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Abstract
In this paper, we propose to use the empirical likelihood (EL) method to construct 
confidence regions for nonparametric regression models with spatial autoregres-
sive errors. It is shown that the EL statistics for the related parameters asymptoti-
cally have chi-squared distributions, which are used to construct confidence regions 
for the parameters. Results from simulation study and real data analysis are also 
presented.

Keywords Nonparametric regression · Spatial autoregressive error · Empirical 
likelihood · Confidence region

AMS Subject Classification Primary 62G05 · secondary 62E20

1 Introduction

We firstly outline the introduction of the empirical likelihood (EL) method and its 
applications in dealing with some types of dependent data (other than spatial data). 
The EL method as a nonparametric method is an important approach in construct-
ing confidence intervals, introduced by Owen (1988, 1990, 1991, 2001), which can 
be robust under various distributional assumptions but may still have good prop-
erties analogous to the parametric likelihood method. This method has only been 
used to deal with independent observations for a considerable time after it was 
introduced. To deal with dependent data, Kitamura (1997) first proposed the block-
wise EL (BEL) method to construct confidence intervals for parameters with mix-
ing samples. Chen and Wong (2009) developed BEL method to obtain confidence 
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intervals for quantiles with mixing samples. For time series, Mykland (1995) made 
the connection between the dual likelihood and the EL and applied the EL approach 
to models with martingale structures. Chuang and Chan (2002) introduced the EL 
method to the autoregressive (AR) models where the disturbances form a martingale 
difference sequence. Chan and Ling (2006) developed the EL for regular generalized 
autoregressive conditional heteroskedasticity (GARCH) models.

In this part, we summarize the progress of the generalized method of moments 
(GMM), quasi maximum likelihood (QML) method and nonparametric method 
(other than EL method) used in parametric/nonparametric spatial models. Spatial 
data arise in a variety of fields, including econometrics, epidemiology, environmen-
tal science, image analysis, oceanography and many others. Many spatial econo-
metric models were inspired by questions arising in regional science and economic 
geography, where the units of observations are geographically determined and the 
structure of the dependence among these units is related to location and distance. 
Among spatial econometric models, the mixed regressive, spatial autoregressive 
(MRSAR) model introduced by Cliff and Ord (1973) is one of the most important 
models. The development in testing and estimation of MRSAR models based on the 
GMM and QML methods can be found in Anselin (1988), Cressie (1993), Anselin 
and Bera (1998), Lee (2004, (2007) and Jin and Lee (2018), among others. MRSAR 
models are among parametric spatial models. In many applications, data may not be 
fitted well by parametric models. There also exist some developments on the statisti-
cal inference for nonparametric spatial regression models to address this problem. 
For example, for nonparametric spatial regression models with spatial autoregres-
sive errors, Wang et al. (2016) studied the asymptotic normality of the estimators of 
the models. Lu et al. (2014) considered the estimation of semi-parametric varying-
coefficient quantile regression with spatial data under mixing condition. Su and Jin 
(2010) proposed a QML estimator for partially linear spatial autoregressive models. 
Hallin et al. (2001) obtained the asymptotic normality of kernel density estimation 
in a spatial linear process. Hallin et al. (2004a, b) proposed local linear method to 
estimate the spatial regression function and established the asymptotic normality of 
the estimators of the regression function and its derivatives under mild regularity 
assumptions, respectively.

We now state the progress of the EL and BEL methods used in parametric/non-
parametric spatial models. Jin and Lee (2019) studied the generalized EL (GEL) 
estimation and tests of parametric spatial models. Qin (2019) independently inves-
tigated the EL method for MRSAR models. Nordman (2008), Nordman and Daniel 
(2008) and Bandyopadhyay et  al. (2015) used the BEL method to nonparametric 
spatial models.

It is worthwhile to look at another class of models related to the spatial models 
mentioned above: spatial conditionally autoregressive (CAR) models (e.g., Besag 
et al. 1991; Banerjee et al. 2014). The spatial CAR state that the conditional mean of 
observation at a (spatial) site i given all other observations is a linear function of all 
observations (except for the observation at site i ), where i = 1, 2,… , n and n is the 
total sites. On the other hand, the spatial autoregressive (SAR) models mentioned in 
this paper emphasize that the mean of observation at a (spatial) site i is a linear func-
tion of the means of all observations (except for the observation at site i). In some 
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cases, CAR models and SAR models agree. But in most cases, they are different. 
For more details, refer to Ord (1975).

In this paper, we propose to use the EL method to construct confidence region 
for nonparametric spatial regression models, where we do not need to use the BEL 
method to avoid the choice problem of block size in BEL method. It is shown that 
the EL statistics for the related parameters asymptotically have chi-squared distri-
butions, which are used to construct confidence regions for the parameters. To the 
best of our knowledge, the EL for nonparametric spatial regression models has not 
appeared in the literature yet. This work focuses on inference when we have con-
tinuous response values. The EL method may be extended to the binary or count 
data sets as in the spatial generalized linear mixed models (e.g., Diggle and Tawn 
1998), which is left for our future study. Our asymptotic results are based on a grow-
ing observation region (increasing-domain). Zhang (2004) found that under fixed 
domain, covariance parameters are not consistently estimated in the model-based 
geostatistics. No general results are available for nonparametric spatial regression 
models under fixed domain.

The article is organized as follows. Section 2 gives the main results. Results from 
a simulation study are reported in Sect.  3. Section  4 presents the analysis of real 
data. Some concluding remarks are given in Sect.  5. All the technical details are 
presented in Sect. 6.

2  Main results

We consider the following nonparametric regression model (1) and (2) with spatial 
autoregressive errors:

where n is the number of spatial units, m(⋅) is a unknown smooth function, {yi} are 
scalar responses and {xi} ∈ [0, 1]r(r ≥ 1) are fixed design points, R = (R1,… ,Rn)

T 
is an n × 1 vector of errors (disturbances), � is the scalar autoregressive parameter 
with |𝜌| < 1 , Wn is an n × n spatial weighting matrix of constants, �(n) is an n × 1 vec-
tor of innovations which satisfies

Remark 1 The spatial weighting matrix Wn has a zero diagonal and is usually taken 
as row-normalized matrix (i.e. the L2 norm of its every row is unity). In addition, 
the elements of Wn are all non-negative. Wn may be symmetric, but needs not be 
so. By the spectral radius theorem for the non-negative row-normalized matrix, the 
conventional space (−1, 1) of � is a subset of the interval (1∕�min(Wn), 1∕�max(Wn)) , 

(1)yi = m(xi) + Ri, 1 ≤ i ≤ n,

(2)R = �WnR + �(n),

E�(n) = 0,Var(�(n)) = �2In.
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where �min(Wn) and �max(Wn) denote the minimum and maximum eigenvalues of Wn , 
respectively. For more details, refer to Ord (1975).

For given x ∈ (0, 1)r , a commonly used type of estimator of m(x) in model (1) 
is

where W̃ni(u), i = 1,… , n are non-negative weighted functions. Take 0 < h = hn → 0 
and a non-negative kernel function K(u), u ∈ Rr . Let Kh(u) = K(u∕h) . In this article, 
W̃ni(u) is chosen as the Nadaraya–Watson weight

From Eq. (1), we know that Ri = yi − m(xi) and thus its estimator is

Denote R̂ = (R̂1,… , R̂n)
T and 𝜖(n) = R̂ − 𝜌WnR̂ . Based on model (2), we adopt 

the quasi-maximum likelihood method (QMLE) to estimate � and �2 . Let 
An(�) = In − �Wn and suppose that An(�) is nonsingular, then the log-likelihood 
function is

where 𝜖(n) = An(𝜌)R̂ . For the log-likelihood function (5), given � , the QMLE of �2 is

The concentrated log-likelihood function of � is

The QMLE �̂�n of � maximizes the concentrated likelihood (7) and the QMLE of �2 
is �̂�2

n
(�̂�n) . We note that the QMLEs �̂�n and �̂�2

n
(�̂�n) of � and �2 are also the solutions of 

the estimating Eqs. (8) and (9) below.
We are now in the position to present the EL statistics for 𝜃=̂(𝜌, 𝜎2)T and 

� = m(x) for given x ∈ (0, 1)r , respectively.

