NAMES D B HE Chinese Journal of Applied Probability
BRI 2009410H and Statistics Vol.25 No.5 Oct. 2009

Inference in Varying-Coefficient Mixed Models
by Using Smoothing Spline *

LU YIQIANG
(Institute of Electronic Technology, the PLA Information Engineering University, Zhengzhou, 450004)

XU WANGLI
(School of Statistics, Renmin University of China, Beijing, 100872)

Abstract

Varying-coefficients mixed model (VCMM) is proposed for longitudinal data and the other
correlated data. This model allows flexible functional dependence of the response variable on the
covariates by using varying-coefficients linear part to present the covariates effects, while account-
ing the within-subject correlation by using random effect. In this article, the coefficient functions
are estimated by using smoothing spline and restricted maximum likelihood is used to estimate
the smoothing parameters and the variance components simultaneously. The performance of the
proposed method is evaluated though some simulation studies, which show that both the coeffi-
cient functions and variance components could be estimated well for the VCMMs with all kinds of
covariance structures.

Keywords: Varying-coefficients mixed model, smoothing spline estimation, restricted max-
imum likelihood, linear mixed effect model.
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§1. Introduction

The varying coefficient model (VCM) is a useful extension of classical linear models.
There are extensive studies on it after the seminal work of Hastie and Tibshirani (1993).
The appeal of this model is that via allowing coefficients to vary with some covariate, the
modeling bias can significantly be reduced and “curse of dimensionality” can be avoided.
Another advantage of this model is its interpretability. It arise naturally when one is
interested in exploring how regression coefficients change over different groups such as
age. It is particularly appealing in longitudinal studies where it allows one to examine
the extent to which covariates affect response over time. See Hoover et al. (1998), Fan
and Zhang (2000), Chiang et al. (2001) and Huang, Wu and Zhou (2002), Zhang and
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Lu (2004) for the details on the applications of varying-coefficient models to longitudinal
data. Additional work is cited in these references.

A challenge in the analysis of longitudinal data is that the data are correlated, as
multiple observations are measured for each individual. This correlation should be taken
into account in the analysis to yield the valid inference. However, in the least square
estimation of VCM, whether smoothing spline estimation or local method, this correla-
tion is often neglected and only considered in the study of the asymptotic property of
the estimators. In the application of VCM, another critical issue is how to select good
estimators of smoothing parameters or bandwidth parameters. Although cross-validation
is a reasonable approach to select the smoothing parameters for clustered data, it is of-
ten computational expensive and subsequent inference on the correlation parameters is
difficult. It is hence of substantial interest to develop a systematic procedure to make
inference on all model parameters.

A popular parametric way within the likelihood frame is to use linear mixed models
(LMM) to analyze the longitudinal data (Laird and Ware, 1982). When simple parametric
forms are insufficient, however, nonparametric approaches allowing arbitrary functional
forms must be considered. There are some papers in the recent literature extending LMM
to the analysis of modeling replicated functional data. For example, Lin and Zhang (1999)
proposed generalized additive mixed models, where additive covariate effects were used to
model the covariate effects in GLMMs. Wu and Liang (2004) proposed a random varying-
coefficient model in which the time-varying coefficients are assumed to be subject-specific,
and can be considered as realizations of stochastic processes. Guo (2002) introduced a
functional mixed model allowing functional fixed and random-effect functions of arbitrary
form, with the modeling done by using smoothing splines. Morris and Carroll (2006) used
a Bayesian wavelet-based approach to fit the functional mixed model in order to suite
for modeling irregular functional data. In this paper, we consider the varying-coefficients
mixed model (VCMM), which is an extension of LMM in the spirit of Hastie and Tibshirani
(1993). This new class of model uses the varying-coefficient linear part to model covariate
effects while accounting for overdispersion and correlation by adding random effects to
VCM. The smoothing spline is used to fit the coefficient functions. We treat the smoothing
parameters as the extra variance components and estimate them jointly with the other
variance components by the using restricted maximum likelihood (REML) (Harville, 1977).
It is shown that all model parameters can be estimated from a modified linear mixed model.

