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EFFECT OF HIGH DIMENSION:

BY AN EXAMPLE OF A TWO SAMPLE PROBLEM

Zhidong Bai and Hewa Saranadasa

National Sun Yat-sen University

Abstract: With the rapid development of modern computing techniques, statisticians

are dealing with data with much higher dimension. Consequently, due to their loss

of accuracy or power, some classical statistical inferences are being challenged by

non-exact approaches. The purpose of this paper is to point out and briey analyze

such a phenomenon and to encourage statisticians to reexamine classical statistical

approaches when they are dealing with high dimensional data. As an example, we

derive the asymptotic power of the classical Hotelling's T 2 test and Dempster's non-

exact test for a two-sample problem. Also, an asymptotically normally distributed

test statistic is proposed. Our results show that both Dempster's non-exact test

and the new test have higher power than Hotelling's test when the data dimension

is proportionally close to the within sample degrees of freedom. Although our new

test has an asymptotic power function similar to Dempster's, it does not rely on the

normality assumption. Some simulation results are presented which show that the

non-exact tests are more powerful than Hotelling's test even for moderately large

dimension and sample sizes.

Key words and phrases: Edgeworth expansion, Hotelling T 2 test, hypothesis test,

power function, signi�cance test, �2 approximation.

1. Introduction

Modern computation techniques make it possible to deal with high dimen-

sional data. Some recent examples of interest in dealing with high dimensional

data can be found in Narayanaswamy and Raghavarao (1991) and Saranadasa

(1991, 1993). Examples may also be found in applied statistical inference han-

dling samples of many measurements on individuals. For example, in a clinical

trial of pharmaceutical studies, many blood chemistry measurements are mea-

sured on each individual. In some studies the number of variables is comparable

to or even exceeds the total sample size. The purpose of this article is to raise

the following questions: What's new in high dimensional statistical inference

and what should be done? The di�erence of high dimensional statistical infer-

ence from that in classical statistical inference will be referred to as the \E�ect

of High Dimension" (EHD).
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There are two aspects of the EHD. The �rst, there are too many interesting

or nuisance parameters in the model. For example, in M-estimation in linear

models, the number of regression parameters may be proportional to the sample

size. This problem remains unsolved. The best results are due to Huber's work

(1973) in which the consistency of estimation is proved under the assumption

that p2=n! 0 and the asymptotic normality under p3=n! 0, where n and p are

the sample size and the dimension of regression coe�cent vector. Althogh these

requirements on the ratio of the dimention to the sample size were reduced, very

strong assumptions were made on the design sequence. References are made

to Portnoy (1984,1985). Another example is the model of Error in Variables

in which the true regressor variables can be considered as nuisance parameters

whose number is np (while the number of observations is n(p + 1)). In these

cases, either the estimation is very poor or it is impossible to get an unbiased or

consistent estimator. The second case is that the dimension itself of the data is

very high. Of course, the number of parameters to be estimated must be very

large. An example is the detection of the signal number in omni-directional signal

processing. When the number of sensors are increased, the detection accuracy is

supposed to be better. However, the simulation results show the opposite when

the traditional method (the MUSIC method) is used if the number of sensors is

10 or more. We believe that the reason is that the number of elements of the

covariance matrix (parametrs to be estimated) becomes very large (2p2 and 200

if p = 10). Some references in this direction are Bai, Krishnaiah and Zhao (1989)

and Zhao, Krishinaiah and Bai (1986a,b).

Although the EHD has been noticed in many di�erent directions of multi-

variate statistical inferences, the problem has not yet been clearly stated in the

literature and no appropriate methods have been proposed to deal with the EHD.

To this end, we shall analyze these problems through the two sample problem, as

an example to show how and why the EHD a�ects inferences and how the EHD

can be reduced.

A classical method to deal with this problem is the famous Hotelling's T 2

test. Its advantages include: it is invariant under linear transformation, its exact

distribution is known under the null hypothesis and it is powerful when the

dimension of data is su�ciently small, compared with the sample sizes. However,

Hotelling's test has the serious defect that the T 2 statistic is unde�ned when the

dimension of data is greater than the within sample degrees of freedom.

Seeking remedies, Chung and Fraser (1958) proposed a nonparametric test

and Dempster (1958, 1960) discussed the so-called \non-exact" signi�cance test.

Dempster (1960) also considered the so-called randomization test. These works

seek alternatives to Hotelling's test in situations when the latter does not apply.

Not only being a remedy when the T 2 is unde�ned, we show that even it is well
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de�ned, the non-exact test is more powerful than the T 2 test when the dimension

is proportionally \close to" (more discussion on the ratio will be given in Section

5) the sample degrees of freedom.

