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ABSTRACT ARTICLE HISTORY
We link the empirical likelihood (EL) and GMM for three major spatial Received 3 April 2019
models: spatial autoregressive model with spatial autoregressive dis- Accepted 7 January 2020

turbances (SARAR model), linear regression model with spatial autor-
egressive errors (SE model) and spatial autoregressive model (SAR
model). It is shown that for every GMM estimator (GMME), there is
an empirical likelihood (EL) estimator which has the same asymptotic
variance as the GMME. Specifically, we show that there exists an EL
estimator which is asymptotically efficient as the best GMME pro- AMS 2010 SUBJECT
posed by Liu et al. [Liu, X. D., L. F. Lee, and C. R. Bollinger. 2010. An CLASSIFICATION:
efficient GMM estimator of spatial autoregressive models. Journal of ~ Primary: 62G05;
Econometrics 159 (2):303-19] and the EL confidence regions for the ~ Secondary: 62£20
parameters in above models can be constructed without the estima-

tion of asymptotic variances.
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Spatial model; GMM;
empirical likelihood;
confidence region

1. Introduction

Spatial econometrics models have found many applications in various fields of econom-
ics such as regional, urban and public economics where spatial dependence among
cross-sectional units are involved (e.g., Cliff and Ord 1973; Anselin 1988). The study of
spatial econometrics models has been an active field of statistical research for the last
30years. In this article, we focus on the following spatial autoregressive model with spa-
tial autoregressive disturbances (SARAR model):

Y, =p WY, + X, + U(n) Un) = P2Mulin) + €(n) (1.1)

where 7 is the number of spatial units, p;,j = 1,2, are the scalar autoregressive parame-
ters with [p;| <1,j=1,2, B is the kx 1 vector of regression parameters, X, =

(x1,%2, ... x,)" is the nonrandom 7 x k matrix of observations on the independent vari-
able, Y, = (y1.y2....¥s)" is an n x 1 vector of observations on the dependent variable,
W, and M, are n x n spatial weighting matrices of constants, €(,) is an n x 1 vector of
model errors which satisfies

Ee(yy = 0, Var(e(n)) = 0’1,

This model is introduced by Cliff and Ord (1973). This model has been extensively
studied for more than 30years. Excellent surveys and developments in testing and
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estimation of this model can be found in Cliff and Ord (1973), Anselin (1988), Cressien
(1993), Anselin and Bera (1998), Kelejian and Prucha (2001) and Liu, Lee, and
Bollinger (2010), among others. For the model (1.1), there are two special cases: p; =0
and p, = 0. In the former case, the model is called linear regression model with spatial
autoregressive errors (SE model). In the later case, the model is called spatial autore-
gressive model (SAR model).

There exist two major estimation approaches for the parameters in the above spatial
models. One is the maximum likelihood (ML) method (e.g., Anselin 1988). The other is
the computationally more efficient approach, the generalized method of moments
(GMM) by Liu, Lee, and Bollinger (2010). Liu, Lee, and Bollinger (2010) have obtained
the best GMM estimator within the class of GMM estimators based on linear and quad-
ratic moment conditions. It is shown in Liu, Lee, and Bollinger (2010) that the best
GMM estimator is asymptotically efficient as the ML estimator under normality. In this
article, we propose to use the empirical likelihood (EL) method introduced by Owen
(1988, 1990) to estimate and construct confidence region for the parameters in the
SARAR, SE and SAR models. As a nonparametric method, the EL method does not
require to specify the distribution form of the population in study. Moreover, the shape
and orientation of the EL confidence region are determined by data and the confidence
region is obtained without covariance estimation. There is a lot of excellent research
work for EL method. Here, we only mention a small part of them. A comprehensive
review on EL for regressions can be found in Chen and Keilegom (2009). More referen-
ces on EL method can be found in Owen (2001) and Qin and Lawless (1994),
among others.

The EL method depends on the GMM in choosing optimum estimation equations.
The main challenge in using the EL method is that the estimating equations based on
GMM for the SARAR, SE and SAR models contain linear-quadratic forms of ¢,. The
idea to solve this problem is to introduce martingale sequences to transform the quad-
ratic forms into linear forms of martingale sequences. We show that for every GMME
in Liu, Lee, and Bollinger (2010), there is an EL estimator which has the same asymp-
totic variance as the GMME. Specifically, it is shown that there exists an EL estimator
which is asymptotically efficient as the best GMME proposed by Lee Liu, Lee, and
Bollinger (2010). More significantly, in this article, the EL confidence regions for the
parameters in the SARAR, SE and SAR models are constructed without the estimation
of asymptotic variances. We anticipate deeper and richer literature in this direction. The
theory of EL method in this article is developed under the assumption that the model is
correctly specified. As noted by Schennach (2007), the EL estimator possesses some
undesirable properties when the model is misspecified.

The remaining of this article is organized as follows. Section 2 states the main results.
Results from a simulation study are presented in Section 3. All the technical details are
given in Section 4.