2.1  EL for �

In order to derive the EL statistic of � and �2 , we observe that

(3)m̂n(x) =

n∑
i=1

�Wni(x)yi,

W̃ni(u) =
Kh(u − xi)∑n

j=1
Kh(u − xj)

.

(4)R̂i = yi − m̂n(xi).

(5)L(𝜌, 𝜎2) = −
n

2
log(2𝜋) −

n

2
log 𝜎2 + log |An(𝜌)| − 1

2𝜎2
𝜖T
(n)
𝜖(n),

(6)�̂�2
n
(𝜌) =

1

n
𝜖T
(n)
𝜖(n) =

1

n
R̂TAT

n
(𝜌)An(𝜌)R̂.

(7)L(𝜌) = −
n

2
(log(2𝜋) + 1) −

n

2
log �̂�2

n
(𝜌) + log |An(𝜌)|.
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where Gn = WnA
−1
n
(�) and G̃n =

1

2
(Gn + GT

n
) . Letting above derivatives be 0, we 

obtain the following estimating equations:

We use g̃ij to denote the (i, j) element the matrix G̃n , and adapt the convention that 
any sum with an upper index of less than one is zero. To deal with the quadratic 
form in (8), we follow Kelejian and Prucha (2001) to introduce a martingale differ-
ence array. Define the �-fields: F0 = {�,Ω},Fi = �(�1, �2,… , �i), 1 ≤ i ≤ n . Let

where 𝜖i is the i-th component of 𝜖(n) = An(𝜌)R̂ . Then Fi−1 ⊆ Fi , and if {𝜖i} are 
replaced by {�i} , {Ỹin,Fi, 1 ≤ i ≤ n} form a martingale difference array. In other 
words, {Ỹin,Fi, 1 ≤ i ≤ n} asymptotically form a martingale difference array, and

Based on (8)–(11), we propose the following EL ratio statistic for �:

where {pi} satisfy

Let

𝜕L(𝜌, 𝜎2)∕𝜕𝜌 =
1

𝜎2
{𝜖T

(n)
WnA

−1
n
(𝜌)𝜖(n) − 𝜎2tr(WnA

−1
n
(𝜌))}

=
1

𝜎2
{𝜖T

(n)
G̃n𝜖(n) − 𝜎2tr(G̃n)},

𝜕L(𝜌, 𝜎2)∕𝜕𝜎2 =
1

2𝜎4
(𝜖T

(n)
𝜖(n) − n𝜎2),

(8)𝜖T
(n)
G̃n𝜖(n) − 𝜎2tr(G̃n) = 0,

(9)𝜖T
(n)
𝜖(n) − n𝜎2 = 0.

(10)Ỹin = g̃ii(𝜖
2
i
− 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j,

(11)𝜖T
(n)
G̃n𝜖(n) − 𝜎2tr(G̃n) =

n∑
i=1

Ỹin.

L1n(�) = sup
pi,1≤i≤n

n∏
i=1

(npi),

n∑
i=1

pi

{
g̃ii(𝜖

2
i
− 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j

}
= 0,

n∑
i=1

pi(𝜖
2
i
− 𝜎2) = 0,

𝜔i(𝜃) =

�
g̃ii(𝜖

2
i
− 𝜎2) + 2𝜖i

∑i−1

j=1
g̃ij𝜖j

𝜖2
i
− 𝜎2

�
.
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Following Owen (1990), one can show that

where �1(�) ∈ R2 is the solution of the following equation:

2.2  EL for # = m(x) for given x ∈ (0, 1)r

Rewrite Eqs. (1) and (2) as

where Wn = (w1,… ,wn)
T , wi = (wij)n×1 is a vector. wij places different empha-

ses on different sites, site j ’close’ to site i means that Rj exerts more influence 
on Ri than those far away and then wij is large. Conventionally, we assume that 
wii = 0, 1 ≤ i ≤ n.

Similar to Lei and Qin (2011), let

where ỹi = yi − �̂�n
∑n

j=1
wijR̂j . We define the log-empirical likelihood ratio for � as

where the maximum is taken over all sets of nonnegative numbers p1,… , pn sum-
ming to 1 and such that 

∑n

i=1
piZin(�) = 0 . By the Lagrange multiplier method, that

where �2(�) is the solution of the equation

We use �0 to denote the true value of � . Let �j = E�
j

1
, j = 3, 4 . Use Vec(diagA) to 

denote the vector formed by the diagonal elements of a matrix A and ||a|| to denote 
the L2-norm of a vector a. To obtain the asymptotical distributions of �1n(�) and 
�2n(�) , we need following assumptions. 

(12)�1n(𝜃)=̂ − 2 logL1n(𝜃) = 2

n∑
i=1

log{1 + 𝜆T
1
(𝜃)𝜔i(𝜃)},

(13)
1

n

n∑
i=1

�i(�)

1 + �T
1
(�)�i(�)

= 0.

(14)yi = m(xi) + �

n∑
j=1

wijRj + �i,

(15)Zin(𝜗) = Kh(x − xi)(ỹi − 𝜗),

�2n(𝜗)=̂ − 2max

n∑
i=1

log(npi),

(16)�2n(�) = 2

n∑
i=1

log(1 + �2(�)Zin(�)),

(17)
1

n

n∑
i=1

Zin(�)

1 + �2(�)Zin(�)
= 0.
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 A1. m(⋅) satisfies the Lipschitz condition on [0, 1]r , that is, for any x1, x2 ∈ [0, 1]r , 
there exists a constant C0 such that 

 A2. {�i, 1 ≤ i ≤ n} are independent and identically distributed random variables with 
mean 0, variance 𝜎2 > 0 and E|𝜖1|4+𝜂1 < ∞ for some 𝜂1 > 0.

 A3. The non-negative kernel function K is bounded with bounded support which 
satisfies 

∑n

i=1
Kh(x − xi) = O(nhr) . Weight functions {W̃ni(x), 1 ≤ i ≤ n} are non-

negative, and as n → ∞ , there exist constants M > 0, 0 < 𝛼1 < 1∕r , such that 

 (i) 
∑n

i=1
W̃ni(x) = 1;

 (ii) 
∑n

i=1
�Wni(x)I(��x − xi�� > Mn−𝛼1) = 0;

 (iii) max1≤i≤n W̃ni(x) = O(n−(1−�1r));

 A4. Let Wn , A−1
n
(�) and {xi} be as described above. They satisfy the following condi-

tions: 

 (i) The row and column sums of Wn and A−1
n
(�0) are uniformly bounded in 

absolute value;
 (ii) An(�) are uniformly bounded in either row or column sums, uniformly � 

in a compact space Λ . The true �0 is in the interior of Λ.
 (iii) {xi} are uniformly bounded.

 A5. (i) The elements wij of Wn are at most of order �−1
n

 , uniformly in all i, j, where 
the rate sequence �n is a divergent, the ratio �1+�

n
∕n → 0 for some 𝜂 > 0 , and 

satisfies 

 whenever � ≠ �0 , where �∗2
n
(�) = �2∕{ntr[(A−1

n
(�0))

TAT
n
(�)An(�)A

−1
n
(�0)]}.