This paper is organized as follows. Section 2 states model. Section 3 contains the
estimation procedures. The algorithms are summarized in Section 4. Section 5 reports the
results from some simulation studies designed to evaluate the performance of the proposed

estimation. Section 6 presents some discussion.
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§2. The Varying-Coefficient Mixed Effect Models

Let the data be consist of m subjects with ith subject having n; observations over
time. Suppose that Yj; (¢ =1,---,m, j =1,---,n;) are the response for the ith subject

at time point ¢;; and can be modeled by the varying-coefficients mixed model
Yij = X7;B(tij) + Z5bi + €5, (2.1)

where B(t) = (61(t), -+, Bp(t))" is a p x 1 vector of unknown coefficient functions associ-
ated with covariates X;; = (Xjj1,---, Xijp)7; b; are independent ¢ x 1 vectors of random
effects associated with covariates Z;; = (Zij1,- - , Zijq)"; and the ¢;; are independent mea-
sure errors. Without a loss of generality, let ¢ € [0,1]. Furthermore, suppose that b; is
distributed as Normal(0, D(6)) where D(#) is a positive matrix depending on parameter
vector 6, and ¢;; is distributed as Normal(0, 0?) and independent of b;. (67,02)7 is called
to be the vector of variance components.

A key feature of VCMM (2.1) is that varying-coefficients part is used to model co-
variate effects and random effects are used to model correlation between observations.
If B;(-) are constant functions of ¢, the VCMM (2.1) reduces to the linear mixed model
(LMM). If X; =1 and j3;(t) except of 31(t) are constant function of ¢, the VCMM (2.1)
reduces to the semiparametric mixed model (Zeger and Diggle, 1994). In the functional
mixed model (Morris and Carroll, 2006), random effect b; is extended to the realization of
statistic process.

Denote Y; = (Yi1,- -+, Yin,)™ and Z;, ¢; similarly (i = 1,--- ,m). Let t0 = (£9,... ¢2)7
be a vector of ordered distinct values of the time points t;; (i =1,---,m, j=1,--- ,ny)
and N; be the incidence matrix for the ith subject connecting ¢; = (tj1,- -+, tin,)” and 0
such that (j,[)th element of N; is 1 if t;; = t? and 0 otherwise (j =1,--- ,n;, L=1,---,7).

The model (2.1) can be written as
Y; = DiN;1 + DjoN; B2 + - - - + Dip N; B, + Zib; + €;, (2.2)

Where Dik = diag(Xﬂk, s 7Xinik) and ﬁk = (ﬂk(t(l)), o ,ﬂk(tg))T fOI‘ k: = 1, e, P
Let G; = (DiNi, DiaNy, -+, DipN;), 8 = (B],---,B;)" and Z = diag(Z1, -+ , Zm).
Further denoting Y = (Y{,---,Y,])” and G, b, € similarly, (2.2) reduces to

Y =GB+ Zb+e, (2.3)
where b is distributed as Normal(0,D(0)) with D(0) = diag(D(6),--- ,D(#)) and € is

distributed as Normal(0, 02I,,) with I,, denoting an identity matrix of dimension n = Y n;.
i=1
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§3. Estimation for the Mean Components

Statistical inference in VCMM (2.1) involves inference on the coefficient functions
Bj(t), which often requires the estimation of the smoothing parameter, say \;, and infer-

T

ence on the variances (07,02)7. In this section, We shall first discuss how to construct

natural cubic smoothing estimators of 3;(t) when A = (A1,---,A,)7 and (§7,0%)" are

known; and the inference on A and (67, ¢2)7 will be studied in the next section.