2. Main results

In the following we will study EL for SARAR, SE and SAR models, respectively.
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2.1. EL for SARAR models

Let 0= (p,.p.f°)" and use 6Oy = (py. P10 fy)" to denote the true value of 6.
Furthermore, let S,(p,) =I, — p;W, and R,(p,) = I, — p,M,. For simplicity, denote
Sn = Su(p10) and R, = Ry(pao)-

For the estimation of the model (1.1), we change the model at 0, into the form:
Rn(SnYn — Xufy) = €. Then denote €,(0) = Rn(pz){sn(p1>Yn _Xnﬁ} for any possible
value 0. Therefore, €,(0y) = €,. We will use the linear-quadratic moment functions pro-
posed in Liu, Lee, and Bollinger (2010) to construct EL score functions. Let Q, be an
n x q matrix of instrumental variables (IVs) constructed as functions of X, W,, and M,,.
Let P; be the class of constant (i.e., nonrandom) n X n matrices with a zero trace. With
the selected matrices Py, € P1,1 <s<m,m >1, and IV matrix Q,, the following
moment functions are used to form GMM estimators by Liu, Lee, and Bollinger (2010):

2:(0) = (EZ(H)QH,EZ(Q)PMG,,(H),6;(9)P2n6n(9), ...,GZ(G)Pmnen(6)> (2.1)
In this article, the following symmetrized form is used:

gn(0) = (€1(0)Qu» €5 (0)Prnen(0), €5 (0) P (0),
ceey e;(g)i)mnﬁn(e))r

where Py, = (P, + P},)/2,1 <s<m. It is clear that Eg,(0))=0 as
E{€:(00)Psnen(09)} = a2tr(Ps,) = 0, where o2 denotes the true value of ¢>. We use Pj,
and b} to denote the (i, j) element of the matrix P,, and the ith row of the matrix Q,,
respectively, and adapt the convention that any sum with an upper index of less than
one is zero. Let €, = (€1, €n2, - €4n) - To deal with the quadratic forms of ¢, in g,(6p),
we follow Kelejian and Prucha (2001) to introduce a martingale difference array
for every quadratic form. Define the o-fields: Fy = {(Z),Q},]:i = 0(€n1> €nzs - €ni)y 1 <
i <n. Let

(2.2)

i—1
Yin = Piisn(ef,i - US) + 264 ZPijsnenj (23)
=1
Then F; | C F;, Y, is Fi— measurable and E(Y,|Fi 1) = 0. Thus {Y,g, Fi1 <i<
n} form a martingale difference array and by P, € P,

n
€ P, = Z Y1 <s<m (2.4)
i=1
In this way, a quadratic form of ¢, is changed into a linear form of a martingale differ-
ence sequence, which enables the application of EL method.

In this article, we focus on the EL estimator of 6. However, we need to construct an
joint estimator of 0 and o* first. Let Y = (0%, 6%)" and use ¥, = (05, 03)" to denote the
true values of /. Based on (2.2) and (2.4), we propose the following EL ratio statistic
for € RF3 .

n

L) = sup [J(npy)

pir 1<i<n 3
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where {p;} satisfy
pizOlSism) pi=13 po(h) =0 25)
i=1 =1
where
b,fm'(e)
i~1
piiln{efz,”«(g) — 0'2} + 2€ﬂi(9)zi)ijln€nj(9)
=1
i—1
w;(Y) = Pinn{é,(0) — o*} + 26,1,~(9)Zl3,72nenj(0)
=1
- : i1
Piimn{€i(0) = 0} + 260(0)Y_Pijmnenj(0)

=1

where €,;(0) is the ith component of €,(0) = R,(p,){Su(p;)Yn — Xuf} for any possible
0. Suppose that 0 is inside the convex hull of the points {w;(}),1 <i < n} for given .
Following Owen (1990), one can show that

log Lu(y) =~ log {1 + (W) (v} 20

where A(})) is the solution of the following equation:
=0 2.7
Z 1+ 4" (¥) 27)

Let fpn be the maximizer of L,(y) over the parameter space ¥, which is called the
EL estimator of . For any two vectors f(x) = (fi(x).fa(x)....r(x))" and x=
(x1,%2, ..., x5)", define

Hhlx) ) R

a@xl aaXZ aaxs
o) _ | B B B g {6f(x) }
Ox : : : : ox" Ox
ofhx) oflx) Il
(')xl 8x2 8-’Cs

Differentiating log L, (), we have the likelihood equation:

1< 1 awl(lp) T B
nglwmwi(w( oy )W—O (2.8)

Let A(}y) = A. The EL estimator l}n of Y is also defined as the solution of the following
Equations (2.9) and (2.10):
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L1 Z" o)
Uln(lp, ;u)f ; 2 71 + Arwl(w) - (29)
A 1 1 1 860,(lp) ! i
Uzn(lp,i)—z ;:1 T o) < 0 ) A=0 (2.10)

In other words, ¥, and 4 = A({),) satisfy Usw(,» 4) = 0,5 = 1,2. The first k+2 com-
ponents of lfbn is [)n, which is the EL estimator of 0.

To obtain the asymptotic distribution of 0,, we need following assumptions.

Al. {e,,1 <i<mn} are independent and identically distributed random variables
with mean 0, variance 62 > 0 and Ele,;[**" < oo for some 17, > 0.

A2. The elements of X,, are uniformly bounded, X,, has the full column rank k, and
lim, %X;Xn exists and is nonsingular.

A3. S, ' and R;! exist. W, M,,S, ! and R;! are uniformly bounded in both row and
column sums in absolute value.

A4. P, 1 <s < m, are uniformly bounded in both row and column sums in absolute
value, and the elements of Q, are uniformly bounded.

