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Abstract: Kolmogorov-Smirnov (KS), Cramer-von Mises (CM) and Anderson-Darling (AD) test,
which are based on empirical distribution function (EDF), are well-known statistics in testing
univariate normality. In this paper, we focus on the high dimensional case and propose a family
of generalized EDF based statistics to test the high-dimensional normal distribution by reducing
the dimension of the variable. Not only can we approximate the corresponding critical values of
three statistics by Monte Carlo method, we also can investigate the approximate distributions of
proposed statistics based on approximate formulas in univariate case under null hypothesis. The
Monte Carlo simulation is carried out to demonstrate that the performance of proposed statistics is
more competitive than existing methods under some alternative hypotheses. Finally, the proposed
tests are applied to real data to illustrate their utility.
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§1. Introduction

The population distribution is the fundamental of statistical modelling and inference.
Normal distribution is often assumed in statistical analysis. However, if this assumption

is not valid, the statistical inference might lead to wrong conclusions. Thus, normality
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testing is crucial for both statistical theory and application. There are many literatures
investigating the univariate normality testing, and many researchers have made efforts to

generalize the univariate normality tests to multivariate or high dimensional cases.

For multivariate normality testing, some statistics are constructed by skewness and
kurtosis coefficients or empirical characteristic function (ECF). Among others, Mardia 'l
constructed a test of multivariate normality based on the proposed measures of multi-
variate skewness and kurtosis. Srivastaval?l used principal component analysis (PCA)
to develop these two measures in [1]. Csorgol®! established a maximal deviation statis-
tic to test the composite hypothesis of p-variate normality by Mahalanobis transform
of ECF. Baringhaus and Henze ¥ proposed an omnibus test statistic by weighted inte-
gral of the squared modulus of the difference between the ECF and the characteristic
functions of the normal distribution. On the other hand, the empirical distribution func-
tion (EDF') based statistics, such as Kolmogorov-Smirnov (KS), Cramer-von Mises (CM)
and Anderson-Darling (AD) test, are well-known approaches to test univariate normality.
Many literatures have investigated the multivariate normality testing based on these three

statistics.

Kolmogorov %! first proposed KS statistic based on the discrepancy between the em-
pirical distribution F,, and the hypothesized normal distribution ® in univariate case. For
multivariate case, Rosenblatt ¥l suggested the generalized discrepancy should be measured
not only in joint distribution but in all marginal distributions, then constructed a mul-
tivariate KS statistic based upon the Rosenblatt’s transformation. Justel et al.[l used
Rosenblatt’s transformation to introduce a multivariate KS statistic which is distribution
free, and developed an algorithm in the bivariate case. Peacock[®l proposed a different
discrepancy between F,, and ® in two dimensional case, which is based on the different
definition of cumulative probability function, and applied the largest differences to con-
struct KS statistic. Fasano and Franceschini!®! improved [8]’s statistic and generalized it
to three dimensions.

The CM statistic were constructed based on the integral of the squared difference
between F,, and ® by Cramer™ and von Mises' first. Afterwards, Anderson and
Darling "2 13 constructed the AD statistic by incorporating a weight function into CM
statistic. For multivariate case, many literatures made improvements and generalization-
s for CM and AD statistics. Koziol " constructed a new CM type statistic based on
the eigenvalues and eigenvector of covariance kernel and investigated its asymptotic dis-
tribution. Chiu and Liul'®l modified the CM statistic by incorporating the conception
of Ly-star discrepancy. Lewis [ studied the asymptotic distribution of AD statistic by
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utilizing empirical approximation based on Monte Carlo simulation. As for theoretical
approximation, Giles'7] introduced a standard saddlepoint approximation of AD statistic
which performs well in both tails of the distribution.

In high dimensional case, some literatures utilized approaches of dimension reduction
to investigate the multivariate normality testing. For example, Srivastava and Hui '8!
used PCA first and computed Shapiro-Wilk statistic (SW) for each principal component.
Liang et al.[* proposed the generalized SW statistic by projecting the high-dimensional
sample onto some selected eigenvector directions. In this paper, inspired by [19], we
develop a new way to generalize EDF based statistics including KS, CM, AD statistics
to high-dimensional normality test, the corresponding generalized EDF based statistics
were constructed based on each selected direction under null hypothesis by projecting the
high-dimensional sample matrix onto some selected eigenvector directions.

The paper is organized as follows. Section 2 provides the theoretical methods for
constructing the generalized EDF based statistics for testing high-dimensional distribution
and gives its approximate null distributions. In Section 3, Monte Carlo studies are carried
out to investigate the empirical performance of the generalized EDF based statistics, and
applications on two real data sets are given. We conclude this paper with a brief discussion

in the last section.