Both the T 2 test and Dempster's non-exact test strongly rely on the nor-

mality assumption. Moreover, Dempster's non-exact test statistic involves a

complicated estimation of r, the \degrees of freedom" for the chi-square approx-

imation. To simplify the testing procedure, a new method is proposed in Section

4. It is proven in Sections 3 and 4 that the asymptotic power of the new test is

equivalent to that of Dempster's test. Simulation results further show that our

new approach is slightly more powerful than Dempster's. We believe that the

estimation of r and its rounding to an integer in Dempster's procedure may cause

an error of order O(1=n). This might indicate that the new approach is superior

to Dempster's test in the second order term in some Edgeworth-type expansions.

We shall not discuss this in detail in this paper but hope to address it in future

work. Some simulation results and discussions are presented in Section 5 and

some technical proofs are given in the Appendix.

2. Asymptotic Power of Hotelling's Test

In this section, we derive the asymptotic power functions of the T 2 test for

the two sample problem. The model described here is the same as the one in

Dempster's test given in the next section.

Suppose that xi;j � Np(�i;�); j = 1; : : : ; Ni; i = 1; 2 are two independent

samples. To test the hypothesis H0 : �1 = �2; vs H1 : �1 6= �2, traditionally one

uses Hotelling's famous T 2 test which is de�ned by

T 2 = �(x1 � x2)
0A�1(x1 � x2); (2:1)

where xi =
1

Ni

PNi

j=1 xi;j ; i = 1; 2; A =
P2

i=1

PNi

j=1(xi;j � xi)(xi;j � xi)
0; and

� = n N1N2

N1+N2

with n = N1 +N2 � 2. The purpose of this section is to investigate

the power function of Hotelling's test when p=n ! y 2 (0; 1) for guaranteeing

the existence of the T 2 statistic, and to compare it with other non-exact tests

given in later sections.

To derive the asymptotic power of Hotelling's test, we �rst derive an asymp-

totic expression for the threshold of the test. It is well known that under the

null hypothesis, n�p+1
np

T 2 has an F -distribution with degrees of freedom p and

n� p+1. Let the signi�cance level be chosen as � and the threshold be denoted

by F�(p; n� p+ 1). We have the following lemma.

Lemma 2.1. p

n�p+1F�(p; n� p+ 1) = yn
1�yn +

q
2y

(1�y)3n �� + o( 1p
n
); where yn =

p

n
, limn!1 yn = y 2 (0; 1) and �� is the 1 � � quantile of standard normal

distribution.
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Proof. Under the null hypothesis, by the Central Limit Theorem,s
(1� y)3n

2y

�T 2

n
� yn

1� yn

�
! N (0; 1); as n!1;

from which the result follows immediately.

Now, we consider the behavior of T 2=n underH1. In this case, its distribution

is the same as

(w + ��1=2�)0U�1(w+ ��1=2�); (2:2)

where � = ��
1

2 (�1 � �2); U =
Pn

i=1 uiu
0
i; w = (w1; : : : ; wp)

0 and ui; i = 1; : : : ; n

are i.i.d. N(0; Ip) random vectors and � = (N1+N2)=N1N2: Denote the spectral

decomposition of U�1 by O0diag[d1; : : : ; dp]O with eigenvalues d1 � � � � � dp > 0.

Then, (2.2) becomes

(Ow + ��1=2k�kv)0diag[d1; : : : ; dp](Ow + ��1=2k�kv); (2:3)

where v = O�=k�k. Since U has the Wishart distributionW (n; Ip), the orthogo-

nal matrix O has the Haar distribution on the group of all orthogonal p-matrices,

and hence the vector v is uniformly distributed on the unit p-sphere. Note that

the conditional distribution of Ow given O is N (0; Ip), the same as that of w

which is independent of O. This shows that Ow is independent of v. Therefore,

replacing Ow in (2.3) by w does not change the joint distribution of Ow, v and

the di's. Consequently,
T 2

n
has the same distribution as


n =

pX
i=1

(w2
i + 2wivi �

�1=2k�k + ��1k�k2v2i )di; (2:4)

where v = (v1; : : : ; vp)
0 is uniformly distributed on the unit sphere of Rp and is

independent of w and the di's.

Lemma 2.2. Using the above notation, we have
p
n
�Pp

i=1 di� yn
1�yn

�
! 0; and

n
Pp

i=1 d
2
i ! y

(1�y)3 in probability.

Proof. Recalling (2.4) with � = 0 under the null hypothesis and applying the

Central Limit Theorem with Dn = fd1; : : : ; dpg given, we have

P
�T 2

n
� 1� yn

yn
+

s
2y

(1� y)3n
x
�

= E
h
P
�Pp

i=1(w
2
i � 1)dip

2
Pp

i=1 d
2
i

�
p
n( 1�yn

yn
�Pp

i=1 di) +
q

2y

(1�y)3 xp
2n
Pp

i=1 d
2
i

���Dn

�i

= E
h
�
�pn( 1�yn

yn
�Pp

i=1 di) +
q

y

(1�y)3 xp
n
Pp

i=1 d
2
i

�
+ o(1)

i
; (2:5)
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where � is the distribution function of a standard normal variable. On the other

hand, as shown in the proof of Lemma 2.1, the Central Limit Theorem implies

that the above quantity tends to �(x), for all x. Hence, by the type-convergence

theorem (see Page 216 of Lo�eve (1977)), the lemma is proved.