 (ii) As n → ∞ , n1−2�1hr → 0, n�1rhr → 0 and nhr∕�n → 0.
 A6. T h e r e  i s  a  c o n s t a n t s  cj > 0, j = 1, 2  ,  s u c h  t h a t 

0 < c1 ≤ 𝜆min
(
n−1Σ

)
≤ 𝜆max

(
n−1Σ

)
≤ c2 < ∞ , where �min(A) and �max(A) denote 

the minimum and maximum eigenvalues of a matrix A, respectively, 

Remark 2 Conditions A1-A3 are commonly used conditions for nonparametric 
regression models (e.g. Lei and Qin 2011). Conditions A4 and A6 are common 

|m(x1) − m(x2)| ≤ C0||x1 − x2||.

lim
n→∞

(
�n
n
ln |�2A−1

n
(�0)(A

−1
n
(�0))

T | − �n
n
ln |�∗2

n
(�)A−1

n
(�)(A−1

n
(�))T |

)
≠ 0,

(18)

Σ = ΣT = Cov

{
n∑
i=1

𝜔i(𝜃)

}
=

(
Σ11 Σ12

Σ21 Σ22

)
,

Σ11 = 2𝜎4tr(G̃2
n
) + (𝜇4 − 3𝜎4)||Vec(diagG̃n)||2,

Σ12 = 2𝜎4tr(G̃n) + (𝜇4 − 3𝜎4)tr(G̃n),

Σ22 = 2n𝜎4 + (𝜇4 − 3𝜎4)n.
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assumptions for SAR models. For example, A4 and A6 are used in Assumptions 4, 5 
and 6 in Lee (2004), the analog of 0 < c1 ≤ 𝜆min

(
n−1Σ

)
 (e.g. n−1�2

Q
≥ c for some 

constant c > 0 in the proof of Lemma 2 in this article) is employed in the assump-
tion of Theorem 1 in Kelejian and Prucha (2001). From Condition A4, one can see 
that 𝜆max

(
n−1Σ

)
≤ c2 < ∞ . For convenience, we list this consequence of A4 and A6 

as a condition here. Condition A5(i) is used to show the asymptotic normality of �̂�n , 
which is also used in Wang et  al. (2016). Condition A5(ii) is used to derive the 
asymptotic distribution of �2n(�).

We now state the main results.

Theorem  1 Suppose that Assumptions (A1)–(A6) are satisfied. Then under model 
(2), as n → ∞,

where �2
2
 is a chi-squared distributed random variable with two degrees of freedom.

Let �2
�
(k) satisfy P(�2

k
≤ �2

�
(k)) = � for 0 < 𝛼 < 1 . It follows from Theorem 1 that 

an EL based confidence region for � with asymptotically correct coverage probability � 
can be constructed as

The following is the the asymptotical distribution result of the log-empirical likeli-
hood ratio on � = m(x).

Theorem 2 Suppose that Assumptions (A1)–(A6) are satisfied. Then as n → ∞,

where �2
1
 is a chi-squared distributed random variable with one degree of freedom.

From this result, the EL based confidence interval for � with asymptotically correct 
coverage probability � can be constructed as

3  Simulations

In this section, we carry out some simulations to show how our EL method performs. 
The models are considered as

�1n(�)
d

⟶�2
2
,

{� ∶ �1n(�) ≤ �2
�
(2)}.

�2n(�)
d

⟶�2
1
,

{� ∶ �2n(�) ≤ �2
�
(1)}.

yi = sin(xi) + Ri, 1 ≤ i ≤ n,

R = �WnR + �(n), for � = 0.2, 0.5, 0.8,

Author's personal copy



455

1 3

Journal of the Korean Statistical Society (2021) 50:447–478 

where xi =
i

n+1
, 1 ≤ i ≤ n , and �′

i
s are taken from N(0, 1), t(5) and �2

4
− 4 , respec-

tively. For the contiguity weight matrix Wn = (Wij) , we choose Wij = 1 if spatial units 
i and j are neighbours by queen contiguity rule (namely, they share common border 
or vertex), Wij = 0 otherwise (Anselin 1988, p. 18). A transformation is often used 
in applications to convert the matrix Wn to the unity of row-sums. We used the stand-
ardized version of Wn in our simulations, namely Wij was replaced by Wij∕

∑n

j=1
Wij . 

In the estimation of the nonparametric regression function, we let 
K(u) =

1√
2�

exp(−u2∕2) , use Nadaraya–Watson weight as

and select the h by the cross-validation (CV) method stated in Wang et al. (2016).
We consider three ideal cases of spatial units: n = m × m regular grid with 

m = 7, 10, 13 , denoting Wn as grid49, grid100 and grid169 , respectively. We generated 
1, 000 samples and compared the sample quantiles of �1n(�) with the quantiles of 
the �2

2
 presented in Fig. 1. At the same time, for x = 0.2, 0.5 and 0.8, we compared 

the sample quantiles of �2n(�) with the quantiles of the �2
1
 shown in Figs. 2, 3 and 

4. We note that the x-axis and y-axis have different scales in Figs. 1, 2, 3 and 4, 

W̃ni(u) =
Kh(u − xi)∑n

j=1
Kh(u − xj)

ε ∼ N(0, 1), ρ = 0.2, 0.5, 0.8 and σ2 = 1

ε ∼ t(5), ρ = 0.2, 0.5, 0.8 and σ2 = 5/3

ε ∼ χ2
4 − 4, ρ = 0.2, 0.5, 0.8 and σ2 = 8

Fig. 1  Q–Q plots of �
1n
(�) and �2

2
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which come from the R system. In this way, the empirical quantiles of the EL sta-
tistics and its theoretical quantiles are not approximately located on a 45 degree 
straight line. They can be modified to have the same scale. However, if they are 
modified to have the same scale, the figures can not show complete quantiles and 
look imperfect. Based on the simulation results, when �(n) is normally distributed, 
all sample distributions and the theoretic distributions agree well. We can also 
see, when �(n) is not normally distributed, that all the sample distributions fit the 
theoretic distributions well as |�| is less than 0.8. All the sample distributions also 
fit the theoretic distributions well as |�| is large when the sample sizes are large.

In addition, using the same models and the simulated samples as above and 
taking the nominal level � = 0.95 , we conducted a small simulation study to com-
pare the finite sample performances of the confidence intervals for the spatial 
correlation coefficient � based on the EL method proposed in this paper and the 
normal approximation (NA) method in Wang et al. (2016), where n = m × m with 
m = 7, 10, 13, 16, 20, 30 and 40, respectively. The coverage probabilities (CP) and 
the average lengths (AL) of the confidence intervals for � in 1000 simulations 
were shown in Tables 1, 2 and 3. From the simulation results, we can see that the 
CP of the EL based confidence intervals converge to the nominal level � = 0.95 

ε ∼ N(0, 1), ρ = 0.2, 0.5, 0.8, σ2 = 1 and x = 0.2

ε ∼ t(5), ρ = 0.2, 0.5, 0.8, σ2 = 5/3 and x = 0.2

ε ∼ χ2
4 − 4, ρ = 0.2, 0.5, 0.8, σ2 = 8 and x = 0.2

Fig. 2  Q–Q plots of �
2n
(�) and �2

1
 with x = 0.2
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as n is large enough, whether the error term �(n) is normally distributed or not. On 
the other hand, the CP of the NA based confidence intervals also go closer to � as 
n is large enough, but the performance of the EL method is better compared with 
the NA method in terms of CP and AL.

4  Real data analysis

In order to illustrate the proposed procedures in Sect. 2, the real data analysis for 
two examples are presented here.

Example 1 The data come from 49 contiguous Planning Neighborhoods in Colum-
bus, Ohio (e.g. Table 12.1 in Anselin 1988, p. 189). The data set contains crime var-
iable (y) (the combined total of residential burglaries and vehicle thefts per thousand 
households in the neighborhood), income (x) (in thousand dollars). We considered 
fitting the data via the following model:

ε ∼ N(0, 1), ρ = 0.2, 0.5, 0.8, σ2 = 1 and x = 0.5

ε ∼ t(5), ρ = 0.2, 0.5, 0.8, σ2 = 5/3 and x = 0.5

ε ∼ χ2
4 − 4, ρ = 0.2, 0.5, 0.8, σ2 = 8 and x = 0.5

Fig. 3  Q–Q plots of �
2n
(�) and �2

1
 with x = 0.5
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where n = 49, Yn = (y1, y2,… , yn)
T ,Xn = (x1, x2,… , xn)

T , 1 ≤ i ≤ n , E�(n) = 0,Var

(�(n)) = �2
I
n
 , the spatial weighting matrix Wn and {W̃ni, 1 ≤ i ≤ n} were selected by 

the method in Sect. 4.
We first used the quasi-maximum likelihood method to estimate � (i.e. assume the 

�(n) is normally distributed) and local linear fitting method to estimate m(x), respec-
tively, then separately employed the EL method in Section 2 and the NA method 
in Wang et al. (2016) to obtain the confidence intervals for parameters � and m(x) 
at three selected points x = 0.3, 0.5 and 0.8 with confidence level 0.95, which were 
shown in Table 4.