§2. The Proposed Statistics and the Corresponding

Properties

Let {x1,x2, -+ ,x,} be an i.i.d. sample with dimension p, and F(-) be the corre-

sponding cumulative distribution function. The hypothesis we consider is

Hy : The sample {x1,x2, - ,x,} is from multivariate normal distribution N, (u, %),
(1)
versus the alternative hypothesis that the sample is not from multivariate normal dis-
tribution. The idea is to reduce the p dimension of variable & to one dimension by
dimensionality reduction method, then classical method for testing univariate normality,
including K8 statistic, CM statistic, AD statistic, can be applied. The following theorem

from [19] is introduced for dimensionality reduction.

Theorem 1 Let X = (xy, @2, - ,x,)" be the n x p observation matrix, and A is a
(n — 1) x n constant matrix satisfying AA’ = I,,_; and Al,, = 0, where I,,_; stands for a

identity matrix with (n — 1) dimension and 1,, stands for a n dimension column vector of 1.
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Define a matrix Y = AX = (y1,¥y2, - ,Yn—1)’, based on theory of eigenvalue-eigenvector,

we have

(nilY’Y)D — DH,

where H = diag(hy, he, -+, hp) with h; (i = 1,2,---,p) being the eigenvalues of (n —
D7YY'Y, and D = (dy,dy, - ,d,) with d; (i = 1,2, ,p) being the corresponding unit
eigenvectors. Without loss of generality, we assume by > ho--- 2> hy > hypqq = -+ = hyp = 0,
and define the random vectors z; = Yd;, i = 1,2,---,r. Under the null hypothesis in (1),

we have the following two conclusions:

(i) For any finite n, random vector z; (i = 1,2,--- ,r) is a spherical distribution, and the
asymptotical distribution of z; = (21, Zi2, -+, Zi(n—1))" is N(O, hiIn_1);
(i1} Under the condition that p/n — 0, z1, 22, -+ , 2, are asymptotically independent.

The proof of Theorem 1 can be found in [20] and we omit the details here. According
to Theorem 1, we apply eigenvalue-eigenvector method for dimension reduction to obtain
the corresponding random vectors z; (i = 1,2,---,r). The idea for constructing test
statistics is to apply univariate spherical distribution test based on vectors z; for each i,
and maximize these r quantities to obtain the final statistics for hypothesis in (1). In this

paper, we apply KS, CM and AD statistics to test univariate spherical distribution.

2.1 Kolmogorov-Smirnov (KS) Test

We first introduce univariate KS test for one dimension sample {21, 22, - ,2,}, we
want to test whether the sample is from cumulative density function F(-). KS statistic is

defined as follow:

_ 4=t _ l‘
Ko@) = max { max (|Fag) — 1| |Flag) - 2|)}. (2)
where 2y < 25y < -+ < 2, are sorted sample, and x = (21,22, ,2,)". Kolmogorov [5]

proved the exact distribution of K,(x) when n — oo, that is

+oo )
li_)m P(Ko(z)<z)= Y (—1) exp(—2nj%2?), 0 <2< +oo.
n—00 j=—oo

For a given z, it is difficult to calculate the exact probability because the value of j is from
—o0 to +00. Hence, the approximate distribution of K,,(x) had been discussed extensively.
For example, Marsaglia et al. 2!l proposed the approximation form of P(K,(z) < ) can
be

n!
P(Kn(z) <) ~ Wtkk, (3)
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where 1 is the (k, k) element of a matrix T' = M™ k = [na| with [a] is round-up for a,

and M being an m x m matrix with m = 2k — 1 has the following expression

am— B
M- Viim—1 . (4)
Um CASR

Here B = {b;;} is a (m — 1) x (m — 1) matrix, and its elements b;; (i,7 =1,2,--- ,m —1)
equal to 1, 0 or 1/(i — 7)! which are corresponding to i = j, ¢ < j and i > j respectively.
The vector vym—1 = (v1, V2, ,Um—1)’ with v; = (1 = h?)/jl for j =1,2,--- ;m —1, and
U, in (4) is equal to (1 —2A™ + max{0,2h — 1}™)/m!, where h = k — nx.

