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Abstract
Spatial dynamic panel data (SDPD) models have received great attention in eco-
nomics in recent 10 years. Existing approaches for the estimation and test of SDPD 
models are quasi-maximum likelihood (QML) approach and generalized method of 
moments (GMM). In this article, we introduce the empirical likelihood (EL) method 
to the statistical inference for SDPD models. The EL ratio statistics are constructed 
for the parameters of spatial dynamic panel data models. It is shown that the limiting 
distributions of the empirical likelihood ratio statistics are chi-squared distributions, 
which are used to construct confidence regions for the parameters of the models. 
Simulation results show that the EL based confidence regions outperform the nor-
mal approximation based confidence regions.

Keywords  Spatial dynamic panel data model · Spatial error · Empirical likelihood · 
Confidence region

Mathematics subject classification  Primary 62G05 · secondary 62E20

1  Introduction

Real data are often observed at different locations and times, which are called 
as spatial panel data (SPD). Examples are economic growth rates of major cit-
ies in China over last 40  years, monthly unemployment rates of states in USA 
in the last decade and daily infection rates of COVID-19 in major cites in Hubei 
province in China over 3 months since December 31, 2019. These data may be 
modelled by SPD models. The research to various SPD models can be found in 
Anselin (1988), Elhorst (2003), Baltagi et al. (2003), Baltagi and Li (2006), Chen 
and Conley (2001), Pesaran (2004), Kapoor et  al. (2007), Baltagi et  al. (2007), 
Lee and Yu (2010a), Mutl and Pfaffermayr (2011), Parent and LeSage (2011) and 
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Baltagi et  al. (2013), among others. By adding a dynamic element into a SPD 
model Anselin (2001) proposes a spatial dynamic panel data (SDPD) model, 
which increases the flexibility of a SPD model. Obviously, SPD models belong to 
SDPD models. There has been a growing interest in the statistical inferences for 
SDPD models since then. For an overview on the SPDP models, refer to Yu et al. 
(2008) and Lee and Yu (2010b), Su and Yang (2015), Lee and Yu (2015a, b), Yu 
and Lee (2010), Elhorst (2010), Elhorst (2005), Yang et al. (2006), Mutl (2006), 
Su and Yang (2007), and Lee and Yu (2010c), among others. There are two popu-
lar methods for the estimation and test of SPD and SDPD models: quasi-maxi-
mum likelihood (QML) approach and generalized method of moments (GMM), 
which can be seen in above references.

In this article, we use the empirical likelihood (EL) method, proposed by 
Owen (1988, 1990), to construct the confidence regions for the parameters in a 
SDPD model. It is observed, in the case of independent observations, that the 
EL method to construct confidence intervals/regions has many advantages over 
its counterparts like the normal-approximation-based method and the bootstrap 
method (e.g., Hall and La Scala 1990; Hall 1992). A excellent review on EL for 
regressions can be found in Chen and Keilegom (2009). There are a lot of refer-
ences on EL methods for independent samples or in the context of sample sur-
veys. To save space, we list a few of them such as Owen (2001), Qin and Lawless 
(1994), Chen and Qin (1993), Zhong and Rao (2000) and Wu (2004). The date 
are dependent and follow certain structures in SDPD models. The study of the EL 
method for some SPDP models enjoys a certain progress. For example, there are 
a few articles studying the EL method for the pure spatial data (PSD, the special 
case of SPD with a fixed time). For instance, Nordman (2008a, b) and Bandyo-
padhyay et al. (2015) use the blockwise EL (BEL) proposed by Kitamura (1997) 
to PSD. Recently, by exploring inherent martingale structures, Qin (2021) and Jin 
and Lee (2019) use the EL method to construct confidence intervals/regions in 
PSD models. Further, Li and Qin (2020) extends the EL method proposed by Qin 
(2021) and Jin and Lee (2019) to SPD models. We note that there is no research 
work on the EL method for SDPD models.

There are many kinds of SDPD models. Lee and Yu (2010c) gives a review on 
the classification and research development of some SDPD models. Su and Yang 
(2015) introduces the QML method to SDPD models with spatial errors, where 
different types of space-specific effects and different ways that initial observations 
being generated (exogenously or endogenously) are investigated. Since SDPD mod-
els are quite complicated, as a starting point, in this article, we study the EL method 
for the SDPD models in Su and Yang (2015) with the restriction that there is no 
space-specific effects (or named as zero drift) and initial observations are generated 
exogenously. The study of the EL method for general SDPD models without above 
restriction is left for our future study. Our research results show that the EL based 
confidence regions generally outperform the normal approximation (NA) based con-
fidence regions when the space units are large enough.

The rest of the article is organized as follows. Section 2 presents the main results. 
Results from a simulation study are reported in Sect. 3. Section 4 gives the analysis 
of real data. All technical details are presented in Sect. 5.
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2 � Main results

In this article, we suppose that there are n individual units and T time periods and 
the sampling data satisfy the following SDPD model with spatial error:

where yt = (y1t,… , ynt)
� is an n-dimensional column vector of observed dependent 

variables, 𝜌(|𝜌| < 1) characterizes the dynamic effect, xt = (x1t,… , xnt)
� is an n × p 

matrix of time-varying exogenous variables, z = (z1,… , zn)
� is an n × q matrix of 

time-invariant exogenous variables, and � and � are p × 1 and q × 1 regression coef-
ficients, respectively. The disturbance vector �t = (�1t,… , �nt)

� is an n × 1 vector of 
errors. The parameter � is a spatial autoregressive coefficient and Wn is an n × n spa-
tial weighting matrix of constants, �t = (�1t,… , �nt)

� is an n × 1 column vector, and 
{�it} are i.i.d. across t and i with zero mean and variance �2

�
 . The spatial weighting 

matrix is also called contiguity matrix, which is determined by the spatial depend-
ence of n spatial units. There are many ways to define Wn (e.g. pages 17–19 in Anse-
lin 1988). Let Wij be the (i, j) element of Wn . Commonly used Wn includes Rook con-
tiguity, Bishop contiguity and Queen contiguity as follows. Rook contiguity: define 
Wij = 1 if the units i and j share a common side and Wij = 0 , otherwise. Bishop con-
tiguity: define Wij = 1 if the units i and j share a common vertex and Wij = 0 , oth-
erwise. Queen contiguity: define Wij = 1 if the units i and j share a common side or 
vertex and Wij = 0 , otherwise. The choice of Wn is important. Our results hold true 
for all these commonly used Wn.

The models (2.1)–(2.3) in Su and Yang (2015) are as follows:

where � = (�1,… ,�n)
� represent the unobservable individual or space-specific 

effects and other notations are the same as in model (1) and (2). Compared to mod-
els (2.1)–(2.3) in Su and Yang (2015), the only difference is that there is no space-
specific effects � in model (1) and (2). Our initial investigation shows that the EL 
method for SDPD models with space-specific effects may need an adjusted EL 
method. Further research is needed and left for our future work.