3.1 Estimation of Coefficient Functions

For given variance component, the loglikelihood function of §;(-) is, apart from a
constant,

1(B;Y) = — 5 log |R| - (¥ ~ GBI R™'(Y — Gp), (31)

where R = ZD(0)Z™ + Io?. Since 3;(t) are infinite dimensional smoothing functions, we

estimate (;(t) by maximizing the penalized loglikelihood function
1 & /" 2
L(Bi(t), -+, Bp(t);Y) =U05Y) — 3 ‘21 Aj [ B (1)]7de, (3.2)
‘]:

where [(3;Y) is the loglikelihood function defined in equation (3.1), the A;, j =1,--- ,p
are smoothing parameters that control the smoothness of ﬁj (t) and goodness-of-fit of the
model to the data. The maximizer ﬁj (t) of 1,(3;Y) are natural cubic splines, which can

be expressed as
2 r
IBJ (t) = Zl 5jv¢v + lz CL]'[R(LL?, t),
v= =1
where ¢, is a (v — 1)th polynomial (e.g. ¢, =t""1/(v —1)!) and R(z,y) is defined as

R(z,y) = Ky (2)Ka(y) — Ka(z —y).

For
e L 1 B@ T
Ka(@) = 2<k1(‘r) - 12)’ k@) =55 (ktta) - > 240)
and ki(x) =z — 0.5 on z € [0,1]. See Gu (2002, P.37).

Denote 6; = (6;1,0;2)" and a; = (aj1,--- ,a;-)". Then §; and penalties in (3.2) can
be expressed as
Bi =T6; + Xa, and EA- (37 (t))2dt = ﬁaTEa- (3.3)
J J J 2 ¥l j - 9 5 7 .
where T is 7 x 2 with ([, s)th element equal to ¢5(t)) and ¥ is a positive definite ma-
trix with (I, s)th element equal to R(t),t%). Let ng) = (DuN;T,- -, DypN;T), ng) =

17%s
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(DaN:S, -+, DipNi%), G1 = (G, -+, GI™")™ and Gy similarly. The model (2.3) re-
duces to
Y =G16 + Goa+ Zb + ¢,

where 6 = (61,---,0,)" and a = (af,--- ,a;)7. Therefore, the penalized loglikelihood
(3.2) becomes

1 1 12
,(6,a;Y) = —5log|R‘—§(Y—G15—G2a)TR_1(Y—G15—G2a)—5Zl)\ja}—zaj
]:
1 1 Tp—1 1 TO—1
= —ilog]R\—i(Y—Gl(S—Gga) R (Y—Gl(S—Gga)—ia Q7 (Na, (3.4)

where A = (A1, -+, Ap)" and Q7H(A) = diag(M 2, -+, ApX).
The maximizing penalized loglikelihood estimates (MPLEs) (3\, a) can be obtained by

solving the linear system

G{R_lGl GIR_lGQ ) _ GlR_ly (3 5)

GIR'Gy Q'+ GIR'Gy a GiR™Y ) '
Estimating of the subject-specific random effect b; can proceed by calculating their con-
ditional expectations given the data Y;, while estimating ¢ and a by their MPLEs. This
gives

b = D(0)Z] (Z:D(0) Z] + 1,0%) " (V; — G5 — GYa).
This suggests that the following theorem holds.

Theorem 3.1 If the coefficient functions in (2.1) are estimated by smoothing
spline. Then the maximizing penalized loglikelihood estimates (MPLEs) are identical to

the best linear unbiased predictors (BLUPs) of the following linear mixed model

Y =G0+ Gaa+ Zb+e, (3.6)
where § are the regression coefficient and a and b are mutually independent random effect
with a ~ N(0,Q(\)) and b ~ N(0,D(h)).

Theorem 3.1 can be easily proved by the comparison between the MPLEs (3.5) and
BLUPs defined in Harville (1977).

3.2 Bayesian Formulation and Inference

For the classical nonparametric model y; = f(¢;) + €;, where ¢; are independent and
distributed as N (0, 02), the regression f can be estimated by smoothing spline and f have
the form

f=T6+ Xa,
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where 7" and ¥ are defined in (3.3). Suppose that ¢ have a flat prior and a have a normal
prior N(0, (AX)™1), one can easily show that the posterior model and mean of (§7,a")"
under the Bayesian model are identical to the MPLEs (67,a7)". Wahba (1985) suggested
estimating the covariance of fusing the posterior covariance of funder Bayesian model.
She showed that the resulting Bayesian confidence intervals of f calculated using the
Bayesian standard errors have good coverage probability when the true f(z) is a fixed
smooth function.

