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a b s t r a c t 

Noisy labels composed of correct and corrupted ones are pervasive in practice. They might significantly 

deteriorate the performance of convolutional neural networks (CNNs), because CNNs are easily overfit- 

ted on corrupted labels. To address this issue, inspired by an observation, deep neural networks might 

first memorize the probably correct-label data and then corrupt-label samples, we propose a novel 

yet simple self-paced resistance framework to resist corrupted labels, without using any clean valida- 

tion data. The proposed framework first utilizes the memorization effect of CNNs to learn a curricu- 

lum, which contains confident samples and provides meaningful supervision for other training samples. 

Then it adopts selected confident samples and a proposed resistance loss to update model parameters; 

the resistance loss tends to smooth model parameters’ update or attain equivalent prediction over each 

class, thereby resisting model overfitting on corrupted labels. Finally, we unify these two modules into 

a single loss function and optimize it in an alternative learning. Extensive experiments demonstrate 

the significantly superior performance of the proposed framework over recent state-of-the-art methods 

on noisy-label data. Source codes of the proposed method are available on https://github.com/xsshi2015/ 

Self- paced- Resistance- Learning . 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, convolutional neural networks (CNNs) have achieved 

remendous success on various different tasks, such as image clas- 

ification [1–4] , retrieval [5,6] , detection [7] and segmentation [8] . 

owever, most CNNs usually require large-scale high-quality labels 

o obtain desired accuracy, because deep CNNs are capable of 

emorizing the entire training data even with completely random 

abels, i.e., deep neural networks (DNNs) will eventually memorize 

he wrongly given labels [9] . This infers that noisy labels might 

ignificantly deteriorate the performance of CNNs during training. 

nfortunately, noisy labels are pervasive in practice and it is 

xpensive to obtain accurate labeled data [10] . 

To tackle noisy labels for effectively and robustly training 

NNs, some methods [11,12] utilize regularization terms for label 

orrection to alleviate the deterioration of deep networks dur- 

ng training, but they often fail to attain the optimal accuracy. 

nother popular way is to estimate a label transition matrix 

ithout using regularizations for loss correction [13] . However, 
∗ Corresponding author. 
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t is usually difficult to accurately estimate the label transition 

atrix, especially for a large number of classes. The third promis- 

ng direction is to select confident samples based on small-loss 

istances in order to update networks robustly, without estimat- 

ng the label transition matrix. MentorNet [14] and Co-teaching 

15] are two representative methods. When no clean validation 

ata is available, self-paced MentorNet learns a neural network 

o approximate a predefined curriculum to provide meaningful 

upervision for StudentNet, so that it can focus on the samples 

ith probably correct labels. Self-paced MentorNet is similar to 

he self-training method [16] , and it inherits the same inferiority 

f accumulated errors generated by sample-selection bias. To 

ddress the issue, Co-teaching utilizes the memorization effect of 

NNs and symmetrically trains two networks, each of which filters 

orrupted labels and selects the samples with small-loss to update 

he peer network, where the memorization effect of DNNs denotes 

hat DNNs first memorize easy samples and then hard samples 

uring training [17] , and when noisy labels exist, DNNs eventually 

emorize the corrupted labels [9] . This phenomenon exists on 

ifferent training optimizations, network architectures or datasets 

please see Figure A10 in the supplemental material). However, 

ith the increasing number of training epochs, the two networks 

ill gradually form consensus predictions and Co-teaching will 

https://doi.org/10.1016/j.patcog.2022.109080
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109080&domain=pdf
https://github.com/xsshi2015/Self-paced-Resistance-Learning
mailto:seanzhuxf@gmail.com
https://doi.org/10.1016/j.patcog.2022.109080
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Fig. 1. The difference between the resistance loss and the traditional cross-entropy loss. The middle is the resistance loss tending to make the prediction over each class be 

equivalent. The top and bottom cross-entropy losses utilize a corrupted or correct label to update model parameters, respectively. ( p t−1 
i 

and p i are the prediction of the i th 

training sample x i at the t − 1 th and tth epochs, respectively, t is the current number of training epochs, c is the number of classes, y k denotes the correct label of the k th 

( 1 ≤ k ≤ n ) sample and n is the total number of training samples.). 
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unctionally deteriorate to self-paced MentorNet. Although the 

trategy of “Update by Disagreement” [18] can slow down the 

wo networks of Co-teaching to form consensus predictions, it still 

annot prevent the effect of sample-selection bias in many cases 

19] . Additionally, when training data is with extremely noisy 

abels, MentorNet and Co-teaching easily select the corrupt-label 

ata as confident samples, so that the networks are overfitted on 

orrupted labels, thereby decreasing their performance (please see 

igure A11 in the supplemental material). Moreover, Co-teaching 

ims to filter corrupt-label training samples and thus might fail to 

xplore their correct semantic information. 

To address the performance deterioration of CNNs generated by 

odel overfitting on corrupted labels, and meanwhile explore the 

orrect semantic information of training samples with corrupted 

abels, in this paper, we propose a novel self-paced resistance 

ramework using a resistance loss to robustly train CNNs on noisy 

abels, without using any clean validation data. The proposed 

ramework is mainly inspired by: (i) DNNs might first memorize 

he probably correct-label data and then samples with corrupted 

abels or outliers [9,15,17] (see Figure A10); (ii) A curriculum con- 

isting of confident samples can provide meaningful supervision 

or other training data [14] ; (iii) A resisting model overfitted on 

orrupted labels can reduce the deterioration of model perfor- 

ance. We summarize three major contributions as follows: 

• We propose a novel resistance loss to significantly alleviate 

model overfitting on corrupted labels, by smoothing model pa- 

rameters’ update or attaining equivalent prediction on each 

class. For clarity, we present the difference between the resis- 

tance loss and the traditional cross-entropy loss in Fig. 1 . 
• We propose a novel yet simple framework, self-paced resistance 

learning (SPRL), by effectively using the memorization effect of 

DNNs, curriculum learning (CL) and a resistance loss to robustly 

train CNNs on noisy labels. 
• Extensive experiments on four image datasets demonstrate that 

(i) The proposed framework can prevent the accuracy deterio- 

ration of CNNs on noisy labels, leading to superior classification 

accuracy over recent state-of-the-art methods on multiple types 

of label noise; (ii) With clean training data only, the proposed 

method usually obtains better results than standard networks. 

The rest of the paper is organized as follows. Section 2 briefly 

eviews some popular methods to tackle noisy labels; 

ection 3 introduces the preliminaries on curriculum learning; 

ection 4 presents the proposed framework, SPRL; Section 5 shows 
2 
nd analyzes experimental results of various methods; Finally, 

ection 6 concludes this paper and points out the future work. 

. Related work 

Here, we briefly review some popular statistical learning meth- 

ds for tackling noisy labels and DNNs with noisy labels. 

Statistical learning methods. There are numerous statistical 

earning algorithms to handle noisy labels [20] . They can be 

oughly categorized into three groups: probabilistic modeling, sur- 

ogate losses and noise rate estimation. One popular probabilis- 

ic modeling method is [21] , which proposes a two-coin model to 

andle noisy labels provided by multiple annotators. For surrogate 

osses based methods, [22] proposes an unbiased estimator to pro- 

ide the noise corrected loss and then presents a weighted loss 

unction for handling class-dependent noisy labels; [23] introduces 

 robust non-convex loss for tackling the contamination of data 

ith outliers and a boosting algorithm, SavageBoost, to minimize 

he loss; [24] presents a convex loss modified from the hinged 

oss and proves its robustness to symmetric label noise. In the 

oise rate estimation category, [25] designs consistent estimators 

or classification with asymmetric (class-dependent) label noise; 

26] utilizes kernel embeddings onto reproducing kernel Hilbert 

pace for mixture proportion estimation; [27] estimates class pro- 

ortions when the distributions of training and test samples are 

ifferent; [27] and [28] introduce class-probability estimators us- 

ng order statistics on the range of scores. Most of these statistical 

earning methods are proposed for traditional algorithms on rel- 

tively small datasets. Thus they usually fail to obtain promising 

erformance on real applications, especially large datasets. 

Deep neural networks with noisy labels. Because DNNs are 

ensitive to noisy labels, a few methods have been proposed to 

andle noisy labels for robust network training [29] . Mnih and 

inton [30] proposes two robust loss functions for binary classi- 

cation of aerial image patches to handle omission and wrong lo- 

ation of training labels. Ghosh et al. [31] Ghosh et al. [32] Man- 

ani and Sastry [33] investigate noise-tolerant of loss functions 

nder risk minimization. Reed et al. [11] Laine and Aila [12] Shi 

t al. [34] consider the prediction consistency via adding a regular- 

zation term for robustly training DNNs. This strategy cannot pre- 

ent the performance deterioration of CNNs in many cases and it 

sually fails to obtain optimal accuracy. Sukhbaatar et al. [35] and 

atrini et al. [13] estimate a label transition matrix, which sum- 

arizes the probability of one class being flipped into another, to 
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orrect loss functions, and [36] employs a dimensionality-driven 

earning strategy to estimate the correct labels of samples dur- 

ng training and adapt the loss function. However, it is difficult 

o accurately estimate the label transition matrix or the labels of 

raining samples. Wang et al. [37] proposes an iterative learning 

ramework to handle open-set noisy labels. Han et al. [38] designs 

 self-learning framework to train the network in an end-to-end 

anner with iteratively correcting labels. Sun et al. [39] proposes a 

arped probabilistic inference for robust learning with noisy labels 

nder the meta-learning scenario. Xiao et al. [40] , Li et al. [41] , Veit

t al. [42] and Vahdat [43] adopt a small clean dataset to lever- 

ge samples with noisy labels; [44] adopts a small clean dataset 

o assign weights for training samples based on their gradient di- 

ections to reduce the effect of corrupted labels. These methods 

sually require an additional clean dataset to alleviate the overfit- 

ing of CNNs on noisy labels. Northcutt et al. [45] and Zhang and 

abuncu [46] adopt the confident samples for training by clean- 

ng up corrupted labels, and thus they fail to exploit the semantic 

nformation of the samples with corrupted labels. [18] introduces 

 strategy, “Update by Disagreement”, that updates the parame- 

ers of two networks by using the samples with different predic- 

ions. This strategy cannot handle noisy labels explicitly, because 

he disagreement predictions usually contain corrupted labels. Han 

t al. [47] integrates the learning regime of CL with the update 

rocess of vanilla SGD for robust model training on noisy labels. 

entorNet [14] and Co-teaching [15] are two popular learn-to- 

each methods to handle noisy labels. They select confident sam- 

les based on small-loss distances to teach the student or other 

etwork. [19] extends Co-teaching to alleviate the performance de- 

erioration of DNNs. However, these learn-to-teach methods eas- 

ly select corrupt-label samples as confident ones and then make 

NNs be overfitted on corrupted labels in many cases, especially 

n extremely noisy labels (please refer to Figure A11 in the sup- 

lemental material), thereby deteriorating and decreasing the ac- 

uracy of CNNs during training. Yao et al. [48] formulates the sam- 

le selection from noisy labels as a function approximation prob- 

em, and proposes a novel Newton algorithm to solve the problem. 

owever, its selection performance is still far from satisfying on 

xtremely noisy labels. 