We develop the EL method for the SDPD model when y0 is exogenous. In this 
case, we can treat y0 as a fixed constant vector as it contains no information about 
the model parameters. For convenience, we use �k to denote a k × 1 vector of 
ones, �k to denote a k × 1 vector of zeros, and Jk = �k�

�
k
 , where ⊗ is the Kronecker 

product.
Let Y = (y�

1
, y�

2
,… , y�

T
)� , Y−1 = (y�

0
, y�

1
,… , y�

T−1
)� , X = (x�

1
, x�

2
,… , x�

T
)� , 

� = (��
1
, ��

2
,… , ��

T
)� , Z = �T ⊗ z , B = B(�) = In − �Wn and � = (��

1
, ��

2
,… , ��

T
)� . 

Then model (1) and (2) can be written in a matrix form as:

(1)yt =�yt−1 + xt� + z� + �t,

(2)�t =�Wn�t + �t, t = 1, 2,… , T ,

yt =�yt−1 + xt� + z� + � + �t,

�t =�Wn�t + �t, t = 1, 2,… , T ,
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with

or

with

where � ∼ (0, �2
�
Ω) , with

Let � = (��, � �, �)� and � = (��, �2
�
, �)� . We adopt the QML method to derive the 

estimating equations for the EL method. Under the assumption of normality (which 
is only used at this moment), based on (3) and (4), the log-likelihood function 
(ignoring constants) is

where � = Y − �Y−1 − X� − Z� . It can be shown that

where X̃ = (X, Z, Y−1) , A = (B�B)−1(W �
n
B + B�Wn)(B

�B)−1 . Letting above derivatives 
be 0, we obtain the following estimating equations of the QML method:

⎛
⎜⎜⎜⎝

y1
y2
⋮

yT

⎞
⎟⎟⎟⎠
= �

⎛
⎜⎜⎜⎝

y0
y1
⋮

yT−1

⎞
⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎝

x1
x2
⋮

xT

⎞
⎟⎟⎟⎠
� +

⎛
⎜⎜⎜⎝

z

z

⋮

z

⎞
⎟⎟⎟⎠
� +

⎛
⎜⎜⎜⎝

�1
�2
⋮

�T

⎞
⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎝

�1
�2
⋮

�T

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

B−1 0 0 ⋯ 0 0

0 B−1 0 ⋯ 0 0

⋮

0 0 0 ⋯ 0 B−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�1
�2
⋮

�T

⎞
⎟⎟⎟⎠
,

(3)Y = �Y−1 + X� + Z� + �,

(4)𝜖 = (IT ⊗ B−1)𝜈,

(5)Ω = Ω(𝜆) = IT ⊗ (B�B)−1.

(6)L̃(�) = −
nT

2
log �2

�
−

1

2
log |Ω| − 1

2�2
�

��Ω−1�,

𝜕�L(𝜓)∕𝜕𝜃 = 𝜎−2
𝜈
�X�Ω−1𝜖,

𝜕�L(𝜓)∕𝜕𝜎2
𝜈
= −

nT

2𝜎2
𝜈

+
1

2𝜎4
𝜈

𝜖�Ω−1𝜖,

𝜕�L(𝜓)∕𝜕𝜆 = −
1

2
tr(Ω−1(IT ⊗ A)) +

1

2𝜎2
𝜈

𝜖�Ω−1(IT ⊗ A)Ω−1𝜖,

(7)X̃�Ω−1� = 0,

(8)− nT�2
�
+ ��Ω−1� = 0,
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Substituting (4) into (7)–(9), we have

Noting that X̃ = (X,Z,Y−1) and Y−1 contains X,  z and � , we need to separate out 
� from X̃ . To this end, denote l� = (0, c�,1,… , c�,T−1)

� , c�,t = (1 − �t)∕(1 − �) , 
Y0 = (Y �

0,0
,Y �

0,1
,… ,Y �

0,T−1
)� , Y0,t = �ty0,

Ax = F�
𝜌
⊗ In and A𝜈 = F�

𝜌
⊗ B−1 . We use (B.3) in Su and Yang (2015) to obtain that

Let X̃1 = (X, Z) and �X2 = AxX𝛽 + (l𝜌 ⊗ In)z𝛾 + Y0 . Then (10) can be decomposed 
into

For convenience, let e = � , i.e.

Then (11)–(14) can be rewritten as

(9)− 𝜎2
𝜈
tr(Ω−1(IT ⊗ A)) + 𝜖�Ω−1(IT ⊗ A)Ω−1𝜖 = 0,

(10)�X�(IT ⊗ B�)𝜈 = 0,

(11)− nT�2
�
+ ��� = 0,

(12)− 𝜎2
𝜈
tr(IT ⊗ (BAB�)) + 𝜈�(IT ⊗ (BAB�))𝜈 = 0.

F� =

⎛
⎜⎜⎜⎜⎝

0 1 � ⋯ �T−2

0 0 1 ⋯ �T−3

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎠
,

Y−1 = AxX𝛽 + (l𝜌 ⊗ In)z𝛾 + A𝜈𝜈 + Y0,

(13)�X�
1
(IT ⊗ B�)𝜈 = 0,

(14)�X�
2
(IT ⊗ B�)𝜈 + 𝜈�A�

𝜈
(IT ⊗ B�)𝜈 = 0.

(15)e(nT)×1 =

⎛⎜⎜⎜⎝

e1
e2
⋮

enT

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�1
�2
⋮

�T

⎞⎟⎟⎟⎠
.

(16)�X�
1
(IT ⊗ B�)e = 0,

(17)�X�
2
(IT ⊗ B�)e + e�A�

𝜈
(IT ⊗ B�)e = 0,

(18)− nT�2
�
+ e�e = 0,
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Observing that the above estimating equations include the quadratic 
forms of e, to use the EL method, we need to change the quadratic forms into 
the linear forms of a well behaved random variables. To this end, we let 
H1 =

1

2

(
A�
𝜈
(IT ⊗ B�) + (IT ⊗ B)A𝜈

)
 and H2 = IT ⊗ (BAB�) . Use hij,k , ai,1 and ai,2 

to denote the (i,  j) element of the matrix Hk ( k = 1, 2 ), the i-th column of the 
matrix �X�

1
(IT ⊗ B�) and the i-th element of the vector �X�

2
(IT ⊗ B�) , respectively, 

and adapt the convention that any sum with an upper index of less than one is 
zero. To deal with the quadratic form in (17) and (19), we follow Kelejian and 
Prucha (2001) to introduce a martingale difference array. Define the �-fields: 
F0 = {�,Ω},Fi = �(e1, e2,… , ei), 1 ≤ i ≤ nT  . Let

Then Fi−1 ⊆ Fi,Mik is Fi-measurable and E(Mik|Fi−1) = 0 . Thus 
{Mik,Fi, 1 ≤ i ≤ nT} form a martingale difference array and

Based on (16)–(21), we propose the following EL ratio statistic for � ∈ Rp+q+3:

where {pi} satisfy

Let

(19)− 𝜎2
𝜈
tr(IT ⊗ (BAB�)) + e�(IT ⊗ (BAB�))e = 0.