Similar to the smoothing spline estimate of nonparametric regression, the covariance
of Bj can be estimated by their posterior covariance under Bayesian models. Note that 3;
can be expressed as (3.3). Assuming that J; have a flat prior and a; are independent and
have a normal prior N(0, (\;2)7!), some calculation shows that the MPLEs are identical
to posterior mean of § and a. Let &« = (67,a”)" and & = (3\7, a”)7. The Bayesian covariance
matrix of MPLEs a is

Covp(@)=H!,

where H is the coefficient matrix on the left-hand side of equation (3.5). It follows that

the Bayesian covariance of Bj is
Cov (B;) = (T, %)Cov p(a;)(T, %), (3.7)

where a; = (g;-,/d;)T and Cov g(@j) can easily obtained from the corresponding blocks of
H-L

84. Inference on the Smoothing Parameters

and Variance Components

We assume in Section 3 the smoothing parameters A; and the variance component
vector are known when we make inference on the coefficient functions 3; in VCMM (2.1).
However, they are often need to be estimated from the data. Under the linear mixed
models, the restricted maximum likelihood (REML), which takes into account the loss
in degree of freedom resulting from estimating fixed effects, is often used to estimate the
variance components (Harville, 1977). Due to the smoothing spline estimator of nonpara-
metric function has often a representation of linear mixed model, REML has also been
used for selecting the smoothing parameter in the nonparametric regression. For example,
Ansley, Kohn and Wang (1993) and Lin and Zhang (1999).

In this section, using the connection between the smoothing spline estimation of

varying-coefficient mixed models and the linear mixed model established in Section 3, we
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propose to estimate the soothing parameter A and variance component (67, 0%)7 simulta-
neously using REML by treating A as an extra variance component vector in the linear
mixed model (3.6). For the convenience of calculation, let 7; = 1/\; and 7 = (11,--- , 7).
By Harville (1977), the REML of v = (7,6, 02)" in the LMM (3.6) is

In(r.6,6%¥) = S log(IV]) — 5 log(IGTV A Gil) = 5(V = Gi8)T V(Y = Gib), (4.1)
where § is the estimator in Section 3 and
V =R+ GyQ\GE = 1,6 + ZD(0)Z™ + G2\ GY.
Differentiating Ir(7, 0, 02;Y) with respect to v, the REML estimating equation is

1 ov 1 ~ oV -~
= ——tr(P— )+ (Y = Go) VI vy — = 4.2
s) = —5t(P. ) + 500 =GOV VI — Gy =0, (@)
where

P=R"'— R YGy,Go)H ' (G1,G2) "R

Using the identity V1Y — G16) = R™Y(Y — G106 — G2a) (Harville (1977), Eq.5.2), we

have

1 Q 1 ~ Q ~
(PGQa G§>+7(Y—G16—G26)7R 1G28—GTR (Y — G106 — Gpa) = 0,
o7 2 o7
L oD ~ oD ~
- (PZa—ekZ>—|—(Y—G1(5—G2a) R Zaa ZTRUY — G1d — God) = 0,

and
1 ~ .
—itr(P) + (Y — G16 — G2a)"R2(Y — G16 — Gya) = 0,

where § and @ are the estimators in Section 3. The Fisher information of 5 is

Ir Iy I‘I’0‘2

10)= (Gu(Pr)) = | e I e |- (4.3

IO’QT 1029 _[0-20.2

Denoting by A% the (4, k)th element of the matrix A, we have

o0 o0 o0 aD(9)
Jk T T Jk T T
bl —O5tr<G PGy GEPGag k) bl —05tr<Z PGy -GiPZ =gy, )
oD(6) aD(6) 0
]k’ T T ]1 T
% = 0.5tr (ZPZ 50, 2 7, ) v 2_05tr(PG28]G )
aD(0)

LY, =05t(PZ2227P)  and Lz = 0.5t(P),

87']'
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The covariance of 5 can be estimated using the inverse of Fisher information matrix. To
estimate 7, we can now proceed as follows. Beginning with some starting values (9,

iterate

A D = A (B) (4 By =g (R

until convergence.