Similar to previous learn-to-teach methods, the proposed 

ethod utilizes the memorization effect of DNNs to select confi- 

ent samples as a curriculum to provide supervision of other train- 

ng samples. However, unlike previous learn-to-teach methods that 

re very likely to deteriorate with the increasing number of train- 

ng epochs, the proposed method can prevent the performance 

egradation during training. This is because the proposed resis- 

ance loss can significantly reduce the effect of corrupted labels by 

lleviating model overfitting. Additionally, the proposed framework 

oes not require the noise rate and only trains a single network, 

iffering from Co-teaching [15] and its variant [19] that need to 

now or estimate the rate of label noise and train two networks in 

 symmetric way. Overall, the proposed method is easy to utilize 

nd can obtain good performance for image classification. 

. Preliminaries on curriculum learning 

CL [49] is a training strategy inspired by the learning process of 

umans and animals that gradually proceeds easy to difficult sam- 

les. CL predetermines the curriculum based on the prior knowl- 

dge so that training data is ranked in a meaningful order to fa- 

ilitate learning. In the following, we briefly introduce three major 

ariants of CL that are related to our proposed method. 

Self-paced learning (SPL) [50] : CL heavily relies on the prior 

nowledge and ignores the feedback of the learner (model); to ad- 

ress this issue, SPL dynamically determines the curriculum based 

n the learner’s abilities. Given training data X = { x i } n i =1 and the 
3 
orresponding labels y = { y i } n i =1 , where x i and y i denote the i th 

ample and its correct label, respectively. Let f (·) represent a clas- 

ifier and w be its model parameters. SPL simultaneously selects 

asy samples and learns model parameters in each iteration by 

olving the following problem: 

in 

w , v 
E(w , v ;λ) = 

∑ n 
i =1 v i L (y i , f (x i , w )) 

−λ
∑ n 

i =1 v i , s.t. v ∈ { 0 , 1 } n , (1) 

here L (y i , f (x i , w )) denotes the loss function that calculates the 

ost between the ground truth label y i and the estimated label 

f (x i , w ) , v is a binary vector to indicate which ones are easy sam-

les, and λ is a parameter to control the learning pace. Eq. (1) is 

sually solved by an alternative minimization strategy: with fixing 

 , calculating v by v = 

{
1 L (x i , f (x i , w ))) < λ, 

0 otherwise. 
, and then with 

xing v , updating w by using selected easy samples to train the 

lassifier f (·) . 
Self-paced curriculum learning (SPCL) [51] : Although SPL can 

ynamically learn the curriculum, it does not take into account the 

rior knowledge. Let � be a feasible region encoding the informa- 

ion of a predetermined curriculum. To connect CL with SPL, SPCL 

51] employs both the predetermined curriculum obtained by the 

rior knowledge before training and the learned curriculum during 

raining with the following model: 

in 

w , v 
E(w , v ;λ) = 

∑ n 
i =1 v i L (y i , f (x i , w )) 

+ G (v , λ) , s.t. v ∈ [ 0 , 1 ] 
n 
, v ∈ �, 

(2) 

here v is a weight vector to reflect the significance of sam- 

les, and G (·) is a self-paced function to control the learn- 

ng scheme. For example, in SPL, G (v , λ) = −λ
∑ n 

i =1 v i . Similar to

qs. (1) , (2) can also be solved by using an alternative minimiza- 

ion method. 

Self-paced MentorNet [14] : Because the learning procedure of 

NNs is very complicated, it is difficult to be accurately modeled 

y the predefined curriculum. To tackle this issue, [14] employs 

wo neural networks, one network called MentorNet f m 

(·) and 

he other called StudentNet f s (·) . MentorNet is to approximate a 

redefined curriculum in order to compute time-varying weights 

f m 

(z i ;�∗) ∈ [ 0 , 1 ] for each training sample, where �∗ denotes the 

ptimal parameters in f m 

(·) , z i = φ(x i , ̃  y i , w ) represents the input

eature to MentorNet of the i th sample x i , ˜ y i is the noisy label of x i 
nd w is the parameter of StudentNet f s (·) , which will utilize the 

earned weights f m 

(z i ;�∗) to update w . To learn a �∗, MentorNet

inimizes the following function: 

rg min 

�

n ∑ 

i =1 

f m 

(z i ;�) l i + G ( f m 

(z i ;�) ;λ) , (3) 

here l i is the loss between one hot vector ˜ y i of the noisy label ˜ y i 
nd a predicting class probability vector f s (x i , w ) , which is a dis-

riminative function of StudentNet. Similar to SPCL, G ( f m 

(z i ;�) ;λ) 

s a self-paced function. 

. Self-paced resistance learning (SPRL) 

Although MentorNet can boost model robustness when no 

lean validation data is used, it easily selects corrupt-label sam- 

les as confident ones and then overfits a model on them. To ad- 

ress this problem, we propose a novel training strategy, SPRL. It 

mploys the memorization effect of DNNs to approximate a pre- 

efined curriculum in order to provide meaningful supervision for 

ther training samples, and adopts a resistance loss to resist the 

ffect of corrupted labels on the network. For clarity, we present 

he proposed SPRL framework in Fig. 2 . 
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Fig. 2. The flowchart of the proposed SPRL, which alternatively learns a curriculum v and updates model parameters w during training, i.e., SPRL first conducts curriculum 

learning by using the model prediction p t−1 
i 

to obtain v i , and then feed v i and p t−1 
i 

into the model to update parameters w . Note that p i with the dotted line denotes the 

p t−1 
i 

and p i with the solid line represents the model prediction in the tth epoch, and ˜ y is used for both curriculum learning and parameter update. 
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.1. Curriculum learning using the memorization effect 

Given n training samples X = { x i } n i =1 , ˜ y = { ̃  y i } n i =1 denotes their 

orresponding noisy labels, where x i is the i th training sample, 

˜  i ∈ { 1 , · · · , c } is its label and c is the number of classes. To avoid 

he abuse of symbols, we utilize f (·) to represent an L -layer con- 

olutional neural network and w to denote model parameters. Let 

 = { p i } n i =1 be label predictions of training samples and B represent 

he index set of selected training data in each mini-batch, where 

 i = f (x i , w ) ∈ R 

c is the label prediction of the sample x i . To up-

ate model parameters, we adopt the cross-entropy loss function 

s follows: 

in 

w 

1 

| B | 
∑ 

i ∈ B 
−log(p i [ ̃  y i ]) , (4) 

here | B | denotes the length of the index set B . 

Suppose that we train the network for T epochs in total. When 

e only utilize Eq. (4) to update model parameters during training, 

he model performance usually deteriorates after a few epochs, be- 

ause the network might first memorize the correct and easy sam- 

les at initial epochs and then it will eventually overfit on the cor- 

upted labels or outliers [15] . Based on this memorization of deep 

etworks, we first run the model T 1 epochs and then select m sam- 

les based on the small-loss distances to construct a predefined 

urriculum, which contains the probably correct data. Afterwards, 

e gradually add a number of samples into the curriculum every 

 few epochs for training. For clarity, we formulate this procedure 

s the following model: 

in 

w , v 

1 ∑ 

i ∈ B v i 

∑ 

i ∈ B −v i log(p i [ ̃  y i ]) − λv i , 
.t. v ∈ { 0 , 1 } n , ∑ n 

i =1 v i = δ(t) , 
(5) 

here δ(t) is a piecewise linear function to determine how many 

raining samples are added into the curriculum and t is the current 

umber of training epochs. Note that there are many possibilities 

o set δ(t) . To make confident samples play a better role in model 

raining, we define it as: 

(t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n t ≤ T 1 

min (m + 

⌊ 

t−T 1 ⌊ 
T−T 1 

K− mK 
n +1 

⌋ 
⌋ ⌊

n 
K 

⌋
, n ) T 1 < t ≤ T 

(6) 

here K ∈ Z is the number of subsets, each of which contains 

ome training samples. During the first T 1 epochs, we utilize all 

raining data for model training so as to obtain correct-label data 

s many as possible, because the model firstly memorizes the 

robably correct-label data from the training data. Additionally, af- 

er T epochs, because the number of samples is usually much 
1 

4

arger than the number of epochs, we gradually add the subset 

nto the curriculum in each epoch based on the prediction con- 

dence of samples, so that all training samples can be added in 

he curriculum during the training process in order to leverage 

ore information. Eq. (6) suggests that Eq. (5) is equivalent to 

q. (4) when t ≤ T 1 . 

.2. Resistance loss 

Directly using Eq. (5) to train CNNs is similar to self-paced 

earning, and the model will gradually overfit on corrupted la- 

els, with the increasing number of training epochs. To address 

his problem, we propose a resistance loss using the cross en- 

ropy between model predictions of previous and current training 

pochs in each mini-batch. Because knowledge distillation meth- 

ds [52–55] using model predictions as the teacher can also alle- 

iate model overfitting, we present the core idea of the proposed 

esistance loss and their differences in Fig. 3 , where the resistance 

oss ( Fig. 3 a) contains c weighted cross-entropy losses (see Eq. (7) ), 

 

t−1 
i 

is the weight, p i in the bottom row is the model prediction, 

nd p i [ j] = 1 ( 1 ≤ j ≤ c) in the top row is the target; Knowledge

istillation ( Fig. 3 b) employs the prediction p 

t−1 
i 

of previous train- 

ng epoch or a peer model as a teacher (see Eq. (15) in Section 5.2 ).