A5. lim,_~ %Qn = Q exists and is a nonsingular matrix, where Q, = var{g,(0o)}.

A6.  lim, . %Dn =D exists and Rank(D) is the dimension of 0,

where D, = _E(fkg_(@”w).

Remark 1. Conditions Al to A6 are common assumptions for SARAR models, which
are also employed by Liu, Lee, and Bollinger (2010).

Use Vecp(A) to denote the column vector formed with the diagonal elements of A.
Let

AW = A+ A%, i, = E(€),),j = 3,4 2.11)
X, = R Xy, H, = MR 1, G, = W, S;1, G, = R,G,R;;! '
The first result in this article establishes the asymptotic normality of 0,.

Proposition 1. Suppose that Assumptions (Al)-(A6) are satisfied and P, € P,
1<s<m. As n— oo,

(0, — 09)5N(0,%)

where

n—oo

1 1., 1 -
¥ =< (lim -D,)*(lim ~Q,) '(lim =D,
{&520,1 ) (im ) (lim >}

0 Q;annﬁo Q;Xn

a2tr(PYVH,)  o2tr(PYG,) 0

a%tr(PE,ﬁ, n)  oatr( 52),1@”) 0

and
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1 T
6_(2) nQn 0 A 0
Qn — in + O-g 0 tr(PlnPESrB) M tr(PlnngLL)
' Py )
0 tr(PmnPIn) tr(Pmann)
where
Q 1= 0 HsQ;wmn
" .u3w;an (:u4 - 3Gé>wfnnwmn

with @, = (Vecp(P1y), ..., Vecp(Pon))-

Remark 2. Compared with Proposition 1 in Liu, Lee, and Bollinger (2010), @n has the
same limiting distribution as the optimum GMM estimator (OGMME).

The best GMM estimator (BGMME) is also obtained by choosing the best IVs Q,
and weighting matrices {P;,} by Liu, Lee, and Bollinger (2010). To state this result, we
need more notations as follows. Define X as the submatrix of X, with the intercept
column deleted (if no intercept column in X,,X, = X,). Suppose the number of col-
umns in X, is k*. For 1 <j < k*, use X,; and X Zj to denote the jth columns of X, and
%

n’

respectively. Let A(!) = A — 1tr(A)lI, for a n x n matrix A. Use D(A) to denote a
diagonal matrix with diagonal elements being A if A is a vector, or diagonal elements of
A if A is a square matrix. Let

Py, = Gy, Py = D(G ), Psy = (D(Gu X)), Pay = HL', Ps, = D(HL)
Piisn = (D<X:j))(t)>]' =1,2,..,k% Qu = (Qun> Qans Qan> Quns Qsn)

where

an = X:;: QZn = annﬁoa Q3n = ln) Q.’m = VeCD(GS>), Q5n = VeCD(H,(,t>)
with 1, being the n-dimensional (column) vector with 1 as its components. It is shown
in Liu, Lee, and Bollinger (2010), that above {Ps,,1 <s < k* +5} and Q, provide the

set of best IVs and weighting matrices. In this case, the resulting EL estimator 0, has
the same asymptotic variance X as the BGMME, where Xp is given in (3) in Liu, Lee,
and Bollinger (2010), which is apparently a special case of 2 in Proposition 1.

As there are unknown parameters 0, in the IVs and weighting matrices, in practice,

we can initially give the \/n-consistent estimators 0, of 0 to obtain the estimated IVs

and weighting matrices: P, = Pin(én),i =1,2,..,k"+ S,an = an(én),j =1,2,..,5.

Then following the above procedures, we use these estimated IVs and weighting matri-

ces to construct the likelihood function in(lp) and obtain the EL estimator @;m of 0,.
We now state the asymptotic normality of Opn.

Proposition 2. Suppose that Assumptions (A1)-(A6) are satisfied. Then as n — oo,

- d
Vn(0p, — 00)—N(0,%y)
where X, is given in (3) in Liu, Lee, and Bollinger (2010).
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Remark 3. ébn has the same limiting distribution as the best GMM estima-
tor (BGMME).

To show the advantage of the proposed EL approach to statistical inference, we con-
sider the properties of the EL ratios induced from L,(y). Let £,(0y) =
2log {in({phn)} —2log {L,(0o,52,)}. The following result establishes the asymptotic dis-
tribution of £,(6y).

Theorem 1. Suppose that Assumptions (A1)-(A6) are satisfied. Then as n — oo,

d
gn(GO)_)XiJrz

where y;_, is a chi-squared distributed random variable with k+ 2 degrees of freedom.

Let z,(k + 2) satisfy P(yp,, < z,(k+2)) = o for 0 < o < 1. It follows from Theorem
1 that an EL-based confidence region for 0 with asymptotically correct coverage prob-
ability a can be constructed as

{0:0,(0) < z,(k+2)}

2.2. EL for SE models

For an SE model, p; = 0. Let 0 = (p,.f%)" and use Oy = (p,. f5)° to denote the true
value of 0. Let R,(p,) =1I,— p,M, and R, = R,(p,y). Denote €,(0) = R,(p,)(Y, —
X,p) for any possible value 0. Let yy = (0",0°)" and use Y, = (05, 65)" to denote the
true values of . Let

Py, = Hy), Py = D(HY), Piazw = (DX)) ", = 1,2, k"
Qn = (Qun> Q2ns Q3n), With Qi =X, Qan = 1, Q3 = VeCD(H;(f))
It is shown in Liu, Lee, and Bollinger (2010), that above {Py,,1 <s < k*+2} and Q,

provide the set of best IVs and weighting matrices. Following the procedure in Section
2.1, the resulting EL estimator 0, of 0, has the same asymptotic variance Xp,, as the
BGMME, where Xp,, is given in (5) in Liu, Lee, and Bollinger (2010).