Now we are in position to derive an approximation of the power function of

Hotelling's test.

Theorem 2.1. If yn = p

n
! y 2 (0; 1), N1=(N1 + N2) ! � 2 (0; 1) and

k�k2 = o(1); then

�H(�)� �
�
� �� +

s
n(1� y)

2y
�(1� �)k�k2

�
! 0; (2:6)

where �H(�) is the power function of Hotelling's test.

Remark 2.1. The usual consideration of the alternative hypothesis in limiting

theorems is to assume that
p
nk�k2 ! a > 0. Under this additional assump-

tion, it follows from (2.6) that the limiting power of Hotelling's test is given by

�(���+((1�y)=2y)1=2 �(1��)a). This formula shows that the limiting power of

Hotelling's test is slowly increasing for y close to 1, as the non-central parameter

(namely a) increases.

Proof. Write Dn = (d1; : : : ; dn). Using the facts Ev
2
1 = 1=p, Ev41 = 3=[p(p+ 2)]

and Ev21v
2
2 = 1=[p(p+ 2)] and then applying Lemma 2.2, one easily obtains

nE
h� pX

i=1

wividi�
�1=2k�k

�2 ���Dn

i
= n

pX
i=1

d2i
k�k2
�p

! 0; in Pr.; (2:7)

nE
h� pX

i=1

(v2i �Ev2i )�
�1k�k2di

�2 ���Dn

i

= n��2k�k4
h 2

p(p+ 2)

pX
i=1

d2i � 2

p2(p+ 2)

� pX
i=1

di

�2i
! 0 in Pr. (2:8)

and

pX
i=1

(Ev2i ) �
�1k�k2di =

1

�p
k�k2

pX
i=1

di =
yn k�k2

�p(1� yn)
(1 + op(

1p
n
)): (2:9)

Thus, by the above and Lemma 2.1, we have

�H(�) =P
� pX
i=1

w2
i di �

yn

1� yn
+

s
2y2

(1� y)3p
�� �

yn k�k2
�p(1� yn)

+ o(
1p
n
)
�
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=E
h
P
�Pp

i=1(w
2
i � 1)dipPp

i=1 2d
2
i

�

q
2y2

(1�y)3p �� �
yk�k2
�p(1�y) + o( 1p

n
)pPp

i=1 2d
2
i

���Dn

�i

=�
�
� �� +

s
n(1� y)

2y
�(1 � �)k�k2

�
+ o(1): (2:10)

The proof of Theorem 2.1 is now complete.

3. Discussion on Dempster's Non-Exact Test

Dempster (1958, 1960) proposed a non-exact test for the hypothesis described

in Section 2, with the dimension of data possibly greater than the sample de-

grees of freedom. First, let us briey describe his test. Denote N = N1 + N2,

X 0 = (x11;x12; : : : ;x1N1
;x21; : : : ;x2N2

) and by H 0 = ( 1p
N
JN ; (

q
N2

N1(N1+N2)
J0N1

,

�
q

N1

N2(N1+N2)
J0N2

)0;h3; : : : ;hN ) a suitably chosen orthogonal matrix, where Jd

is a d dimensional column vector of 1's. Let Y = HX = (y1; : : : ;yN )
0. Then,

the vectors y1; : : : ;yN are independent normal random vectors with E(y1) =

(N1�1+N2�2)=
p
N , E(y2) = ��1=2(�1��2), E(yj) = 0; for 3 � j � N;Cov(yj) =

�; 1 � j � N . Then, Dempster proposed his non-exact signi�cance test statis-

tic F = Q2=(
PN

i=3Qi=n), where Qi = y0iyi, n = N � 2. He used the so-called

�2 approximation technique, assuming Qi is approximately distributed as m�2r,

where the parameters m and r may be solved by the method of moments. Then,

the distribution of F is approximately Fr;nr. But generally the parameter r (its

explicit form is given in (3.3) below) is unknown. He estimated r by either of

the following two ways.

Approach 1: r̂ is the solution of the equation

t =
� 1
r̂1

+
1 + 1

n

3r̂21

�
(n� 1); (3:1)

Approach 2: r̂ is the solution of the equation

t+w =
� 1
r̂2

+
1 + 1

n

3r̂22

�
(n� 1) +

� 1
r̂2

+
3

2r̂22

��n
2

�
; (3:2)

where t = n[ln( 1
n

PN
i=3Qi)] �

PN
i=3 lnQi, w = �P3�i<j�N ln sin2 �ij ; and �ij is

the angle between the vectors of yi;yj , 3 � i < j � N . Dempster's test is then

to reject H0 if F > F�(r̂; nr̂):