Suppose that p i [ j] is the label prediction of the sample x i be-

onging to the jth class in the tth training epoch, and p 

t−1 
i 

[ j] ∈
 

t−1 
i 

is the label prediction before using x i to update model pa- 

ameters in the t − 1 th training epoch. We propose the resistance 

oss as follows: 

in 

w 

1 

| B | 
∑ 

i ∈ B 

c ∑ 

j=1 

−p 

t−1 
i 

[ j ] log (p i [ j ]) . (7) 

q. (7) is used to resist model overfitting of CNNs on corrupted 

abels for boosting model robustness. It is mainly inspired by: 

i) Eq. (7) might smooth the update of model parameters; (ii) 

q. (7) tends to make p i [ j] → 

1 
c ( 1 ≤ j ≤ c). Let p 

t 
i 

be the label pre-

iction of x i before using it to update model parameters in the 

th training epoch, to better illustrate these two motivations, we 

resent Proposition 1 and show its proof in the following. 

roposition 1. Suppose that solving the problem in Eq. (7) with gra- 

ient descent, for any two entries p i [ j] , p i [ k ] ∈ p i and p 

t 
i 
[ j] > p 

t 
i 
[ k ] .

here are only three cases between 
p t 

i 
[ j] 

p t 
i 
[ k ] 

and 
p t−1 

i 
[ j] 

p t−1 
i 

[ k ] 
: (i) 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
< 

p t 
i 
[ j] 

p t 
i 
[ k ] 

; (ii) 
p t−1 

i 
[ j] 

p t−1 
i 

[ k ] 
> ( 

p t 
i 
[ j] 

p t 
i 
[ k ] 

) 2 ; (iii) 
p t 

i 
[ j] 

p t 
i 
[ k ] 

≤ p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
≤ ( 

p t 
i 
[ j] 

p t 
i 
[ k ] 

) 2 . For case (i) 

nd (ii), there exists 
p i [ j] 

p i [ k ] 
< 

p t 
i 
[ j] 

p t 
i 
[ k ] 

and 
p t−1 

i 
[ j] 

p t−1 
i 

[ k ] 
> 

p i [ j] 

p i [ k ] 
> 

p t 
i 
[ j] 

p t 
i 
[ k ] 

, respec- 

ively, thereby smoothing the update of model parameters; for case 
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Fig. 3. The core idea of the proposed resistance loss and its difference from knowledge distillation. 
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iii), there exists 
p i [ j] 

p i [ k ] 
≤ p t 

i 
[ j] 

p t 
i 
[ k ] 

≤ p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
, upon which each entry in p i 

ends to be gradually equivalent, i.e. p i [ j] = p i [ k ] = 

1 
c , ∀ 1 ≤ j, k ≤ c. 

Proof: Let E(p i ) = 

∑ c 
j=1 −p 

t−1 
i 

[ j ] log(p i [ j ]) , taking its derivative

ith respect to (w.r.t) p i [ j] , we have: 

∂E(p i ) 

∂p i [ j] 
= −p 

t−1 
i 

[ j] 

p i [ j] 
, (8) 

hich means that � E(p 

t 
i 
[ j]) = − p t−1 

i 
[ j] 

p t 
i 
[ j] 

. Here, the entries in p i are

ndependent, because Eq. (7) is used as c weighted cross-entropy 

osses (please refer to Fig. 3 a). Note that in this paper, log utilizes 

 as its base. 

If c = 1 , then p i [ j ] = p 

t 
i 
[ j ] + η

p t−1 
i 

[ j] 

p t 
i 
[ j] 

, where η denotes the learn-

ng rate. Because p 

t−1 
i 

[ j] > 0 , p 

t 
i 
[ j] > 0 and η > 0 , p i [ j] will gradu-

lly approximate to 1, i.e. −p 

t−1 
i 

[ j ] log(p i [ j ]) → 0 . 

If c > 1 , for any two entries p 

t 
i 
[ j] > p 

t 
i 
[ k ] , 1 ≤ j, k ≤ c, then when

> 0 , there exists: 

p i [ j] 

p i [ k ] 
= 

p 

t 
i 
[ j] + η

p t−1 
i 

[ j] 

p t 
i 
[ j] 

p 

t 
i 
[ k ] + η

p t−1 
i 

[ k ] 

p t 
i 
[ k ] 

. (9) 

Based on Eq. (9) , when 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
< 

p t 
i 
[ j] 

p t 
i 
[ k ] 

, there exists 

p t−1 
i 

[ j] 

p t 
i 

[ j] 

p t−1 
i 

[ k ] 

p t 
i 

[ k ] 

< 1 , 

eading to 
p i [ j] 

p i [ k ] 
< 

p t 
i 
[ j] 

p t 
i 
[ k ] 

, thereby smoothing the update of model 

arameters. In addition, if 
p t−1 

i 
[ j] 

p t−1 
i 

[ k ] 
< 1 , there exists 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
< 

p i [ j] 

p i [ k ] 
< 

p t 
i 
[ j] 

p t 
i 
[ k ] 

. 

When 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
> ( 

p t 
i 
[ j] 

p t 
i 
[ k ] 

) 2 , i.e., 

p t−1 
i 

[ j] 

p t 
i 

[ j] 

p t−1 
i 

[ k ] 

p t 
i 

[ k ] 

> 

p t 
i 
[ j] 

p t 
i 
[ k ] 

, it has 
p i [ j] 

p i [ k ] 
> 

p t 
i 
[ j] 

p t 
i 
[ k ] 

. 

q. (9) equals 
p i [ j] 

p i [ k ] 
= 

(p t 
i 
[ j ]) 2 + ηp t−1 

i 
[ j ] 

(p t 
i 
[ k ]) 2 + ηp t−1 

i 
[ k ] 

· p t 
i 
[ k ] 

p t 
i 
[ j] 

and 

p t 
i 
[ k ] 

p t 
i 
[ j] 

< 1 , so they 

uggest 
p i [ j] 

p i [ k ] 
< 

(p t 
i 
[ j ]) 2 + ηp t−1 

i 
[ j ] 

(p t 
i 
[ k ]) 2 + ηp t−1 

i 
[ k ] 

< 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
. Thus, 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
> 

p i [ j] 

p i [ k ] 
> 

p t 
i 
[ j] 

p t 
i 
[ k ] 

, 

hich means model parameters’ update would be smoothed. 

When 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
≤ ( 

p t 
i 
[ j] 

p t 
i 
[ k ] 

) 2 , i.e., 

p t−1 
i 

[ j] 

p t 
i 

[ j] 

p t−1 
i 

[ k ] 

p t 
i 

[ k ] 

≤ p t 
i 
[ j] 

p t 
i 
[ k ] 

, it has 
p i [ j] 

p i [ k ] 
≤ p t 

i 
[ j] 

p t 
i 
[ k ] 

. 

ith an additional constraint 
p t−1 

i 
[ j] 

p t−1 
i 

[ k ] 
≥ p t 

i 
[ j] 

p t 
i 
[ k ] 

, it means 
p i [ j] 

p i [ k ] 
≤ p t 

i 
[ j] 

p t 
i 
[ k ] 

≤
p t−1 

i 
[ j] 

p t−1 [ k ] 
. In this case, each entry in p i will gradually becomes equiv- 
i 

5 
lent, i.e. p i [ j] = p i [ k ] . With a constraint 
∑ c 

j=1 p 

t 
i 
[ j] = 1 , there will

e p i [ j] = p i [ k ] → 

1 
c . 

Therefore, Proposition 1 is proved. 

In practice, because cases (i) and (ii) in Proposition 1 smoothly 

pdate model parameters, the relationship between 

p t 
i 
[ j] 

p t 
i 
[ k ] 

and 

p t−1 
i 

[ j] 

p t−1 
i 

[ k ] 
might gradually satisfy the case (iii), thereby causing each 

ntry in p i gradually to be equivalent, where p i [ j] and p i [ k ] ( ∀
 ≤ j, k ≤ c) are gradually equivalent, i.e. p i [ j] = p i [ k ] → 

1 
c , so that

he objective of Eq. (7) becomes larger. This infers the case (iii) in 

roposition 1 , i.e, Eq. (7) can gradually make each entry of prob- 

bility ratios be equivalent. For clarity, Fig. 4 presents two exam- 

les to show the change of the objective in Eq. (7) from 101 to

00 epochs during training, with randomly selecting 10 0 0 digits 

rom ‘0’ to ‘9’ in MNIST [56] and 10 0 0 images belonging to 10 cat-

gories from CIFAR-10 [57] , respectively. Specifically, we first uti- 

ize Eq. (4) to train ResNet18 [58] with 100 epochs, and then adopt 

q. (7) to train the network for the subsequent 200 epochs. The 

oss gradually approximates to 
∑ 10 

j=1 −0 . 1 ∗ log(0 . 1) = 2 . 303 . 

Moreover, Fig. 5 shows an example to display the change of 

rediction probability of training data on their true classes when 

sing Eqs. (4) , (5) and (10) ( Eqs. (5) + (7) ), with randomly select-

ng training data from CIFAR-10 [57] and flip their labels using 

q. (14b) . Figure 5 presents that the curve in Fig. 5 c is smoother

han that in Fig. 5 a-b. This suggests that Eq. (7) can smooth the 

pdate of model parameters. Figure 5 c also illustrates that SPRL 

sing Eq. (7) can resist model overfitting on corrupted labels. Note 

hat SPRL aims to smooth all samples via the resistance loss during 

raining, thereby causing the decrease of prediction probability on 

orrect labels in Fig. 5 c. However, correct-label data, which usually 

btain high prediction confidence and their number is larger than 

hat of corrupt-label ones in each class, play a signifcant role in 

uiding the model to attain correct predictions. 