From Table 4, we may give the following conclusions. The estimator of the spa-
tial parameter is � = 0.6227 with its confidence interval not containing 0 which 
indicates there exists a substantial spatial relationship among the disturbances. 
The estimators of nonparametric regression function m(x) at three selected points 
x = 0.3, 0.5 and 0.8 are 38.6698, 28.0025 and 21.3531, respectively. The results also 
illustrate that the lengthes of the EL based intervals are uniformly shorter than those 

Yn = m(Xn) + R,

R = �WnR + �(n),

ε ∼ N(0, 1), ρ = 0.2, 0.5, 0.8, σ2 = 1 and x = 0.8

ε ∼ t(5), ρ = 0.2, 0.5, 0.8, σ2 = 5/3 and x = 0.8

ε ∼ χ2
4 − 4, ρ = 0.2, 0.5, 0.8, σ2 = 8 and x = 0.8

Fig. 4  Q–Q plots of �
2n
(�) and �2

1
 with x = 0.8
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of the NA based intervals, which may be explained as that the EL based method per-
forms better than the NA based method in this case.

Example 2 The data come from 288 prefecture-level cities in China, collected from 
National Bureau of Statistics of China and Anjuke. The data set contains the loga-
rithm of housing price (y) and the logarithm of income per household (x) in the 
year of 2016. The model and estimation method are the same as Example 1. The 
only difference is that the sample size is n = 288 in this example while the sample 
size is n = 49 in Example 1. The results of the real data analysis for this example 
were illustrated in Table 5. From these results, one can obtain similar conclusions as 
Example 1.

Table 1  Coverage probabilities 
(CP) and average lengthes (AL) 
of the EL and NA confidence 
intervals for � with � ∼ N(0, 1)

W
n

CP AL

EL NA EL NA

� = 0.2 grid
49

0.885 0.905 0.9358 0.9361
grid

100
0.894 0.905 0.6719 0.7573

grid
169

0.921 0.915 0.5231 0.5398
grid

256
0.921 0.934 0.4287 0.4686

grid
400

0.938 0.928 0.3456 0.3832
grid

900
0.932 0.930 0.2293 0.2337

grid
1600

0.940 0.934 0.1635 0.1762
� = 0.5 grid

49
0.846 0.757 0.6653 0.6708

grid
100

0.891 0.827 0.4327 0.4940
grid

169
0.907 0.857 0.3454 0.3909

grid
256

0.912 0.885 0.2717 0.3233
grid

400
0.917 0.894 0.2392 0.2628

grid
900

0.938 0.916 0.1790 0.1841
grid

1600
0.932 0.922 0.1257 0.1370

� = 0.8 grid
49

0.756 0.616 0.2998 0.3626
grid

100
0.797 0.710 0.2623 0.2725

grid
169

0.838 0.750 0.2072 0.2190
grid

256
0.866 0.778 0.1582 0.1827

grid
400

0.886 0.826 0.1326 0.1500
grid

900
0.886 0.868 0.1033 0.1079

grid
1600

0.918 0.914 0.0717 0.0818
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5  Concluding remarks

For nonparametric regression models with spatial autoregressive errors, we have 
studied the construction of EL confidence regions for the parameters and non-
parametric regression function in these models. A spatial nonparametric model 
is an alternative choice to fit spatial data when parametric models can not fit the 
data well. Wang et al. (2016) studied the QMLE of parameters and nonparametric 
regression function as well as the construction of NA based confidence regions 
for parameters and nonparametric regression function in a spatial nonparametric 
model. Our simulation results show that the EL confidence regions perform better 
than the NA confidence regions when the model errors are not normally distrib-
uted. In other words, the EL method provides a competitive choice to construct 
confidence regions for a spatial nonparametric model.
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Table 2  Coverage probabilities 
(CP) and average lengthes (AL) 
of the EL and NA confidence 
intervals for � with � ∼ t(5)

n CP AL

EL NA EL NA

� = 0.2 grid
49

0.853 0.846 0.9370 0.9770
grid

100
0.896 0.884 0.6712 0.6909

grid
169

0.908 0.902 0.5231 0.5372
grid

256
0.912 0.905 0.4277 0.4609

grid
400

0.915 0.908 0.3377 0.3843
grid

900
0.924 0.918 0.2200 0.2318

grid
1600

0.934 0.933 0.1623 0.1754
� = 0.5 grid

49
0.803 0.752 0.6134 0.7933

grid
100

0.865 0.814 0.4504 0.5478
grid

169
0.880 0.839 0.3553 0.4212

grid
256

0.883 0.855 0.2508 0.3438
grid

400
0.896 0.877 0.2413 0.2743

grid
900

0.916 0.906 0.1790 0.1851
grid

1600
0.928 0.922 0.1200 0.1379

� = 0.8 grid
49

0.699 0.640 0.2888 0.3366
grid

100
0.797 0.690 0.2482 0.2520

grid
169

0.808 0.712 0.2287 0.2597
grid

256
0.831 0.763 0.1721 0.2079

grid
400

0.876 0.818 0.1256 0.1494
grid

900
0.905 0.825 0.1000 0.1088

grid
1600

0.930 0.855 0.0537 0.0788
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Table 3  Coverage probabilities 
(CP) and average lengthes (AL) 
of the EL and NA confidence 
intervals for � with � ∼ �2

4
− 4

n CP AL

EL NA EL NA

� = 0.2 grid
49

0.854 0.855 0.9236 0.9447
grid

100
0.883 0.884 0.6748 0.6993

grid
169

0.896 0.892 0.4485 0.5212
grid

256
0.922 0.905 0.4166 0.4280

grid
400

0.922 0.915 0.3453 0.3983
grid

900
0.936 0.928 0.2280 0.2337

grid
1600

0.938 0.932 0.1700 0.1747
� = 0.5 grid

49
0.804 0.758 1.0210 1.0965

grid
100

0.838 0.794 0.8194 0.8440
grid

169
0.881 0.843 0.3652 0.4230

grid
256

0.887 0.857 0.2757 0.3428
grid

400
0.895 0.867 0.2547 0.2753

grid
900

0.902 0.890 0.1729 0.1823
grid

1600
0.914 0.898 0.1320 0.1376

� = 0.8 grid
49

0.725 0.641 0.2891 0.3516
grid

100
0.786 0.700 0.2519 0.2597

grid
169

0.833 0.725 0.2328 0.2609
grid

256
0.855 0.779 0.1782 0.2097

grid
400

0.879 0.827 0.1404 0.1664
grid

900
0.884 0.858 0.1020 0.1078

grid
1600

0.912 0.892 0.0620 0.0788

Table 4  Analysis results for the neighborhood crime data (with ALs shown in brackets)

Variable Estimation Confidence interval (EL) Confidence interval (NA)

� 0.6227 [0.3877, 0.8007] (0.4130) [0.3857, 0.8597] (0.4740)
m(0.3) 38.6698 [34.5354, 41.1134] (6.5780) [35.3138, 42.0257] (6.7119)
m(0.5) 28.0025 [27.3952, 33.8954] (6.5002) [21.4444, 30.9929] (9.5485)
m(0.8) 21.3531 [18.7309, 22.2467] (3.5158) [18.7906, 23.9156] (5.1250)

Table 5  Analysis results for the housing price data (with ALs shown in brackets)

Variable Estimation Confidence interval (EL) Confidence interval (NA)

� 0.4201 [0.4011, 0.5555] (0.1544) [0.2826, 0.5577] (0.2751)
m(0.3) 8.4242 [8.3768, 8.4832] (0.1064) [8.2692, 8.5791] (0.3099)
m(0.5) 8.6687 [8.5384, 8.7345] (0.1961) [8.5830, 8.7855] (0.2025)
m(0.8) 9.1760 [9.1590, 9.3005](0.1415) [9.0877, 9.2643] (0.1766)
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Appendix

To prove the main results, we need some lemmas.

