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For panel data models with spatial errors, the empirical likelihood Received 16 January 2020
ratio statistics are constructed for the parameters of the models. It Accepted 5 June 2020

is shown that the limiting distributions of the empirical likelihood
ratio statistics are chi-squared distributions, which are used to
construct confidence regions for the parameters of the models. A
simulation study is conducted to show the performance of the
proposed method.
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1. Introduction

Linear regression models are the most important statistical models for explaining the
relationship between response and explanatory variables. Whenever the variables in a
linear regression model refer to attributes of a particular location (height of a plant,
population of a country, position in a social network, etc.), one often allows for correl-
ation among the errors (disturbances) by assuming that the errors follow a spatial
autoregressive (SAR) correlation (e.g., Dow, Burton, and White 1982; Ord 1975; Kramer
and Donninger 1987; Anselin and Bera 1998). These models deal with data in different
locations with fixed time point, which are called spatial models. If the data reflect vari-
ous times and locations, they are called spatial panel data.

In recent years, spatial panel data models studied in Anselin (1988) have drawn more
and more attention in empirical economic research, as they offer researchers extended
modeling possibilities as compared to the single-equation cross-sectional setting and
contain more variation and less collinearity among the variables. Baltagi, Song, and Koh
(2003) consider panel regression models with SAR disturbances and focus on the test of
spatial correlation for the models. Kapoor, Kelejian, and Prucha (2007) provide a rigor-
ous theoretical framework for analysis of spatial panel models. Lee and Yu (2010a) pro-
pose the maximum likelihood (ML) estimation for panel models with both spatial lag
and spatial disturbances. Some related recent developments are in Anselin (2001),
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Elhorst (2005, 2010), Anselin, Le Gallo, and Jayet (2008), Yu et al. (2008), Lee and Yu
(2010b, 2013), Su and Yang (2015), Qu, Lee, and Yu (2017), among others.

In this article, we study the following special spatial panel data model. Suppose that
there are n individual units and T time periods. We consider the following panel data
model with spatial error (e.g., Chapter 10 in Anselin (1988)):

)/t :Xtﬁt+€t>€t :;L[Wnﬁt+,llt,t: 1,2,...,T (1)

where y, is an n-dimensional column vector of observed dependent variables, X, is an n x K
matrix of explanatory variables, and f3; is an K X 1 vector of regression coefficients. ¢, is an
nx 1 vector of errors, W, is an nxn spatial weighting matrix of constants, u, =
(U1 - Myy) " isan n X 1 column vector, and {u,;} are i.i.d. across t and i with zero mean and
variance 2. Model (1) is also called spatial seemingly unrelated regressions (SURs) model,
originally suggested by Zellner (1962), and it is designed for empirical situations where a lim-
ited degree of simultaneity is present in the form of dependence between the errors in differ-
ent equations. SUR models are extensions of linear regression models which allow correlated
errors between equations, and have been widely used in many research areas, obviously
including spatial analysis. Anselin (1988) extends an SUR model to a spatial environment. By
incorporating SAR into the error term, the model exhibits spatial autocorrelations across
observations. Previously, the development in testing and estimation of SUR models has been
summarized in Anselin (1988). When T=1, these models are studied by Cliff and Ord
(1973), Ord (1975), Kramer and Donninger (1987), and Kelejian and Prucha (1999), among
others. Recently, Wang and Kockelman (2007) derived the ML estimator (under the normal-
ity assumption) of an SUR error component panel data model with SAR disturbances.
Baltagi and Pirotte (2011) considered various estimators for panel data SUR with spatial error
correlation. In terms of testing, Mur, Lopez, and Herrera (2010) developed a set of Lagrange
multipliers to test for the presence of spatial effects in a standard spatial SUR model. Some
recent research work on SUR models and their applications can be found in Jiang, Qian, and
Sun (2020), Hou and Zhao (2019), Kubacek (2013), Kurata and Matsuura (2016), Sun, Ke,
and Tian (2014), Tian (2010), Zhao and Xu (2017), among others.

