 24.229 22.514
29.330 27.245 25.734 23.096
27.393 25.902 24.569 22.808
29.330 27.245 25.734 23.096
29.510 27.431 25.870 23.437
0.881 0.840 0.794 0.740
0.921 0.878 0.826 0.781
0.880 0.830 0.780 0.722
0.896 0.863 0.830 0.776
0.931 0.897 0.864 0.794
0.938 0.898 0.865 0.803
0.023 0.031 0.041 0.054
0.014 0.023 0.035 0.046
0.023 0.036 0.050 0.074
0.017 0.024 0.031 0.044
0.013 0.019 0.025 0.039
0.012 0.014 0.022 0.039
0.166 0.212 0.261 0.310
0.122 0.104 0.246 0.313
0.148 0.198 0.251 0.309
0.127 0.158 0.191 0.276
0.056 0.081 0.109 0.170
0.051 0.075 0.105 0.199
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egories with different hole ratios, i.e., (0.01, 0.1], (0.1, 0.2], (0.2,
0.3], . . ., (0.5, 0.6]. Each category has 2,000 masks.

Comparison Methods. In this work, we compare our method
with five state-of-the-art inpainting methods, which are summa-
rized as follows:

PEN [8]: A pyramid-context encoder network to repair the miss-
ing regions in feature map by progressively learning region affinity
with attention.

RN [43]: A image inpainting method for computing feature nor-
malization of hole regions and background regions separately in
feature map.

RFR [44]: A progressive inpainting method in the feature space
with recurrent feature reasoning and knowledge consistent
attention.

CTSDG [45]: A two-stream network for image inpainting, which
models the structure-constrained texture synthesis and texture-
guided structure reconstruction in a coupled manner.

LGNet [36]: A three-stage image inpainting framework to set
receptive fields of different sizes to enhance local and global
inpainting results respectively.
Fig. 6. Qualitative comparisons of our method with PEN, RN, CTSDG, R

9

Implementation Details. Our network is built on the PyTorch
framework, trained on NVIDIA 3090 GPU (24 GB) with a batch size
of 8, and optimized by the Adam optimizer with a learning rate of
2 � 10–4, where b1 = 0.5 and b2 = 0.999. All the masks and images
are resized to 256 �256.

4.2. Performance Comparison with State-of-the-art

Quantitative Comparisons. We conduct quantitative experi-
ments on all datasets with irregular masks, and the mask size
accounts for 10% to 60% of the whole image area. In addition,
we also perform a center mask inpainting experiment for Celeba
dataset. For the evaluation metrics, we adopt several commonmet-
rics in the image inpainting task: peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), mean-square error (MSE) and
Learned Perceptual Image Patch Similarity (LPIPS). The first two
metrics are based on the low-level pixel values, while the last
two metrics are related to the high-level visual perception. Their
equations are shown below. Where I i; jð Þ and K i; jð Þ represent the
pixel value of the corresponding position, lxly represent the aver-
FR, and LGNet on three datasets with irregular and center masks.
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age value of the image, rxry represent the variance of the image,
and rxy is the covariance of two images. Tables 1–3 show the per-
formance of all methods on each dataset. It is obvious that our pro-
posed method outperforms among all comparison methods on
these measurements except some indicators on Paris street dataset
(When the mask ratio under 10%), but competitive.

MSE ¼ 1
mn

Xm�1
i¼0

Xn�1
j¼0

I i; jð Þ � K i; jð Þk k2 ð21Þ

PSNR ¼ 10� log10
2n � 1
� �2

MSE

 !
ð22Þ

SSIM x; yð Þ ¼
2lxly þ c1
� �

2rxy þ c2
� �

l2
x þ l2

y þ c1
� �

r2
x þ r2

y þ c2
� � ð23Þ

LPIPS x; x0ð Þ ¼
X
l

1
HlWl

X
h;w

wl � byl
hw �cy0 lhw� ��� ��2

2 ð24Þ

Qualitative Comparisons.
We compare our proposed method with five state-of-the-art

methods in term of structural and textural coherence. We conduct
qualitative experiments on the test set of three datasets with free-
form and center masks. As shown in Fig. 6, We take the images
with irregular and center mask as the test set. It can be obviously
seen that PEN, RN, RFR and CTSDG tend to synthesise distinct
unsmooth and blurred final results and LGNet gets relatively real-
istic results. In contrast, our proposed method can generate
smoother inpainting results with reasonable semantics and richer
textures with the help of the self-supervised siamese contrastive
network and the learning of structure-aware and texture-aware
features. It demonstrates that our proposed method is superior to
the comparison methods in terms of consistent structures and tex-
tures. Furthermore, as shown in the last two lines in Fig. 6, we also
conduct experiments on the test images of CelebA-HQ with typical
rectangular squares to evaluate the inpainting ability of our
proposed method. Our method can generate face images with con-
sistent colors and structures.
Table 4
Quantitative results of ablation studies on CELEBA-HQ, PARIS STREET, PLACE2 datasets. +