Lemma 1 Let �1, �2,… , �n be a sequence of stationary random variables, with 
E|𝜂1|s < ∞ for some constants s > 0 and C > 0 . Then

Proof It is straightforward.   ◻

Lemma 2 Suppose that Assumptions (A1)–(A6) are satisfied. Then as n → ∞,

where Σ is given in (18).

Proof For convenience, denote

Note that

and

max
1≤i≤n

|�i| = o(n1∕s), a.s.

(19)Zn = max
1≤i≤n

||�i(�)|| = op(n
2∕(4+�1)) a.s.,

(20)Σ−1∕2

n∑
i=1

�i(�)
d

⟶N(0, I2),

(21)n−1
n∑
i=1

�i(�)�
T
i
(�) = n−1Σ + op(1),

(22)
n∑
i=1

||�i(�)||3 = Op(n),

m(Xn) = (m(x1),… ,m(xn))
T , m̂n(Xn) = (m̂n(x1),… , m̂n(xn))

T .

Zn ≤max
1≤i≤n

||||||
g̃ii(𝜖

2
i
− 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j

||||||
+ max

1≤i≤n
|𝜖2

i
− 𝜎2|

≤max
1≤i≤n

|g̃ii(𝜖2i − 𝜎2)| + max
1≤i≤n

||||||
2𝜖i

i−1∑
j=1

g̃ij𝜖j

||||||
+ max

1≤i≤n
|𝜖2

i
− 𝜎2|,
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and

Thus,

By Conditions A2 and A4(i) and Lemma 1, we have

Thus Zn = op(n
2∕(4+�1)) . (19) is proved. 

For any given l = (l1, l2)
T ∈ R2 with ||l|| = 1 , where l1, l2 ∈ R . Then

(23)

𝜖(n) = An(𝜌)R̂ = An(𝜌){Yn − m̂n(Xn)}

= An(𝜌){Yn − m(Xn) + m(Xn) − m̂n(Xn)}

= An(𝜌){R + m(Xn) − m̂n(Xn)},

= 𝜖(n) + An(𝜌){m(Xn) − m̂n(Xn)},

= 𝜖(n) + An(𝜌)

⎛⎜⎜⎝

m(x1) − m̂n(x1)

⋮

m(xn) − m̂n(xn)

⎞⎟⎟⎠

(24)

m(xj) − m̂n(xj) = m(xj) −

n∑
i=1

�Wni(xj)yi

=

n∑
i=1

�Wni(xj){m(xj) − m(xi)} −

n∑
i=1

�Wni(xj)Ri

= O(n−𝛼1) − ( �Wn1(xj),… , �Wnn(xj))R

= O(n−𝛼1) −

√
Var(( �Wn1(xj),… , �Wnn(xj))R)Op(1)

= Op(n
−𝛼1 + n−(1−𝛼1r)∕2).

𝜖(n) = 𝜖(n) + Op(n
−𝛼1 + n−(1−𝛼1r)∕2).

max
1≤i≤n

|g̃ii(𝜖2i − 𝜎2)| = max
1≤i≤n

|g̃ii|op(n2∕(4+𝜂1)) = op(n
2∕(4+𝜂1)),

max
1≤i≤n

||||||
𝜖i

i−1∑
j=1

g̃ij𝜖j

||||||
= (max

1≤i≤n
|𝜖i|)2 ⋅ max

1≤i≤n

||||||

i−1∑
j=1

g̃ij

||||||
= op(n

2∕(4+𝜂1)),

max
1≤i≤n

|𝜖2
i
− 𝜎2| = op(n

2∕(4+𝜂1)),
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where Un = (uij)n×n, uii = l1g̃ii + l2, uij = l1g̃ij(i ≠ j) . Note that

and

Then

where Qn =
∑n

i=1
{uii(�

2
i
− �2) + 2

∑i−1

j=1
uij�i�j}.

We now derive the variance of Qn . It can be shown that

n∑
i=1

lT𝜔i(𝜃) =

n∑
i=1

{
l1

{
g̃ii(𝜖

2
i
− 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j

}
+ l2(𝜖

2
i
− 𝜎2)

}

=

n∑
i=1

(l1g̃ii + l2)(𝜖
2
i
− 𝜎2) + 2

n∑
i=1

i−1∑
j=1

l1g̃ij𝜖i𝜖j

= 𝜖T
(n)
Un𝜖(n) − 𝜎2tr(Un)

= [𝜖(n) + Op(n
−𝛼1 + n−(1−𝛼1r)∕2)]TUn[𝜖(n)

+ Op(n
−𝛼1 + n−(1−𝛼1r)∕2)] − 𝜎2tr(Un),

= 𝜖T
(n)
Un𝜖(n) − 𝜎2tr(Un) + 2Op(n

−𝛼1 + n−(1−𝛼1r)∕2)Un𝜖(n)

+ Op(n
−2𝛼1 + n−(1−𝛼1r)),

Un�(n) =

⎛⎜⎜⎝

∑
j u1j�j
⋮∑

j unj�j

⎞⎟⎟⎠
,

∑
j

uij�j =

√√√√Var

(∑
j

uij�j

)
Op(1) =

√∑
j

u2
ij
Op(1) = Op(1), i = 1, 2,⋯ , n.

n∑
i=1

lT�i(�) = �T
(n)
Un�(n) − �2tr(Un) + op(1)

=

n∑
i=1

{
uii(�

2
i
− �2) + 2

i−1∑
j=1

uij�i�j

}
+ op(1)

= Qn + op(1),
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It follows that the variance of Qn is

where Σ is given in (18). From Condition A6, one can see that n−1𝜎2
Q
≥ c1 > 0 . 

From Theorem 1 in Kelejian and Prucha (2001), we have

Noting that E(Qn) = 0 , we thus have (43).
Next we will prove (21), i. e.

Note that

n∑
i=1

n∑
j=1

u2
ij
=

n∑
i=1

{
(l1g̃ii + l2)

2 +
∑
i≠j

(l1g̃ij)
2

}

=

n∑
i=1

{
(l1g̃ii)

2 + 2l1l2g̃ii + l2
2
+
∑
i≠j

(l1g̃ij)
2

}

= 2l1l2

n∑
i=1

g̃ii + nl2
2
+

n∑
i=1

n∑
j=1

(l1g̃ij)
2

= 2l1l2tr(G̃n) + nl2
2
+ l2

1
tr(G̃2

n
),

n∑
i=1

u2
ii
=

n∑
i=1

(l1g̃ii + l2)
2

= l2
1

n∑
i=1

g̃2
ii
+ 2l1l2tr(G̃n) + nl2

2

= l2
1
||Vec(diagG̃n)||2 + 2l1l2tr(G̃n) + nl2

2
,

𝜎2
Q
= 2

n∑
i=1

n∑
j=1

u2
ij
𝜎4 +

n∑
i=1

{
u2
ii
(𝜇4 − 3𝜎4)

}

= 2𝜎4{l2
1
tr(G̃2

n
) + 2l1l2tr(G̃n) + nl2

2
}

+ (𝜇4 − 3𝜎4){l2
1
||Vec(diagG̃n)||2 + 2l1l2tr(G̃n) + nl2

2
}

= lTΣl,

Qn − E(Qn)

�Q

d
⟶N(0, 1).