There are two competing estimation approaches for the parameters in spatial models. One
is the ML method (e.g., Anselin 1988). The other is the computationally more efficient
method, the generalized method of moments (GMMs) by Kelejian and Prucha (1999). The
asymptotic properties of the maximum likelihood estimator (MLE) and the GMM estimator
for the spatial models are investigated by Anselin (1988) and Kelejian and Prucha (1999),
respectively. These methods may be readily extended to spatial SUR models. However, it
may not be easy to use these normal approximation methods to construct confidence region
for the parameters in the SUR model as the asymptotic covariance in the asymptotic distribu-
tion is unknown. More importantly, the accuracy of the normal approximation-based confi-
dence region of the parameters in the model may be affected by estimating the asymptotic
covariance. In this article, we propose to use the empirical likelihood (EL) method intro-
duced by Owen (1988, 1990) to construct confidence region for the parameters in the spatial
SUR models. The shape and orientation of the EL confidence region are determined by data,
and the confidence region is obtained without covariance estimation. These features of the
EL confidence region are the major motivations for our current proposal. Owen (1991) has
used the EL method to construct confidence regions for the vector of regression parameters
in a linear model with independent errors. A comprehensive review on EL for regressions
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can be found in Chen and Keilegom (2009). More references on EL methods can be found in
Owen (2001), Qin and Lawless (1994), Chen and Qin (1993), Zhong and Rao (2000), and
Wu (2004), among others. The idea in using the EL method for the spatial SUR models is to
introduce a martingale sequence to transform the linear quadratic form of the estimating
equations (e.g., Equation (5)-(7)) for the spatial SUR models into a linear form. It is interest-
ing to note that the estimation equations for other spatial panel data models may have the
linear quadratic forms. Therefore, this approach of transformation also opens a way to use
EL methods to more general spatial panel data models.

The article is organized as follows. Section 2 presents the main results. Results from a
simulation study are reported in Section 3. All technical details are presented in Section 4.

2. Main results

We continue with the Model (1). With t = 1,2,..., T, Model (1) can be written into a
matrix form as follows:

N X 0 0 -~ 0 O B €1
V2 0o X 0 --- 0 0 B, €
. = . . + .
yr 0 0 o --- 0 XT ﬂT €T
with
B, 0 0o --- 0 0 €] Hq
0 Bz 0o - 0 0 € Ho
0 0 0 0 BT €T HUr
or
with
Be=p (3)

where B, = (I, — 4W,),t =1,2,...,T,B= [,y — (A®@ W,)], A=diag(l,2,.... A1) is
a T x T diagonal matrix, and ® is the Kronecker product,

2 X 0 0 - 0 0

2 0 X, 0 - 0 0
Yorpa = | . [»X@nxxn =

yr 0 0 o --- 0 XT

B €1 1

B, €2 1253
.B(KT)XI = - P ennx1 = - P Remx = .

PBr €T Uur
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Based on Models (2) and (3), we adopt the quasi-maximum likelihood method (QMLE)
to estimate 0 = (B, .... 7. A1, .... A1, 0?)". Under the assumption of normality, the log-
likelihood function (ignoring constants) is as follows:

nT L 1
L(0) = —710g o’ + Z log |B;| — ﬁlfﬂ (4)
t=1

In order to derive the EL statistic of 0, one can show that:
OL(0)/0B = 6 *X"B'u
OL(0) /0l = —tr(W, B’l) +o W (E"@W,)B 'y, t=1,...,T
nT
2
8L(9)/6a ——+F#M

where E is a T'x T matrix of zeros, except the (t, t)-element which has the value 1.
Letting above derivatives be 0, we obtain the following estimating equations:

XB'u=0 (5)
—a*tr(W,B/") + W'(E" @ W,)B'u=0, t=1,..,T (6)
—nTe? + pfu=0 (7)

We observe that the above estimating equations include the quadratic forms of pu. To
use the EL method, we need to change the quadratic forms into the linear forms of
well-behaved random variables such as martingale difference arrays. To this end, we let

Gu = (E"®@ W,)B™! and Gt :%(Gm + G},). Use o &ii e and b; to denote the (i, j)

element of the matrix Gy, the (i, j) element of the matrix G, and the i-th column of
the matrix X*B7, respectively, and adapt the convention that any sum with an upper
index of less than one is zero. To deal with the quadratic form in (6), we follow
Kelejian and Prucha (2001) to introduce a martingale difference array. Let

e 151
e 1253

€(nT)x1 = = .
enT Hr

and define the o-fields: Fy = {0, Q}, F; = a(e1, €2, ..,€), 1 < i < nT. Let
i1
Min :gii,t(ez‘z_az)+zeizgij"ej ®)
==

Then, F;_; C F;, M;, is Fi— measurable and E( in|Fi—1) = 0. Thus, {Mm,]-'l,l <i<
nT} form a martingale difference array and

nT
WG — *tr(G Z (9)
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Based on (5)-(9), we propose the following EL ratio statistic for § € REK+DT+1.

nT
L,(0) = sup H(nTpi)

pir 1<i<nT 357

where {p;} satisfy
nT
piEO,ISiSHT,E pi=1
=1
nT 1
E pibie; =0
i=1
nT i—1
E pi gii,l(ef — %) + 2¢; E g~ij)lej =0
i=1 j=1
nT ‘ i—1
E pid 8, r(eF — a%) + 2 E gij 1€ 0
i=1 j=1
nT
E Pi(eiz — 02) =0
i=1
Let
bie,-
i1
gii,l(ez‘z a%) + 2eiZ§ij,1ej
=1
w;(0) =

i1
girlei —o )—|—2ei§ ;gij,Tef

j=1

2 _
€& -0 {(K+1)T+1}x1

where e; is the i-th component of u = B(Y — Xf8). Following Owen (1990), one can
show that:

nT
0(0)= —21og L(0) =2 _ log {1+ 27(0)w;(0)} (10)
-1
where A(0) € REFDTHL js the solution of the following equation:
1 nT (1),(9)
Bl e (11)
nT < 1+ A" (0)w;(0)