By elementary calculus, we have

r =
(tr(�))2

tr(�2)
and m =

tr(�2)

tr�
: (3:3)
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From (3.3) and the Cauchy-Schwarz inequality, it follows that r � p. On the

other hand, under regular conditions, both tr(�) and tr(�2) are of the order

O(n), and hence, r is of the same order. Under wider conditions (3.7) and (3.8)

given in Theorem 3.1 below, it can be proved that r ! 1. Further, we may

prove that t � (n=r)N (1; n�1=2) and w � n(n�1)
2r

N (1; 4

n(n�1) +
8

nr
). From these

estimates, one may conclude that both r̂1 and r̂2 are ratio-consistent (in the sense

that r̂
r
! 1). Therefore, the solutions of equations (3.1) and (3.2) should satisfy

r̂1 =
n

t
+O(1) (3:4)

and

r̂2 =
1

w

�n
2

�
+O(1) (3:5)

respectively. Since the random e�ect may cause an error of order O(1), one may

simply choose the estimates of r as n
t
or 1

w

�
n

2

�
.

In the remainder of this section, we derive an asymptotic power function of

Dempster's non-exact test, under the conditions: p=n! y > 0, N1=(N1+N2)!
� 2 (0; 1) and the parameter r is known. The reader should note that the limiting

ratio y is allowed to be greater than one in this case, which is di�erent from that

assumed in Section 2. When r is unknown, substituting r by the estimators r̂1 or

r̂2 may cause an error of high order smallness in the approximation of the power

function of Dempster's non-exact test, as will be seen in the proof of Theorem

3.1.

Similar to Lemma 2.1 one may show the following lemma.

Lemma 3.1. When n; r !1,

F�(r; nr) = 1 +
q
2=r�� + o(1=

p
r): (3:6)

Then we have the following approximation of the power function of Dempster's

test.

Theorem 3.1. If

�0�� = o(�tr�2); (3:7)

�max = o(
p
tr�2); (3:8)

and r is known, then

�D(�)� �(��� +
n�(1� �)k�k2p

2tr�2
)! 0; (3:9)

where � = �1 � �2:
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Remark 3.1. In usual cases when considering the asymptotic power of Demp-

ster's test, the quantity k�k2 is ordinarily assumed to have the same order as

1=
p
n and tr(�2) to have order n. Thus, the quantities nk�k2=

p
tr�2 and

p
nk�k2

are both bounded away from zero and in�nity. The expression of the asymptotic

power of Hotelling test is involved with a factor
p
1� y which disappears in the

expression of the asymptotic power of Dempster's test. This reveals the rea-

son why the power of the Hotelling test increases much slower than that of the

Dempster test as the non-central parameter increases if y is close to one.

Proof. Let � = (�1; : : : ; �p)
0 = ��

1

2�: Then,

�D(�) = P
�Pp

i=1(y
2
i + 2��1=2�iyi + ��1�2i )�iPn

j=1

Pp
i=1 z

2
ij�i

> n�1F�(r; nr)
�
; (3:10)

where yi, zij ; i = 1; : : : ; p; j = 1; : : : ; n are i.i.d. N (0; 1) variables and �1; : : : ; �p
are eigenvalues of �. By the Central Limit Theorem, the laws of large numbers,

(3.7) and (3.8), one may easily show that:

Pp
i=1(y

2
i � 1 + 2��1=2�iyi)�ip

2tr�2

�=
Pp

i=1(y
2
i � 1 + 2��1=2�iyi)�ip

2tr�2 + 4��1�0��

D!N (0; 1): (3:11)

and
nX
j=1

pX
i=1

z2ij�i = n(tr�)
�
1 +

q
2=nrN (0; 1) + op(

q
1=nr)

�
: (3:12)

Noting that
Pp

i=1 �
2
i �i = k�k2 and r = (tr�)2

tr�2
; the result (3.9) follows from (3.7)

and Lemma 3.1, immediately. The proof of Theorem 3.1 is now complete.

4. A New Approach to Test H0

In this section, we propose a new test for H0. Instead of the normality of

the underlying distributions, we assume:

(a) xij = �zij + �j ; i = 1; : : : ; Nj , j = 1; 2, where � is a p�m matrix (m � 1)

with ��0 = � and zij are i.i.d. random m-vectors with independent components

satisfying Ezij = 0, Var(zij) = Im, Ez
4
ijk = 3 + � < 1 and E

Qm
k=1 z�kijk =

0 (and 1) when there is at least one �k = 1 (there are two �k's equal to 2,

correspondingly), whenever �1 + � � �+ �m = 4;

(b) p=n! y > 0 and N1=(N1 +N2)! � 2 (0; 1);

(c) (3.7) and (3.8) are true.