In practice, we first give the \/n-consistent estimators 0, of 0, to obtain the estimated
IVs and weighting matrices: P, = Pin(én),i =1,2,..,k*+2, an = an(@n),j =1,2,3.
Then following the procedure in Section 2.1, we can construct the likelihood function
in(lp) and obtain the EL estimator 9;7,1 of 0y, which has the same limiting distribution
as the BGMME.

Proposition 3. Suppose that Assumptions (A1)-(A6) are satisfied. Then as n — oo,

- d
\/E(ebn - 00)—>N(0, EB/)Z)
where X, is given in (5) in Liu, Lee, and Bollinger (2010).
Following the procedure in Section 2.1, we let £,(0y) =2log{L,

(V1)) — 210g {L.(00,67,)}-
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Theorem 2. Suppose that Assumptions (Al)-(A6) are satisfied. Then as n — oo,

d
EH(GO)_)XIE+1
where yi,, is a chi-squared distributed random variable with k+ 1 degrees of freedom.

Based on this result, the EL based confidence region for 0 with asymptotically correct
coverage probability o can be constructed as

{0:0,(0) < z,(k+1)}

2.3. EL for SAR models

p, =0 for an SAR model. Let 0 = (p,, 7)" and use 0y = (p0. ;)" to denote the true
value of 0. Let S,(p;) =1, — pyW, and S, = S,(pyy)- Denote €,(0) = S,.(p;)Y, — X
for any possible value 0. Let = (0°,¢6%)" and use Y, = (05.0%)" to denote the true val-
ues of V. Let
Pln = Gi(f))PZn = D(Gg))’P.’m = (D(GanBO))(t)
P = (D(X:j»(t))]' =1,2,..,k% Qy = (Qun> Qans Qs> Qun)

with
an = X:) QZn = Ganﬁ(p Q3n =1, Q4n = VeCD(GS,Q)
The above {P;,,1 < s < k" + 3} and Q, provide the set of best IVs and weighting matri-

ces. Following the procedure in Section 2.1, the resulting EL estimator 6, of 6, has the
same asymptotic variance Xp, as the BGMME, where X, is given in (6) in Liu, Lee,
and Bollinger (2010).

In practice, we first give the /n-consistent estimators 0, of 0 to obtain the estimated
IVs and weighting matrices: P, = Pm(@n),i =1,2,.., k" +3, an = an(@n),j =1,2,3,4.
Then following the procedure in Section 2.1, we can construct the likelihood function

in(lp) and obtain the EL estimator @bn of 0y, which has the same limiting distribution
as the BGMME.

Proposition 4. Suppose that Assumptions (A1)-(A6) are satisfied. Then as n — oo,
~ d
V1 (0, — 00)—N(0,Zp,,)
where X, is given in (6) in Liu, Lee, and Bollinger (2010).

Following the procedure in Section 2.1, we let £,(0y) =2log{L, ()}
~2log {Ly(00r 52}

Theorem 3. Suppose that Assumptions (A1)-(A6) are satisfied. Then as n — oo,

d
En(GO)_WiH

where y;., is a chi-squared distributed random variable with k+ 1 degrees of freedom.
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P =03 Br=1 By =-1
n=98 Normal
EL 0.317(0.132)[0.133] 0.998(0.149)[0.149] —0.999(0.152)[0.151]
BGMM 0.329(0.143)[0.146] 0.997(0.151)[0.151] —0.999(0.153)[0.153]
n=490
EL 0.302(0.048)[0.039] 1.000(0.054)[0.054] —0.998(0.056)[0.057]
BGMM 0.305(0.056)[0.056] 1.000(0.064)[0.064] —0.997(0.064)[0.064]
n=98 Gamma
EL 0.320(0.127)[0.130] 1.001(0.106)[0.106] —1.005(0.109)[0.112]
BGMM 0.331(0.138)[0.141] 1.003(0.113)[0.113] —1.005(0.115)[0.115]
n=490
EL 0.305(0.053)[0.054] 0.998(0.051)[0.051] —1.002(0.050)[0.050]
BGMM 0.307(0.055)[0.056] 0.998(0.049)[0.049] —1.001(0.049)[0.049]

From Theorem 3, the EL-based confidence region for 0 with asymptotically correct
coverage probability o can be constructed as

(0:0,(0) < z,(k+1)}

3. Simulations

To compare the performance of the proposed EL estimators in this article and the
BGMME, we use the same model as in Liu, Lee, and Bollinger (2010):

Yo = p1oWaYn + X1 Bro + Xn2Bao + tin)s Un) = P2oMnti(n) + €

where f,y =1,0, = —1 X,j ~ N(0,1,),j = 1,2, and X,; and X,, are mutually inde-
pendent. ¢,; are independently drawn from the following two populations: (a) €, ~
N(0,2); (b) €y ~ Gamma(2,1) — 2. Let W, be the weight matrix from the study of
crimes across 49 districts in Columbus, Ohio in Anselin (1988). Then we let W,, = M,,
and W, be the two weight matrices: (a) Wog = I, ® Wag; (b) Wagp = I1o ® Wy9, where
® is the Kronecker product.