(20)Mik = hii,k(e
2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,kej, k = 1, 2.

(21)e�Hke − �2
�
tr(Hk) =

nT∑
i=1

Mik, k = 1, 2.

L(�) = sup
pi,1≤i≤nT

nT∏
i=1

((nT)pi),

pi ≥ 0, 1 ≤ i ≤ nT ,

nT∑
i=1

pi = 1,

nT∑
i=1

piai,1ei = 0,

nT∑
i=1

pi

{
ai,2ei + hii,1(e

2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,1ej

}
= 0,

nT∑
i=1

pi(e
2
i
− �2

�
) = 0,

nT∑
i=1

pi

{
hii,2(e

2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,2ej

}
= 0.
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where ei is the ith component of (IT ⊗ B)(Y − 𝜌Y−1 − X𝛽 − Z𝛾) . Following Owen 
(1990), one can show that

where 𝜆̃(𝜓) ∈ Rp+q+3 is the solution of the following equation:

Let �j = E�
j

11
, j = 3, 4 . Use Vec(diagA) to denote the vector formed by the diago-

nal elements of a matrix A, ||a|| to denote the L2-norm of a vector a, and �min(H) and 
�max(H) to denote the minimum and maximum eigenvalues of a matrix H, respectively. 
To obtain the asymptotic distribution of �(�) , we need following assumptions.

A1. (1) �jt are mutually independent, and they are independent of xks and zk for all 
j, k, t, s;
(2) All elements in (xit, zi) have 4 + �1 moments for some 𝜂1 > 0.
A2. (1) {�it, t = 1,… , T , i = 1,… , n} are independent and identically distributed 
for all i and t with mean 0, variance 𝜎2

𝜈
> 0 and E|𝜈it|4+𝜂1 < ∞ for some 𝜂1 > 0.

(2) {xit, t = … ,−1, 0, 1,…} and {zi} are strictly exogenous and independent across 
i.
(3) |𝜌| < 1.
A3. Let Wn and {B−1} be as described above. They satisfy the following conditions:
(1) The row and column sums of Wn are uniformly bounded in absolute value;
(2) {B−1} are uniformly bounded in either row or column sums, uniformly in � in a com-
pact parameter space Λ , and c

𝜆
≤ inf𝜆∈Λ 𝜆max(B

�B) ≤ sup𝜆∈Λ 𝜆max(B
�B) ≤ c𝜆 < ∞.

A4. There are constants cj > 0, j = 1, 2 , such that 

 where 

�i(�) =

⎛
⎜⎜⎜⎜⎝

ai,1ei
e2
i
− �2

�

ai,2ei + hii,1(e
2
i
− �2

�
) + 2ei

∑i−1

j=1
hij,1ej

hii,2(e
2
i
− �2

�
) + 2ei

∑i−1

j=1
hij,2ej

⎞
⎟⎟⎟⎟⎠(p+q+3)×1

,

(22)�(𝜓)=̂ − 2 logL(𝜓) = 2

nT∑
i=1

log{1 + 𝜆̃�(𝜓)𝜔i(𝜓)},

(23)1

nT

nT∑
i=1

𝜔i(𝜓)

1 + 𝜆̃�(𝜓)𝜔i(𝜓)
= 0.

0 < c1 ≤ 𝜆min
(
(nT)−1Σp+q+3

)
≤ 𝜆max

(
(nT)−1Σp+q+3

)
≤ c2 < ∞,
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 where 

A5. n → ∞ but T is fixed.

Remark 1  Conditions A1–A3 are common assumptions for spatial models, which 
are used in Su and Yang (2015), and the analog of 0 < c1 ≤ 𝜆min

(
(nT)−1Σp+q+3

)
 is 

employed in the assumption of Theorem 1 in Kelejian and Prucha (2001).

We now state the main results.

Theorem 1  Suppose that Assumptions A1–A5 are satisfied. Then under model (1)–
(2), as n → ∞,

where �2
p+q+3

 is a chi-squared distributed random variable with p + q + 3 degrees of 
freedom.

Let z�(p + q + 3) satisfy P(�2
p+q+3

≤ z�(p + q + 3)) = � for 0 < 𝛼 < 1 . It follows 
from Theorem 1 that an EL based confidence region for � with asymptotically correct 
coverage probability � can be constructed as

(24)

Σp+q+3 = Σ�
p+q+3

= Cov

�
nT�
i=1

�i(�)

�

=

⎛
⎜⎜⎜⎝

Σ11 Σ12 Σ13 Σ14

∗ Σ22 Σ23 Σ24

∗ ∗ Σ33 Σ34

∗ ∗ ∗ Σ44

⎞
⎟⎟⎟⎠
(p+q+3)×(p+q+3)

,

Σ11 =𝜎
2
𝜈
E
(
�X�
1
Ω−1�X1

)
,Σ12 = 𝜗3E(�X

�
1
)(IT ⊗ B�)�nT ,

Σ13 =𝜎
2
𝜈
E
(
�X�
1
Ω−1�X2

)
,Σ14 = 𝜗3E(�X

�
1
)(IT ⊗ B�)vecD(H2)

Σ22 =nT(𝜗4 − 𝜎4
𝜈
), Σ23 = (𝜗4 − 3𝜎4

𝜈
)��

nT
vecD(H1) + 2𝜎4

𝜈
tr(H1) + 𝜗3E(�X

�
2
)(IT ⊗ B�)�nT ,

Σ24 =(𝜗4 − 3𝜎4
𝜈
)��

nT
vecD(H2) + 2𝜎4

𝜈
tr(H2),

Σ33 =(𝜗4 − 3𝜎4
𝜈
)||vecD(H1)||2 + 2𝜎4

𝜈
tr(H2

1
) + 𝜎2

𝜈
E
(
�X�
2
Ω−1�X2

)
+ 2𝜗3E(�X

�
2
)(IT ⊗ B�)vecD(H1),

Σ34 =(𝜗4 − 3𝜎4
𝜈
)vec�

D
(H1)vecD(H2) + 2𝜎4

𝜈
tr(H1H2) + 𝜗3E(�X

�
2
)(IT ⊗ B�)vecD(H2),

Σ44 =(𝜗4 − 3𝜎4
𝜈
)||vecD(H2)||2 + 2𝜎4

𝜈
tr(H2

2
).