.3. Self-paced resistance loss 

Based on the learned curriculum and the proposed resistance 

oss, we can obtain the loss function of the proposed framework. 

pecifically, combining Eqs. (5) with (7) , we have: 

in 

w , v 
E(w , v ;λ) = 

1 ∑ 

i ∈ B v i 

∑ 

i ∈ B −v i (log(p i [ ̃  y i ]) + λ) 

+ 

γ (t) 
| B | 

∑ 

i ∈ B 
∑ c 

j=1 −p 

t−1 
i 

[ j ] log (p i [ j ]) , 

s.t. v ∈ { 0 , 1 } n , ∑ n 
i =1 v i = δ(t) , 

(10) 

here γ (t) is a time-dependent weighting function to gradually 

nhance the weight of model predictions with the increasing num- 

er of epochs, so that Eq. (7) is mainly used to prevent model 

verfitting on corrupted labels. Because DNNs might first memo- 
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Fig. 4. The loss of Eqs. (4) and (7) at different numbers of training epochs. 

Fig. 5. The prediction probability of training data on their true classes with respect to training epochs, with training ResNet18 [58] on noisy-label data by using three 

methods: (a) Standard ( Eq. (4) ), (b) CL ( Eq. (5) ), (c) SPRL ( Eq. (10) ). 
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ize the correct-label data and then corrupt-label samples, and the 

oise rate of selected samples usually increases eventually. 

There are many choices for γ (t) . Similar to the popular ramp- 

p function in [12] , we utilize the following function: 

(t) = 

{
0 t ≤ T 1 

γmax e 
−5 ‖ 1 −μ‖ 2 F T 1 < t ≤ T , 

(11) 

here μ linearly ramps up from 0 to 1 during T − T 1 epochs, 

max is the maximum of γ (t) depending on m , e.g. γmax = γd (10 −
 

m 

0 . 1 n � ) . This is because a larger γmax is required for a larger noise

ate. 

The optimization of Eq. (10) is similar to that of Eqs. (1) and (2) ,

nd thus we solve it by utilizing an alternative minimization strat- 

gy [50,51] . Specifically, it can be divided into two sub-problems: 

min 

v 

∑ 

i ∈ B 
−v i log(p 

t−1 
i 

[ ̃  y i ]) − λv i , 

.t. v ∈ { 0 , 1 } n , 
n ∑ 

i =1 

v i = δ(t − 1) . (12a) 

min 

w 

1 ∑ 

i ∈ B v i 

∑ 

i ∈ B 
−v i log(p i [ ̃  y i ]) 

 

γ (t) 

| B | 
∑ 

i ∈ B 

c ∑ 

j=1 

−p 

t−1 
i 

[ j ] log(p i [ j ]) . (12b) 
c

6

Eq. (12a) is a v -subproblem, in which the model parameter w 

s known, and it aims to learn a curriculum consisting of confi- 

ent samples; Eq. (12b) is a w -subproblem, which consists of a 

ross-entropy loss to utilize selected confident samples to update 

odel parameters, and a resistance loss to resist model overfitting 

f CNNs on corrupted labels. We alternatively solve Eqs. (12a) and 

12b) , i.e. fixing w , based on Eq. (12a) , we can calculate v as fol-

ows: 

 

∗
i = 

{
1 i f − log(p 

t−1 
i 

[ ̃  y i ]) < λ

0 otherwise. 
(13) 

ote that in each epoch we might need to adjust λ so that 
 n 
i =1 v i = δ(t − 1) . Then with a fixed v , we can update the model

arameter w by solving Eq. (12b) via any optimizer, e.g. Adam [59] . 

n summary, we present the detailed procedure to solve Eq. (10) in 

lgorithm 1 . 

. Experiments 

To evaluate the proposed SPRL, we conduct experiments on four 

arge-scale benchmark datasets: MNIST, CIFAR-10, CIFAR-100 and 

ini-ImageNet. We briefly introduce them in the following. 

MNIST [56] consists of 70K images with handwritten digits 

rom ‘0’ to ‘9’. There are 60K training and 10K testing images, each 

f which has a size of 28 × 28 . 

CIFAR-10 [57] contains 60K color images belonging to 10 

lasses, each of which consists of 6K images. There are 50K train- 
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Algorithm 1 SPRL. 

Input: Training data X = { x i } n i =1 , noisy labels ˜ y = { ̃  y i } n i =1 , 

number of training epochs: T 1 , T , parameters λ, K, γd 

piecewise linear function δ(t) , 

stochastic neural network with parameters w : f (·) , 
stochastic input augmentation function: h (·) 
Output: Parameters w 

1. for t in [1 , T 1 ] do 

2. for each mini-batch B do 

3. p i ∈ B ← f (h (x i ∈ B )) 
4. loss ← Eq. (4) 

5. updating w using optimizers, e.g. Adam 

6. end for 

7. end for 

8. for t in [ T 1 + 1 , T ] do 

9. v ← Eq. (13) � Adjust λ to make 
∑ n 

i =1 v i = δ(t − 1) 

10. for each mini-batch B do 

11. p i ∈ B ← f (h (x i ∈ B )) 
12. loss ← Eq. (12b) 

13. updating w using optimizers, e.g. Adam 

14. p 

t−1 
i ∈ B ← p i ∈ B 

15. end for 

16. end for 
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ng and 10K testing images. Each one is aligned and cropped to 

2 × 32 pixels. 

CIFAR-100 [57] has 60K color images in 100 classes, with 600 

mages per class. There are also 50K training and 10K testing im- 

ges. Each image has a size of 32 × 32 . 

Mini-ImageNet [60] is more complex than CIFAR-100. It is com- 

osed of 60K color images selected from the ImageNet dataset [61] . 

hese images belong to 100 classes, with 600 images per class. We 

ivide them into a training set with 50K images and a testing set 

ontaining 10K images, and resize each image to 32 × 32 . 

The images in CIFAR-10, CIFAR-100 and Mini-ImageNet 

atasets are with the popular augmentation: random transla- 

ions ( {  x,  y } ∼ [ −4 , 4 ] ) and horizontal flip ( p = 0 . 5 ), and each

mage in MNIST is only augmented by the random translation 

 {  x,  y } ∼ [ −2 , 2 ] ). 

For these four datasets, their noisy labels are generated by sym- 

etry and pair flipping. Specifically, following [13,15] , we corrupt 

he four datasets manually via a label transition matrix Q that 

s calculated by q i j = P r( ̃  y = j| y = i ) , where the noisy label ˜ y is

ipped from the correct label y . Similar to Han et al. [15] , here

 has two representative structures: symmetric flipping (class- 

ndependent noise) and pair flipping (class-dependent noise). For 

larity, we present the definition of Q with symmetric and pair 

ipping structures in Eqs. (14a) and (14b) , respectively. It is worth 

oting that for symmetric flipping, the noise rate ε should be 

maller than 

c−1 
c , i.e. ε < 

c−1 
c ; for pair flipping, ε < 0 . 5 so that

ore than half of labels are correct. Note that the noise rate 

denotes the ratio of corrupted labels in the whole training 

ata. 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 − ε ε
c−1 

· · · ε
c−1 

ε
c−1 

ε
c−1 

1 − ε ε
c−1 

· · · ε
c−1 

. . . 
. . . 

. . . 
ε

c−1 
· · · ε

c−1 
1 − ε ε

c−1 
ε

c−1 
ε

c−1 
· · · ε

c−1 
1 − ε

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(14a) 
c

7 
 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 − ε ε 0 · · · 0 

0 1 − ε ε 0 

. . . 
. . . 

. . . 

0 1 − ε ε

ε 0 · · · 0 1 − ε

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(14b) 

In addition to symmetry and pair flipping labels, we also con- 

uct experiments on noisy labels generated by CNNs with using 

he datasets CIFAR-10 and CIFAR-100. Specifically, we uniformly 

elect 4K and 10K images from the training set of CIFAR-10 and 

IFAR-100 as labeled data, respectively, and view the remaining 

mages of training sets as unlabeled ones. Next, we only utilize 

abeled data to train models, and then employ the well-trained 

odel to predict the whole training data to generate noisy labels. 

Moreover, we conduct experiments on real-world nosiy labels 

rom the datasets Food101 and Clothing1M, respectively. Specifi- 

ally, 

Food101 [62] contains 101K images belonging to 101 food cat- 

gories, with 750 training and 250 testing images per category. 

raining images are with noisy labels, while testing images have 

lean labels. 

Clothing1M [40] consists of 1 million clothing images in 14 

lasses. We utilize training images with noisy labels for model 

raining and 10K testing images with clean labels for testing. 

.1. Implementation details 

We implement SPRL with the PyTorch framework and em- 

loy a 13-layer convoluational neural network (ConvNet) [12,63] or 

esNet18 [58] as the backbone network. We adopt the optimizer, 

dam [59] , to update the network parameters, with initializing the 

omentum parameters β1 = 0 . 9 and β2 = 0 . 999 . By default, we

ollow [15] to set the maximum learning rate η to be 0.001, run 

he network for T = 200 epochs and set the batch size to be 128.

hen using ResNet18 on MNIST, we choose η = 0 . 0 0 01 to avoid

xploding gradient. After the first 80 epochs, β1 becomes 0.1 and 

he learning rate linearly decreases to 0 over the following 120 

pochs. T 1 can be obtained through a validation set. Specifically, 

e randomly select 10% noisy training data to construct a valida- 

ion set. T 1 is the epoch number, at which the network attains the 

est validation accuracy, in order to obtain the best model pre- 

ictions. When the noise rate ε is not known, m is the maximum 

umber of training data whose prediction p i [ y i ] ≥ 0 . 5 (1 ≤ i ≤ n )

uring the first T 1 epochs; when ε is known, we can empirically 

hoose m within the range of [ 0 . 5(1 − ε) n, 0 . 8(1 − ε) n ] . Addition- 

lly, m should satisfy m ∈ [ 0 . 1 n, 0 . 5 n ] , because the noise rate ε is 

sually smaller than 0.9 and a large m might reduce the effect of 

urriculum learning. There are many choices for K, we set K = 10 .

d can be estimated with cross-validation on noisy validation sets. 

or clarity, we present the detailed parameter settings ( T 1 and γd ) 

f each experiment in the supplemental materials (Please refer to 

ables A3-A4). 

.2. Experimental settings 

We compare the proposed SPRL with seven state-of-the-art al- 

orithms. We briefly introduce them as follows: 

Standard : the standard DNNs trained on noisy datasets. 