Here and later, it should be noted that all random variables and parameters

depend on n. For simplicity we omit the subscript n from all random variables

except those statistics de�ned later.
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Now, we begin to construct our test. Consider the statistic

Mn = (x1 � x2)
0(x1 � x2)� �trSn; (4:1)

where Sn = 1

n
A, x1;x2 and A are de�ned in Section 2. Under H0, we have

EMn = 0. If the conditions (a) - (c) are true, it may be proved (see the Appendix)

that under H0,

Zn =
Mnp
VarMn

! N (0; 1); as n!1: (4:2)

If the underlying distributions are normal as described in Section 2, then

under H0 we have

�2M := VarMn = 2� 2(1 +
1

n
)tr�2: (4:3)

If the underlying distributions are not normal but satisfy the conditions (a) - (c),

one may show (see the Appendix) that

VarMn = �2M (1 + o(1)): (4:4)

Hence (4.2) is still true if the denominator of Zn is replaced by �M . Therefore, to

complete the construction of our test statistic, we need only �nd a ratio-consistent

estimator of tr(�2) and substitute it into the denominator of Zn. It seems that

a natural estimator of tr�2 should be trS2
n. However, unlike the case where p

is �xed, trS2
n is generally neither unbiased nor ratio-consistent even under the

normal assumption. If nSn �Wp(n;�), it is routine to verify that

B2
n =

n2

(n+ 2)(n� 1)

�
trS2

n �
1

n
(trSn)

2
�
;

is an unbiased and ratio-consistent estimator of tr�2. Here, it should be noted

that trS2
n � 1

n
(trSn)

2 � 0, by the Cauchy-Schwarz inequality. In the Appendix,

we shall prove that B2
n is still a ratio-consistent estimator of tr�2 under the

Conditions (a) - (c). Replacing tr�2 in (4.3) by the ratio-consistent estimator

B2
n, we obtain our test statistic

Z =
(x1 � x2)

0(x1 � x2)� � trSn

�

r
2(n+1)n

(n+2)(n�1)

�
trS2

n � n�1(trSn)2
�

=

N1N2

N1+N2

(x1 � x2)
0(x1 � x2)� trSnq

2(n+1)

n
Bn

! N (0; 1): (4:5)

Due to (4.5) the test rejects H0 if Z > ��: Regarding the asymptotic power of

our new test, we have the following theorem.
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Theorem 4.1. Under the Conditions in (a) - (c),

�BS(�)� �
�
� �� +

n�(1� �)k�k2p
2tr�2

�
! 0: (4:6)

Proof. Let zj be the sample mean of zij , i = 1; : : : ; nj ; j = 1; 2 and let

M 0
n = (z1 � z2)

0�0�(z1 � z2)� tr(Sn):

Then, M 0
n has the same distribution as Mn under H0. Thus, Var(M

0
n) = �2M (1+

o(1)) and M 0
n=
p
Var(M 0

n)! N (0; 1). Note that Mn =M 0
n � 2�0(z1 � z2) + k�k2

and by (3.7)

Var(�0(z1 � z2)) = ��0�� = o(� 2tr(�2)):

Hence, Var(M 0
n)=Var(Mn)! 1 and consequently

Mn�k�k2p
Var(M0

n)
! N (0; 1):

Note that
2(n+1)

n
B2
n=Var(M

0
n)! 1: Hence,

Z � n�(1� �)k�k2p
2tr(�2)

! N (0; 1):

This implies that

�BS(�) = PH1
(Z > ��)

= P
�Mn � k�k2p

VarM 0
n

> �� �
n�(1� �)k�k2p

2tr�2
+ o(1)

�

= �
�
� �� +

n�(1� �)k�k2p
2tr�2

�
+ o(1); (4:7)

which completes the proof of the theorem.

5. Discussions and Simulations

Comparing Theorems 2.1, 3.1 and 4.1, we �nd that from the point of view

of large sample theory, Hotelling's test is less powerful than the other two tests,

when y is close to one, and that the latter two tests have the same asymptotic

power function. Our simulation results show that even for moderate sample and

dimension sizes, Hotelling's test is still less powerful than the other two tests when

the underlying covariance structure is reasonably regular (i.e., the structure of

� does not cause a too large di�erence between �0��1� and
p
nk�k2=

p
tr(�2)),

whereas the Type I error does not change much in the latter two tests.

It would not be hard to see that using the approach of this paper, one may

easily derive similar results for the one-sample problem, namely, Hotelling's test
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is less powerful than a non-exact test which can be de�ned as in Section 4, when

the dimension of data is high.

Now, we would like to explain why this phenomenon happens. The reason

for the less powerfulness of Hotelling's test is the \inaccuracy" of the estimator

of the covariance matrix. Let X1; : : : ;Xn be i.i.d. random p-vectors of mean

0 and variance-covariance matrix Ip. By the law of large numbers, the sample

covariance matrix Sn = n�1
Pn

i=1 XiX
0
i should be \close" to the identity Ip with

an error of the order Op(1=
p
n) when p is �xed. However, when p is proportional

to n (say p=n! y 2 (0; 1)), the ratio of the largest and the smallest eigenvalues

of Sn tends to (1 +
p
y)2=(1�py)2 (see, e.g., references Bai, Silverstein and Yin