�(�)
d

⟶�2
p+q+3

,

{� ∶ �(�) ≤ z�(p + q + 3)}.
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3 � Simulations

Recall that � = (��, � �, �)� and � = (��, �2
�
, �)� . Denote P� = Ω−1Ω�Ω

−1 , Ω𝜆 = IT ⊗ A 
and Ω𝜆𝜆 = IT ⊗ {2(B�B)−1[(W �

n
B + B�Wn)A −W �

n
Wn(B

�B)−1]} . It can be shown that

According to Su and Yang (2015), the QMLE �̂ of � satisfies:

where Σ = limn→∞
1

nT
E[Σn(�)] and Σn(�) =

�2

���� �
L̃(�).

Based on the above asymptotic result, we can obtain the NA based confidence 
region for � . However, we note that the NA method depends on the availability of 
a consistent estimator of the asymptotic covariance matrix in practical applications, 
while the EL method does not. This can save the implementation time for the EL 
method and the EL method outperforms the NA method.

We conducted a small simulation study to compare the finite sample per-
formances of the confidence regions based on EL and NA methods with confi-
dence level � = 0.95 , and report the proportion of �(�) ≤ z0.95(p + q + 3) and 
(�̂ − �)�(−Σ)(�̂ − �) ≤ z0.95(p + q + 3) respectively in 1000 replications.

In the simulations, we used the following two models:

(1)	 Model 1:
	   yt = �yt−1 + xt� + z� + �t, �t = �Wn�t + �t, t = 1, 2, 3 , where xt were gener-

ated from N(0, 4), alternatively, xt can be randomly generated in a similar fash-
ion as in Hsiao et al. (2002), and the elements of z were randomly generated 
from Bernoulli(0.5). We selected � = 1 , � = 1 , �2

�
= 1 and (�, �) were taken as 

(−0.8,−0.7) , (−0.2,−0.1) , (0.2, 0.1), (0.8, 0.7), (−0.8, 0.7) and (0.2,−0.1) respec-
tively, and �′

it
s were i.i.d. from N(0, 1), t(5) and �2

4
− 4 , respectively;

�2L̃(�)

�����
= −

1

�2
�

X̃�Ω−1X̃,

�2L̃(�)

����2
�

= −
1

�4
�

X̃�Ω−1�,

�2L̃(�)

����
= −

1

�2
�

X̃�P��,

�2L̃(�)

��2
�
��2

�

= −
1

�6
�

��Ω−1� +
nT

2�4
�

,

�2L̃(�)

��2
�
��

= −
1

2�4
�

��P��,

�2L̃(�)

��2
=

1

2
tr(P�Ω� − Ω−1Ω��)

−
1

2�2
�

��(2P�Ω� − Ω−1Ω��)Ω
−1�.

√
nT(�̂ − �)

d
⟶N(0,−Σ−1),
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(2)	 Model 2:
	   yt = �yt−1 + xt� + z� + �t, �t = �Wn�t + �t, t = 1, 2, 3 , where xt =

(
x
(1)
t , x

(2)
t

)
 

is an n × 2 matrix, where x(1)t  were randomly generated from N(0, 1) and x(2)t  were 
randomly generated from N(0, 4). Moreover, z =

(
z(1), z(2)

)
 is an n × 2 matrix, 

the elements of z(1) were randomly generated from Bernoulli(0.3) and the ele-
ments of z(2) were randomly generated from Bernoulli(0.6). We selected 
� = (1.5, 1.0)� , � = (2, 1.2)� , (�, �) were taken as (−0.8,−0.7) , (−0.2,−0.1) , 
(0.2, 0.1), (0.8, 0.7), (−0.8, 0.7) and (0.2,−0.1) respectively, and �′

it
s were i.i.d. 

from N(0, 1), t(5),�2
4
− 4, 0.1N(0, 4) + 0.9N(0, 1) and 0.1t(3) + 0.9t(5) , respec-

tively.

The results of simulations under model 1 are reported in Tables 1, 2 and 3, and 
the results of simulations under model 2 are reported in Tables 4, 5, 6, 7 and 8.

For the contiguity weight matrix Wn = (Wij) , we took Wij = 1 if spatial units 
i and j are neighbours by queen contiguity rule (namely, they share common bor-
der or vertex), Wij = 0 otherwise (Anselin 1988, P.18). We considered five ideal 
cases of spatial units: n = m × m regular grid with m = 7, 10, 13, 16, 20 , denoting 
Wn as grid49, grid100, grid169, grid256 and grid400 , respectively. A transformation is 
often used in applications to convert the matrix Wn to the unity of row-sums. We 
used the standardized version of Wn in our simulations, namely Wij was replaced by 
Wij∕

∑n

j=1
Wij.

Simulation results under model 1 show that the confidence regions based on NA 
behave well with coverage probabilities being very close to the nominal level 0.95 
when the error term �i is normally distributed and n is large, but not well in other 
cases. The coverage probabilities of the confidence regions based on NA fall to the 

Table 1   Coverage probabilities of the NA and EL confidence regions with �
it
∼ N(0, 1) under model 1

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.944 0.906 (−0.2,−0.1) grid49 0.947 0.896
grid100 0.953 0.930 grid100 0.951 0.926
grid169 0.942 0.940 grid169 0.954 0.936
grid256 0.944 0.946 grid256 0.945 0.951
grid400 0.924 0.930 grid400 0.952 0.950

(0.8, 0.7) grid49 0.927 0.895 (0.2, 0.1) grid49 0.945 0.904
grid100 0.926 0.930 grid100 0.954 0.928
grid169 0.950 0.940 grid169 0.951 0.944
grid256 0.940 0.935 grid256 0.936 0.946
grid400 0.942 0.944 grid400 0.964 0.956

(−0.8, 0.7) grid49 0.911 0.914 (0.2,−0.1) grid49 0.941 0.915
grid100 0.939 0.941 grid100 0.949 0.934
grid169 0.948 0.930 grid169 0.949 0.948
grid256 0.937 0.939 grid256 0.951 0.944
grid400 0.958 0.956 grid400 0.960 0.968
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range [0.812, 0.862] for the t distribution and [0.809, 0.868] for the �2 distribution, 
which are far from the nominal level 0.95. Simulation results under model 2 are 
similar to those under model 1.