(25)n−1
n∑
i=1

(lT�i(�))
2 = n−1�2

Q
+ op(1).
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where

Thus

and

It follows that

Let F0 = {�,Ω},Fi = �(�1, �2,… , �i), 1 ≤ i ≤ n . Then {Yin,Fi, 1 ≤ i ≤ n} form a 
martingale difference array. Note that

lT𝜔i(𝜃) = uii(𝜖
2
i
− 𝜎2) + 2

i−1∑
j=1

uij𝜖i𝜖j

= uii(𝜖
2
i
− 𝜎2) + 2

i−1∑
j=1

uij𝜖i𝜖j + uii𝜖iOp(n
−𝛼1 + n−(1−𝛼1r)∕2)

+ uiiOp(n
−2𝛼1 + n−(1−𝛼1r))

+

i−1∑
j=1

uij𝜖iOp(n
−𝛼1 + n−(1−𝛼1r)∕2) +

i−1∑
j=1

uij𝜖jOp(n
−𝛼1 + n−(1−𝛼1r)∕2)

+

i−1∑
j=1

uijOp(n
−2𝛼1 + n−(1−𝛼1r))

= Yin + op(1),

Yin = uii(�
2
i
− �2) + 2

i−1∑
j=1

uij�i�j.

n−1
n∑
i=1

(lT�i(�))
2 = n−1

n∑
i=1

Y2
in
+ 2n−1

n∑
i=1

Yin ⋅ op(1) + op(1),

n−1
n∑
i=1

Yin = n−1
n∑
i=1

{uii(�
2
i
− �2)} + 2n−1

n∑
i=1

i−1∑
j=1

uij�i�j

=

√√√√n−2
n∑
i=1

u2
ii
Op(1) +

√√√√n−2
n∑
i=1

i−1∑
j=1

u2
ij
Op(1)

= op(1).

n−1
n∑
i=1

(lT�i(�))
2 = n−1

n∑
i=1

Y2
in
+ op(1).
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where Sn1 =
∑n

i=1
{Y2

in
− E(Y2

in
�Fi−1)} , Sn2 =

∑n

i=1
{E(Y2

in
�Fi−1) − EY2

in
} . Next we 

will prove

and

It suffices to prove n−2E(S2
n1
) → 0 and n−2E(S2

n2
) → 0 respectively. Obviously,

where Bi = 2
∑i−1

j=1
uij�j . Thus

It follows that

By Condition A2, we have

and

(26)

n−1
n∑
i=1

Y2
in
− n−1�2

Q
= n−1

n∑
i=1

(Y2
in
− EY2

in
)

= n−1
n∑
i=1

{Y2
in
− E(Y2

in
|Fi−1) + E(Y2

in
|Fi−1) − EY2

in
}

= n−1Sn1 + n−1Sn2,

(27)n−1Sn1 = op(1),

(28)n−1Sn2 = op(1).

Y2
in
= u2

ii
(�2

i
− �2)2 + B2

i
�2
i
+ 2uiiBi(�

2
i
− �2)�i,

E(Y2
in
|Fi−1) = u2

ii
E(�2

i
− �2)2 + B2

i
�2 + 2uiiBi�3.

(29)

n−2E(S2
n1
) = n−2

n∑
i=1

E{Y2
in
− E(Y2

in
|Fi−1)}

2

= n−2
n∑
i=1

E[u2
ii
{(�2

i
− �2)2 − E(�2

i
− �2)2} + B2

i
(�2

i
− �2)

+ 2uiiBi(�
3
i
− �2�i − �3)]

2

≤Cn−2
n∑
i=1

E[u4
ii
{(�2

i
− �2)2 − E(�2

i
− �2)2}2]

+ Cn−2
n∑
i=1

E{B4
i
(�2

i
− �2)2}

+ Cn−2
n∑
i=1

E{u2
ii
B2
i
(�3

i
− �2�i − �3)

2}.

(30)n−2
n∑
i=1

E[u4
ii
{(�2

i
− �2)2 − E(�2

i
− �2)2}2] ≤ Cn−1 → 0,
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Similarly, one can show that

From (29)–(32), we have n−2E(S2
n1
) → 0 . Furthermore,

Thus,

Note that

(31)

n−2
n∑
i=1

E{B4
i
(�2

i
− �2)2} ≤ Cn−2

n∑
i=1

E

(
i−1∑
j=1

uij�j

)4

≤ Cn−2
n∑
i=1

i−1∑
j=1

u4
ij
�4 + Cn−2

n∑
i=1

(
i−1∑
j=1

u2
ij
�2

)2

≤ Cn−1 → 0.

(32)n−2
n∑
i=1

E{u2
ii
B2
i
(�3

i
− �2�i − �3)

2} → 0.

E(Y2
in
) = E{E(Y2

in
|Fi−1)} = u2

ii
E(�2

i
− �2)2 + �2E(B2

i
) + 2uii�3E(Bi)

= u2
ii
E(�2

i
− �2)2 + 4�2

(
i−1∑
j=1

u2
ij
�2

)
.

(33)

n−2E(S2
n2
) = n−2E

�
n�
i=1

{E(Y2
in
�Fi−1) − EY2

in
}

�2

= n−2E

�
n�
i=1

�
B2
i
�2 − 4�2

i−1�
j=1

u2
ij
�2 + 2uii�3Bi

��2

= n−2
n�
i=1

E

⎡⎢⎢⎢⎣
�2

⎧⎪⎨⎪⎩

�
2

i−1�
j=1

uij�j

�2

− 4

i−1�
j=1

u2
ij
�2

⎫⎪⎬⎪⎭

+2uii�3

�
2

i−1�
j=1

uij�j

��2

≤Cn−2
n�
i=1

E

⎡⎢⎢⎢⎣
�2

⎧⎪⎨⎪⎩

�
i−1�
j=1

uij�j

�2

−

i−1�
j=1

u2
ij
�2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦

2

+ Cn−2
n�
i=1

E

�
2uii�3

�
i−1�
j=1

uij�j

��2

.
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and

where we have used Conditions A2 and A4(i). From (33)–(35), we have 
n−2ES2

n2
→ 0 . The proof of (25) is thus complete.

Finally, we will prove (22). Note that

where we use 𝜖i = 𝜖i + Op(n
−𝛼1 + n−(1−𝛼1r)∕2) . By Conditions A2 and A4(i),

From (36)–(38),we have

(34)

n−2
n�
i=1

E

⎡⎢⎢⎢⎣
�2

⎧⎪⎨⎪⎩

�
i−1�
j=1

uij�j

�2

−

i−1�
j=1

u2
ij
�2

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦

2

≤ n−2�4

n�
i=1

E

�
i−1�
j=1

uij�j

�4

≤ Cn−2
n�
i=1

i−1�
j=1

u4
ij
�4 + Cn−2

n�
i=1

�
i−1�
j=1

u2
ij
�2

�2

≤ Cn−1 → 0,

(35)n−2
n∑
i=1

E

{
2uii�3

(
i−1∑
j=1

uij�j

)}2

= 4�2
3
�2n−2

n∑
i=1

u2
ii

i−1∑
j=1

u2
ij
≤ Cn−1 → 0,

(36)

||𝜔i(𝜃)||3 ≤ |g̃ii(𝜖2i − 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j|3 + |𝜖2
i
− 𝜎2|3

= |g̃ii(𝜖2i − 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j|3 + |𝜖2
i
− 𝜎2|3 + op(1),

(37)

n∑
i=1

E

||||||
g̃ii(𝜖

2
i
− 𝜎2) + 2𝜖i

i−1∑
j=1

g̃ij𝜖j

||||||

3

≤ C

n∑
i=1

E|g̃ii(𝜖2i − 𝜎2)|3 + C

n∑
i=1

E

||||||
2𝜖i

i−1∑
j=1

g̃ij𝜖j

||||||

3

≤ C

n∑
i=1

E|g̃ii(𝜖2i − 𝜎2)|3 + C

n∑
i=1

E|𝜖i|3
i−1∑
j=1

E|g̃ij𝜖j|3

+ C

n∑
i=1

E|𝜖i|3
{ i−1∑

j=1

E(g̃ij𝜖j)
2

}3∕2

= O(n),

(38)
n∑
i=1

E|�2
i
− �2|3 = O(n).
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Further, using (39) and Markov inequality, we obtain 
∑n

i=1
���i(�)��3 = Op(n) . Thus 

(22) is proved.  ◻

Lemma 3 Suppose that Assumptions (A1)–(A6) are satisfied, then

where

Proof By the Taylor expansion of 𝜕L(�̂�n)∕𝜕𝜌 at � = �0 , the asymptotic distribution 
of �̂�n will follow from

where �̃  is between �̂�n and �0.
Firstly, the first- and second-order derivatives of the concentrated log-likelihood 

of � are

where R̂ = (R̂1,… , R̂n)
T and �̂�2

n
(𝜌) = (1∕n)R̂TAT

n
(𝜌)An(𝜌)R̂ . Note that

and

(39)
n∑
i=1

E||�i(�)||3 = O(n).