Let v; = Ee"l, j=3,4. Use Vec(diagA) to denote the vector formed by the diagonal ele-
ments of a matrix A and [|a|| to denote the L,-norm of a vector a. Furthermore, Let 1,
stand for the n-dimensional (column) vector with 1 as its components. To obtain the
asymptotical distribution of ¢,(0), we need following assumptions:



6 @ Y. LI ET AL.

Al {upt=1,...,T,i=1,..,n}, ie, {e,i=1,...,nT} are independent and identi-
cally distributed random variables with mean 0, variance ¢> > 0, and E|e;|*"" < oo for
some 717; > 0.

A2. Let W, {B;,t =1,..,T} and {X;,t = 1,..., T} be as described above. They sat-
isfy the following conditions:

i. The row and column sums of W, and {B;, Lr=1,.., T} are uniformly bounded
in absolute value;
ii. {X,t=1,..., T} are uniformly bounded.

A3. There are constants ¢; > 0,j = 1,2, such that

0 < c1 < Amin ((nT)ilz(K-&-l)T-&-l) < }vmax((”T)ilz(K—H)T-&-l) < < oo

where Zin(H) and Ay (H) denote the minimum and maximum eigenvalues of a
matrix H, respectively.

nT
LT = Dk = COV{Zwi(())}

i=1

i Zp I (12)
= * 2 X
* * 233 ) (k) T (K1) T 1)

where

Y = ¢*X'B'BX, 21, = v3X*B*(Vec(diagG ), ..., Vec(diagG,r))

213 = U3XTBrln, 222 = 20’4A + (V4 - 30'4)A

Y05 = (4 — ) (tr(Guy), oo tr(Gur)) ' T3 = nT(vy — 0*)
with

nT nT
Arxr = ((th ) %y, t, = Zzg’l tlgzj t’ AT><T - (dtl 5} Cxtl h — Zg” tlgu t
i=1 j=

A4. n — oo but T is fixed.

Remark 1. Conditions A1-A3 are common assumptions for SAR models. For example,
Al and A2 are used in Assumptions 1, 4, 5, and 6 in Lee (2004), and the analog of 0 <
a < A”mm((nT)flz(Kﬂ)TH) (e.g., (nT)”" (7 > ¢ for some constant ¢>0 in Lemma 2 in
this article) is employed in the assumption of Theorem 1 in Kelejian and Prucha (2001).
From Conditions Al and A2, one can see that Aya((nT) ' Z(k1)r41) < €2 < 0c. For the

sake of convince, we list this consequence of Al and A2 as a part of A3.
We now state the main results.

Theorem 1. Suppose that Assumptions (A1)-(A4) are satisfied. Then under model (1), as

n— 0o,

é”(0>_>X%K+1)T+1
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where X%K—H)T—H is a chi-squared distributed random variable with (K + 1)T + 1 degrees

of freedom.
Let z,((K+ 1)T +1) satisfy P(x{c,;)r,; < 2((K+1)T+1)) =o for 0 <o <1 It

follows from Theorem 1 that an EL-based confidence region for 0 with asymptotically
correct coverage probability o can be constructed as follows:

{0:4,(0) <z,(K+1)T+1)}

3. Simulations

Let 0 = (B, .... By A1, ..o A1, 0%)". According to Anselin (1988), when the error term {u,} is

normally distributed, the likelihood ratio (LR): LR(6y) = 2(L(0) — L(0y)) is asymptotically
2
(K+1)T+

log-likelihood and 0 is the MLE. It follows that the LR-based confidence region for 0 with
asymptotically correct coverage probability o can be constructed as follows:

{0:LR(0) < z,(K + 1)T + 1)}

distributed as y , under the null hypothesis: 0 = 0y, where L is the corresponding

We note that the LR method requires to know the form of the distribution of the
population in study, while the EL method does not. This fact implies that the EL
method performs better than the LR method theoretically when the population dis-
tribution is not normal. Our following simulation results do confirm
this conclusion.

We conducted a small simulation study to compare the finite sample performances of
the confidence regions based on EL and LR methods with confidence level o = 0.95,
and report the proportion of LR(0p) < zpos((K+1)T+1) and £,(0o) < zo95((K +
1)T + 1) respectively in 1000 replications, where 0, is the true value of 0.