In addition, the random variable F'(z(;) obeys the same distribution as t.; under

null hypothesis, where (;)’s are ordered statistics from U(0, 1) for j = 1,2,--- ,n. Hence,
the distribution of statistic K, (x) is identical with K,(t).
j—1

K,(t) = max {max (‘t@) —

I<i<n

w4} o

Based on this consideration, we can investigate the distribution of K, (t) by Monte Carlo

n

method to obtain the distribution of K,,(x). Specific steps are as follows:

(K1) Generate the ordered sample {t1y,%(2), -+ , ()} from uniformed distribution U(0, 1),
and calculate K,,(t) by (5);

(K2) Repeat the above step k times, obtain the corresponding statistics K, (t), K2(t),
L K (#);

(K3) For a given x, the estimation of P(K,(x) < z) is

Pl (&) <) — 1 3 1063 (0) < )

According to Theorem 1, the projected sample z; = (z;1, 22, - ,zim_l))’ for i =
1,2,---,r is from spherical distribution whose accumulative density function is denoted

as ﬁzi(% we define KS statistic in (2) for z; as follow:

~ i1 |7 j
Ky(zi) = fg.%gq { max( in(z(z’j)) - T ) in(z(z’j)) - 5‘) }7
where ¢ = n — 1 and 241y < 232) < -+ < Z(5q) be the ordered statistics of zi1, 2zi2, -+ -, 2ig-

The larger the value of K,(z;), the more possibly null hypothesis is rejected. For any rg <
r, we maximize these statistics to obtain the following generalized statistic for hypothesis
in (1)

GK,, = max {K,(z;)}. (6)

1<i<rg
It is evident that null hypothesis is rejected when GK,, is large. The following theorem
states the property of GK,, in (6).
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Theorem 2  Under null hypothesis in (1), the probability of GK,, <z is

P(CK, < 2) = P max {Ky(z0)} <) = [1 P(K (=) < ).
=1

1<i<rg
Hence,

(i) based on the approximate distribution in (3), P(GK,, < z) = [(¢!/q?) - tgx]™, where

the definition of g can be found in (3);
k .
(ii) based on the simulation steps K1-K3, P(GK,, <) ~ [k~! 3 I(Ki(t) < 2)]™.
i=1
Theorem 2 can be proved by the conclusion that z; are asymptotical independent in

Theorem 1.

2.2 Cramer-von Mises (CM) Test

For the one dimension sample {x,x2, - ,x,}, the univariate CM statistic for distri-

bution test is defined as follow,

+oo n _
Cule) =n [ [Fal) - Pa)PdF(@) = 15+ 2” S |

where F),(x) is the empirical distribution function of sample {x1, 22, - ,x,}. For this
statistic, Anderson and Darling*? proposed exact distribution by Brownian bridge and

Bessel function:

lim P(C,(x) < x)

S e (T e [ - ULy (L

where 0 < 2 < +oc and K 4(-) is the standard Bessel function.

It’s hard to obtain the exact probability from the exact distribution of Cy,(x). Hence,
many approximate distributions of CM statistic are given. Among others, Tiku!22l devel-
oped a Chi-square approximation for the distribution of CM statistic with little accuracy
losing for upper tail probabilities. Stephens and Maag 2%l discussed the exact quantiles and
derived the exact distribution only for lower tail probabilities. So far, there are relatively
few literatures about approximate distribution of C),(x) in the whole scope of x. Here we
utilize Monte Carlo method to simulate the distribution of CM statistic. Similar with KS
statistic, the distribution of statistic Cy(x) is identical with C,(¢) under null hypothesis.

o) = 1+ 5 (L ) (®)

12n j=1 2n

where t;y is defined same as that in K,(t). The steps of simulation are as follows:
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(C1) Generate the ordered sample {t(1y, (), , ()} from uniformed distribution U(0, 1),
and calculate C\,(t) by (8);

(C2) Repeat the above step k times, obtain the corresponding statistics CL(t), C2(t),
,Ch(8);
(C3) For a given x, the estimation of P(C)(x) < x) is

. 1k
P(C(@) s @) = £ 2 1(C n(t) < ).

Under the multidimensional case, dimension reduction method is applied to obtain

the projected sample z;, and we define CM statistic for each z; as follow:

1 425 —1 = 2
— t > | = Fu(zup) |

Cy(zi) =
q(2i) 12 ' &L 2g

where ¢ = n — 1. For any rg < r, we construct a family of generalized CM statistics by

maximizing these statistics for hypothesis in (1)

GCry = max {Cy(2zi)}. (9)

1<i<rg

The larger the value of GC,,, the more possibly null hypothesis is rejected. Theorem 3
states the property of GC,, in (9).