85. Summary of Inference in VCMM

Since the estimation of coefficient functions depends on the variance parameters and
smoothing parameters and vice versa, both may be estimated through cycling between the
two estimation step, using the current values of (67,a")" and (7/,8',02)" in the respective
formulae. In this section, we will summarize the presented results in a algorithm that de-

scribes the simultaneous estimation of both coefficient functions and variance parameters.

(1) Choose starting value ((5(0),a(0)), (T(O),Q(O),UZ(O)), a termination criterion € and

In the following simulation studies, we select

define the iteration index £ = 0.
(0)
J

the starting value 02 = 1, 71"/ = 1. Furthermore, we select 6 such that
Var (b;) = 1, corr(b;,b;) = 0.5. (600, a(®) is chosen to be the estimator of linear

model Y = G190 + Gaoa + e.

(2) Determine (6+1 G(+1)) as the solution of the linear system (3.5). Note that all

involved matrices are evaluated at the current estimates.

(3) Compute the score vector s(7¥)) and the expected Fisher-information matrix I(y*)).

Update v*11) via

A = 4 4 171 (49,
(4) Compute the distance measures

S(k+1) 5(k+1 (k) ~(k
dy = d((5®, @), (GE+D G+Dy) — || (§C+ ),a(j ) — (5K, gk
1™, a®)|

and

(k) _ (kD)
dy = (4 sy = D2 =

Iyl

If di > € or dy > ¢, replace k by k + 1 and go back to (2). Otherwise stop the

estimation procession.
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§6. Simulation Study

Some simulation studies were carried out to evaluate of the performance of MPLEs of
coefficient functions and the REML estimates of the smoothing parameters and variance
components under all kinds of the different covariance construction. Each data set was

composed of 100 clusters of size n; = 5. Denote the coefficient functions

B . (mt B t—20\2 B (t —25)m
Bi(t) = 15+ 20 sin (@) Bo(t) = 4 — <T) . Bs(t) =2 —3cos (T> (6.1)
where ¢t € [0, 30].
Example 6.1 Let
Yij = Xij1B1(tij) + XijoBs(tij) + Zijbi + €ij, (6.2)

where £1(-) and fB3(-) were defined in (6.1); X;j1 = 1, Xjj2 ~ Normal(1,0.25) and Z]; =
(Zij1, Zij2) = (Xij1, Xij2). The covariate ¢ varied within each cluster with 100 equally
spaced knots in [0,30], that is, t;; = 30[(¢ +4)/5]/100 4+ 6(j — 1) for ¢ = 1,---,100,
j=1,---,5 where |-| denotes a truncation operator. The random effect b; were supposed
to be independent and distributed Normal(0, D(f)), where D(6) = diag(6;,62) with 6; =1
and o = 0.5. The random error ¢;; were supposed to be independent and distributed as
Normal(0, 02) with o2 = 1.

Example 6.2 Example 6.2 is the same as Example 6.1 except of the covariance
matrix of the random effect D(0) = diag(61, 61) with 6; = 0.5.

Example 6.3 Let

Yij = Xij1Ba(tij) + XijeBs(tis) + Z75bi + €ij, (6.3)
where (5(-) and (3(-) were defined in equation (6.1); X;;, Z;; and t;; were generated by
the same method as the one used in Example 6.1. The random effect was supposed to be
distributed as

bi~N(0,D(9),  D(0) = < Z; Zz )

where 0; = 0.8, 03 = 0.3, 65 = —0.5\/0103 = —0.2450, that is, the correlation of b;; and
big is corr(bii, biz) = —0.5. The error €;; were suppose to be N (0, 0?) with o2 = 0.25.