In the simulations, we used the following two models:

i. Model 1:

Ve = XeBy + €€ = 4Waer + it = 1,2, where X; = (x11,X12, .. X10) > X1; = #’XZ =
(%21, %22, o0 X)) 5 X0 = ﬁ,l <i<n(f,p,) =(25,35), (A,4) were taken as
(—0.85, — 0.75),(—0.15, — 0.1),(0.15,0.1) and  (0.85,0.75),  respectively, pu, =
(Bers Bz oo ) > t=1, 2, and ;s were i.id. from N(0, 1), #(5) and y3 — 4, respectively;

ii. Model 2:
yt:Xtﬂt+€t)€t:/"Lthet"’_ﬂt:t:1)2 with X1 :(xu,xlz,...,xln)r,xli:(n%rl,l—{—sini)T,
X2 = (x21,x22,...,x2n)r,x2,- = (n;—&-S’z_F COSl')T,l S i S i’l,ﬁl = (1.5,1.0)T,ﬁ2 = (2,1.2)1, (ll,/lz)

were taken as (—0.85,—0.75),(—0.15,—0.1),(0.15,0.1) and (0.85,0.75), respectively,
e =ty fp e fy)> t=1, 2, and ;s were iid. from N(0, 1), #5) and y3—4,
respectively.

The results of simulations under Model 1 are reported in Tables 1-3, and the results
of simulations under Model 2 are reported in Tables 4-6.
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Table 1. Coverage probabilities of the LR and EL confidence regions with ¢ ~ N(0,1) under
Model 1.

(7, 72) W, T EL (21, 22) W, LR EL

(—0.85, —0.75) gridag 0.928 0.863 (—0.15, —0.1) gridsg 0.930 0.857
gridsoo 0.941 0911 gridyoo 0.930 0.893
gfid-|69 0.956 0.942 grid169 0.933 0.909
gridyse 0.948 0937 gridyse 0.962 0.948
Gridae 0.950 0.940 gridyeg 0.955 0.944
Wi 0934 0.858 Wio 0.933 0.861
Is @ Wao 0.942 0.928 Is @ Wag 0.944 0.934

(0.85, 0.75) gridag 0.910 0.815 (0.15, 0.1) gridsg 0.922 0.847
gridioo 0.924 0.895 gridioo 0.938 0.911
gridie9 0.930 0914 gridieg 0.950 0.926
gridyse 0.947 0.929 gridyse 0.933 0.924
Gridage 0952 0.941 Gridage 0.945 0.944
Wao 0.944 0.859 Wao 0.919 0.836
Is @ Wag 0.961 0.947 Is @ Wag 0.951 0.942

For the contiguity weight matrix W, = (W), we took Wj; = 1 if spatial units i and j
are neighbors by queen contiguity rule (namely, they share common border or vertex),
Wi = 0 otherwise (Anselin 1988, 18). Firstly, we considered three ideal cases of spatial
units: n = m X m regular grid with m = 7,10, 13,16,20, denoting W, as gridys, grid;go,
gridies, gridyse, and gridyg, respectively. Secondly, we used the weight matrix Wy related
to 49 contiguous planning neighborhoods in Columbus, Ohio, United States, which
appeared in Anselin (1988, 187). Thirdly, W, = Is ® W4 was considered, where ® is
Kronecker product. This corresponds to the pooling of five separate districts with similar
neighboring structures in each district.

A transformation is often used in applications to convert the matrix W,, to the unity
of row sums. We used the standardized version of W, in our simulations, namely Wj;
was replaced by Wj/ > " Wy

Simulation results under Model 1 show that the confidence regions based on LR behave
well with coverage probabilities very close to the nominal level 0.95 when the error term ¢;
is normally distributed and # is large, but not well in other cases. The coverage probabil-
ities of the confidence regions based on LR fall to the range [0.800, 0.854] for ¢ distribution
and [0.808, 0.864] for »?> distribution, which are far from the nominal level 0.95.
Simulation results under Model 2 are similar to those under Model 1.

We can see, from Tables 1-6, that the confidence regions based on EL method con-
verge to the nominal level 0.95 as the number of spatial units n is large enough,
whether the error term ¢; is normally distributed or not. Our simulation results recom-
mend EL method when we are not sure whether the errors are normally distributed.

4, Proofs

In the proof of the main results, we need to use Theorem 1 in Kelejian and Prucha
(2001). We now state this result. Let

n_n n
Q,= E E Anij€ni€nj + § bui€ni
]:1 i=1

i=1 j



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS . 9

Table 2. Coverage probabilities of the LR and EL confidence regions with ¢ ~ t(5) under Model 1.