Theorem 3  Under null hypothesis in (1), the probability of GC,, < z is

P(GC,, < o) = P( max {Cy(z0)} <) = [1 P(Cy(z:) < ).
=1

1<i<rg
k , .
Hence, based on the simulation steps C1-C3, P(GC,, <) ~ [k=1 3 I(Ci(t) < 2)]™.
i—1
Theorem 3 can be proved similarly as that of Theorem 2.
2.3 Anderson-Darling (AD) Test
For the one dimension sample {1, 22, - ,2,}, the univariate AD statistic for distri-
bution test is defined as follow:
o0 [F(2) — I(@)]?
An) = n / dF(2)
oo F( )[1—F( )]
=—n- Z —{1 Flagy) +In[1 = Fem-5)1} (10)
where F,,(x) and F(x) are empirical distribution function of {x1, 22, - ,2,} and accu-

mulative distribution function under null hypothesis respectively, 2y < 2z < - <2,
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are order sample and = (v1,22, - ,2,). Anderson and Darling 2 derived the exact
distribution of A, (x), it can be expressed as

lim P(A,(x) <z) = ‘/%;o:o { <_E/2> (4j + D)2 exp { GRS 1)27r2}

—00 [ 8x

o0 x (45 + 1) 7%w?
- d } 0 .
X/o exp{g(w2+1) R } w <x < +oo

The exact distribution of AD statistic in (10) is fairly complex due to the existence
of the infinite series. For this reason, there are many literatures to investigate its approx-
imate distribution. For example, Marsaglia and Marsaglia 24 evaluated the asymptotic
distribution via series with two-term recursions directly. Grace and Wood 25! presented a
more accuracy approximating function for tail probabilities in case of 2 < 2 < oo in (10).
Here we apply [24]’s approximation when 0 < 2 < 2 and [25]’s method when 2 < 2 < o

to obtain the approximate expression of P(A,(x) < x) as follows

P(An(z) <) = fi(@) + g1(n, f1(2)), 0<z<2; .
1 — 27948897 explgo (@, n)], 2 < < oo,

here
filz) = a~1/2e=1233T14/2 (9 50012 + {0.247105 — {0.0649821
—[0.0347962 — (0.0116720 — 0.00168691x)x|2}a}a},

ga(w,n) = (0.23945n=99379 _ 0120127299 — 1.0002816)x
— 1.437n 799379 4 1 441179900 _ 0.0633101,

and

(0.0037/n3 + 0.0078/n? + 0.00006/n) f2(x/c(n)), x < c(n);
gi(m,m) = ¢ (0.04213/n + 0.01365/n2) fa([x — c(n)]/[0.8 — c(n)]), c(n) <2 < 0.8; (12)
Ja(z)/n, 0.8 < .

The functions fa(x), fs(x), fa(x) and e(n) above are defined as

fala) = Va(l — 2)(192 — 102),

f3() = —0.00022633 + {6.54034 — {14.6538 — [14.458 — (8.250 — 1.918642)x]x )z},

Fi(x) = —130.2137+ {745.2337— {1705.001 — [1950.646 — (1116.360 — 255.7844x)x]x }a )},
c(n) = 0.01265 + 0.1757/n.
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Based on the conclusion that F'(z(;) obeys the same distribution as £(;) under null

J
hypothesis, we also can apply Monte Carlo method to simulate the distribution of A, (%)

to obtain the distribution of A, (x), where A, (¢) is defined as follow:
no2j—1
An(t) = —Nn— Zl T“nt(j) + ln[l — t(n+1—j)]}v (13)
]:

where t(;) is defined same as that in K,(t). The distribution of A, (¢) can be simulated as

follows:
(A1) Generate the ordered sample {t(1y,%(2), -+ , ()} from uniformed distribution U(0, 1),
and calculate A, (t) by (13);
(A2) Repeat the above step k times, obtain the corresponding statistics AL(t), A2(¢),
AR (E);

(A3) For a given x, the estimation of P(A,(x) < x) is
~ 1 k
P(An(z) < ):Ez [(AL(t) < 2).

Under the multidimensional case, the AD statistics for the projected sample z; can
be defined as

j—l

Ay(z ):—q—Z S {In Py (2055) + In[L = Foy (26,019

where ¢ = n — 1, and for any ry < r, generalized AD statistics for null hypothesis in (1)
is constructed as
GA,, = max {A,(z;)}. (14)

1<i<rg
We reject null hypothesis with larger GA,,, and Theorem 4 below states the property of
statistics GA,,.