We can see, from Tables 1, 2, 3, 4, 5, 6, 7 and 8, that the coverage probabilities 
of confidence regions based on EL method converge to the nominal level 0.95 as 
the number of spatial units n is large enough, whether the error term �i is normally 

Table 2   Coverage probabilities of the NA and EL confidence regions with �
it
∼ t(5) under model 1

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.851 0.829 (−0.2,−0.1) grid49 0.847 0.819
grid100 0.830 0.876 grid100 0.853 0.888
grid169 0.835 0.902 grid169 0.820 0.890
grid256 0.832 0.922 grid256 0.816 0.916
grid400 0.834 0.910 grid400 0.862 0.924

(0.8, 0.7) grid49 0.829 0.845 (0.2, 0.1) grid49 0.835 0.825
grid100 0.832 0.888 grid100 0.847 0.876
grid169 0.836 0.908 grid169 0.829 0.896
grid256 0.828 0.902 grid256 0.837 0.916
grid400 0.848 0.920 grid400 0.846 0.924

(−0.8, 0.7) grid49 0.821 0.838 (0.2,−0.1) grid49 0.855 0.842
grid100 0.837 0.879 grid100 0.829 0.886
grid169 0.819 0.898 grid169 0.853 0.903
grid256 0.843 0.902 grid256 0.840 0.920
grid400 0.828 0.914 grid400 0.812 0.916

Table 3   Coverage probabilities of the NA and EL confidence regions with �
it
+ 4 ∼ �2

4
 under model 1

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.842 0.851 (−0.2,−0.1) grid49 0.838 0.845
grid100 0.842 0.890 grid100 0.838 0.874
grid169 0.842 0.891 grid169 0.858 0.907
grid256 0.830 0.896 grid256 0.862 0.914
grid400 0.858 0.934 grid400 0.856 0.902

(0.8, 0.7) grid49 0.809 0.827 (0.2, 0.1) grid49 0.845 0.838
grid100 0.827 0.883 grid100 0.850 0.890
grid169 0.862 0.909 grid169 0.844 0.910
grid256 0.833 0.907 grid256 0.858 0.914
grid400 0.834 0.902 grid400 0.840 0.902

(−0.8, 0.7) grid49 0.833 0.846 (0.2,−0.1) grid49 0.843 0.841
grid100 0.853 0.885 grid100 0.850 0.877
grid169 0.843 0.907 grid169 0.856 0.913
grid256 0.850 0.915 grid256 0.858 0.906
grid400 0.868 0.926 grid400 0.850 0.936
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Table 4   Coverage probabilities of the NA and EL confidence regions with �
it
∼ N(0, 1) under model 2

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.937 0.853 (−0.2,−0.1) grid49 0.927 0.871
grid100 0.934 0.905 grid100 0.943 0.927
grid169 0.941 0.936 grid169 0.934 0.931
grid256 0.947 0.934 grid256 0.946 0.938
grid400 0.962 0.950 grid400 0.946 0.936

(0.8, 0.7) grid49 0.928 0.887 (0.2, 0.1) grid49 0.927 0.876
grid100 0.939 0.927 grid100 0.937 0.909
grid169 0.930 0.927 grid169 0.927 0.922
grid256 0.934 0.944 grid256 0.939 0.940
grid400 0.938 0.940 grid400 0.920 0.932

(−0.8, 0.7) grid49 0.934 0.887 (0.2,−0.1) grid49 0.940 0.883
grid100 0.920 0.902 grid100 0.938 0.928
grid169 0.942 0.927 grid169 0.944 0.926
grid256 0.949 0.939 grid256 0.952 0.954
grid400 0.948 0.942 grid400 0.938 0.932

Table 5   Coverage probabilities of the NA and EL confidence regions with �
it
∼ t(5) under model 2

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.843 0.787 (−0.2,−0.1) grid49 0.853 0.797
grid100 0.817 0.847 grid100 0.842 0.862
grid169 0.863 0.887 grid169 0.837 0.891
grid256 0.850 0.910 grid256 0.848 0.906
grid400 0.864 0.920 grid400 0.846 0.912

(0.8, 0.7) grid49 0.825 0.795 (0.2, 0.1) grid49 0.850 0.801
grid100 0.843 0.868 grid100 0.819 0.837
grid169 0.832 0.885 grid169 0.854 0.899
grid256 0.824 0.903 grid256 0.853 0.916
grid400 0.824 0.894 grid400 0.838 0.928

(−0.8, 0.7) grid49 0.820 0.794 (0.2,−0.1) grid49 0.839 0.781
grid100 0.857 0.874 grid100 0.844 0.844
grid169 0.820 0.895 grid169 0.848 0.891
grid256 0.844 0.907 grid256 0.828 0.875
grid400 0.844 0.918 grid400 0.846 0.908
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Table 6   Coverage probabilities of the NA and EL confidence regions with �
it
+ 4 ∼ �2

4
 under model 2

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.840 0.811 (−0.2,−0.1) grid49 0.835 0.809
grid100 0.845 0.867 grid100 0.830 0.874
grid169 0.854 0.909 grid169 0.857 0.883
grid256 0.852 0.904 grid256 0.845 0.907
grid400 0.872 0.930 grid400 0.888 0.928

(0.8, 0.7) grid49 0.792 0.784 (0.2, 0.1) grid49 0.802 0.823
grid100 0.831 0.850 grid100 0.817 0.842
grid169 0.849 0.899 grid169 0.833 0.878
grid256 0.872 0.912 grid256 0.873 0.911
grid400 0.854 0.928 grid400 0.884 0.922

(−0.8, 0.7) grid49 0.825 0.809 (0.2,−0.1) grid49 0.821 0.807
grid100 0.831 0.855 grid100 0.839 0.866
grid169 0.833 0.878 grid169 0.845 0.891
grid256 0.863 0.914 grid256 0.864 0.911
grid400 0.862 0.920 grid400 0.880 0.930

Table 7   Coverage probabilities of the NA and EL confidence regions with �
it
∼ 0.1N(0, 4) + 0.9N(0, 1) 

under model 2

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.908 0.844 (−0.2,−0.1) grid49 0.906 0.848
grid100 0.930 0.906 grid100 0.924 0.912
grid169 0.956 0.938 grid169 0.946 0.946
grid256 0.954 0.938 grid256 0.948 0.948
grid400 0.938 0.944 grid400 0.942 0.954

(0.8, 0.7) grid49 0.910 0.874 (0.2, 0.1) grid49 0.918 0.848
grid100 0.950 0.934 grid100 0.936 0.930
grid169 0.938 0.938 grid169 0.938 0.920
grid256 0.950 0.936 grid256 0.924 0.928
grid400 0.942 0.942 grid400 0.958 0.956

(−0.8, 0.7) grid49 0.906 0.854 (0.2,−0.1) grid49 0.932 0.860
grid100 0.918 0.918 grid100 0.942 0.926
grid169 0.936 0.940 grid169 0.918 0.918
grid256 0.942 0.934 grid256 0.948 0.938
grid400 0.954 0.938 grid400 0.960 0.958
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distributed or not. These results show that the EL based confidence regions gener-
ally outperform the NA based confidence regions when n is large enough.