(40)
√

n

𝛾n
(�̂�n − 𝜌0)

d
⟶N(0, 𝜎2

𝜌0
),

�2
�0
= lim

n→∞

{
�n
n

[
tr(CnC

S
n
) + (�4 − 3�4

0
)||Vec(diagCn)||2

]}−1

,

Cn = Gn0 −
tr(Gn0)

n
In,C

S
n
= Cn + CT

n
,Gn0 = WnA

−1
n
(�0).

(41)
√

n

𝛾n
(�̂�n − 𝜌0) = −

(
𝛾n
n

𝜕2L(�𝜌)

𝜕𝜌2

)−1√
𝛾n
n

𝜕L(𝜌0)

𝜕𝜌
,

(42)
𝜕L(𝜌)

𝜕𝜌
=

1

�̂�2
n
(𝜌)

R̂TWT
n
An(𝜌)R̂ − tr(WnA

−1
n
(𝜌)),

(43)
𝜕2L(𝜌)

𝜕𝜌2
=

2

n�̂�4
n
(𝜌)

(R̂TWT
n
An(𝜌)R̂)

2 −
1

�̂�2
n
(𝜌)

R̂TWT
n
WnR̂

− tr([WnA
−1
n
(𝜌)]2),

𝛾n
n
R̂TWT

n
WnR̂ =

𝛾n
n
(RT + R̂T − RT )WT

n
Wn(R + R̂ − R)

=
𝛾n
n
RTWT

n
WnR +

𝛾n
n
(R̂T − RT )WT

n
WnR +

𝛾n
n
RTWT

n
Wn(R̂ − R)

+
𝛾n
n
(R̂T − RT )WT

n
Wn(R̂ − R),

Author's personal copy



471

1 3

Journal of the Korean Statistical Society (2021) 50:447–478 

By (24), we have m(xj) − m̂n(xj) = Op(n
−𝛼1 + n−(1−𝛼1r)∕2) , then

Thus,

Similarly,

When limn→∞ �n = ∞ , 1
n
R̂TWT

n
An(𝜌)R̂ = op(1) and �̂�2

n
(𝜌) = 𝜎2

0
+ op(1) uniformly on 

Λ . It follows that

uniformly on Λ . Under A4(ii), (�n∕n)tr([WnA
−1
n
(�)]3) = O(1) uniformly on Λ . Then 

by the Taylor expansion,

for any �̃  which converges in probability to �0 . Furthermore,

On the other hand, combine (42) with (45), we have

where qn = �T
(n)
CT
n
�(n) and Cn = Gn0 − [

tr(Gn0)

n
]In . As E(qn) = �2

0
tr(Cn) = 0 and 

�2
qn
= Var(qn) = �4

0
[tr(CT

n
Cn) + tr(C2

n
)] + (�4 − 3�4

0
)||Vec(diagCn)||2 . Then by the 

R̂ − R =

⎛
⎜⎜⎝

m(x1) − m̂n(x1)

⋯

m(xn) − m̂n(xn)

⎞
⎟⎟⎠
.

R̂ − R = Op(n
−𝛼1 + n−(1−𝛼1r)∕2).

(44)
𝛾n
n
R̂TWT

n
WnR̂ =

𝛾n
n
RTWT

n
WnR + op(1) =

𝛾n
n
𝜖T
(n)
GT

n0
Gn0𝜖(n) + op(1).

(45)
𝛾n
n
R̂TWT

n
An(𝜌)R̂ =

𝛾n
n
𝜖T
(n)
GT

n0
𝜖(n) + (𝜌0 − 𝜌)

𝛾n
n
𝜖T
(n)
GT

n0
Gn0𝜖(n) + op(1).

�n
n

�2L(�)

��2
= −

1

�2
0

�n
n
�T
(n)
GT

n0
Gn0�(n) −

�n
n
tr([WnA

−1(�)]2) + op(1),

(46)

�n
n

(
�2L(�̃)

��2
−

�2L(�0)

��2

)
= −

�n
n
{tr([WnA

−1
n
(�̃)]2) − tr(G2

n0
)} + op(1)

= −2
�n
n
tr([WnA

−1
n
(�̃)]3)(�̃ − �0) + op(1)

= op(1)

(47)

�n
n

[
�2L(�0)

��2
− E

(
�2L(�0)

��2

)]

= −
1

�2
0

�n
n
[�T

(n)
GT

n0
Gn0�(n) − �2

0
tr(GT

n0
Gn0)] + op(1) = op(1).

√
𝛾n
n

𝜕L(𝜌0)

𝜕𝜌
=

1

�̂�2
n
(𝜌0)

√
𝛾n
n
qn + op(1),

Author's personal copy



472 Journal of the Korean Statistical Society (2021) 50:447–478

1 3

central limit theorem for quadratic functions, we have (qn − E(qn))∕�qn
d

⟶N(0, 1) . It 
follows that

By (41), (46), (47) and (48), the proof of Lemma 3 is complete.   ◻

Lemma 4 Suppose that Assumptions (A1)–(A6) are satisfied. Then as n → ∞,

where �2
n
= �2VT

n
Vn , Vn = (Kh(x − x1),… ,Kh(x − xn))

T.

Proof Note that

and

(48)
�

𝛾n
n

𝜕L(𝜌0)

𝜕𝜌
=

√
𝛾n∕n𝜎qn

�̂�2
n
(𝜌0)

⋅
qn − E(qn)

𝜎qn
+ op(1)

d
⟶N

�
0, lim

n→∞

𝛾n
n

𝜎2
qn

𝜎4
0

�
.

(49)Z̃n = max
1≤i≤n

|Zin(�)| = op(n
1∕(4+�1)),

(50)�−1
n

n∑
i=1

Zin(�)
d

⟶N(0, 1),

(51)�−2
n

n∑
i=1

Z2
in
(�) = 1 + op(1),

(52)
n∑
i=1

|Zin(�)|3 = Op(nh
r + n1−3�1 + n1−3(1−�1r)∕2 + n�−3∕2

n
),

Zin(𝜗) = Kh(x − xi)(ỹi − 𝜗)

= Kh(x − xi)

{
yi − �̂�n

n∑
j=1

wijR̂j − m(x)

}

= Kh(x − xi)

{
m(xi) + 𝜌

n∑
j=1

wijRj + 𝜖i − �̂�n

n∑
j=1

wijR̂j − m(x)

}

= Kh(x − xi){m(xi) − m(x)}

+ Kh(x − xi)𝜖i − Kh(x − xi)

(
�̂�n

n∑
j=1

wijR̂j − 𝜌

n∑
j=1

wijRj

)
,
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where �j, 1 ≤ j ≤ n satisfy A−1
n
(�) =