Bootstrap [11] : which corrects the label by using the weighted 

ombination of predicted and original labels. We adopt hard labels 

n our experiments because they usually perform better than soft 

nes. 

F-correction [13] : which utilizes a label transition matrix to 

orrect model predictions. We employ the forward strategy, which 
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Table 1 

The best testing accuracy (%) of eight different methods on MNIST, CIFAR- 

10, CIFAR-100 and Mini-ImageNet with clean training data ( ε = 0 ). We bold 

the best accuracy and its similar results (within 0.5%). 

Method ResNet18 

MNIST CIFAR-10 CIFAR-100 Mini-ImageNet 

Standard 99 . 63 93.06 72.35 55.26 

Boostrap 99 . 65 94 . 25 73.03 58.27 

F-correction 99 . 65 94 . 08 72.92 58.03 

Decoupling 99 . 68 92.10 69.87 47.74 

MentorNet 99 . 65 93 . 87 70.46 53.48 

Co-teaching 99 . 58 92.88 72.68 57.04 

Co-teaching + 99 . 58 93.17 70.48 55.88 

SPRL 99 . 67 94 . 20 73 . 88 63 . 04 

ConvNet 

MNIST CIFAR-10 CIFAR-100 Mini-ImageNet 

Standard 99 . 67 92.66 71.04 53.82 

Boostrap 99 . 69 93 . 57 72.34 56.36 

F-correction 99 . 69 93 . 76 73 . 01 58.66 

Decoupling 99 . 48 92.35 70.03 47.68 

MentorNet 99 . 71 92.15 69.23 55.40 

Co-teaching 99 . 74 93 . 60 72.04 58.57 

Co-teaching + 99 . 69 92.74 70.96 59.10 

SPRL 99 . 69 92.76 72.23 60 . 27 
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Table 2 

Average of testing accuracy (%) on MNIST, CIFAR-10, CIFAR-100 and Mini-ImageNet 

over the last ten epochs. We bold the best results and highlight the second best 

ones via underlines. 

Method ResNet18 

Symmetry Pair 

ε = 0 . 2 ε = 0 . 5 ε = 0 . 8 ε = 0 . 45 

MNIST 

Standard 92 . 69 ± 0 . 18 65 . 49 ± 0 . 33 24 . 59 ± 0 . 18 58 . 50 ± 0 . 34 

Boostrap 93 . 89 ± 0 . 08 66 . 48 ± 0 . 63 24 . 38 ± 0 . 35 59 . 92 ± 0 . 52 

F-correction 97 . 08 ± 0 . 11 92 . 86 ± 0 . 14 40 . 93 ± 0 . 30 10 . 32 ± 0 . 01 

Decoupling 95 . 70 ± 0 . 64 72 . 60 ± 4 . 17 27 . 00 ± 0 . 52 71 . 58 ± 2 . 35 

MentorNet 93 . 51 ± 0 . 01 83 . 10 ± 0 . 01 24 . 96 ± 0 . 01 82 . 51 ± 0 . 01 

Co-teaching 96 . 89 ± 0 . 11 91 . 01 ± 0 . 13 75 . 92 ± 0 . 47 87 . 44 ± 0 . 33 

Co-teaching + 99 . 04 ± 0 . 02 94 . 69 ± 0 . 15 38 . 34 ± 1 . 23 87 . 36 ± 0 . 39 

SPRL 99 . 58 ± 0 . 01 99 . 53 ± 0 . 01 98 . 35 ± 0 . 16 99 . 30 ± 0 . 01 

CIFAR-10 

Standard 79 . 47 ± 0 . 24 45 . 37 ± 0 . 53 10 . 01 ± 0 . 19 51 . 48 ± 0 . 80 

Boostrap 83 . 39 ± 0 . 26 57 . 24 ± 0 . 48 17 . 96 ± 0 . 27 51 . 95 ± 0 . 57 

F-correction 80 . 11 ± 0 . 16 45 . 92 ± 0 . 65 6 . 51 ± 0 . 19 52 . 35 ± 0 . 48 

Decoupling 76 . 60 ± 1 . 25 53 . 63 ± 1 . 21 16 . 18 ± 0 . 17 50 . 22 ± 2 . 58 

MentorNet 80 . 04 ± 0 . 21 53 . 20 ± 0 . 16 42 . 02 ± 0 . 19 49 . 93 ± 0 . 11 

Co-teaching 88 . 34 ± 0 . 23 81 . 64 ± 0 . 19 32 . 39 ± 0 . 26 79 . 09 ± 0 . 43 

Co-teaching + 90 . 87 ± 0 . 10 83 . 52 ± 0 . 10 23 . 18 ± 0 . 10 60 . 07 ± 0 . 56 

SPRL 92 . 68 ± 0 . 03 88 . 25 ± 0 . 06 57 . 50 ± 0 . 11 91 . 89 ± 0 . 06 

CIFAR-100 

Standard 54 . 14 ± 0 . 21 28 . 73 ± 0 . 19 7 . 03 ± 0 . 10 35 . 24 ± 0 . 08 

Boostrap 55 . 94 ± 0 . 29 31 . 37 ± 0 . 22 7 . 48 ± 0 . 10 37 . 07 ± 0 . 21 

F-correction 56 . 32 ± 0 . 12 37 . 73 ± 0 . 08 9 . 09 ± 0 . 08 37 . 79 ± 0 . 19 

Decoupling 54 . 56 ± 0 . 61 30 . 51 ± 0 . 36 7 . 37 ± 0 . 09 36 . 74 ± 0 . 28 

MentorNet 52 . 11 ± 0 . 16 26 . 71 ± 0 . 16 12 . 76 ± 0 . 08 33 . 92 ± 0 . 14 

Co-teaching 62 . 71 ± 0 . 13 48 . 14 ± 0 . 15 15 . 94 ± 0 . 10 39 . 49 ± 0 . 23 

Co-teaching + 66 . 41 ± 0 . 12 51 . 65 ± 0 . 13 19 . 17 ± 0 . 09 34 . 96 ± 0 . 28 

SPRL 70 . 93 ± 0 . 06 59 . 31 ± 0 . 07 28 . 53 ± 0 . 10 53 . 59 ± 0 . 06 

Mini-ImageNet 

Standard 34 . 07 ± 0 . 18 16 . 17 ± 0 . 21 3 . 55 ± 0 . 10 22 . 78 ± 0 . 16 

Boostrap 34 . 91 ± 0 . 39 18 . 22 ± 0 . 19 4 . 14 ± 0 . 18 24 . 28 ± 0 . 27 

F-correction 31 . 81 ± 0 . 14 12 . 29 ± 0 . 10 2 . 13 ± 0 . 04 6 . 13 ± 0 . 07 

Decoupling 33 . 38 ± 0 . 17 16 . 63 ± 0 . 12 4 . 26 ± 0 . 06 22 . 78 ± 0 . 19 

MentorNet 29 . 19 ± 0 . 01 14 . 14 ± 0 . 01 1 . 06 ± 0 . 01 21 . 89 ± 0 . 01 

Co-teaching 48 . 84 ± 0 . 09 36 . 98 ± 0 . 17 5 . 86 ± 0 . 11 29 . 21 ± 0 . 11 

Co-teaching + 51 . 13 ± 0 . 14 36 . 86 ± 0 . 23 7 . 23 ± 0 . 05 27 . 46 ± 0 . 07 

SPRL 57 . 24 ± 0 . 09 47 . 66 ± 0 . 11 20 . 77 ± 0 . 09 39 . 53 ± 0 . 07 

Method ConvNet 

Symmetry Pair 

ε = 0 . 2 ε = 0 . 5 ε = 0 . 8 ε = 0 . 45 

MNIST 

Standard 86 . 84 ± 0 . 27 60 . 80 ± 0 . 59 24 . 80 ± 0 . 51 57 . 14 ± 0 . 56 

Boostrap 91 . 48 ± 0 . 16 61 . 05 ± 0 . 69 21 . 11 ± 0 . 32 55 . 51 ± 0 . 72 

F-correction 87 . 12 ± 0 . 19 66 . 36 ± 0 . 45 58 . 17 ± 0 . 54 57 . 70 ± 0 . 64 

Decoupling 96 . 26 ± 0 . 24 88 . 93 ± 0 . 40 71 . 02 ± 0 . 39 61 . 22 ± 2 . 34 

MentorNet 95 . 78 ± 0 . 01 92 . 44 ± 0 . 01 47 . 55 ± 0 . 01 73 . 67 ± 0 . 01 

Co-teaching 98 . 91 ± 0 . 04 96 . 55 ± 0 . 07 89 . 54 ± 0 . 26 93 . 64 ± 0 . 14 

Co-teaching + 99 . 56 ± 0 . 01 99 . 15 ± 0 . 02 77 . 77 ± 0 . 03 97 . 25 ± 0 . 17 

SPRL 99 . 56 ± 0 . 01 99 . 43 ± 0 . 01 97 . 52 ± 0 . 04 99 . 28 ± 0 . 01 

CIFAR-10 

Standard 77 . 82 ± 0 . 27 48 . 11 ± 0 . 42 22 . 31 ± 0 . 34 50 . 73 ± 0 . 62 

Boostrap 75 . 34 ± 0 . 84 47 . 37 ± 0 . 74 18 . 00 ± 0 . 53 51 . 11 ± 0 . 74 

F-correction 84 . 26 ± 0 . 21 62 . 90 ± 0 . 42 11 . 58 ± 0 . 16 61 . 98 ± 0 . 40 

Decoupling 83 . 49 ± 0 . 19 68 . 73 ± 0 . 27 40 . 16 ± 0 . 30 50 . 61 ± 3 . 12 

MentorNet 81 . 80 ± 0 . 01 73 . 62 ± 0 . 14 27 . 90 ± 0 . 05 52 . 96 ± 0 . 02 

Co-teaching 86 . 40 ± 2 . 58 83 . 06 ± 0 . 15 28 . 39 ± 0 . 31 80 . 21 ± 0 . 58 

Co-teaching + 90 . 43 ± 0 . 10 85 . 87 ± 0 . 08 20 . 41 ± 0 . 04 77 . 51 ± 0 . 22 