Theorem 4  Under null hypothesis (1), the probability of GA,, is

P(GA, < x) = P( max {A(z)} <) = T1 P(A, (=) < ).
=1

1<i<rg
Hence,
(i) based on the approximative distribution in (11),

[fl(m)+gl(nv fl(m))]mv 0<x <2y

P(GA,, <x2) =~
(GAr S @) (1 — g048897

explga(x, )]}, 2 < x < oo,

where the definition of fi(x), g1(n,x) and g2(x,n) can be found in (11);
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(ii) based on the simulation steps A1-A3, P(GA,, < z)

2
=
N
oy

B
=
n
=
E

Theorem 4 can be proved similarly as that for Theorem 2.

Remark 5 According to Theorem 1, the projected sample z; is from spherical distri-
bution, and corresponding accumulative density function is denoted as ﬁzz() In this paper,
we use its asymptotical distribution N(0, ;) to estimate F.,(-) in calculating the correspond-

ing statistics, where T is the estimator of the parameter h;.

Based on KS, CM and AD statistic, larger statistics Ky(z;), Cq(2:), Ag(2;) derived
by projection on eigenvectors imply more deviation from spherical distribution. Hence, we
reject null hypothesis for larger GK,,, GC,, and GA,,. For GK,, and GA,,, we can utilize
approximate distribution or Monte Carlo method to obtain the corresponding critical value
under null hypothesis (1). But for GC,,,, we only can apply Monte Carlo method to obtain

critical value under null hypothesis (1).

8§3. Numerical Study

3.1 Simulation Analysis

In this section, we mainly use Monte Carlo analysis to study the efficiency of the
proposed statistics. Different examples are investigated here to illustrate the performance
of the proposed statistics. Under null hypothesis, the sample {xq, s, - ,2,} is from
multivariate normal distribution N,(p,3). Two cases of covariance matrix 3, which is
corresponding to independent and dependent, are selected as: (i) p = 0, ¥ = I,; (ii)
p =0, 3 = (p;;), where p;; = 1, p;; = p = 0.5, when |i — j| = 1. The simulation results
for generalized KS, AD, CM statistics are denoted as GK,,, GA,, and GC,, respectively.
For comparison, we include the generalized SW statistic denoted as GW,, in [19]. The
projection dimension ry is chosen as rg = |p/2] for p < 10; ro = |p/3] for p > 10 as
suggested by [26].

According to Theorem 2 and Theorem 4, there are two methods to approximate the
distribution functions P{GK,, < 2} and P{GA,, < 2} respectively. One method is based
on approximate formulas, and the other one is based on Monte Carlo methods. Under null
hypothesis and the conditions that sample size n = 20, dimension p = 20, 25, 30, we plot
the probabilities based on two methods with 10000 replications to observe the difference
between them in Figures 1—-2. Figure 1 (a)—(c) is from an independent covariance matrix
while Figure 1 (d)—(f) is from a dependent one. Through Figure 1 (a)—(f), we can obtain

that whether the covariance matrix X is independent or not, and whether n is larger than p
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or not, probabilities computed by approximate formulas are close to the probabilities based
on Monte Carlo steps. As for Figure 2, there are similar conclusions for P{GA,, < z}.
Simulation analysis also indicates that the results by two methods are almost the same.

Hence, in the following, we only display the results computed by approximate formulas.

q n=20, p=20, p=0 q n=20, p=25, p=0 q n=20, p=30, p=0
7
08 08 0.8
w w w
Vi 06 VI 06 Vi 0.6
@ # &
X ] i
E.D- 0.4 S‘l 0.4 94 0.4
Ry Y Ay
02 02 02
0 0 0
6] 0.2 0.4 08 0.8 1 6] 08 0.8 1 6] 06 0.8 1
x (@ z (b) z ©
. n=20, p=20, p=0.5 . n=20, p=25, p=0.5 . n=20, p=30, p=0.5
0.8 0.8 0.8
w w o)
Vi 0.6 Vi 0.6 Vi 0.6
[ 3 &
8 8 S
- 04 0.4 o 0.4
LY Ry Ay
0.2 0.2 02
0 * : t 0 t 0 t
0 02 0.4 0.6 08 1 0 0.6 08 1 0 06 0.8 1
* (d) k4 €) z o

Figure 1 The distribution function of GK, . The dashed and solid lines denote the
probability by approximate formula and Monte Carlo simulations respec-

tively.

First, we investigate the performance of the tests under null hypothesis at the sig-
nificance level o = 0.05. The simulation results with 10000 replications are summarized
in Table 1 for n = 20 and p = 5,10, 15, 20,25, 30, where the sizes of proposed statistics
GK,,, GA,, are obtained from the approximate distribution in Theorem 2 and Theorem
4 respectively. As for generalized CM test, we get the critical values of statistics GC,, by
steps C1—-C3 in Section 2.2. As we can see in Table 1, all the test statistics can contain
type I error rate.