⎛
⎜⎜⎝

�T
1

⋮

�T
n

⎞
⎟⎟⎠
 . It can be shown that

and

where �j = (�j1,⋯ , �jn), j = 1, 2,… , n . By Lemma 3, we have 
�̂�n − 𝜌 = Op(n

−1∕2𝛾
1∕2
n ) . Using Conditions A1-A4 and Lemma 1, we can obtain

(53)

Kh(x − xi)

(
�̂�n

n∑
j=1

wijR̂j − 𝜌

n∑
j=1

wijRj

)

= Kh(x − xi)

{
�̂�n

n∑
j=1

wij(R̂j − Rj) + (�̂�n − 𝜌)

n∑
j=1

wijRj

}

= Kh(x − xi)

{
�̂�n

n∑
j=1

wij(m(xj) − m̂n(xj)) + (�̂�n − 𝜌)

n∑
j=1

wijRj

}

= Kh(x − xi)�̂�n

n∑
j=1

wij{m(xj) − m̂n(xj)}

+ Kh(x − xi)(�̂�n − 𝜌)

n∑
j=1

wij𝛽
T
j
𝜖(n),

(54)

m(xj) − m̂n(xj) = m(xj) −

n∑
i=1

�Wni(xj)yi

=

n∑
i=1

�Wni(xj){m(xj) − m(xi)} −

n∑
i=1

�Wni(xj)Ri

= O(n−𝛼1) − ( �Wn1(xj),… , �Wnn(xj))R

= O(n−𝛼1) −

√
Var(( �Wn1(xj),… , �Wnn(xj))R)Op(1)

= Op(n
−𝛼1 + n−(1−𝛼1r)∕2),

n∑
j=1

wij�
T
j
�(n) = ||

n∑
j=1

wij�
T
j
||Op(1) =

√√√√√
n∑

k=1

[
n∑
j=1

wij�jk

]2

Op(1)

=

√√√√√�−2
n

n∑
k=1

[
n∑
j=1

|�jk|
]2

Op(1) = Op(n
1∕2�−1

n
),
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(49) is thus proved. Next we will prove (50). Based on (53) and (53), we have

Further, by conditions A1, A3, A4, it follows that

and

As �̂�n − 𝜌 = Op(n
−1∕2𝛾

1∕2
n ) , it follows that

From (55)–(58), we obtain

(59) can be rewritten as

�Zn ≤max
1≤i≤n

|Kh(x − xi){m(xi) − m(x)}| + max
1≤i≤n

|Kh(x − xi)𝜖i|

+ max
1≤i≤n

|Kh(x − xi)�̂�n

n∑
j=1

wij{m(xj) − m̂n(xj)}|

+ max
1≤i≤n

|Kh(x − xi)(�̂�n − 𝜌)

n∑
j=1

wij𝛽
T
j
𝜖(n)|

= op(n
1∕(4+𝜂1)).

(55)

n∑
i=1

Zin(𝜗) =

n∑
i=1

Kh(x − xi)𝜖i +

n∑
i=1

Kh(x − xi){m(xi) − m(x)}

+ �̂�n

n∑
i=1

Kh(x − xi)

n∑
j=1

wij{m(xj) − m̂n(xj)}

+ (�̂�n − 𝜌)

n∑
i=1

n∑
j=1

Kh(x − xi)wij𝛽
T
j
𝜖(n).

(56)
n∑
i=1

Kh(x − xi){m(xi) − m(x)} = O(nhr+1),

(57)
�̂�n

n∑
i=1

Kh(x − xi)

n∑
j=1

wij{m(xj) − m̂n(xj)}

= O(n1−𝛼1hr + n(1+𝛼1r)∕2hr),

n∑
i=1

n∑
j=1

Kh(x − xi)wij�
T
j
�(n) =

n∑
i=1

Kh(x − xi)

n∑
j=1

wij�
T
j
�(n) = Op(n

3∕2hr�−1
n
).

(58)(�̂�n − 𝜌)

n∑
i=1

n∑
j=1

Kh(x − xi)wij𝛽
T
j
𝜖(n) = Op(𝛾

−1∕2
n

nhr).

(59)
n∑
i=1

Zin(�) =

n∑
i=1

Kh(x − xi)�i + Op(n
1−�1hr + n(1+�1r)∕2hr + �−1∕2

n
nhr).
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Noting that VT
n
Vn ∼ nhr by Lei and Qin (2011) and using the central limit theorem 

for independent sums, we obtain

as �−1(n1−�1hr + n(1+�1r)∕2hr + �
−1∕2
n nhr)(VT

n
Vn)

−1∕2
→ 0 by Condition A5(ii). The 

proof of (50) is complete.

Next we will prove (51). Note that

where

(51) is valid if we can show that

Note that

(60)
n∑
i=1

Zin(�) = VT
n
�(n) + Op(n

1−�1hr + n(1+�1r)∕2hr + �−1∕2
n

nhr).

(61)
n∑
i=1

Zin(�)
d

⟶N(0, �2VT
n
Vn),

(62)

�−2
n

n∑
i=1

Z2
in
(�) = �−2

n

n∑
i=1

{
Kh(x − xi)�i + Kh(x − xi){m(xi) − m(x)}

+ Op(n
−�1 + n−(1−�1r)∕2 + �−1∕2

n
)

}2

= �−2
n

n∑
i=1

{
Kh(x − xi)�i + Kh(x − xi){m(xi) − m(x)}

}2

+ �−2
n
n ⋅ Op(n

−2�1 + n−(1−�1r) + �−1
n
)

+ 2�−2
n

n∑
i=1

{
Kh(x − xi)�i + Kh(x − xi){m(xi) − m(x)}

}

× Op(n
−�1 + n−(1−�1r)∕2 + �−1∕2

n
)

=

3∑
j=1

Tnj + op(1),

Tn1 = �−2
n

n∑
i=1

{
Kh(x − xi)�i

}2

, Tn2 = �−2
n

n∑
i=1

{
Kh(x − xi){m(xi) − m(x)}

}2

,

Tn3 = 2�−2
n

n∑
i=1

{
K2
h
(x − xi)�i

}{
m(xi) − m(x)

}
.

(63)
3∑
j=1

Tnj = 1 + op(1).
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Next we will show that

By the moment inequality, we have

It follows that

On the other hand,

(51) is thus verified. Finally, we prove (52). By Cr inequality,

ETn1 = �−2
n
�2

n∑
i=1

K2
h
(x − xi) = 1.

E|Tn1 − ETn1|(4+�1)∕2 → 0.

E|Tn1 − ETn1|(4+�1)∕2 = �−(4+�1)
n

E|
n∑
i=1

K2
h
(x − xi)(�

2
i
− E�2

i
)|(4+�1)∕2

≤ C�−(4+�1)
n

{ n∑
i=1

EK
4+�1
h

(x − xi)|�2i − E�2
i
|(4+�1)∕2

+

( n∑
i=1

EK4
h
(x − xi)(�

2
i
− E�2

i
)2
)(4+�1)∕4

}

≤ C�−(4+�1)
n

{nhr + (nhr)(4+�1)∕4} → 0.

Tn1 = 1 + op(1).

(64)

Tn2 = 𝜎−2
n

n∑
i=1

{
Kh(x − xi){m(xi) − m(x)}

}2

≤C𝜎−2
n

n∑
i=1

{
Kh(x − xi){m(xi) − m(x)}I(||xi − x|| ≥ Mh)

}2

+ C𝜎−2
n

n∑
i=1

{
Kh(x − xi){m(xi) − m(x)}I(||xi − x|| < Mh)

}2

≤C𝜎−2
n
nhr+2 → 0,

(65)

ET2
n3

= 4�−4
n
�2

n∑
i=1

K4
h
(x − xi){m(xi) − m(x)}2

≤4�−4
n
�2h2

n∑
i=1

K4
h
(x − xi) ≤ C�−4

n
nhr+2 → 0.
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Proofs of Theorems 1 and 2 Using Lemmas 2 and 4 respectively, similar to the proof 
of Theorem 1 in Qin and Li (2011), one can prove Theorems 1 and 2.  ◻
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