It is easy to see that the main difference among Example 6.1-6.3 is in the struc-
ture of the covariance matrix D(f) of random effect b;. Note that D(f) is a diagonal
positive-definite matrix in Example 6.1, a multiple of the identity positive-definite matrix
in Example 6.2 and a general positive-definite matrix in Example 6.3. Three thousand
data sets were generated for each example and the estimation procedure developed in Sec-
tion 3 was applied to each dataset. For comparison, varying-coefficient models were also

fitted by assuming the random effects were absent.
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Figure 1 True and estimated coefficient functions of Example 6.1-6.3 based on 3000 repli-
cations: solid curve — true coeflicient functions; shot-dashed curve — the average of the
estimated coefficient functions; long-dashed curve — empirical 95% confidence intervals.

Figure (1-2) is the estimate for Example 6.1, Figure (3-4) for Example 6.2, and Figure
(5-6) for Example 6.3.

Figure 2 A typical result of Example 6.1: solid curve — true coefficient functions; shot-

dashed curve — the the estimates of the coefficient functions; long-dashed curve — 95%
confidence intervals.



5 1Y) Tk R AR BOR AR T R A AT 541

Table 1 The means (and standard errors) of the estimates of variance

components over 3000 replications of Example 6.1-6.3

01 02 03 o2
True value 1 0.5 1
Eg. 1
Estimation | 1.011(0.210) | 0.502(0.165) 0.999(0.073)
Bg. 2 True value 0.5 1
Estimation | 0.502(0.085) 0.996(0.078)
Eg. 3 True value 0.8 -0.245 0.3 0.25
Estimation | 0.791(0.168) | -0.242(0.102) | 0.298(0.084) | 0.249(0.020)

Figure 1 presents the average of the estimated coefficient functions and empirical 95%
confidence intervals from 3000 simulation runs. Figure 2 gives a typical result of Example
6.1 drawn from 3000 simulations at random. The other two examples were also estimated
well in each simulation and the typical results were omitted. Table 1 gives the estimated
variance components and their empirical standard errors. From Figure 1-2 and Table 1,
it suggests that both the coefficient functions and variance components of VCMM with all
kinds of covariance structures were estimated well by the procedure developed in Section
3.

I

Il

Tl
Il

.
N

Example 6.1 Example 6.2

i
N N

Example 6.3

Figure 3 The boxplots of ADE of Example 6.1-6.3: “1” — the ADE for estimates of
VCMM; “2” — the ADE for estimates of VCM in which the random effect were neglected.
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The performance of a fit for the coefficient functions can be measured by the absolute
deviation error(ADE) from the true coefficient curves. Let wuy,--- ,ur be T grid points.
The ADE is defined as

T
ADE = lil ADE, = lil 3 (i) = i) (6.4)
= =1J)=

T .
where ADE; = > |Gi(uj) — Bi(u;)|. Figure 3 shows the comparatione between the ADEs
j=1

for the estimate of VCMM and that of VCM. The first column of Figure 3 presents the
boxplots of ADE for the estimate of VCMM over 3000 replications, where Example 6.1-6.3
were estimated by the use of the procedures developed in Section 3. The second column
presents the boxplots of ADE for the estimate of VCM from the assumption that the
random effect were absent. Figure 3 suggests that the procedure developed in Section 3

would be more efficient than the estimates of VCM when the random effect exists.

87. Discussion

In this article, we proposed a VCMM for correlated data. Smoothing spline was used
to estimate the coefficient functions and the restricted maximum likelihood (REML) was
used to estimate the smoothing parameters and the variance components simultaneously.
A key feature of this approach is that it allows us to make systematic inference on all
model parameters of VCMMs, including coefficient functions, smoothing parameters and
variance components.