(G, 2) W, LR EL (G, 22) W, LR EL

(—0.85, —0.75) gridas 0.838 0.782 (—0.15, —0.1) gridas 0.818 0.763
gridigo 0817 0.832 gridioo 0.814 0.843
gridyes 0.832 0.870 gridieo 0.800 0.859
gridyse 0.816 0.886 gridyss 0.825 0.883
gridage 0.830 0.901 Gridago 0.836 0911
Wao 0.823 0.767 Wis 0.832 0.769
Is @ Wag 0.838 0.903 Is © Wag 0.838 0.905

(0.85, 0.75) gridas 0.803 0.730 (0.15, 0.1) gridas 0.818 0.766
gridioo 0.809 0.831 gridioo 0.843 0.867
gridyeo 0.806 0.850 gridieo 0.818 0.882
gridyse 0.816 0.868 gridyss 0.833 0.902
gridage 0.854 0.903 gridago 0.824 0.909
Wiao 0.834 0.771 Wis 0.817 0.761
Is @ Wag 0.803 0.869 Is © Wag 0.840 0.890

Table 3. Coverage probabilities of

the LR and EL confidence regions with ¢ + 4 ~ y3 under

Model 1.

(2, 42) W, LR EL (21, 2) W, LR EL

(—0.85, —0.75) gridsg 0.833 0.807 (—0.15, —0.1) gridss 0.821 0.797
gridqoo 0.833 0.861 gridyoo 0.849 0.866
gridygo 0.838 0.884 gridsgo 0.833 0.877
gridyse 0.850 0.904 gridyse 0.842 0.901
gridago 0.854 0914 gridago 0.854 0.905
Wao 0.833 0.789 Wao 0.837 0.789
Is @ Wao 0.840 0.898 Is @ Wag 0.861 0.892

(0.85, 0.75) gridsg 0.808 0.732 (0.15, 0.1) gridss 0.822 0.763
gridy oo 0.829 0.821 gridyo0 0.853 0.873
gridygo 0.818 0.862 gridsge 0.829 0.883
gridyse 0.864 0.901 gridsss 0.839 0.888
gridago 0.864 0917 gridago 0.862 0.922
Wio 0.841 0.768 Wio 0.826 0.785
Is @ Wao 0.830 0.891 Is ® Wao 0.841 0.891

Table 4. Coverage probabilities of

the LR and EL confidence regions with ¢ ~ N(0,1) under

model 2.

(21, 42) W, LR EL (21, 2) W, LR EL

(—0.85, —0.75) gridsg 0.937 0.830 (=0.15, —0.1) gridss 0.927 0.809
gridy oo 0.932 0.893 gridyo0 0.934 0.895
gridygo 0.950 0.937 gridsge 0.934 0.906
gridyse 0.943 0.924 gridyse 0.942 0.937
gridago 0.967 0.951 gridago 0.946 0.939
Wio 0.935 0.832 Wio 0.935 0.819
Is @ Wao 0.958 0.935 Is @ Wao 0.951 0.933

(0.85, 0.75) gridsg 0.870 0.734 (0.15, 0.1) gridag 0.906 0.789
gridy oo 0915 0.875 gridsoo 0.940 0.893
gridqe9 0.924 0.904 grid,eo 0.925 0.905
grid,se 0.940 0919 gridsse 0.947 0.941
gridsoo 0.940 0.926 gridago 0.938 0.929
Wao 0.919 0.794 Wio 0.931 0.797
Is @ Wag 0.947 0.924 Is @ Wao 0.937 0.923
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Table 5. Coverage probabilities of the LR and EL confidence regions with ¢; ~ t(5) under model 2.

(G, 2) W, LR EL (G, 22) W, LR EL

(—0.85, —0.75) gridas 0.840 0.707 (—0.15, —0.1) gridas 0.812 0.695
gridigo 0.847 0.855 gridioo 0.835 0.829
gridyes 0.829 0.851 gridieo 0.830 0.861
gridyse 0.827 0.875 gridyss 0.849 0.883
gridage 0.818 0.900 Gridago 0.817 0.899
Wao 0.843 0.693 Wiao 0.827 0.710
Is @ Wag 0.827 0.871 Is © Wag 0.847 0.885

(0.85, 0.75) gridas 0.769 0.635 (0.15, 0.1) gridas 0.803 0.679
gridago 0.792 0.771 gridioo 0.821 0.809
gridyeo 0.784 0813 gridieo 0.812 0.853
gridyse 0.825 0.867 gridyss 0.816 0.864
gridage 0.836 0.872 gridago 0.808 0.875
Wiao 0.820 0.660 Wis 0.812 0.696
Is @ Wag 0.846 0.887 Is © Wag 0.845 0.896

Table 6. Coverage probabilities of the LR and EL confidence regions with ¢; + 4 ~ y2 under model 2.