In the simulations, the number of repetitions is 1,000 for each case. We report the
mean, standard deviation (SD) and root mean square errors (RMSE) of the 1, 000 EL

estimators @bn, where the initial estimators of 0, are the same as in Liu, Lee, and
Bollinger (2010). The simulation results for BGMME done by Liu, Lee, and Bollinger
(2010) are also listed here for comparison purpose. In addition, we also report the
coverage probabilities (CP) of BGMME and EL based confidence intervals with a confi-
dence level o = 0.95. We have also done the simulations where the regressors are non-
random with similar results to those reported here.

Tables 1-4 report the simulation results of mean, SD and RMSE for SE model
(P10 =0,p5 =0.3), SAR model (p;y =0.3,p, =0), SARAR model (p,, =0.3,
py0 = 0.3) and SARAR model (p;, = 0.8, p,, = 0.85), respectively. From these results,
we can see that both the EL and BGMME estimators perform well. In addition, with a
larger sample size n =490, both estimators perform similarly. However, for the smaller
sample size n =49, the EL estimator outperforms the GMME.

Tables 5-8 report the simulation results of CP for SE model (p,, =0, p,, = 0.3),
SAR model (p,; =0.3,p,0 =0), SARAR model (p,, =0.3,p,, =0.3) and SARAR
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Table 2. The mean, (SD) and [RMSE] for the SAR model.

P =103 Br=1 By=-1
n=98 Normal
EL 0.311(0.107)[0.108] 0.988(0.147)[0.149] —0.993(0.150)[0.151]
BGMM 0.320(0.117)[0.119] 0.987(0.150)[0.151] —0.991(0.154)[0.155]
n=490
EL 0.302(0.048)[0.048] 0.997(0.066)[0.064] —0.995(0.065)[0.063]
BGMM 0.301(0.047)[0.047] 0.997(0.065)[0.065] —0.994(0.064)[0.065]
n=98 Gamma
EL 0.309(0.101)[0.102] 0.998(0.115)[0.115] —0.999(0.114)[0.114]
BGMM 0.319(0.102)[0.104] 0.996(0.114)[0.114] —0.999(0.115)[0.115]
n=490
EL 0.305(0.039)[0.040] 0.997(0.049)[0.050] —1.000(0.045)[0.045]
BGMM 0.305(0.041)[0.041] 0.997(0.050)[0.050] —1.000(0.050)[0.050]

Table 3. The mean, (SD) and [RMSE] for the SARAR model.

P10 =103 pp =03 By =1 By =1
n=98 Normal
EL 0.270(0.217)[0.211] 0.315(0.316)[0.315] 0.978(0.159)[0.159] —0.976(0.156)[0.158]
BGMM 0.243(0.309)[0.315] 0.318(0.324)[0.324] 0.976(0.161)[0.163] —0.974(0.162)[0.164]
n=490
EL 0.286(0.099)[0.099] 0.305(0.106)[0.108] 0.997(0.063)[0.066] —0.995(0.065)[0.067]
BGMM 0.287(0.098)[0.099] 0.306(0.109)[0.110] 0.997(0.064)[0.064] —0.994(0.064)[0.065]
n=98 Gamma
EL 0.282(0.265)[0.268] 0.311(0.295)[0.296] 0.985(0.131)[0.131] —0.986(0.132)[0.133]
BGMM 0.251(0.295)[0.299] 0.315(0.301)[0.301] 0.984(0.130)[0.131] —0.986(0.130)[0.131]
n=490
EL 0.299(0.068)[0.068] 0.300(0.083)[0.083] 0.997(0.049)[0.048] —0.988(0.050)[0.050]
BGMM 0.299(0.069)[0.069] 0.299(0.087)[0.087] 0.997(0.050)[0.050] —1.000(0.049)[0.049]
Table 4. The mean, (SD) and [RMSE] for the SARAR model (continued).

P10 =038 P = 0.85 By =1 Br=—1
n=98 Normal
EL 0.730(0.326)[0.328] 0.812(0.321)[0.326] 0.952(0.162)[0.163] —0.913(0.159)[0.161]
BGMM 0.731(0.341)[0.3343] 0.812(0.330)[0.332] 0.951(0.163)[0.164] —0.915(0.163)[0.164]
n=490
EL 0.743(0.099)[0.099] 0.825(0.125)[0.127] 0.961(0.075)[0.076] —0.934(0.072)[0.073]
BGMM 0.744(0.098)[0.099] 0.825(0.128)[0.130] 0.962(0.076)[0.076] —0.935(0.074)[0.075]
n=98 Gamma
EL 0.710(0.266)[0.267] 0.816(0.312)[0.314] 0.903(0.165)[0.166] —0.913(0.158)[0.160]
BGMM 0.684(0.315)[0.317] 0.754(0.325)[0.327] 0.871(0.232)[0.234] —0.887(0.205)[0.206]
n=490
EL 0.760(0.123)[0.124] 0.831(0.102)[0.103] 0.926(0.065)[0.066] —0.927(0.108)[0.110]
BGMM 0.712(0.155)[0.156] 0.752(0.165)[0.165] 0.882(0.162)[0.163] —0.870(0.136)[0.137]

model (p,, = 0.8, p,; = 0.85), respectively. From these results, we can see that both the
EL and BGMME confidence intervals perform well in terms of CP with a larger sample
size n=490. However, for the smaller sample size n=49, the EL confidence intervals
outperform those of the GMME.