4 � A real data example

In order to illustrate the proposed method in Sect. 2, we conducted a real data analy-
sis. The data come from 288 prefecture-level cities in China, collected from National 
Bureau of Statistics of China and Anjuke. There were three variables: the logarithm 
of housing price per square meter ( yt ), the logarithm of income per household ( xt ) and 
the urbanization rate (z) from the years of 2010 to 2017. In order to ensure the stabil-
ity and eliminate the influence of dimension, we first did difference and standardiza-
tion on the above data, and then considered fitting the data via the following model: 

Table 8   Coverage probabilities of the NA and EL confidence regions with �
it
∼ 0.1t(3) + 0.9t(5) under 

model 2

(�, �) W
n

NA EL (�, �) W
n

NA EL

(−0.8,−0.7) grid49 0.850 0.788 (−0.2,−0.1) grid49 0.866 0.796
grid100 0.828 0.846 grid100 0.838 0.860
grid169 0.870 0.902 grid169 0.838 0.900
grid256 0.838 0.930 grid256 0.832 0.892
grid400 0.858 0.912 grid400 0.878 0.906

(0.8, 0.7) grid49 0.826 0.776 (0.2, 0.1) grid49 0.856 0.790
grid100 0.840 0.832 grid100 0.814 0.844
grid169 0.866 0.904 grid169 0.814 0.896
grid256 0.828 0.908 grid256 0.834 0.912
grid400 0.870 0.926 grid400 0.868 0.914

(−0.8, 0.7) grid49 0.836 0.776 (0.2,−0.1) grid49 0.848 0.822
grid100 0.838 0.866 grid100 0.852 0.868
grid169 0.838 0.868 grid169 0.842 0.880
grid256 0.872 0.904 grid256 0.842 0.900
grid400 0.850 0.906 grid400 0.884 0.928

Table 9   Analysis results for the average price of commercial housing data (with ALs shown in brackets)

Variable Estimation Confidence interval (EL) Confidence interval (NA)

� 0.7015 [0.6521, 0.7442] (0.0921) [0.6495, 0.7535] (0.1040)
� 0.1677 [0.1519, 0.2103] (0.0584) [0.1319, 0.2035] (0.0716)
� 0.0093 [−0.0204, 0.0411](0.0615) [−0.0511, 0.0697](0.1208)

� 0.3743 [0.2775, 0.3830] (0.1055) [0.3137, 0.4349] (0.1212)
�2
�

0.0110 [0.0105, 0.0119] (0.0014) [0.0103, 0.0118] (0.0015)
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yt = �yt−1 + xt� + z� + �t, �t = �Wn�t + �t, t = 1, 2,… , 8 , where n = 288 and the 
spatial weighting matrix Wn was selected by the method in Sect. 3.

We separately employed the EL method in Sect. 2 and the NA method in Sect. 3 to 
obtain the confidence intervals for parameters �, � , �, � and �2

�
 with confidence level 

0.95, which were shown in Table 9.
Table 9 shows that the estimator of the spatial parameter is � = 0.3743 , and 0 is not 

in its confidence interval, which implies that there exists a spatial relationship among 
the disturbances. The results also show that the lengths of the EL based intervals are 
uniformly shorter than those of the NA based intervals, which implies that the EL 
based method performs better than the NA based method for the real data.

Appendix

In the proof of the main results, we need to use Theorem 1 in Kelejian and Prucha 
(2001). We now state this result. Let

where �ni are real valued random variables, and the anij and bni denote the real val-
ued coefficients of the linear-quadratic form. We need the following assumptions in 
Lemma 1. 

	(C1)	 {�ni, 1 ≤ i ≤ n} are independent random variables with mean 0 and 
sup1≤i≤n,n≥1 E|𝜖ni|4+𝜂1 < ∞ for some 𝜂1 > 0;

	(C2)	 For  a l l  1 ≤ i, j ≤ n, n ≥ 1, anij = anji  ,  sup1≤j≤n,n≥1
∑n

i=1
�anij� < ∞ ,  and 

supn≥1 n
−1

∑n

i=1
�bni�2+𝜂2 < ∞ for some 𝜂2 > 0.

Given above assumptions (C1) and (C2), the mean and variance of Q̃n are given as (e.g. 
Kelejian & Prucha, 2001)

with �2
ni
= E(�2

ni
) and �(s)

ni
= E(�s

ni
) for s = 3, 4.

Lemma 1  Suppose that Assumptions C1 and C2 hold true and n−1�2

Q̃
≥ c for some 

constant c > 0. Then

Q̃n =

n∑
i=1

n∑
j=1

anij�ni�nj +

n∑
i=1

bni�ni,

�
Q̃
=

n∑
i=1

anii�
2
ni
,

(25)

�2

Q̃
=2

n∑
i=1

n∑
j=1

a2
nij
�2
ni
�2
nj
+

n∑
i=1

b2
ni
�2
ni

+

n∑
i=1

{a2
nii
(�

(4)

ni
− 3�4

ni
) + 2bnianii�

(3)

ni
},



515

1 3

Journal of the Korean Statistical Society (2022) 51:500–525	

Proof  See Theorem 1 in Kelejian and Prucha (2001). 	� ◻

Lemma 2  Let �1, �2,… , �n be a sequence of stationary random variables, with 
E|𝜉1|s < ∞ for some constants s > 0. Then

Proof  Using Borel–Cantelli lemma and following the proof of (2.3) in Owen (1990), 
one can prove Lemma 2, where there is no need to assume that �1, �2,… , �n are in 
dependent in using Borel–Cantelli lemma. 	�  ◻

Lemma 3  Suppose that Assumptions A1–A5 are satisfied. Then as n → ∞,

Proof  Note that

By Conditions A1–A3 and Lemma 2, we have

In addition, by Lemma B.2. in Su and Yang (2015), A�
𝜈
(IT ⊗ B�) and (IT ⊗ (BAB�)) 

are uniformly bounded in both row and column sums, it follows that

Q̃n − �
Q̃

�
Q̃

d
⟶N(0, 1).

max
1≤i≤n

|�i| = o(n1∕s), a.s.

(26)Zn = max
1≤i≤nT

||�i(�)|| = op((nT)
2∕(4+�1)) a.s.,

(27)Σ
−1∕2

p+q+3

nT∑
i=1

�i(�)
d

⟶N(0, Ip+q+3),

(28)(nT)−1
nT∑
i=1

�i(�)��
i
(�) = (nT)−1Σp+q+3 + op(1),

(29)
nT∑
i=1

||�i(�)||3 = Op(nT).