The simulation studies in Section 6 show that the proposed method performs well
in estimating the coeflicient functions and variance components of VCMM with all kinds
of covariance structures, such as, a diagonal matrix, a multiple of the identity matrix or
a general positive-definite matrix. According the characteristics of smoothing spline, the
proposed procedure can be easily extended to the other penalized spline estimation, such

as, penalized B-spline (Eilers and Marx, 1996).

References

[1] Ansley, C.F., Kohn, R. and Wong, C., Nonparametric spline regression with prior information,
Biometrika, 80(1993), 75-88.

[2] Chiang, C.-T., Rice, J.A. and Wu, C.O., Smoothing spline estimation for varying coefficient models
with repeatedly measure dependent variables, J. Amer. Statist. Assoc., 96(2001), 605—619.

[3] Eilers, P.H.C. and Marx, B.D., Flexible smoothing with B-spline and penalties, Statistical Science,
11(1996), 89-121.



ENY Tk R AR BOR AR T R A AT 543

[4] Fan, J. and Zhang, J.T., Two-step estimation of functional linear models with applications to longi-
tudinal data, J. Royal Statist. Soc. B, 62(2000), 303-322.
[5] Gu, C., Smoothing Spline ANOVA Models, New York: Springer-Verlag, 2002.
[6] Harville, D.A., Maximum likelihood approaches to variance component estimation and to related
problems, J. Amer. Statist. Assoc., 72(1977), 320-338.
[7] Hastie, T. and Tibshirani, R.J., Varying-coefficient model, J. R. Statist. Soc. Ser. B, 55(1993), 757—
796.
[8] Hoover, D.R., Rice, J.A., Wu, C.O. and Yang, L.P., Nonparametric smoothing estimates of time-
varying coefficient models with longitudinal data, Biometrika, 85(1998), 809-822.
[9] Huang, J.Z., Wu, C.O. and Zhou, L., Varying-coefficient models and basis functions approximations
for the analysis of repeated measurements, Biomatrika, 89(2002), 111-128.
[10] Lin, X. and Zhang, D., Inference in generalized additive mixed models using smoothing splines, J. R.
Statist. Soc. Ser. B, 61(1999), 381-400.
[11] Laird, N.M. and Ware, J.H., Random-effects models for longitudinal data, Biometrics, 38(4)(1982),
963-974.
[12] Morris, J.S. and Carroll, R.J., Wavelet-based functional mixed models, J. R. Statist. Soc. B, 68(2006),
179-199.
[13] Wahba, G., A comparison of GCV and GML for choosing the smoothing parameters in the generalized
spline smoothing problem, Ann. Statist., 13(1985), 1378-1402.
[14] Wu, H. and Liang, H., Backfitting random varying-coefficient models with time-dependent smoothing
covariates, Scand. J. Statist., 31(2004), 3-19.
[15] Zhang, R. and Lu, Y., Varying-Coefficient Model, Beijing: China Science Press, 2004.
[16] Zeger, S.L. and Diggle, P.J., Semiparametric models for longitudinal data with application to CD4
cell numbers in HIV seroconverters, Biometrics, 50(1994), 689-699.

TARKE B R E SR

P FEA

(RTBCAEAR L TRER L BOR 2 Be, AL, 450004)  (FENRCR 48T &, bat, 100872)

AT AU G BRI AR DCE R, AN SCHR Y TR REOR A AV (VCMM). A5 8E AR Rk
553 R 3 7 WA ok iy 1 AR g P R I 7T D BT 2580 R SR A A 2 1m0 AL 9 TR AE DG, BRI, AR AR VTP AR
it 8 AR B AAFAE 43 REG IV MR FR . SO IE TSGR 4RI A VI SRR 40 R R ek 4, i P R o) B B4R
10 76 RGO HOGHE S 8O T 28 A, BATEAT B0 T @Ak v i v 500575, K E R BEUREFUR Bx T B
F R 7 22 S5 A 7R R BOR G NAR AL, 8 A ST RS H I 5 IS RS oA R A T HE RS e () R B R B
T 2 53

KR ARIORSRMER, SCHFERAGTE, BRERRR, LethiR AR .

ZRS2ES: 02127