SPRL 90 . 47 ± 0 . 06 85 . 99 ± 0 . 05 60 . 42 ± 0 . 12 83 . 69 ± 0 . 12 

CIFAR-100 

Standard 23 . 87 ± 0 . 15 9 . 37 ± 0 . 11 34 . 83 ± 0 . 30 

Boostrap 50 . 51 ± 0 . 25 25 . 21 ± 0 . 18 9 . 66 ± 0 . 15 34 . 43 ± 0 . 21 

F-correction 54 . 42 ± 0 . 13 33 . 19 ± 0 . 11 5 . 54 ± 0 . 08 38 . 70 ± 0 . 34 

Decoupling 53 . 99 ± 0 . 17 32 . 84 ± 0 . 10 14 . 81 ± 0 . 09 37 . 31 ± 0 . 23 

MentorNet 52 . 70 ± 0 . 01 38 . 75 ± 0 . 02 11 . 02 ± 0 . 01 31 . 87 ± 0 . 01 

Co-teaching 66 . 30 ± 0 . 43 57 . 29 ± 0 . 13 19 . 96 ± 0 . 17 37 . 50 ± 0 . 19 

Co-teaching + 69 . 00 ± 0 . 12 59 . 79 ± 0 . 13 11 . 57 ± 0 . 07 43 . 21 ± 0 . 21 

SPRL 67 . 65 ± 0 . 10 59 . 81 ± 0 . 12 35 . 82 ± 0 . 14 47 . 26 ± 0 . 11 

Mini-ImageNet 

Standard 38 . 06 ± 0 . 31 19 . 61 ± 0 . 25 7 . 96 ± 0 . 11 26 . 69 ± 0 . 16 

Boostrap 38 . 73 ± 0 . 38 19 . 12 ± 0 . 15 5 . 75 ± 0 . 11 27 . 60 ± 0 . 22 

F-correction 33 . 45 ± 0 . 18 26 . 96 ± 0 . 08 2 . 24 ± 0 . 03 5 . 04 ± 0 . 06 

Decoupling 30 . 37 ± 0 . 15 15 . 46 ± 0 . 17 6 . 21 ± 0 . 05 24 . 12 ± 0 . 11 

MentorNet 43 . 47 ± 0 . 02 31 . 09 ± 0 . 01 1 . 80 ± 0 . 01 27 . 01 ± 0 . 01 

Co-teaching 53 . 62 ± 0 . 13 43 . 54 ± 0 . 15 5 . 51 ± 0 . 05 30 . 68 ± 0 . 16 

Co-teaching + 54 . 99 ± 0 . 13 45 . 02 ± 0 . 23 6 . 06 ± 0 . 06 33 . 94 ± 0 . 15 

SPRL 55 . 32 ± 0 . 08 46 . 32 ± 0 . 13 24 . 40 ± 0 . 08 37 . 78 ± 0 . 12 
sually yields better performance, and utilize a validation set to 

stimate the label transition matrix. 

Decoupling [18] : which updates model parameters using the 

amples with different predictions of two classifiers. 

MentorNet [14] : which adopts an additional network to learn 

n approximate predefined curriculum and employs another net- 

ork, StudentNet, for classification. We utilize self-paced Mentor- 

et, which is used for the case that no clean validation data is 

nown. 

Co-teaching [15] : which trains two networks in a symmetric 

ay and each network selects the samples with the small-loss dis- 

ance as the confident data for the other one. 

Co-teaching+ [19] : which is based on Co-teaching but using the 

trategy of“Update by Disagreement” [18] . 

Here, we suppose that the noise rate is known in Co-teaching 

nd Co-teaching+, but the noise rate is unknown in the proposed 

PRL. For fairness, we re-implement all the seven state-of-the-art 

lgorithms with the PyTorch framework based on their provided 

ublic codes and utilize their default parameter settings. Addition- 

lly, they adopt the same backbone networks and training proce- 

ure as SPRL. 

.3. Experiments on labels with symmetry and pair flipping 

To better illustrate the strength of the proposed SPRL, we first 

un all the eight methods with clean training data of the four 

atasets, and then present their best testing accuracy in Table 1 . 

s we can see, SPRL can achieve better or very competitive testing 

ccuracy to the best competitors when using clean training data, 

nd it consistently outperforms Standard, especially for more dif- 

cult datasets CIFAR-100 and Mini-ImageNet. A main possible rea- 

on is that the proposed method could reduce overfitting caused 

y outliers. This finding is very important. It shows that the pro- 

osed method has a wide range of applications. 

Table 2 shows the average of testing accuracy of the proposed 

PRL and seven compared algorithms on MNIST, CIFAR-10, CIFAR- 

00 and Mini-ImageNet over the last ten epochs. It illustrates that 

PRL significantly outperforms the other seven algorithms on the 

our datasets, especially on extremely noisy labels. For example, 

hen using ResNet18, for symmetric flipping with ε = 0 . 8 , the av-

rage accuracy of SPRL is 22.43%, 15.48%, 9.36% and 13.54% higher 

han the best competitors on the four datasets, respectively; for 

air flipping with ε = 0 . 45 , its accuracy is 11.86%, 12.80%, 14.10%
8 
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Fig. 6. Testing accuracy of SPRL with different values of γd on MNIST when T 1 = 15 . ‘Average’ means the average of testing accuracy over the last ten epochs, and ‘Max’ 

denotes the maximum of testing accuracy among all training epochs. 

Fig. 7. Testing accuracy of SPRL with different values of γd on CIFAR-100 when T 1 = 40 . ‘Average’ means the average of testing accuracy over the last ten epochs, and ‘Max’ 

denotes the maximum of testing accuracy among all training epochs. 
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nd 10.32% higher than the best competitors on the four datasets, 

espectively. The superior accuracy of SPRL over the others can 

lso be observed when using ConvNet. Note that, the implemen- 

ation results of Co-teaching with ConvNet are significantly bet- 

er than the reported ones in [15] . Because we utilize the data 

ugmentation, which boosts the model performance. Moreover, we 

resent testing accuracy of the eight methods at different num- 

ers of training epochs on the four datasets in the supplemental 

aterials (please see Figures. A4-A7), which further illustrate that 

RL can obtain the best accuracy among all methods on two differ- 

nt network architectures, and its accuracy is much smoother than 

hat of the others during training. 

.3.1. Parameter analysis 

The proposed SPRL has three essential parameters γd , K, and 

 1 , where γd and K determine γ (t) and δ(t) , respectively, and 

 1 determines m . Here, we evaluate them by utilizing an easy 

ataset MNIST, a complex dataset CIFAR-100 and the network Con- 

Net. Specifically, Figures 6 –7 show testing accuracy of SPRL with 

ifferent values of γd on symmetric or pair flipping label noise, 

ncluding γd ∈ { 0 , 1 , 5 , 10 , 50 , 100 , 300 , 500 , 1000 } on MNIST and 

d ∈ { 0 , 1 , 3 , 5 , 10 , 30 , 50 , 100 , 300 } on CIFAR-100. Additionally, we 

resent the testing accuracy of SPRL with different K and T 1 in Fig- 

res. A1-A2, and display the effect of different noise rates on the 

oss function Eq. (12b) during training in Figure A3 in the supple- 

ental material. 

Figures 6 –7 suggest that a large weight of the resistance loss 

 Eq. (7) ) can prevent the performance degradation of CNNs on 

ymmetric or pair flipping label noise. Additionally, Fig. 7 also sug- 

ests that Eq. (7) with a large weight can boost the model accu- 

acy. When γd ≥ 50 , SPRL obtains the best or sub-optimal accu- 

acy on MNIST; when γd ∈ [ 1 , 10 ] , SPRL obtains the best or sub- 

ptimal accuracy on CIFAR-100 with symmetric label noise, and 

hen γd ∈ [ 10 , 50 ] , it achieves the best or sub-optimal accuracy on 

air flipping label noise. However, Fig. 7 illustrates that if γd is too 

arge, the model accuracy will decrease on CIFAR-100, probably be- 
9 
ause the resistance loss with model predictions tends to make the 

rediction on each class be equivalent. Furthermore, γd = 0 means 

emoving the resistance loss ( Eq. (7) ) from the proposed loss func- 

ion ( Eq. (10) ), as shown in Figures 6 –7 , the proposed resistance

oss is very helpful to improve performance. 

.3.2. Comparison with knowledge distillation and label smooth 

egularization 

Knowledge distillation [52] and label smooth [2] are two pop- 

lar methods for boosting the model generalization. Here, we uti- 

ize Eq. (15) to distill knowledge from previous training epochs and 

q. (16) to smooth labels, and replace Eq. (7) with them in Eq. (10) ,

espectively. They are: 

in 

w 

1 

| B | 
∑ 

i ∈ B 
p 

t−1 
i 

log ( 
p 

t−1 
i 

p i 

) , (15) 

in 

w 

1 

| B | 
∑ 

i ∈ B 
u i log ( 

u i 

p i 

) , (16) 

here w denotes model parameters and u i = 

{
1 
c , 

1 
c , · · · , 1 c 

}
∈ R 

c . 

Figure 8 shows their performance using ResNet18 as the back- 

one network on CIFAR-10 and CIFAR-100 with symmetric label 

oise. It demonstrates the superior performance of Eq. (7) over 

qs. (15) and (16) . 

.4. Experiments on noisy labels generated by CNNs 

In practice, labels might be not only symmetric or pair flipping. 

o further illustrate the strength of the proposed SPRL, we conduct 

xperiments on noisy labels that are generated by CNNs. Table 3 

resents the accuracy of trained models on training and testing 

ets of CIFAR-10 and CIFAR-100, by only employing 4K and 10K la- 

eled data for model training, respectively. Then we apply trained 

odels on the whole training set and utilize predicting labels as 
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Fig. 8. Testing accuracy of the proposed framework using ResNet18 with Eqs. (15) , (16) and Eq. (7) , respectively. 

Table 3 

Accuracy (%) of ResNet18 and ConvNet trained by partially 

labeled data on training and testing sets of CIFAR-10 and 

CIFAR-100 datasets (4K for CIFAR-10 and 10K for CIFAR- 

100). 

Network CIFAR-10 CIFAR-100 

Training Testing Training Testing 

ResNet18 81.97 80.93 63.16 54.64 

ConvNet 82.02 80.52 64.23 54.95 

Table 4 

Average of testing accuracy (%) on CIFAR-10 and CIFAR-100 over the 

last ten epochs by CNN generated noisy labels. We bold the best 

results and highlight the second best ones via underlines. 