Under alternative hypothesis, we choose six cases to study the powers performance.
The following alternative distributions for a; = (w1, %0, - ,2p), ¢ = 1,2,---,n are

chosen:

e The multivariate {-distribution with degree of freedom 5 and ¥ = I,: the compo-
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n=20, p=20, ;=0 1 n=20, p=25, p=0 1

n=20, p=30, p=0

Figure 2 The distribution function of GA;,. The dashed and solid lines denote the
probability by approximate formula and Monte Carlo simulations respec-

tively.

Table 1 Sizes of GK,,, GA,,, GC,, and GW,  (n=20, oo = 0.05)
p o X GK, GA,, Ge,, GW,, ¥ GK,, GA,, GC,, GW,,

5 2 I, 0.0483 00360 0.0299 00488 I) 0.0434 0.0591 0.0314 0.0457
10 5 0.0515 0.0349 0.0332 0.0516 0.0502  0.0518 0.0518 0.0554
15 5 0.0478 0.0355 0.0236 0.0533 0.0383 0.0545 0.0224 0.0530
20 6 0.0464 0.0418 0.0227 0.0515 0.0506 0.0440 0.0251 0.0544
25 8 0.0512  0.0312 0.0177 0.0537 0.0498 0.0276 0.0242  0.0569
30 10 0.0494 0.0281 0.0195 0.0542 0.0458 0.0577 0.0222  0.0565

*Ip represents identity matrix; D represents the matrix (ps;;), where p; = 1 and p;; = 0.5,

when |i — j| = 1.

nents of &; are independent identically distributed from #(5) and the definition of
multivariate ¢-distribution can be found in [27].

e The f-generalized normal distribution N(0, I,,,1): the probability density function
of B-generalized normal distribution N(0, I,, 5) is

AP/ B
f(.Tl,llfQ,“‘ 75Ep‘)7 l@ i

P
-7 7 . _ |8 ! P
R S VL B R A
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which is given by [28]. Here, both 8 (0 < 8 < 2) and « (v > 0) are parameters.

e The centered x2(1) distribution: the components of x; = (43,1, i, -+ ,Tip) are

independent identically distributed from y?(1) — 1.

e The centered I'(2,2) distribution: the components of ®; = (241,22, -, ip) are
independent identically distributed from I'(2, 2) — 1.

e The mixture distribution of centered x?(1) and normal distribution: for x; = (; 1,

T p/2) Ti(|p/2]+1)s s Tip)s (Ti1, 0, Xy |py2)) are independent identically dis-

tributed from x2(1) — 1 and (s,(|p/2]+1)> > Tip) are independent identically dis-
tributed from N(0, 1), where |p/2] stands for p/2 round-down.

e The associated normal distribution: for @; = (21, %2, -, Tip), When p = 2k, &;; =

(i1, a2, k) ~ N(O, 1), Big = (% (ky1)> Tiy(2)s 5 Tip) = (X5 1,879, , 22)
+ e, with e ~ N(0, 1); when p = 2k + 1, &; = (@41, Z42, Tip), with z;, ~ N(0,1).

The multivariate ¢-distribution and fS-generalized normal distribution are symmetric dis-
tributions with thicker tails than multivariate normal distribution. Both the centered
x2(1) distribution and centered I'(2,2) distribution are skewed distributions. The last two
are mixture distributions involving normal marginals.

The simulation results from the six alternative distributions are summarized in Tables
2-3. It can be obtained that when the alternative distribution is shifted I'(2,2) distri-
bution and the g-generalized normal distribution, all the proposed statistics have better
power than GW,,. The power of GW,, is insensitive to the covariance matrix 3. However,
the power of proposed statistics are influenced quite slightly by the covariance matrix 33.
Among the proposed statistics, the powers of GA,, are significantly higher than the others
under all the alternative hypotheses except the mixture distribution of centered x?(1) and

normal distribution, where GC,, is the most effective.

3.2 Real Data Analysis

In this part, the proposed statistics are applied to real data to illustrate the perfor-
mance of the tests. In the following examples, we test the multivariate normality of real
data. Since sample size n is quite small, we compute the p-values of the proposed statistic-
s and GW,, for ro = 1,2,--- , [min(n, p)/2], where [min(n, p)/2] stands for min(n, p)/2

round-up.

Example 6 The data is from [29]'s study that examined the multivariate normality on
a data set used in a cancer research. There are eleven laboratory mice divided into two groups.