Zn ≤ max
1≤i≤nT

{
max
1≤i≤nT

||ai,1ei||, max
1≤i≤nT

|e2
i
− �2

�
|, max

1≤i≤nT

||||ai,2ei + hii,1(e
2
i
− �2

�
)

+ 2ei

i−1∑
j=1

hij,1ej
||||, max

1≤i≤nT

||||hii,2(e
2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,2ej
||||
}
.

max
1≤i≤nT

||ai,kei|| = op((nT)
1∕(4+�1)), max

1≤i≤nT
|e2

i
− �2

�
| = op((nT)

2∕(4+�1)).
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Thus Zn = op((nT)
2∕(4+�1)) . (26) is proved. 	�  ◻

We now prove (27). For any given l = (l�
1
, l2, l3, l4)

� ∈ Rp+q+3 with ||l|| = 1 , 
where l1 ∈ Rp+q , l2, l3, l4 ∈ R , it is clear that

Denote

where

Note that

The conditional expectation and variance given X,  Z are denoted as E∗ and Var∗ , 
respectively. Then from (15) and note that E(�) = 0 , we know that the variance of 
Qn is

and

max
1≤i≤nT

|hii,k(e2i − �2
�
)| = max

1≤i≤nT
|hii,k|op((nT)2∕(4+�1)) = op((nT)

2∕(4+�1)).

max
1≤i≤nT

||||||
ei

i−1∑
j=1

hij,kej

||||||
≤ ( max

1≤i≤nT
|ei|)2 ⋅ max

1≤i≤nT

(
i−1∑
j=1

|hij,k|
)

= op((nT)
2∕(4+�1)), k = 1, 2.

l��i(�) =l�
1
ai,1ei + l2(e

2
i
− �2

�
) + l3{ai,2ei + hii,1(e

2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,1ej}

+ l4{hii,2(e
2
i
− �2

�
) + 2ei

i−1∑
j=1

hij,2ej}

=(l2 + l3hii,1 + l4hii,2)(e
2
i
− �2

�
) + 2ei

i−1∑
j=1

(l3hij,1 + l4hij,2)ej

+ (l�
1
ai,1 + l3ai,2)ei.

Qn =

nT∑
i=1

l��i(�) =

nT∑
i=1

nT∑
j=1

uijeiej +

nT∑
i=1

biei = e�U1ne + U2ne,

U1n =(uij)(nT)×(nT), U2n = (bi)1×(nT),

uii =l2 + l3hii,1 + l4hii,2, uij = l3hij,1 + l4hij,2(i ≠ j), bi = l�
1
ai,1 + l3ai,2.

U1n = l2InT + l3H1 + l4H2, U2n = l�
1
�X�
1
(IT ⊗ B�) + l3

�X�
2
(IT ⊗ B�).

(30)
�2
Qn

=Var

(
nT∑
i=1

l��i(�)

)

=Var(��U1n�) + Var(U2n�) + 2Cov(��U1n�,U2n�),
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Further,

where l̃ = (l2, l3, l4)
� , G1 =

⎛
⎜⎜⎝

nT �
�
nT
vecD(H1) �

�
nT
vecD(H2)

∗ ��vecD(H1)��2 vec�
D
(H1)vecD(H2)

∗ ∗ ��vecD(H2)��2
⎞
⎟⎟⎠
 . And

where G2 =

⎛⎜⎜⎝

nT tr(H1) tr(H2)

∗ tr(H2
1
) tr(H1H2)

∗ ∗ tr(H2
2
)

⎞⎟⎟⎠
 . Moreover,

It is easy to show (e.g. Su & Yang, 2015) that, n−1X̃�
1
Ω−1X̃1 , n−1X̃�

2
Ω−1X̃2 , and 

n−1X̃�
1
Ω−1X̃2 converge in probability to their expectations. We have

and

Combine (31)–(36), we have

(31)
Var∗(Qn) =(�4 − 3�4

�
)||vecD(U1n)||2 + �4

�
[tr(U1nU

�
1n
) + tr(U2

1n
)],

+ �2
�
U2nU

�
2n
+ 2�3U2nvecD(U1n).

(32)

||vecD(U1n)||2 = ||vecD(l2InT + l3H1 + l4H2)||2
= ||l2vecD(InT ) + l3vecD(H1) + l4vecD(H2)||2
= l2

2
nT + l2

3
||vecD(H1)||2 + l2

4
||vecD(H2)||2 + 2l2l3�

�
nT
vecD(H1)

+ 2l2l4�
�
nT
vecD(H2) + 2l3l4vec

�
D
(H1)vecD(H2)

= l̃�G1 l̃,

(33)

tr(U1nU
�
1n
) =l2

2
nT + 2l2l3tr(H1) + 2l2l4tr(H2) + l2

3
tr(H2

1
)

+ 2l3l4tr(H1H2) + l2
4
tr(H2

2
)

=̃l�G2̃l,

(34)U2nU
�
2n

=l�
1
X̃�
1
Ω−1X̃1l1 + l2

3
X̃�
2
Ω−1X̃2 + 2l�

1
l3X̃

�
1
Ω−1X̃2.

(35)
U2nU

�
2n

=l�
1
E
(
X̃�
1
Ω−1X̃1

)
l1 + l2

3
E
(
X̃�
2
Ω−1X̃2

)

+ 2l�
1
l3E

(
X̃�
1
Ω−1X̃2

)
+ op(n),

(36)

U2nvecD(U1n) =l
�
1
l2
�X�
1
(IT ⊗ B�)�nT + l�

1
l3
�X�
1
(IT ⊗ B�)vecD(H1)

+ l�
1
l4
�X�
1
(IT ⊗ B�)vecD(H2) + l3l2

�X�
2
(IT ⊗ B�)�nT

+ l2
3
�X�
2
(IT ⊗ B�)vecD(H1) + l3l4

�X�
2
(IT ⊗ B�)vecD(H2)

=�l�
(
�nT , vecD(H1), vecD(H2)

)�
(IT ⊗ B)E(�X1)l1

+�l�l3
(
�nT , vecD(H1), vecD(H2)

)�
(IT ⊗ B)E(�X2) + op(n).
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where Σp+q+3 is given in (24). From Condition A4, one can see that 
(nT)−1Var∗(Qn) ≥ c1 > 0 . From Lemma 1, we have

where d∗ stands for convergence in distribution given X,  Z. Noting that 
(nT)−1Var∗(Qn) ≥ c1 > 0 and

one can show that

Combing E∗(Qn) = 0 , (38) and (39), we thus have

Then (27) holds true.
Next we will prove (28), i. e.

Let

(37)

Var∗(Qn) =(𝜗4 − 3𝜎4
𝜈
)||vecD(U1n)||2 + 𝜎4

𝜈
[tr(U1nU

�
1n
) + tr(U2

1n
)]

+ 𝜎2
𝜈
U2nU

�
2n
+ 2𝜗3U2nvecD(U1n)

=(𝜗4 − 3𝜎4
𝜈
)l̃�G1 l̃ + 2𝜎4

𝜈
�l�G2

�l + l�
1
𝜎2
𝜈
E
(
�X�
1
Ω−1�X1

)
l1

+ l2
3
𝜎2
𝜈
E
(
�X�
2
Ω−1�X2

)
+ 2l�

1
l3𝜎

2
𝜈
E
(
�X�
1
Ω−1�X2

)

+ 2�l�𝜗3
(
�nT , vecD(H1), vecD(H2)

)�
(IT ⊗ B)E(�X1)l1

+ 2�l�l3𝜗3
(
�nT , vecD(H1), vecD(H2)

)�
(IT ⊗ B)E(�X2) + op(n)

=l�Σp+q+3l + op(n),

(38)
Qn − E∗(Qn)√

Var∗(Qn)

d∗

⟶N(0, 1),

Var∗(Qn) = �2
Qn

+ op(n),

(39)
�2
Qn

Var∗(Qn)

P
⟶1.