(1988), Bai and Yin (1993), Geman (1980), Silverstein (1985) and Yin, Bai and

Krishnaiah (1988)). More precisely, in the Theory of spectral analysis of large

dimensional random matrices, it has been proven that the empirical distribution

of the eigenvalues of Sn tends to an limiting distribution spreading over [(1 �
p
y)2; (1 +

p
y)2] as n ! 1 (see e.g., Jonsson (1982), Wachter (1978), Yin

(1986) and Yin, Bai and Krishnaiah (1983)). These show that Sn is not close

to Ip. Especially when y is \close to" one, then Sn has many small eigenvalues

and hence S�1n has many huge eigenvalues. This will cause the de�ciency of the

T 2 test. We believe that in many other multivariate statistical inferences with

an inverse of a sample covariance matrix involved, the same phenomenon should

exist ( as another example, see Saranadasa (1991, 1993)).

Here we would like to explain our quotation-marked \ `close to' one". Note

that the limiting ratio of the largest to the smallest eigenvalues of Sn tends to

(1 +
p
y)2=(1 �py)2. For our simulation example, y = 0:93 and the ratio of the

extreme eigenvalues is about 3039. That is very serious. Even for y as small as

0:1 or 0:01, the ratio can be as large as 3:705 and 1:494. These show that it is

not necessary to require the dimension of data to be very close to the degrees

of freedom to make the e�ect of high dimension visible. In fact, this has been

shown by our simulation for p = 4.

Dempster's test statistic depends on the choice of vectors h3; h4; : : : ; hN be-

cause di�erent choices of these vectors would produce di�erent estimates of the

parameter r. On the other hand, the estimation of r and the rounding of the

estimates may cause an error (probably an error of second order smallness) in

Dempster's test. Thus, we conjecture that our new test can be more powerful

than Dempster's in their second terms of an Edgeworth type expansion of their

power functions. This conjecture was strongly supported by our simulation re-
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sults. Because our test statistic is mathematically simple, it is not di�cult to

get an Edgeworth expansion by using the results obtain in Babu and Bai (1993),

Bai and Rao (1991) or Bhattacharya and Ghosh (1978). It seems di�cult to get

a similar expansion for Dempster's test due to his complicated estimation of r.

We conducted our simulation study to compare the power of the three tests

for both normal and non-normal cases. Let N1 = 25, N2 = 20, and p = 40.

For the non-normal case, observations were generated by the following moving

average model: Let fUijkg be a set of independent gamma variables with shape

parameter 4 and scale parameter 1. De�ne

Xijk = Uijk + �Ui;j+1;k + �jk; (j = 1; : : : ; p; i = 1; : : : ; Nk; k = 1; 2);

where � and the �'s are constants. Under this model, � = (�ij) with �ii = 4(1+

�2), �i;i�1 = 4� and �ij = 0 for ji � jj > 1. For the normal case, the covariance

matrices were chosen to be � = Ip and � = (1� �)Ip + �Jp; with � = 0:5, where

J is a p� p matrix with all entries one. Simulation was also conducted for small

p (chosen as p = 4). The tests were made for size � = 0:05 with 1000 repetitions.

The power is evaluated at standard parameter � = k�1 � �2k2=
p
tr�2. The

simulation for the non-normal case was conducted for � = 0; :3; :6 and :9 (Table

5.1 and Figure 5.1). All three tests have almost the same signi�cance level.

Under the alternative hypothesis, the power curves of Dempster's test and our

test are rather close but that of our test is always higher than Dempster's test.

Theoretically, the power function for Hotelling's test should increase very lowly

when the noncentral parameter increases. This was also demonstrated by our

simulation results. The reader should note that there are only 1000 repetations

for each value of noncentral parameter in our simulation which may cause an

error of
p
1=1000 = 0:0316 by Central Limit Theorem, it is not surprising the

simulated power function of the Hotelling's test, whose magnitude is only around

0:05, seems not increasing at some points of the noncentral parameter.

Similar tables are presented for the normal case (Table 5.2 and Figure 5.2).

For higher dimension cases the power functions of Dempster's test and our test

are almost the same and our method is not worse than Hotelling's test even for

p = 4.
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Table 5.1. Simulated power functions of the three tests with multivariate

Gamma distribution.

N = 45; p = 40; � = :05

� = 0; � = 1 � = :3; � = 3:4 � = :6; � = 15:6 � = :9; � = 235:8

� H D BS H D BS H D BS H D BS

0.00 .044 .047 .052 .044 .047 .055 .052 .047 .055 .055 .046 .058

0.15 .059 .289 .316 .071 .293 .319 .092 .282 .315 .109 .277 .305

0.30 .084 .602 .633 .113 .643 .667 .147 .639 .677 .177 .609 .643

0.45 .118 .841 .870 .146 .875 .898 .204 .879 .897 .242 .848 .873

0.60 .149 .947 .960 .190 .966 .971 .251 .968 .976 .331 .958 .961

0.75 .181 .982 .988 .240 .996 .997 .318 .996 .999 .401 .994 .994

0.90 .212 .997 .999 .276 1.000 1.000 .380 1.000 1.000 .469 1.000 1.000

1.05 .251 1.000 1.000 .328 1.000 1.000 .444 1.000 1.000 .524 1.000 1.000

1.20 .293 1.000 1.000 .374 1.000 1.000 .504 1.000 1.000 .589 1.000 1.000

1.35 .327 1.000 1.000 .427 1.000 1.000 .537 1.000 1.000 .636 1.000 1.000

Table 5.2. Simulated power functions of the three tests with multivariate

normal distribution.