The strains and growth situations of these mice are the same, thus they can be treated as



54 Chinese Journal of Applied Probability and Statistics Vol. 36

Tabel 2 Powers of GK,,, GA, , GC,, and GW,, (n =20, o =0.05, X =1I,)

P 70 Multi-t(5) S-Nor.
GK,, GA,, GC,, GW,, GK,, GA,, GC,, GW,,
5 2 0.1193 0.3165 0.0836 0.3926 0.3595 0.5158 0.4882 0.2202
10 5 0.1415 0.3329 0.1175 0.5152 0.3101 0.6501 0.8987 0.1787
15 5 0.1902 0.2558 0.0691 0.6220 0.7085 0.6127 0.9948 0.1690
6
8

20 0.1887 0.2676 0.0641 0.6970 1.0000 0.7467 1.0000 0.1740

25 0.2129 0.2776 0.0625 0.7359 1.0000 1.0000 1.0000 0.1725

30 10 0.1886 0.3005 0.0693 0.7757 1.0000 1.0000 1.0000 0.1644
P 70 x2(1) -1 r2,2)-1

GK,, GA,, GC,, GW,, GK,, GA,, GC,, GW,,

5 2 0.3615 0.5309 0.3238 0.7959 0.8322 1.0000 0.6386 0.3733

10 5 0.3756 0.3720 0.4609 0.7520 0.9261 1.0000 0.8101 0.3052

15 5 0.3390 0.4291 0.4032 0.7314 0.9385 1.0000 0.7477 0.2961

6

8

20 0.2982 0.5136 0.3788 0.7062 0.9572 1.0000 0.6948 0.2689
25 0.3115 0.5602 0.3991 0.6671 0.9658 1.0000 0.7592 0.2455
30 10 0.2793 0.4501 0.4315 0.6472 0.9850 1.0000 0.7882 0.2210
P 70 x%(1) + Nor. Assoc-Nor.
GK,, GA,, GC,, GW,, GK,, GA,, GC,, GW,,
5 2 0.2284 0.2037 0.3135 0.6136 0.2186 0.3579 0.0342 0.4178
10 5 0.2003 0.3233 0.5185 0.6529 0.2294 0.4280 0.0529 0.4482
15 5 0.2169 0.3313 0.4045 0.6491 0.2180 0.4566 0.0228 0.4453
6
8

20 0.1821 0.3679 0.4121 0.6469 0.2603 0.4576 0.0198 0.4420
25 0.2114 0.2626 0.4356 0.6102 0.2731 0.5180 0.0156 0.4278
30 10 0.2090 0.2594 0.4461 0.5944 0.2090 0.6152 0.0176 0.4076

*I,, represents identity matrix.

virtually genetically identical. All of the mice are cultured with subcutaneous transplant of
tumor and are given a new anticancer drug irinotecan (CPT-11) with two different doses.
One group received 0.4mg/kg CPT-11 and the other one 0.26mg/kg CPT-11. The tumor
volumes were measured weekly lasting for 12 weeks. Missing data arise from sixth week
because of toxicity or tumor growing too fast which result in the death of the mice. The

complete testing data can be found in Table 1 of [29].

We consider two hypothesis test problems. For the first problem, there are & mice
keep alive by the eleventh week. Then the sample size is n = 8 and the dimension is
p = 11. For the other one, there are 5 mice keep alive by the twelfth week. The sample
size is n = 5 and the dimension is p = 12. For the two sets of data, we want to test that
whether they are distributed from multivariate normal distribution. These problems are
equal to test (1) with (n,p) = (8,11) and (n,p) = (5, 12) respectively. The p-values are

shown in Table 4.
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Tabel 3 Powers of GK,,, GA,,, GC,, and GW,, (n =20, a =0.05, X = D)