In summary, the EL method is competitive in the statistical inferences for spa-
tial models.
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Table 5. The CP for the SE model.

P =03 Br=1 By =1

n=98 Normal

EL 0.82 0.84 0.85
BGMM 0.81 0.85 0.85
n=490

EL 091 0.92 091
BGMM 0.92 0.92 091
n=98 Gamma

EL 0.85 0.87 0.88
BGMM 0.80 0.83 0.84
n=490

EL 091 0.90 0.92
BGMM 0.91 0.88 0.91

Table 6. The CP for the SAR model.

p1o=03 B =1 By =1

n=98 Normal

EL 0.83 0.84 0.83
BGMM 0.84 0.82 0.83
n=490

EL 0.90 0.89 0.91
BGMM 0.91 0.90 0.90
n=98 Gamma

EL 0.83 0.84 0.83
BGMM 0.78 0.76 0.77
n=490

EL 0.90 0.91 0.90
BGMM 0.89 0.91 0.91

Table 7. The CP for the SARAR model.

P10 =103 P =03 pr=1 By =1
n=98 Normal
EL 0.81 0.82 0.82 0.83
BGMM 0.74 0.73 0.75 0.72
n=490
EL 0.90 0.91 0.89 0.89
BGMM 0.91 0.90 0.90 0.89
n=98 Gamma
EL 0.80 0.82 0.82 0.83
BGMM 0.76 0.78 0.77 0.78
n =490
EL 0.88 0.90 0.87 0.87
BGMM 0.87 0.90 0.89 0.86
4. Proofs

In the sequel, we will use ||a|| to denote the L,-norm of a vector a. As the proofs of the
results in Section 2.1 are more involved than other results, we only give the proofs of
Propositions 1 and 2 and Theorem 1.
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Table 8. The CP for the SARAR model (continued).

P10 =038 P2 = 0.85 By =1 By =—1

n=98 Normal

EL 0.81 0.82 0.83 0.83
BGMM 0.80 0.81 0.84 0.83
n=490

EL 0.86 0.87 0.86 0.86
BGMM 0.87 0.86 0.85 0.86
n=98 Gamma

EL 0.76 0.74 0.78 0.78
BGMM 0.72 0.71 0.72 0.71
n=490

EL 0.84 0.83 0.84 0.84
BGMM 0.82 0.81 0.83 0.83

We need to use Theorem 1 in Kelejian and Prucha (2001). We now state this result.
Let

n n n
Q, = Z Z Apij€ni€nj + Z bui€ni
i=1 j=1 i=1
where ¢,; are real-valued random variables, and the a,; and b,; denote the real valued
coefficients of the linear-quadratic form. We need the following assumptions in
Lemma 1.

(C1) {em1<i<n} are independent random variables with mean 0 and
SUP| i<y o1 E|em-|4+"1 < oo for some 7, > 0;

(C2) For all 1<i,j<mn> 1,85 = ayji, SUP <jcy yo1 Doiy [Ani] <00, and
sup,o; n 30 b *T < oo for some 17, > 0.

Denote

ty =E(Q),04 = var(Q)

Lemma 1. Suppose that Assumptions Cl and C2 hold true and n’laéz > ¢ for some
constant ¢ > 0. Then

M iN(O, 1)
7q

Proof. See Theorem 1 and Remark 12 in Kelejian and Prucha (2001).

Lemma 2. Under the conditions of Proposition 1, as n — 0o,

w2 Z 0i(e)-SN(0,Q) (4.1)
1S i)k () = Q@+ 0p(1) (42)
i—1

where Q = lim, o (1Q,) and Q, = var(g,(0o)) is given in Proposition 1.
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Proof. Since Y I, wi(Yy) = gu(0p) under P, (4.1) thus can be proved by applying
Lemma 1. It remains to prove (4.2), i. e. for any [ = (I}, [5)" € R"*4,

n! i{lfw,-(ﬁo)}z = n_lazQ +0,(1) (4.3)
i=1

where o, = var(3_7_; Fwi(0o)). Let
i-1
Y,’n = lfwi(ﬂo) = lzl,‘i(Efu- — O'g) + ZZu,«je,,ienj + Vi€ni
=1
= uii(ei,’ — 0'(2)) + B,’€m'
where Ujj = l}(i)iiln’ ...,P,‘,’mn)r, u,-j = l‘f(pijln, z]mn) ( 7&]) Vi = l b,,B =2 Z —1 u,]
€+ vi. Let Fo={0,Q},F;=0(en, €m0 €ni)y1 < i <m. Then {Y;, Fi,1 < i< n}
form a martingale difference array. Note that

ﬂilz{lrwi(GO)}z — nilo'zQ = i’lilz EY2

—"*IZ{ YolFio) + E(Y|Fioy) — EYG}

(4.4)

(4.5)