N = 45; p = 40; � = :05 N = 45; p = 40; � = :05

� = 0; � = 1 � = :5; � = 41 � = 0; � = 1 � = :5; � = 5

� H D BS H D BS H D BS H D BS

0.00 .040 .050 .062 .050 .081 .074 .042 .050 .069 .060 .084 .085

0.15 .071 .284 .313 .059 .336 .318 .242 .267 .320 .177 .268 .297

0.30 .094 .634 .680 .061 .521 .510 .458 .498 .572 .261 .487 .506

0.45 .129 .871 .890 .055 .669 .661 .651 .697 .748 .356 .582 .608

0.60 .166 .965 .975 .071 .779 .771 .774 .824 .860 .459 .767 .804

0.75 .193 .988 .990 .061 .863 .864 .896 .933 .954 .574 .828 .848

0.90 .237 .994 .997 .083 .903 .899 .951 .967 .976 .837 .947 .953

1.05 .278 1.000 1.000 .085 .944 .945 .967 .979 .986 .855 .974 .974

1.20 .261 1.000 1.000 .086 .961 .958 .976 .989 .990 .895 .980 .982

1.35 .331 1.000 1.000 .101 .973 .973 .995 1.000 1.000 .937 .991 .992

H: Hotelling's F test, D: Dempster's non exact F test, BS: Proposed normal test, � =
k�1��2k2p

tr�2

and � = �max

�min

.
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Appendix. Asymptotics Related to the Statistic Mn

A.1. The proof of (4.4):

By de�nition, we have

Mn = (1 + �N1n
�1)kx1k2 + (1 + �N2n

�1)kx2k2 � 2x01x2 � �n�1
2X

j=1

NjX
i=1

kxijk2:

Under H0, we may assume �1 = �2 = 0. Write � = [�1; : : : ;�p]
0 = [k;`] and

�0� = [�k`]. Then, by Conditions (a) - (c), we have

Var(�n�1
2X

j=1

NjX
i=1

kxijk2) = � 2n�2E
� 2X
j=1

NjX
i=1

pX
k=1

[(�0kzij)
2 � k�kk2]

�2

= � 2n�2N
h
2tr(�2) + �

mX
`=1

�2``

i
� C� 2n�1[2tr�2 +��maxtr�] = o(�2M ):

Similarly, we may show that

Var(x01x2) = N�2
1 N�2

2 E
� N1X
i=1

N2X
`=1

x0i1x`2
�2

=
1

N1N2

tr(�2);

Var(kx1k2) = 2

N2

1

tr(�2) + �

N3

1

Pm
`=1 �

2
``, Var(kx2k2 = 2

N2

2

tr(�2) + �

N3

2

Pm
`=1 �

2
``;

Cov(kx1k2; kx2k2) = 0 and Cov(x01x2; kxjk2) = 0 for j = 1; 2. Therefore, by the

fact that
Pm

`=1 �
2
`` � p�2max, we have

Var(Mn) = 2� 2tr(�2) + �
� 1

N 3
1

+
1

N 3
2

�h mX
`=1

�2``

i
= �2M (1 + o(1)):

The proof of (4.4) is then complete.

A.2. The asymptotic normality of Zn under H0: From the proof of A.1, one

can see that �(tr(Sn)� tr(�))=�M ! 0. Therefore, to show that Zn ! N (0; 1),

we need only show that [kx1 � x2k2 �E(kx1 � x2k2)]=�M ! N (0; 1).

We may rewrite

kx1 � x2k2 �E(kx1 � x2k2) =
pX

k=1

[(�0k(z1 � z2))
2 � k�kk2]

:=
mX
`=1

NX
h=1

[U`;h + V`;h + �``(w
2
`;h �E(w2

`;h))];
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where zj = N�1
j

PNj

i=1 zij , z�jk denotes the kth component of zj and

U`;h = 2��1M

h
w`;h�``

h�1X
k1=1

w`;k1

i

V`;h = 2��1M w`;h

`�1X
`1=1

�`1`(z�1`1 � z�2`1);

with the convention that
P0

`1=1
= 0 and the notation

w`;h =

8><
>:

1

N1

zh;1;`; if h = 1; 2; : : : ; N1,

1

N2

zh�N1;2;`; if h = N1 + 1; : : : ; N .