(Ja,72) W, LR EL (3, 72) W, LR EL

(—0.85, —0.75) gridag 0.796 0.723 (—0.15, —0.1) gridsg 0.805 0.691
gridsoo 0.841 0.832 gridsoo 0.839 0.839
gfid-|59 0.837 0.856 gfid169 0.837 0.862
gridyse 0.864 0.904 gridyse 0.851 0.889
gridago 0.853 0.900 gridaoo 0.857 0.906
Wae 0.812 0.721 Wao 0.831 0.735
Is @ Wao 0.852 0.885 Is @ Wag 0.860 0.899

(0.85, 0.75) gridag 0.774 0.638 (0.15, 0.1) gridsg 0.800 0.679
gridsoo 0.811 0.807 gridsoo 0812 0.810
gridieo 0.802 0.818 gridiee 0.832 0.846
gridyse 0.854 0.880 gridyse 0.857 0.889
gridago 0.855 0.898 gridaoo 0.858 0.895
Wao 0.808 0.688 Wao 0.801 0.684
Is @ Wao 0.831 0.859 Is @ Wao 0.842 0.868

where ¢,,; are real-valued random variables, and the a,,;; and b,,; denote the real-valued coef-
ficients of the linear quadratic form. We need the following assumptions in Lemma 2.
(Cl1) {e.,1 <i<mn} are independent random variables with mean 0 and

SUP| icp p>1 Elen|™™ < oo for some 5, > 0.
(C2) For all 1<ij<nn>1,a. = a, SUP| <j<p, n>1 Soi i lani| < oo, and
sup,s; 1 S0 bl < oo for some 1, > 0.

Given above assumptions (C1) and (C2), the mean and variance of Q,, are given as
follows (e.g., Kelejian and Prucha 2001):

n
2
Vg = E Anii0
i=1
n_n n
2 _ 2 2 2 2 2
GQ _2§ § anijgnio-nj+§ :bniani (13)
i=1

i—1 j=1

+ Z{aiii(ﬂg) - 30—21') + zb”ia”iiu’gi)}

i=1

with 02, = E(&,) and u¥ = E(¢:,) for s=3, 4.
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Lemma 1. Suppose that assumptions Cl and C2 hold true and n_laé > ¢ for some
constant ¢ > 0. Then

5
Q-vg 4 N(0,1)
%3

Proof. See Theorem 1 in Kelejian and Prucha (2001).

Lemma 2. Let 1,1, ...,1, be a sequence of stationary random variables, with E|n,|" < oo
for some constants s > 0. Then

_ 1/s
max || = o(n'"), as.

Proof. Using Borel-Cantelli lemma and following the proof of (2.3) in Owen (1990),
one can prove Lemma 2, where there is no need to assume that #,,#,,...,1,, are in-
dependent in using Borel-Cantelli lemma.

Lemma 3. Suppose that assumptions (A1)-(A4) are satisfied. Then as n — oo,

_ 2/(4+n)
Z, = 1r<ng‘xT||cu,( )| = 0,((nT) ) a.s. (14)
2}14/_21 T41 sz —>N(0 Ik s1)T41) (15)
Zwr = (nT)" Z (K+1)T+1 T Op( ) (16)

Z ||wi (0 0,(nT?) (17)

Proof. Note that
i1

~ 2 2 ~
gi(e —0 >+26i§ :81'1',161‘ ]
=

a4 -1}

Z, < max { max ||be;||, max
1<i<nT 1<i<nT 1<i<nT

i—1

gll T(e —0 ) —|—2€,’§ ;ézj,Tej ’

max
1<i<nT -
j=1

1<i<nT
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By Conditions Al and A2 and Lemma 2, we have:

max, ||biei]| = max ||bi||op((nT)1/(4+’“)) — op((nT)l/(‘”'“))

|g11 t( )| = max |gzz t|0P((nT)

1<i<nT

2/(4+n1)) _ op((nT)2/<4+"‘))

1<1< T
i—1

max eig g~ij’tej
j=1

<
max ( max_|e;])’

T I<i<aT

i-1
max Z|§ij,t| = Op((”T)z/(Hm)),l <t<T
=1

1<i<nT

2 2/(44m)
max [ 0%| = oy((nT)?/ )
Thus, Z, = op((nT)z/(4+”1)). (14) is proved.
For any given [= (IL,...lro10r1)" € REFVTHL with  ||l|| =1, where I €
RKT, Ly..slri1, Ity € R. Then,
i~1

T
Fai(0) = ITbie; + Zlm{g’ﬁ,t(ef — %) +2e) 2,6} +Irp(e —d?)

=1
i—1 T
thﬂg” .t lT+z)(€ —a?)+ 2612 Zlméij,t)ej + [ bie;.
t=1 =1 t=1
Thus,
nT nT T
erwi“)) = Z (thﬂgﬁ,t + lT+2> (ef - (72)
i=1 i=1 t=1
nT i—1
+ ZZZ (Zlf“gv t) eiej + Zl b;e;
i=1 j=
Let
nT nT
Z Z ujieiej + Z vie;
i=1 j=
where

T T
§ : = § : ~ T
Ujj = lt+1gii,t + lT+2> Ujj = ltJrlgij,t’ Vi = ll bi
t=1 t=1

To obtain the asymptotic distribution of Q,, we need to check Condition C2. From
Condition A2 (i), it can be shown that:

nT T

Z |uy| < ZZ |lr+1g,] |+ llr2f <C (18)
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Further,

nT nT
(”T)712:|Vi|3 = (”T)flz|lfbi|3

i=1 i=1

i = 3 (19)
< 113 )
< C max |lx[* max, (;Iazkl)

where ay; is the (k, i)-element of B. From (18) and (19), it follows that
(nT)"" S |vi]* < C. Therefore, Condition C2 is satisfied.