=n lsnl +n Sn2
where S = >0 {Y: — E(YA|Fiz1)}, S = > ory , {E(Y2|Fiz1) — EYZ}. In the sequel

we will prove
n 'S = o0,(1) (4.6)
and
n1S, = 0,(1) (4.7)
It suffices to prove n 2ES2, — 0 and n2ES2, — 0, respectively. Obviously,
Y, = ui(en; — 00)" + Bl + 2uiBi(€; — og)en
Thus
E(Y2|Fii1) = u2E(é, — 62)’ + B*a% + 2u;Biu,

It follows that
n2ES? = n*ZZE{ Yol Fio)}
=n" ZE —a;)* — E(e; — 03)°} + B} (e, — ¢)

+2u11 z( Goenz ﬂ3)]2 (4.8)
< CnizzE ui{(eh — a3)” — E(eh; — 03)"}] + CnizzE{Bﬂfii —a3)’}
1—1 =

+CI’I ZE{IJ” i\€ 606"1 Iu3)}
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By Condition A4, we have

w3 B[ (- 0 — B - o] <cn ! o (49)
i=1
and
n n i—1 4
n_ZZE{B?(eii —al)’} < CniZZE <Zuijenj + v,->
-1 =1 \j=1
n i—1 4 n
-2 2\ 4
<oy (Zuijenj) +OnY w0
<on 2§:Zu,]u4 ¥ anz@u ) On Y (Eb+ by
i=1 j= i=1
<Cn'=o0
Similarly, one can show that

_ZZE{”H H(€ —ogen —113)°} — 0 (4.11)

From Equations (4.8) to (4.11), we have n ?ES?* — 0. Furthermore,

EY? = E{E(Y2|Fi_1)} = 2E(&, — 02)* + 02E(B?) + 2u;1,E(B;)

= u2E(&, — a2)* + a} (4Zu 6o+ V] > + 2uji Vi
Thus,
n 2
n~2ES%, = n2E {Z{E(Ym}]l) - EY;}]
n

=n2E {Z{ 262 — 62 <4Zu G2+ v > + 2u5115(B; — v,-)}}r

i=1

— aniE [Gé{ <Zzuij€n]> 4214 } +4 (i%%) v,ao
i=1 j=1

j=1
i—1 2 (4.12)
+2u,-,~,u3 <22u,~jenj>]
=
n i1 2 ol 2 n i1 2
< CHZZE{G(Z) (Z”U’%’) — Zu?jaﬁ} + Cn_zzE{ (Zuif&m) v,ﬂé}
=1 =1 =1 p =1
n i—1 2
+CHZZE{2LI,‘,',U3 (Zu,jenj> }
i=1 =
Note that
n i—1 2 i—1 2 n i—1 4
Yk i (Zuﬁenj) - Zu;ag}] <2t 5 Y
' ‘ ' =T (4.13)

< Cn~ ZZZ”W + Cn_ZZ(Zu ) <Cn ' -0

i=1 j=
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zzn:E{<lzlzuijenj>v,-a§} =n" agz Zuu <Cn?=o0 (4.14)
=1

i=1
and

n i—1

n i—1 2
n? Z E{zuii.u3 < Z uijenj> } = 41505n > Z u Z ufj <Cn!'=o0 (4.15)
i=1 =

=1 =1

From (4.12) to (4.15), we have n 2ES?, — 0. The proof of Equation (4.3) is
thus complete.

As a consequence of Lemma 2 and the proof of Lemma 1 in Qin and Lawless (1994),
we have the following result for the existence of a local maximizer of L, (i) :

Lemma 3. Under the conditions of Proposition 1, as n — oo, with probability tending to
1 the likelihood equations (2.9) and (2.10) have a solution t/A/n within the open ball
1, — Woll < Cn™Y/3, and L, () attains its local maximum at ,,.

We now prove Propositions 1 and 2 and Theorem 1.

Proof of Proposition 1. Taking derivatives about i and A°, we have

OU(,0) _ 1 Z":awiom _ <1 g (0) )0)

a il n 90

aUln '10 0 Zw

aUM('ﬁ) 0) -0 aUZn(‘p’ O) _ (lagn(e) 0>T
oy o \n 00

Therefore, from Lemma 3 and Taylor expansion, we have

0= Ua(,.2)

= U0 0) + 22000 G, =)+ 200 4 0,1, — vl
1 10g,(0 A IR . 3 ~1/2
= ault0) + D] (B 00) =1 i)+ eyl
0= Usn(f,n )
= Ul 0) + 22000 g gy D005 40,15, — o)

It follows that



4382 Y. QN

where
1< . 10g,(0)
5 = — Z 2_ wi(‘po)w,’ (‘po) - 90 oo, |2 (SH 812)
(ldgn((')) | )1 0 821 0
n 00 10=0,

Therefore,

A _ _ 1

\/E(H,, - 00) = 5221.18215111 'ﬁgn(eo) + Op(l) (4.16)

It has been shown in the proof of Proposition 1 in Liu, Lee, and Bollinger (2010)),
that

1

10(0)]  _ — Dyt 0p(1) (4.17)

n 00

0=0,

with D,, in Proposition 1. From (4.16), (4.17) and Lemma 2, we have Proposition 1.