Since Var(
Pm

`=1

PN
h=1(w

2
`;h�E(w2

`;h))) = (�+2)( 1

N3

1

+ 1

N3

1

)
Pm

`=1 �
2
``=�

2
M ! 0, we

need only show that
Pm

`=1

PN
h=1[U`;h + V`;h]! N (0; 1).

Note that fU�
N(`�1)+k = U`;k+V`;kg forms a sequence of martingale di�erences

with �-�elds FN(`�1)+h = F(zijt; j = 1; 2; t < `; i = 1; : : : ; Nj and w`;i; i � h).

Then the asymptotic normality may be proved by employing Corollary 3.1 in

Hall (1980) with routine veri�cation of the following:

mX
`=1

NX
h=1

E(U 4
`;h + V 4

`;h)! 0

and

Var
� mX
`=1

NX
h=1

E[(U 2
`;h + V 2

`;h)jFN(`�1)+h]
�
! 0:

The proof of (4.2) is now complete.

A.3. The ratio-consistency of B2
n: We only need show that ~B2

n = trS2
n �

1

n
(trSn)

2 is ratio-consistent for tr(�2). Without loss of generality, we assume that

�1 = �2 = 0. Note that

Sn = n�1
h 2X
j=1

NjX
i=1

xijx
0
ij �N1x1x

0
1 �N2x2x

0
2

i
:

Since Ex0jxj = N�1
j tr(�) = o(

p
tr(�2)), j = 1; 2, it follows that, x0jxj =

o(
p
tr(�2)). Therefore, we need only show that

B̂2
n = tr

� 1
n

2X
j=1

NjX
i=1

xijx
0
ij

�2
� 1

n

�
tr(

1

n

2X
j=1

NjX
i=1

xijx
0
ij)
�2
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is a ratio-consistent estimator of tr(�2).

By elementary calculation, we have E(tr( 1
n

P2

j=1

PNj

i=1 xijx
0
ij)) =

N
n
tr(�) and

Var(tr( 1
n

P2

j=1

PNj

i=1 xijx
0
ij)) = O(tr(�2)). These, together with p�1=2tr(�) =

o(
p
tr(�2)), imply that

1

n

�
tr(

1

n

2X
j=1

NjX
i=1

xijx
0
ij)
�2

=
N

n2
(tr(�))2 + op(tr(�

2)):

Rewrite

tr
� 1
n

2X
j=1

NjX
i=1

xijx
0
ij

�2

=
N 2

n2
tr(�2) +

2N

n2

2X
j=1

NjX
i=1

tr((�0�)2(zijz
0
ij � Im))

+
1

n2

2X
j=1

2X
j0=1

NjX
i=1

Nj0X
i0=1

(tr((�0�)(zijz
0
ij � Im))(�

0�)(zi0j0z
0
i0j0 � Im))

:=
N 2

n2
tr(�2) +H1 +H2:

We have E(H1) = 0 and Var(H1) =
4N3

n4

h
2tr(�4) +

Pm
i=1([(�

0�)2]2ii

i
= o(tr2(�2)).

Thus,

H1 = op(tr(�
2)):

Write H2 = H21 +H22 +H23 +H24 +H25, where

H21 =
1

n2

X
(ij)6=(i0j0)

(tr((�0�)(zijz
0
ij � Im))(�

0�)(zi0j0z
0
i0j0 � Im));

H22 =
1

n2

2X
j=1

NjX
i=1

X
(k0 6=`; `0 6=k)

�k;`�k0;`0(zij`zijk0zij`0zijk)

and

H23 =
2

n2

2X
j=1

NjX
i=1

X
6̀=k 6=`0

�k;`�`;`0((z
2
ij` � 1)(zij`0zijk))

H24 =
2

n2

2X
j=1

NjX
i=1

X
`6=k

�k;`�`;`((z
2
ij` � 1)(zij`zijk))

H25 =
1

n2

2X
j=1

NjX
i=1

mX
k;`=1

�2k;`(z
2
ij` � 1)(z2ijk � 1):
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We have E(H21) = 0, E(H22) =
N

n2
[tr(�2)+tr2(�)�2

Pm
k=1 �

2
kk =

N

n2
tr2(�)+

o(tr(�2)) and

Var(H21) =
2N(N � 1)

n4

h
4tr2(�2) + 4�

mX
i;j;t=1

�2ij�
2
it +�2

mX
i;j=1

�4ij

i
= o(tr2(�2)):

Similarly, we may show that Var(H22) and Var(H23) have the same order. Finally,

one may show that

EjH24j �
CN

n2

mX
`=1

�`;`E

�����
mX
k=1

�k;`z11k

�����
� CN

n2

mX
`=1

�`;`

vuut mX
k=1

�2k;`

� CN

n2
�maxtr(�) = o(tr(�)):

and

EjH25j �
CN

n2

mX
k;`=1

�2k;` = o(tr(�)):

Combining the above, we obtain H2 = N
n2
tr2(�) + op(tr(�

2)). Thus, B̂2
n =

tr(�2)[1 + op(1)] and consequently, the ratio-consistency of B̂2
n follows.
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