We now derive the variance of Q,. Let d; be the unit vector in the i-th coordinate
direction. It can be shown that:

nT nT T 2 T 2
ZZM,] = Z{ (lelg,-,-,t + lT+2> + Z (thﬂgij,t) }
i=1 j= i=1 t=1 i#] t=1
nT T
= Z{ <th+1§,~i,t> +2 <th+1gu t) Iris + ZT+2 =+ Z <th+lg1] z) }
=1 =1 iz \i=1
T nT nT nT T ]
= ZZIHIZTH <Z§ii,t> + ”Tl 42t Zzzlt-‘v—lglj t
=1 i=1 i=1 j=1 t=
nT nT g
+ ZZZ Z lt1+1lt2+1§ij,t1§,~j, .
i=1 j=1 t,21,

T
= 2th+117+2t1’(ém) + nTZ%v+2 + lTAl

=1
where [ = (L, ..., Ir,1)", and Zi)jg,.j, 081, is the (£, t)-element of A.

nT nT [ T 2
S -3 (zzmgﬁ,t + z)

i=1 t=1

T nT nT
Z t+1 <§ \811 t) +2 Z lt1+llt2+1 <§ gii,tlgii,t2>
i=1

=1 ti#h

nT
+ Zzlt+llT+2 (Zg ) +nTl,

=1 i=1

= ?TAZ + 21T+221t+1t1’(ém) + nTl%+2
t=1

where Z:’:Tl St &y, 18 the (ty, £)-element of A.
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and that

nT

i=1

nT nT
ZV = > ()’ =1 (Zb,-b;) h=I (ZXTBTd,»deX> I
i=1 i=1

nT
= [[X'B* (Zd,-d;) BXl, = [X"B*BX],

i=1

nT nT T
Z“iivi = Z th+1<§ii,t + Iria | Ibi
i=1 i=1 t=1

nT

T
= th+1 Zg,, Jib) + lT+zZ (bi)

T
Z i1 EXB Vec(diagG ) + EX B 1,17,

where 1, is the n-dimensional vector with 1 as its components. It follows from (13) that

the variance of

Q,, is as follows:
nT nT

GQ = ZZZM ot + szaz + Z{u” vy — 30*) + 2uvivs}
=1

where X (g 1)1 is given in (12). From Condition A3, one can see that (nT)™"

i=1 j= =1

=20 {221t+1lT+2tr( ut) +nTE, + 1 Al} + * [ X*B'BXI,

+ (1/4 — 304){irAi + ZZTHZlHltr(ém) + ﬂTl%Jrz}

t=1
T ~
+ 203> L1} X B Vec(diagG) + [X B 1,lrio}
t=1

= ZTZ(K+1)T+1Z

c1 > 0. From Lemma 1, we have the following:

Noting that Q, —

Next we will

Let

Qu — (Qn)
0qQ
E(Q,) = 1 Faxi(6), we thus have (15).

prove (16), that is,
nT

(nT)™" Y (Foy(0))* = (nT) "' + 0p(1)

i=1

—N(0,1)

Min = lr(,{)l(9>
i—1
= uii(ef — 02) + ZZuijeiej + vié;
j=1
= uii(e,-z — 0'2) + R,‘C,‘,

o

(20)

(21)
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where R; = ZZ]’; uje; +vi. Let Fo={0,Q},F;=o0(ee....e;),1 <i<nT. Then
{Min, Fi,1 <i < nT} form a martingale difference array. Note that

nT
(nT) IZ{F@, )} = (nT) oy = (nT)""> (M}, — EM,)
i=1

22
(nT)~ 2:{ M;,|Fic1) + E(M;,|Fioy) — EM;, } .