Method CIFAR-10 CIFAR-100 

ResNet18 ConvNet ResNet18 ConvNet 

Standard 81.94 81.88 54.86 54.52 

Boostrap 81.24 81.71 54.59 55.18 

F-correction 83.40 81.28 54.20 55.25 

Decoupling 79.31 78.46 49.80 50.79 

MentorNet 81.27 80.24 52.39 54.06 

Co-teaching 82.80 82.80 55.44 55.56 

Co-teaching + 82.26 81.73 54.66 55 . 16 

SPRL 85 . 63 84 . 00 62 . 08 58 . 73 

n

i

t

s

b

p

a

e

b

i

p

b

F

Table 5 

Average accuracy (%) of four methods over the last ten epochs on 

real-world noisy labels. 

Network Food101 Clothing1M 

ResNet18 ConvNet ResNet18 ConvNet 

Standard 71 . 01 73 . 56 66 . 59 68 . 15 

Co-teaching 71 . 36 74 . 34 69 . 78 69 . 94 

Co-teaching + 69 . 84 71 . 10 67 . 93 70 . 08 

SPRL 76 . 14 74 . 61 71 . 63 71 . 81 
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oisy labels. Finally, we run the eight methods by utilizing train- 

ng data with noisy labels to train models. 

Table 4 shows the average accuracy of the eight methods on 

est sets of CIFAR-10 and CIFAR-100 over the last ten epochs. As 

hown in Tables 3 –4 , both SPRL and Co-teaching with noisy la- 

els can consistently outperform ResNet18 and ConvNet with only 

artially labeled data. However, SPRL always achieves better aver- 

ge accuracy than the best competitor, Co-teaching, on two differ- 

nt deep architectures and datasets, especially on heavy noisy la- 

els, e.g. labels ( 36 . 84% noise rate) generated by ResNet18, which 

s trained with only partially labeled data of CIFAR-100. We also 

resent testing accuracy of the eight methods at different num- 

ers of training epochs in the supplemental materials (please see 

igure A8). 
10 
.5. Experiments on real-world noisy labels 

To be futher demonstrate the strength of the proposed SPRL on 

oosting model robustnes, we conduct experiments on real-world 

osiy labels from the datasets Food101 and Clothing1M, respec- 

ively. 

Table 5 displays the average accuracy of Standard, Co-teaching, 

o-teaching+ and SPRL on Food101 and Clothing1M over the last 

en epochs. It illustrates that SPRL consistently outperforms the 

est competitors Co-teaching and Co-teaching+ on real-world noisy 

abels, especifically using ResNet18 as the backbone network. Ad- 

itionally, We show their testing accuracy at different numbers of 

raining epochs in the supplemental materials (please refer to Fig- 

re A9). 

. Conclusion and future work 

In this paper, we propose a novel framework, SPRL, to allevi- 

te model overfitting for robustly training CNNs on noisy labels. 

he proposed framework contains two major modules: curriculum 

earning, which utilizes the memorization skill of DNNs to learn 

 curriculum to provide meaningful supervision for other training 

amples; parameters update, which leverages the selected confi- 

ent samples and a resistance loss to simultaneously update model 

arameters and significantly reduce the effect of corrupted labels. 

xperiments on multiple large-scale benchmark datasets demon- 

trate that SPRL can significantly reduce the effects of various types 

f corrupted labels by using the resistance loss to alleviate model 

verfitting. Additionally, experiments on noisy labels generated by 

NNs suggest that SPRL can be potentially utilized to further im- 

rove the performance of semi-supervised and unsupervised deep 

ethods. 
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Although SPRL has achieved robust and better accuracy than 

any state-of-the-art methods, SPRL cannot be directly applied on 

ulti-label datasets with noisy labels [64] , because it calculates 

he class probability of each sample by using the softmax function, 

hich usually performs poorly on multi-label classification tasks. 

owever, SPRL might be extended to handle multi-label tasks by 

eplacing the softmax function with a sigmoid function. In the fu- 

ure, SPRL might be further improved based on the following two 

otential directions: (i) Introducing a small amount of clean vali- 

ation data for training [65] , instead of training models with only 

oisy training data without using any clean validation data. (ii) 

mploying model predictions of SPRL to generate labels to further 

oost the model performance (like Section 5.4 ), or distinguishing 

nd changing the possibly corrupted labels by using the other pop- 

lar methods [66–68] . 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patcog.2022.109080 . 

eferences 

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep con- 
volutional neural networks, in: Advances in Neural Information Processing Sys- 

tems, 2012, pp. 1097–1105 . 
[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception 

architecture for computer vision, in: IEEE Conference on Computer Vision and 

Pattern Recognition, 2016, pp. 2818–2826 . 
[3] Y. Feng, Z. Zhang, X. Zhao, R. Ji, Y. Gao, GVCNN: group-view convolutional neu- 

ral networks for 3d shape recognition, in: IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 2018 . 

[4] Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao, Hypergraph neural networks, in: AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3558–3565 . 

[5] X. Shi, M. Sapkota, F. Xing, F. Liu, L. Cui, L. Yang, Pairwise based deep ranking

hashing for histopathology image classification and retrieval, Pattern Recognit. 
81 (2018) 14–22 . 

[6] X. Shi, Z. Guo, F. Xing, Y. Liang, L. Yang, Anchor-based self-ensembling for 
semi-supervised deep pairwise hashing, Int. J. Comput. Vis. (2020) 1–18 . 

[7] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate 
object detection and semantic segmentation, in: IEEE Conference on Computer 

Vision and Pattern Recognition, 2014, pp. 580–587 . 

[8] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic seg- 
mentation, in: IEEE Conference on Computer Vision and Pattern Recognition, 

2015, pp. 3431–3440 . 
[9] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learn- 

ing requires rethinking generalization, in: International Conference on Learning 
Representations, 2017 . 

[10] D. Zheng, J. Xiao, K. Chen, X. Huang, L. Chen, Y. Zhao, Soft pseudo-label shrink-

age for unsupervised domain adaptive person re-identification, Pattern Recog- 
nit. 127 (2022) 108615 . 

[11] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, A. Rabinovich, Training deep
neural networks on noisy labels with bootstrapping, in: Workshop of Interna- 

tional Conference on Learning Representations, 2015 . 
[12] S. Laine, T. Aila, Temporal ensembling for semi-supervised learning, in: Inter- 

national Conference on Learning Representations, 2016 . 

[13] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, L. Qu, Making deep neural
networks robust to label noise: a loss correction approach, in: IEEE Conference 

on Computer Vision and Pattern Recognition, 2017, pp. 1944–1952 . 
[14] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, L. Fei-Fei, MentorNet: learning data-driven 

curriculum for very deep neural networks on corrupted labels, in: Interna- 
tional Conference on Machine Learning, 2018 . 

[15] B. Han, Q. Yao, et al., Co-teaching: robust training of deep neural networks 
with extremely noisy labels, in: Advances in Neural Information Processing 

Systems, 2018, pp. 8527–8537 . 

[16] O. Chapelle, B. Scholkopf, A. Zien, et al., Semi-supervised learning (Chapelle, 
O. et al., Eds.; 2006)[Book Reviews], IEEE Trans. Neural Netw. 20 (3) (2009) .

542–542 
[17] D. Arpit, S. J, et al., A closer look at memorization in deep networks, in: Inter-

national Conference on Machine Learning, 2017, pp. 233–242 . 
11
[18] E. Malach, S. Shalev-Shwartz, Decoupling when to “update” from “how 

to update”, in: Advances in Neural Information Processing Systems, 2017, 

pp. 960–970 . 
[19] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, M. Sugiyama, How does disagreement

help generalization against label corruption? in: International Conference on 
Machine Learning, 2019, pp. 7164–7173 . 

20] B. Frénay, M. Verleysen, Classification in the presence of label noise: a survey, 
IEEE Trans. Neural Netw. Learn. Syst. 25 (5) (2013) 845–869 . 

[21] V.C. Raykar, S. Yu, et al., Learning from crowds, J. Mach. Learn. Res. 11 (Apr)

(2010) 1297–1322 . 
22] N. Natarajan, I.S. Dhillon, P.K. Ravikumar, A. Tewari, Learning with noisy labels, 

in: Advances in Neural Information Processing Systems, 2013, pp. 1196–1204 . 
23] H. Masnadi-Shirazi, N. Vasconcelos, On the design of loss functions for classifi- 

cation: theory, robustness to outliers, and savageboost, in: Advances in Neural 
Information Processing Systems, 2009, pp. 1049–1056 . 

24] B. Van Rooyen, A. Menon, R.C. Williamson, Learning with symmetric label 

noise: the importance of being unhinged, in: Advances in Neural Information 
Processing Systems, 2015, pp. 10–18 . 

25] C. Scott, G. Blanchard, G. Handy, Classification with asymmetric label noise: 
consistency and maximal denoising, in: Conference On Learning Theory, 2013, 

pp. 489–511 . 
26] H. Ramaswamy, C. Scott, A. Tewari, Mixture proportion estimation via kernel 

embeddings of distributions, in: International Conference on Machine Learn- 

ing, 2016, pp. 2052–2060 . 
27] T. Sanderson, C. Scott, Class proportion estimation with application to 

multiclass anomaly rejection, in: Artificial Intelligence and Statistics, 2014, 
pp. 850–858 . 

28] T. Liu, D. Tao, Classification with noisy labels by importance reweighting, IEEE 
Trans. Pattern Anal. Mach. Intell. 38 (3) (2015) 447–461 . 

29] H. Song, M. Kim, D. Park, Y. Shin, J.-G. Lee, Learning from noisy labels with

deep neural networks: a survey, IEEE Trans. Neural Netw. Learn. Syst. (2022) . 
30] V. Mnih, G.E. Hinton, Learning to label aerial images from noisy data, in: In- 

ternational Conference on Machine Learning, 2012, pp. 567–574 . 
[31] A. Ghosh, H. Kumar, P.S. Sastry, Robust loss functions under label noise for 

deep neural networks, in: AAAI Conference on Artificial Intelligence, vol. 31, 
2017 . 