Qn

�Qn

d
⟶N(0, 1).

(40)(nT)−1
nT∑
i=1

(l��i(�))2 = (nT)−1�2
Qn

+ op(1).

(41)

Nin =l
��i(�)

=uii(e
2
i
− �2

�
) + 2

i−1∑
j=1

uijeiej + biei

=uii(e
2
i
− �2

�
) + Riei,
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where Ri = 2
∑i−1

j=1
uijej + bi . Let F0 = {�,Ω},Fi = �(e1, e2,… , ei), 1 ≤ i ≤ nT  . 

Then {Nin,Fi, 1 ≤ i ≤ nT} form a martingale difference array given X, Z. From (30) 
and (37), one can see that

It follows that

where Sn1 =
∑nT

i=1
{N2

in
− E∗(N2

in
�Fi−1)} , Sn2 =

∑nT

i=1
{E∗(N2

in
�Fi−1) − E∗(N2

in
)} . Next 

we will show that: (1)

and (2)

To show (1) and (2), it is sufficient to show that (nT)−2E(S2
n1
) → 0 and 

(nT)−2E(S2
n2
) → 0 , respectively. Obviously,

Thus

�2
Qn

=

nT∑
i=1

E∗(N2
in
) + op(n).

(42)

(nT)−1
nT∑
i=1

{l��i(�)}2 − (nT)−1�2
Qn

= (nT)−1
nT∑
i=1

(
N2
in
− E∗(N2

in
)
)
+ op(1)

= (nT)−1
nT∑
i=1

{
N2
in
− E∗(N2

in
|Fi−1) + E∗(N2

in
|Fi−1) − E∗(N2

in
)
}
+ op(1)

= (nT)−1Sn1 + (nT)−1Sn2 + op(1),

(43)(nT)−1Sn1 = op(1),

(44)(nT)−1Sn2 = op(1).

N2
in
= u2

ii
(e2

i
− �2

�
)2 + R2

i
e2
i
+ 2uiiRi(e

2
i
− �2

�
)ei.

E∗(N2
in
|Fi−1) = u2

ii
E(e2

i
− �2

�
)2 + R2

i
�2
�
+ 2uiiRi�3.
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It follows that

By Conditions A1–A3, we have

and

(45)

(nT)−2E(S2
n1
) =(nT)−2

nT∑
i=1

E{N2
in
− E∗(N2

in
|Fi−1)}

2

=(nT)−2
nT∑
i=1

E[u2
ii
{(e2

i
− �2

�
)2 − E(e2

i
− �2

�
)2} + R2

i
(e2

i
− �2

�
)

+ 2uiiRi(e
3
i
− �2

�
ei − �3)]

2

≤C(nT)−2
nT∑
i=1

E[u4
ii
{(e2

i
− �2

�
)2 − E(e2

i
− �2

�
)2}2]

+ C(nT)−2
nT∑
i=1

E{R4
i
(e2

i
− �2

�
)2}

+ C(nT)−2
nT∑
i=1

E{u2
ii
R2
i
(e3

i
− �2

�
ei − �3)

2}.

(46)

(nT)−2
nT∑
i=1

E[u4
ii
{(e2

i
− �2

�
)2 − E(e2

i
− �2

�
)2}2]

≤ C(nT)−2
nT∑
i=1

u4
ii
≤ C(nT)−2

nT∑
i=1

|l2 + l3hii,1 + l4hii,2|4

≤ C(nT)−2
nT∑
i=1

|l2 + l3hii,1 + l4hii,2|4 ≤ Cn−1 → 0,
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Similarly, we can prove that

From (45)–(48), we have (nT)−2E(S2
n1
) → 0 . Furthermore,

Thus,

(47)

(nT)−2
nT∑
i=1

E{R4
i
(e2

i
− �2

�
)2} = (nT)−2

nT∑
i=1

E[E∗{R4
i
(e2

i
− �2

�
)2}]

≤ C(nT)−2
nT∑
i=1

E(

i−1∑
j=1

uijej + bi)
4

≤ C(nT)−2
nT∑
i=1

E(

i−1∑
j=1

uijej)
4 + C(nT)−2

nT∑
i=1

Eb4
i

≤ C(nT)−2
nT∑
i=1

i−1∑
j=1

u4
ij
�4 + C(nT)−2

nT∑
i=1

(

i−1∑
j=1

u2
ij
�2
�
)2
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i=1

E(l�
1
ai,1 + l3ai,2)

4

≤ C(nT)−2
nT∑
i=1

i−1∑
j=1

|l3hij,1 + l4hij,2|4

+ C(nT)−2
nT∑
i=1

(
i−1∑
j=1

|l3hij,1 + l4hij,2|2
)2

+ C(nT)−2
nT∑
i=1

E(l�
1
ai,1 + l3ai,2)

4 ≤ Cn−1 → 0.

(48)(nT)−2
nT∑
i=1

E{u2
ii
R2
i
(e3

i
− �2ei − �3)

2} → 0.

E∗(N2
in
) =E∗{E∗(N2
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|Fi−1)} = u2

ii
E(e2

i
− �2

�
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�
E∗(R2

i
) + 2uii�3E

∗(Ri)

=u2
ii
E(e2

i
− �2

�
)2 + �2

�

(
4

i−1∑
j=1

u2
ij
�2
�
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i

)
+ 2uii�3bi.
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Note that

and

(49)

(nT)−2E(S2
n2
) =(nT)−2E

�
nT�
i=1

{E∗(N2
in
�Fi−1) − E∗(N2
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�
nT�
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�
R2
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�
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�
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�
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��2

=(nT)−2
nT�
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�

⎧⎪⎨⎪⎩

�
2

i−1�
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i−1�
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�
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�
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uijej
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−
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�
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E

��
i−1�
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�
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�
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�
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��2
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(50)
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nT�
i=1

E
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�2
�
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�
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uijej
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−
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u2
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�
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E

�
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�
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)
bi�

2
�
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where we have used Conditions A2 and A3. From (49)–(52), we have 
(nT)−2ES2

n2
→ 0 . The proof of (28) is thus complete.

Finally, we will prove (29). Note that

By Conditions A2 and A3, we have

Similarly,

(52)
(nT)−2

nT∑
i=1

E

{
2uii�3

(
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uijej

)}2

= 4�2
3
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ii
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(53)

nT∑
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+
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2
i
− �2

�
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i
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(56)
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E
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From (53)–(57), we have

Further, using (58) and Markov inequality, we obtain 
∑nT

i=1
���i(�)��3 = Op(nT

2) . 
Thus (29) is proved.

Proof of Theorem 1  Using Lemma 3 and following the proof of Theorem 1 in Qin 
(2021), one can easily show that Theorem 1 holds true. 	�  ◻
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