Ablation Learning

Masks 10–20% 20–30%

PSNR+ wo/Structure 28.147 24.876
wo/texture 28.323 27.010
wo/Coarse 29.856 27.792
wo/Contrastive 30.407 27.515
wo/Fusion 28.172 27.126
OURs(full) 32.598 29.510

SSIM+ wo/Structure 0.917 0.847
wo/texture 0.925 0.901
wo/Coarse 0.942 0.913
wo/Contrastive 0.945 0.908
wo/Fusion 0.916 0.900
OURs(full) 0.969 0.938

MSE� wo/Structure 0.014 0.025
wo/texture 0.013 0.018
wo/Coarse 0.010 0.016
wo/Contrastive 0.010 0.017
wo/Fusion 0.014 0.018
OURs(full) 0.006 0.012

LPIPS� wo/Structure 0.095 0.170
wo/texture 0.088 0.106
wo/Coarse 0.070 0.096
wo/Contrastive 0.059 0.096
wo/Fusion 0.094 0.104
OURs(full) 0.030 0.051
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4.3. Ablation Studies

We conduct ablation experiments to validate and evaluate our
network design by comparing different variants of CSTFNet. The
experiments are conducted on test images of Place2 dataset and
the corresponding quantitative and qualitative results are shown
in Table 4 and Fig.7 respectively.

On Contrastive Learning. The contrastive learning is developed to
enhance the ability of the encoder. We remove the siamese network
structure from the proposed model to verify the effect of contrastive
learning (i.e., only a group of encoder and decoder in the siamese net-
work are used and no contrastive loss is calculated when calculating
the loss). To make the comparison more specific, quantitative and
qualitative results are given in Table 4 and Fig.7 respectively, which
indicate that contrastive learning contributes to the performance gain.

On Coarse Inpainting. The main function of the coarse inpaint-
ing network is to fill a rough result for the missing regions first, and
provide some useful information for the refinement inpainting net-
work. We get the final result by removing the coarse repair net-
work and directly inputting the masked image to the fine repair
network. It can be seen from Table 4 and Fig.7 that the perfor-
mance of the model without rough network has a certain decline
resulting in obvious fuzzy areas in the final results.

On Structure-aware Inpainting Module. Structure-aware
inpainting module is mainly to use higher-level feature maps to
guide the structure-aware inpainting of its adjacent lower-level
feature maps. We removed the structure-aware inpainting module
(i.e., only the texture -aware inpainting module is used to repair
the feature map) in the ablation experiment to verify its impact
on the final results. The quantitative and qualitative results in
Table 4 and Fig.7 also verify their necessity.

On Texture-aware Inpainting Module. Texture-aware inpainting
module mainly uses low-level feature maps to guide the inpainting
of texture-aware of it’s adjacent high-level feature maps. Similar to
the structure-aware inpainting experiment, we removed the
texture-aware inpainting module (only the structure-aware inpaint-
ing module is retained when repairing the feature map) in the exper-
iment and verified its irreplaceable value.

On Structure-aware and Texture-aware Features Fusion
module (STF). STF is mainly used to fuse the repaired structure-
Higher is better. � Lower is better.

30–40% 40–50% 50–60%

24.558 23.895 21.969
25.531 23.637 21.456
26.009 24.442 21.735
25.511 24.035 21.809
25.498 24.164 20.620
27.431 25.870 23.437
0.832 0.802 0.729
0.868 0.812 0.733
0.875 0.825 0.729
0.864 0.804 0.726
0.861 0.816 0.702
0.898 0.865 0.803
0.031 0.035 0.049
0.025 0.034 0.049
0.023 0.032 0.049
0.024 0.035 0.051
0.025 0.032 0.056
0.014 0.022 0.039
0.183 0.211 0.266
0.133 0.78 0.240
0.130 0.173 0.244
0.134 0.203 0.262
0.138 0.177 0.264
0.075 0.105 0.199
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aware and texture-aware features reasonably to generate smooth
results. In the ablation experiment, we use a simple feature fusion
module (a channel-wise concatenation followed by a convolution
layer). As shown in Fig.7 and Table 4, we demonstrate that STF
obviously benefits the quality of the results, with consistent tex-
tures and better quantitative scores reported.

5. Conclusion

In this paper, a novel two-stage and two-stream image inpaint-
ing method is proposed to generate reasonable and visually realis-
tic images. To be exact, the proposed method boosts the ability of
feature extraction of encoder by settings of contrastive learning.
Then, we design a structure to repair each layer of feature map
from the perspective of structure-aware and texture-aware, and
followed by a fusion module to naturally fuse the two repaired fea-
tures. Experiments on CelebA-HQ, Pairs Street and Places2 show
the superiority of our proposed method in generating smoother,
coherent and rich textures results.
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