= (nT)"'Su + (nT)™"
where S,; =517 {M2 —E(M?, |.7-",~,1)},S,12:Z:?:T1 {E(M2|F;-1)—EM?2}. Next we will prove
(nT) ™' Sm=o0,(1) (23)

and
(nT)"'Sa=0,(1) (24)
It suffices to prove (nT) 2E(S2,) — 0 and (nT) *E(S%,) — 0 respectively. Obviously,
M2 = ui(e? — 6*)* + R2e? + 2u;R;(e? — 6)e;
Thus
E(M2|Fi 1) = i2E(¢? — 0°)* + R26® + 2u;Rivs
It follows that:

(nT)? (nT) 225{ M2|Fi)Y
= (nT)‘ZZE[ui-{(e? — ) —E(¢f — 0°)’} + Ri(e] — 0°)

+ 2uRi(e) — o%e; — v3)]

(25)
C(nT) ZZE (2 — a*)* — E(é? — 6°)*}?]
c<nT>‘ZZE{R?<e? — )}
C(nT)” X:E{u“Rl2 & — e, —v3)’}
By Conditions Al and A2, we have the following:
nT
(1) 2 E[ub{(@ - ) B — )Y
i=1
nT nT T
C(nT) ™Y uy < C(nT) D1 hnigy, + lrsal* (26)
i=1 i=1 =1

WT T
C(”T)_ZZZ|lt+1§,-i,t + ZT+2|4 <Cn'—0
im1 =1
and
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nT nT i—1
(nT)fZZE{Rf(ef - %)’} < C(nT)fZZE(Zu,»jeJ- +v,)*
i1 =1 =1
nT i—1 nT
C(nT)722:E(2:u,~]-ej)4 + C(nT)fzz:v;1
=1 =1

nT i—1 i
< C(nT)” ZZMUW + C(nT)~ Z Z >+ C(nT)” Z(l;b,)“ 27)
i=1 j= i=1
nT i—1 T nT i—1 T 2
~ 2
nT ZZZ“H_IgU t| + C nT Z Z“H‘lgij,t'
i=1 j=1 t= i=1 =1 t=1
nT
+C(nT) Y (Gb)* < Cn' —0
i=1
Similarly,
(nT)~ ZE{uuRf e —a’ei—v3)°} =0 (28)

From (25)-(28), we have (nT)_ E(S?,) — 0. Furthermore,

E(M},) = E{E(M, ﬂfiﬂ}zuﬁxz 0*)’ + 0 E(R}) + 2u;i3E(R;)

= u’E(el — o%) ’ 42 4Zu262 +v7) + 2uv3v;

Thus,
(nT) E(S,) = Z{E( Wl Fi1) — MG}
Z{RZ 2 4Zu202 +v2) + 2uv3 (R — vi)}]
= (nT)_ZZE[0'2{(ZZuijeJ 4Zu ”} + 4( Zuljej vio
i=1 =1

i—1
+2ui,'l/3 (ZZuljeJ)]z

(29)
=1
nT i—1
C(nT)fZZE{JZ(Zu,-jej Zu %)
i=1 =1
nT i—1
+C(nT)7ZZE{(Zu,-jej)v,»az}2
i1 =1

nT i—1
C(nT)? ZE{ZuiiV3 (Z“ijef)}
i=1 j=1
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Note that
2
nT i—1
(nT)fZZE 02{(214,']'6]') Zu 5}
i=1 =1
nT i—1
-2 4
< oS S .
nT i— 1 i
C(nT) ZZZuUW + C(nT) ZZ Z
i=1 j=
<Cn'!'—o0
nT i—1 nT i—1
) 2 s
(nT) Y E{(D_uge)via’}* = (nT) 26"y v}y uj (31)
=1 =l =1 j=1
<C(nT) > =0
and
nT i—1 nT i—1
(nT) 2> E{2uis (Y uge))}? = 420> (nT) 2> 2> i
i=1 j=1 =1 j=1 (32)
<C(nT) ™ =0

where we have used Conditions Al and A2. From (29)-(32), we have (nT)_ZESi2 — 0.
The proof of (20) is thus complete.
Finally, we will prove (17). Note that

nT T nT i—1
> Ellei(0)]]” < ZEllb ell’ + ZZEI&H — ') +2e) g0l
i=1 t=1 i= j=1 (33)

+ZE|ef —a*
i=1

By Conditions Al and A2,
nT
> E||biei||* < CnT( max ||xi||)*Elei|* = O(nT) (34)
Py 1<i<nT

3

nT i—1
ZE gii,t(ez‘z —-a’)+ 2eizgij,tej
i=1 =1

nT
< CZELéii,t(eiz - + CZE 2612 :gl] tv]

i=1

nT

- 3 3 ~ 3

< CZE|gii,t(ei2 —a)] + CZE|e,~| ZE|gij,tej|

i=1 i=1 =1

3/2

(35)

i—1

nT
+CY Elel’{ > E@; ¢) = O(nT)

j=1
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nT
ZE|ef —¢’’ = o(nT) (36)
i=1

From (33)-(36), we have
nT
> Ellwi(0)[]° = O(nT) (37)
i=1

Further, using (37) and Markov inequality, we obtain 77 ||w;(0)|* = O,(nT?). Thus
(17) is proved.

Proof of Theorem 1. Using Lemma 3 and following the proof of Theorem 1 in Qin
(2019), one can easily show that Theorem 1 holds true.
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