Proof of Proposition 2. Based on the set of best IVs and weighting matrices {P,,1 <
s < k" 45} and Q,, and the estimated IVs and weighting matrices, define

ghn(e) = (62(6)Qn’GZ(G)Plnen(e)’6;(0)132"6"(6)’---’62(6)13k*+5,n5n(9))1

Zn(0) = ((0)Qu €(0)P1un(0). €5 (O)P2nen(0). o € (0)Pi5,00(0))

biﬁm'(e)
i—1
Piiln{eﬁi(g) — 0’} + Zeni(g)zpijlnenj(e)
j=1
i—1
wbi(‘p) — Pii2n{€ii(9) - 0'2} + 2€ni(0)jzlpij2n€ﬂj(9)

i—1

Pij ke ps,n{€2(0) — 02} + 2€4i(0)D _Pij k45, n€nj(0)
j=1

i),‘Em(O)

- i—1 _
Pitn{e2,(0) — 6>} + 264i(0) > Pyjinen(0)
j=1
- i—1 _
wpi(Y) = PiiZW{Eii(O) - 02} + zeni(O)ZPijZnenj(())

i—1 _
Pii)k*+5,n{ef’i(9) — 02} + 2Eni(6)ZPij,k*+5,n6nj(6)
=1
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where f’ijsn and b} are the (i, j) element of the matrix P, and the ith row of the matrix

Q,» respectively. f;ijln and B: are defined similarly. It is shown in the proof of
Proposition 2 in Liu, Lee, and Bollinger (2010) that

\}ﬁ{gbnwo) — &on(bo)} = 0p(1)

Noting that Y ., &pi(Y) = §,,(00) and > 7 wpi(y) = gen(0p), and combing with
Lemma 2, we have
n S () SN(0, Q) (4.18)
i1
where Q = lim, . (:Q,) and Q, = var(g,(6,)). It is also proved in the proof of
Proposition 1 in Liu, Lee, and Bollinger (2010), that
108,00 _ 10gu(0)

1 4.1
no00 |y, n 00 Topll) (4.19)

Furthermore, following the proof of Equation (4.2), it can be shown that
n
n > owi(Wo)p(Ye) = Q4 0,(1) (4.20)
i=1
From Equations (4.18) to (4.20) and the proof of Proposition 1, we can see that
Proposition 2 holds true.

Proof of Theorem 1. We use the notations in the proof of Proposition 2 and let

) L1 Wpi(Y)
Uln(lp’ }V)_ Z ;m

) L1 1 O0pi ()"
Uzn(‘P’)")_ZZlJrﬂd)bi(W( W ) ’

i=1
Then an(l}bn,ib) =0,j= 1,2, where Jp = A((pbn). Denote the first k42 compo-

nents of 1, as Op. Following the proof of Proposition 1, it can be shown that

. 1. _
§n<A Ab ) _ _;glm(()o) +op(n”?)
0pn — 0o Op(n—l/z)

where
1 <N, 1 10g,,(0)
5 —;;wbi(lpO)wbi(wo) n 00 0—0, £<§11 Slz>
(1250, ) 0 Sa 0
n 00 10=0,
Therefore,
~ ~A—1 A a—1 A ~a—1 1A _
Ao =Sy (14 81285,52151) .;gbn(eo) +op(n'1?) (4.21)
where 322_1 = —Sngilglz. Using Uln(lﬁbn,ib) =0 and following the usual arguments

in EL approach, one can show that
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Z outin) = { Z OulD) 07 )+ 0y () 422)
Using Taylor expa;sion, Equations (;.21) and (4.22), we have
zz log {1+ 25 01(3,)}
- zizn;izam,n) - i{iza}bi@bn)}z +op(1)
- iz{immn)@zm)}ib +op(1) 1.23)
- iz{imiwo)@;(wo)}% +op(1)

= {8 (00151 (4 818,508 - €4 (00)
+0p(1)
Furthermore, let
Wpi(0o, %)
1 + 2] @pi(0o, 02)

N o1 1
U3n(60a 62’ /Ll): ; Z

i=1

N n ~ i 0 ’ N\ T
U4n(90,02,i1)£%z 1 (36017( o, O )) i

— 1+ A @pi( 6, 02) Odo?

Then an(eo, 6,27,1,},1,1) =0,j = 3,4, where /Albl = A1(0o, &in). Note that

Ug,n(goa 02, 0) 03n(e0: 02’ 0) 1¢ ~ 2\ AT 2
o =0 o = 2 Oul0n )00
U4n<90, 0-2’ 0) -0 U4ﬂ(901 027 0) —0
da? - o1 B
Then
R ~-1 1. _
}Vbl = _S11 : ;gbn<90) + Op(n 1/2>

Similar to the proof of Equation (4.23), we have
2 T . 1. fo1 1.
2 log {1+ Ay oni(0,,)} = —n{;gbnwo)} S @ul00) Fop(1)  (429)

i=1
Finally, from Equations (4.23) and (4.24), we have
0n(00) = 210g {Ln(},)} — 2log {in(?o’ Gon)}
= n{%gbn(60)}T§1_11*§12322.1321~§1_11 -;g;m(eo) + 0,(1)
P . A a—1/2n a1 a A
= {(=811) " L2, (00)} (=811) /28128, Saa (=811) 77

x(—Sur”Z%gbn(%) +o,(1)

(4.25)
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Equations (4.18) and (4.20) imply that (—311)71/2 ﬁgbn(HO)iN(O, DLyj+y9). Furthermore,

(—311)_1/2312:9;21_1:921(—311)_1/2 is symmetric and idempotent with trace k+2. We thus
have Theorem 1.
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