32] A. Ghosh, N. Manwani, P.S. Sastry, Making risk minimization tolerant to label 

noise, Neurocomputing 160 (2015) 93–107 . 
33] N. Manwani, P.S. Sastry, Noise tolerance under risk minimization, IEEE Trans. 

Cybern. 43 (3) (2013) 1146–1151 . 
34] X. Shi, H. Su, et al., Graph temporal ensembling based semi-supervised con- 

volutional neural network with noisy labels for histopathology image analysis, 
Med. Image Anal. 60 (2020) 101624 . 

35] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, R. Fergus, Training convolu- 

tional networks with noisy labels, in: Workshop of International Conference 
on Learning Representations, 2015 . 

36] X. Ma, Y. Wang, et al., Dimensionality-driven learning with noisy labels, in: 
International Conference on Machine Learning, 2018 . 

37] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, S.-T. Xia, Iterative learning
with open-set noisy labels, in: IEEE Conference on Computer Vision and Pat- 

tern Recognition, 2018, pp. 8688–8696 . 
38] J. Han, P. Luo, X. Wang, Deep self-learning from noisy labels, in: IEEE Interna- 

tional Conference on Computer Vision, 2019, pp. 5138–5147 . 

39] H. Sun, C. Guo, Q. Wei, Z. Han, Y. Yin, Learning to rectify for robust learning
with noisy labels, Pattern Recognit. 124 (2022) 108467 . 

40] T. Xiao, T. Xia, Y. Yang, C. Huang, X. Wang, Learning from massive noisy la-
beled data for image classification, in: IEEE Conference on Computer Vision 

and Pattern Recognition, 2015, pp. 2691–2699 . 
[41] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, L.-J. Li, Learning from noisy labels

with distillation, in: IEEE International Conference on Computer Vision, 2017, 

pp. 1910–1918 . 
42] A. Veit, N. Alldrin, et al., Learning from noisy large-scale datasets with minimal 

supervision, in: IEEE Conference on Computer Vision and Pattern Recognition, 
2017, pp. 839–847 . 

43] A. Vahdat, Toward robustness against label noise in training deep discrimina- 
tive neural networks, in: Advances in Neural Information Processing Systems, 

2017, pp. 5596–5605 . 

44] M. Ren, W. Zeng, B. Yang, R. Urtasun, Learning to reweight examples for robust 
deep learning, in: International Conference on Machine Learning, 2018 . 

45] C.G. Northcutt, T. Wu, I.L. Chuang, Learning with confident examples: Rank 
pruning for robust classification with noisy labels, Uncertainty in Artificial In- 

telligence, 2017 . 
46] Z. Zhang, M. Sabuncu, Generalized cross entropy loss for training deep neu- 

ral networks with noisy labels, in: Advances in Neural Information Processing 

Systems, 2018, pp. 8778–8788 . 
[47] B. Han, I.W. Tsang, L. Chen, P.Y. Celina, S.-F. Fung, Progressive stochastic learn- 

ing for noisy labels, IEEE Trans. Neural Netw. Learn. Syst. 29 (10) (2018) 
5136–5148 . 

48] Q. Yao, H. Yang, B. Han, G. Niu, J.T.-Y. Kwok, Searching to exploit memorization
effect in learning with noisy labels, in: International Conference on Machine 

Learning, 2020, pp. 10789–10798 . 

49] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in: Inter- 
national Conference on Machine Learning, ACM, 2009, pp. 41–48 . 

50] M.P. Kumar, B. Packer, D. Koller, Self-paced learning for latent variable models, 
in: Advances in Neural Information Processing Systems, 2010, pp. 1189–1197 . 

https://doi.org/10.1016/j.patcog.2022.109080
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0001
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0002
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0004
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0005
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0015
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0016
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0022
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0023
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0024
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0025
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0026
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0027
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0028
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0029
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0030
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0031
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0032
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0033
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0034
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0035
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0036
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0037
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0038
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0039
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0040
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0041
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0042
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0043
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0044
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0045
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0046
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0047
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0048
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0049
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0050


X. Shi, Z. Guo, K. Li et al. Pattern Recognition 134 (2023) 109080 

[

[

[

[

[

[

[

[

[  

[

[

[

[

[

[

[

[

X

a

(
g

e
l

a
c

Z

H
a

z
c

K

n  

f

C
N

s
U

c

t

Y

S
U

H
i

X

n
m

c

[51] L. Jiang, D. Meng, Q. Zhao, S. Shan, A.G. Hauptmann, Self-paced curriculum 

learning, in: AAAI Conference on Artificial Intelligence, 2015 . 

52] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, 
Stat 1050 (2015) 9 . 

53] A. Polino, R. Pascanu, D. Alistarh, Model compression via distillation and quan- 
tization, in: International Conference on Learning Representations, 2018 . 

54] K. Lee, K. Lee, J. Shin, H. Lee, Overcoming catastrophic forgetting with unla- 
beled data in the wild, in: IEEE International Conference on Computer Vision, 

2019, pp. 312–321 . 

55] K. Kim, B. Ji, D. Yoon, S. Hwang, Self-knowledge distillation with progressive 
refinement of targets, in: IEEE International Conference on Computer Vision, 

2021, pp. 6567–6576 . 
56] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., Gradient-based learning applied 

to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 
57] A. Krizhevsky, G. Hinton, Learning Multiple Layers of Features from Tiny Im- 

ages, Technical Report, Citeseer, 2009 . 

58] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni- 
tion, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, 

pp. 770–778 . 
59] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Interna- 

tional Conference on Learning Representations, 2015 . 
60] O. Vinyals, C. Blundell, et al., Matching networks for one shot learning, in: Ad-

vances in Neural Information Processing Systems, 2016, pp. 3630–3638 . 

61] O. Russakovsky, J. Deng, et al., ImageNet large scale visual recognition chal- 
lenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 . 

62] L. Bossard, M. Guillaumin, L. Van Gool, Food-101 – mining discriminative com- 
ponents with random forests, in: European Conference on Computer Vision, 

2014 . 
63] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, T. Raiko, Semi-supervised 

learning with ladder networks, in: Advances in Neural Information Processing 

Systems, 2015, pp. 3546–3554 . 
64] K.O. Mikalsen, C. Soguero-Ruiz, F.M. Bianchi, R. Jenssen, Noisy multi-la- 

bel semi-supervised dimensionality reduction, Pattern Recognit. 90 (2019) 
257–270 . 

65] Z. Zhang, H. Zhang, S.O. Arik, H. Lee, T. Pfister, Distilling effective supervision 
from severe label noise, in: IEEE Conference on Computer Vision and Pattern 

Recognition, 2020, pp. 9294–9303 . 

66] E. Arazo, D. Ortego, et al., Unsupervised label noise modeling and loss correc- 
tion, in: International Conference on Machine Learning, 2019, pp. 312–321 . 

67] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, C.A. Raffel, Mix- 
Match: a holistic approach to semi-supervised learning, Advances in Neural 

Information Processing Systems, vol. 32, 2019 . 
12 
68] J. Li, R. Socher, S.C.H. Hoi, DivideMix: learning with noisy labels as semi-super- 
vised learning, in: International Conference on Learning Representations, 2019 . 

iaoshuang Shi is a faculty member in the Department of Computer Science 

nd Engineering at the University of Electronic Science and Technology of China 

UESTC). He obtained his PhD degree (2019) from University of Florida, Master de- 
ree (2013) from Tsinghua University, and Bachelor degree (2009) from Northwest- 

rn Polytechnical University. Before joining UESTC, he worked as a Postdoctoral fel- 
ow at the National Institutes of Health (NIH) (2020.01–2021.04), and as a research 

ssistant at Tsinghua University (2013.09–2015.04). His major research interests in- 
lude large-scale data retrieval, deep learning, medical image analysis. 

henhua Guo received the MS and PhD degrees in computer science from the 

arbin Institute of Technology and The Hong Kong Polytechnic University, in 2004 
nd 2010, respectively. Since 2010, he has been with the Graduate School at Shen- 

hen, Tsinghua University. His research interests include pattern recognition, texture 
lassification, biometrics, and video surveillance. 

ang Li received the PhD degree in Mechanical Engineering from University of Illi- 

ois at Urbana Champaign, Champaign, IL, USA, in 2009. He is now a full pro-
essor of the Biomedical Big Center at West China Hospital. Before joining West 

hina Hospital, He was an associate professor with the Department of Orthopaedics, 
ew Jersey Medical School (NJMS), Rutgers University, Newark, NJ, USA, and an as- 

istant professor with Department of Industrial and Systems Engineering, Rutgers 
niversity. His research interests include AI in healthcare, musculoskeletal biome- 

hanics, medical imaging, design and biorobotics, human reliability, and human fac- 

ors/ergonomics. 

un Liang is a PhD student in Biomedical Engineering at the University of Florida. 

he received the bachelor degree in Computing from the Hong Kong Polytechnic 
niversity and the master degree in Statistics from George Washington University. 

er current research is in medical image processing and computer vision, especially 
n whole slide cytopathology image analysis. 

iaofeng Zhu is a faculty member of University of Electronic Science and Tech- 

ology of China, Chengdu, China. His current research interests include large-scale 
ultimedia retrieval, feature selection, sparse learning, data preprocess, and medi- 

al image analysis. 

http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0051
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0052
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0053
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0054
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0055
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0056
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0057
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0058
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0059
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0060
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0061
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0062
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0063
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0064
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0065
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0066
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0067
http://refhub.elsevier.com/S0031-3203(22)00560-X/sbref0068

	Self-paced resistance learning against overfitting on noisy labels
	1 Introduction
	2 Related work
	3 Preliminaries on curriculum learning
	4 Self-paced resistance learning (SPRL)
	4.1 Curriculum learning using the memorization effect
	4.2 Resistance loss
	4.3 Self-paced resistance loss

	5 Experiments
	5.1 Implementation details
	5.2 Experimental settings
	5.3 Experiments on labels with symmetry and pair flipping
	5.3.1 Parameter analysis
	5.3.2 Comparison with knowledge distillation and label smooth regularization

	5.4 Experiments on noisy labels generated by CNNs
	5.5 Experiments on real-world noisy labels

	6 Conclusion and future work
	Declaration of Competing Interest
	Supplementary material
	References