P 70 Multi-t(5) S-Nor.
GK,,  GA, GG, GW, GK, GA, GC,. GW,
5 2 0.1624 0.1575 0.0706 0.3789 0.5624 0.9754 0.9362 0.2202
10 5 0.1651 0.2474 0.1353 0.5161 0.8628 0.9998 0.9993 0.1888
15 5 0.1778 0.1913 0.0619 0.6317 0.9554 0.9969 1.0000 0.1693
20 6 0.2025 0.2186 0.0573 0.6921 1.0000 0.9994 1.0000 0.1817
25 8 0.2119 0.3051 0.0709 0.7380 1.0000 1.0000 1.0000 0.1696
30 10 0.2172 0.2885 0.0813 0.7776 1.0000 1.0000 1.0000 0.1619
P 70 x2(1) -1 r2,2)-1
GK,, GA,, GG, GW,, GCK,, GA, GC. GW,,
5 2 0.3814 0.4370 0.3141 0.8011 0.6556 1.0000 0.5856 0.3713
10 5 0.2772 0.6378 0.5040 0.7475 0.9635 1.0000 0.7948 0.3071
15 5 0.2770 0.3592 0.3591 0.7191 0.8315 1.0000 0.7094 0.2947
20 6 0.2895 0.3426 0.4662 0.7111 0.9505 1.0000 0.6545 0.2775
25 8 0.2674 0.6358 0.4934 0.6714 0.9624 1.0000 0.7313 0.2430
30 10 0.2756 0.6328 0.4888 0.6446 0.9916 1.0000 0.8011 0.2197
P 70 x%(1) + Nor. Assoc-Nor.
GK,, GA,, GG, GW,, GCK,, GA, GC. GW,
5 2 0.2124 0.1485 0.3336 0.6199 0.2184 0.2713 0.0433 0.4273
10 5 0.2348 0.2034 0.4995 0.6627 0.2976 0.5172 0.0341 0.4353
15 5 0.1692 0.1818 0.3835 0.6571 0.1699 0.3637 0.0191 0.4474
20 6 0.2063 0.1954 04118 0.6512 0.2708 0.3680 0.0308 0.4418
25 8 0.1813 0.1886 0.4528 0.6213 0.2218 0.2943 0.0197 0.4220
30 10 0.1690 0.2378 0.4519 0.5936 0.2077 0.5251 0.0235 0.4012
*D represents the matrix (p;;), where p; = 1 and p;; = 0.5, when |i — j| = 1.
Tabel 4 p-values of statistics (a = 0.05)
(n,p) = (8,11)
o GK,, GA,, GC,, GW,,
1 0.3148 0.4843 0.0290 0.0298
2 0.2567 0.6895 0.0921 0.0587
3 0.4983 0.5804 0.1136 0.0867
4 0.3945 0.9329 0.1944 0.1139
(p) = 5,12)
ro CK,. GA,. GO, GW,.
1 0.3390 0.6150 0.1541 0.2543
2 0.6321 0.6461 0.2314 0.4439
3 0.7049 0.9674 0.3464 0.5853

It can be concluded obviously, that nearly all the p-values of statistics are larger than

the significance level a. These results indicate that the multivariate normality assumption
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(1) on both sets of data with (n,p) = (8,11) and (n,p) = (5,12) should not be rejected,

which is consistent with [29]’s conclusion.

Example 7 The data is from [30], which is about a study of 19 depressive patients’
the absolute theta power of electroencephalogram (EEG) during a six-week therapy. These 9
variables represent the changes of nine selected channels respectively. The complete testing
data can be found in Table 1 of [30]. For each patients, there are observation data of 9
selected channels respectively. The sample size is n = 19 and the dimension is p = 9. For
this set of data, we are concerned with whether they are distributed from multivariate normal
distribution. This problem is equal to test (1) with (n,p) = (19,9). The p-values are shown
in Table 5.

Tabel 5 p-values of statistics when n =19, p =9 (a = 0.05)

o GK,, GA,, GC,, GW,,
1 0.3953 0.3288 0.0405 0.1361
2 0.0073 0.0041 0.0913 0.0025
3 0.0050 0.0067 0.0453 0.0019
4 0.0138 0.0098 0.0400 0.0090
5 0.0158 0.0140 0.0090 0.0021

We can know from the result in Table 5 that nearly all the p-values of statistics are
extremely smaller than the significance level o except rg = 2 for GC,, and rg = 1 for the
other statistics. These results indicate that the multivariate normality assumption (1) on
the set of data with (n,p) = (19,9) should be rejected.

8§4. Conclusions

In this paper, we expand three well-known statistics based on empirical distribution
function (EDF) in testing univariate normality to the high dimensional case by projection
methods. Since the projection data obey spherical distribution, based on the theory of
spherical distribution, we maximize corresponding statistics obtained from each projection
direction. We derive the approximate distributions of proposed statistics based on that in
univariate case under null hypothesis. By Monte Carlo method, the exact distributions of
proposed statistics can be approximated, and two of them can be obtained by approximate
formulas as well. Plotting the curves, it is illustrated that the results computed by two
methods match well. Note that the approximate independence of projected vectors holds
under the condition p/n — 0, hence, this condition is necessary to prove the properties

of proposed statistics. Numerical analysis verify that proposed statistics can control the
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type I error well and are more competitive under some alternative hypotheses with large

p. Real data application also demonstrates the effectiveness of the generalized tests.
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