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A TWO-SAMPLE TEST FOR HIGH-DIMENSIONAL DATA WITH
APPLICATIONS TO GENE-SET TESTING1

BY SONG XI CHEN AND YING-LI QIN

Iowa State University and Peking University, and Iowa State University

We propose a two-sample test for the means of high-dimensional data
when the data dimension is much larger than the sample size. Hotelling’s
classical T 2 test does not work for this “large p, small n” situation. The pro-
posed test does not require explicit conditions in the relationship between
the data dimension and sample size. This offers much flexibility in analyzing
high-dimensional data. An application of the proposed test is in testing sig-
nificance for sets of genes which we demonstrate in an empirical study on a
leukemia data set.

1. Introduction. High-dimensional data are increasingly encountered in
many applications of statistics and most prominently in biological and financial
studies. A common feature of high-dimensional data is that, while the data di-
mension is high, the sample size is relatively small. This is the so-called “large
p, small n” phenomenon where p/n → ∞; here p is the data dimension and n is
the sample size. The high data dimension (“large p”) alone has created the need
to renovate and rewrite some of the conventional multivariate analysis procedures;
these needs only get much greater for “large p small n” situations.

A specific “large p, small n” situation arises when simultaneously testing a
large number of hypotheses which is largely motivated by the identification of
significant genes in microarray and genetic sequence studies. A natural question
is how many hypotheses can be tested simultaneously. This paper tries to answer
this question in the context of two-sample simultaneous tests for means. Consider
two random samples Xi1, . . . ,Xini

∈ Rp for i = 1 and 2 which have means μ1 =
(μ11, . . . ,μ1p)T and μ2 = (μ21, . . . ,μ2p)T and covariance matrices �1 and �2,
respectively. We consider testing the following high-dimensional hypothesis:

H0 :μ1 = μ2 versus H1 :μ1 �= μ2.(1.1)

The hypothesis H0 consists of the p marginal hypotheses H0l :μ1l = μ2l for l =
1, . . . , p regarding the means on each data dimension.

There have been a series of important studies on the high-dimensional problem.
Van der Laan and Bryan (2001) show that the sample mean of p-dimensional data
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can consistently estimate the population mean uniformly across p dimensions if
log(p) = o(n) for bounded random variables. In a major generalization, Kosorok
and Ma (2007) consider uniform convergence for a range of univariate statistics
constructed for each data dimension which includes the marginal empirical distri-
bution, sample mean and sample median. They establish the uniform convergence
across p dimensions when log(p) = o(n1/2) or log(p) = o(n1/3), depending on
the nature of the marginal statistics. Fan, Hall and Yao (2007) evaluate approxi-
mating the overall level of significance for simultaneous testing of means. They
demonstrate that the bootstrap can accurately approximate the overall level of sig-
nificance if log(p) = o(n1/3) when the marginal tests are performed based on the
normal or the t-distributions. See also Fan, Peng and Huang (2005) and Huang,
Wang and Zhang (2005) for high-dimensional estimation and testing in semipara-
metric regression models.

In an important work, Bai and Saranadasa (1996) propose using ‖X̄1 − X̄2‖
to replace (X̄1 − X̄2)

T S−1
n (X̄1 − X̄2) in Hotelling’s T 2-statistic where X̄1 and

X̄2 are the two sample means, Sn is the pooled sample covariance by assuming
�1 = �2 = � and ‖ · ‖ denotes the Euclidean norm in Rp . They establish the
asymptotic normality of the test statistics and show that it has attractive power
property when p/n → c < ∞ and under some restriction on the maximum eigen-
value of �. However, the requirement of p and n being of the same order is too
restrictive to be used in the “large p small n” situation.

To allow simultaneous testing for ultra high-dimensional data, we construct a
test which allows p to be arbitrarily large and independent of the sample size as
long as, in the case of common covariance �, tr(�4) = o{tr2(�2)} where tr(·) is
the trace operator of a matrix. The above condition on � is trivially true for any p if
either all the eigenvalues of � are bounded or the largest eigenvalue is of smaller
order of (p − b)1/2b−1/4 where b is the number of unbounded eigenvalues. We
establish the asymptotic normality of a test statistic which leads to a two-sample
test for high-dimensional data.

Testing significance for gene-sets rather than a single gene is the latest devel-
opment in genetic data analysis. A critical need for gene-set testing is to have a
multivariate test that is applicable to a wide range of data dimensions (the num-
ber of genes in a set). It requires P -values for all gene-sets to allow procedures
based on either the Bonferroni correction or the false discovery rate [Benjamini
and Hochberg (1995)] to take into account the multiplicity in the test. We demon-
strate in this paper how to use the proposed test for testing significance for gene-
sets. An advantage of the proposed test is in its readily producing P -values of
significance for each gene-set under study so that the multiplicity of multiple test-
ing can be taken into consideration.

The paper is organized as follows. We outline in Section 2 the framework of
the two-sample tests for high-dimensional data and introduce the proposed test
statistic. Section 3 provides the theoretical properties of the test. How to apply
the proposed test of significance for gene-sets is demonstrated in Section 4 which
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810 S. X. CHEN AND Y.-L. QIN

includes an empirical study on an acute lymphoblastic leukemia data set. Results
of simulation studies are reported in Section 5. All the technical details are given
in Section 6.

2. Test statistic. Suppose we have two independent and identically distrib-
uted random samples in Rp ,

{Xi1,Xi2, . . . ,Xini
} i.i.d.∼ Fi for i = 1 and 2,

where Fi is a distribution in Rp with mean μi and covariance �i . A well-pursued
interest in high-dimensional data analysis is to test if the two high-dimensional
populations have the same mean or not namely

H0 :μ1 = μ2 vs. H1 :μ1 �= μ2.(2.1)

The above hypothesis consists of p marginal hypotheses regarding the means of
each data dimension. An important question from the point view of multiple testing
is how many marginal hypotheses can be tested simultaneously. The works of van
der Laan and Bryan (2001), Kosorok and Ma (2007) and Fan, Hall and Yao (2007)
are designed to address the question. The existing results show that p can reach
the rate of eαnβ

for some positive constants α and β . In establishing a rate of the
above form, both van der Laan and Bryan (2001) and Kosorok and Ma (2007)
assume that the marginal distributions of F1 and F2 are all supported on bounded
intervals.

Hotelling’s T 2 test is the conventional test for the above hypothesis when the
dimension p is fixed and is less than n =: n1 + n2 − 2 and when �1 = �2 = �,
say. Its performance for high-dimensional data is evaluated in Bai and Saranadasa
(1996) when p/n → c ∈ [0,1) which reveals a decreasing power as c gets larger.
A reason for this negative effect of high-dimension is due to having the inverse
of the covariance matrix in the T 2 statistic. While standardizing by the covariance
brings benefits for data with a fixed dimension, it becomes a liability for high-
dimensional data. In particular, the sample covariance matrix Sn may not converge
to the population covariance when p and n are of the same order. Indeed, Yin,
Bai and Krishnaiah (1988) show that when p/n → c, the smallest and the largest
eigenvalues of the sample covariance Sn do not converge to the respective eigen-
values of �. The same phenomenon, but on the weak convergence of the extreme
eigenvalues of the sample covariance, is found in Tracy and Widom (1996). When
p > n, Hotelling’s T 2 statistic is not defined as Sn may not be invertible.

Our proposed test is motivated by Bai and Saranadasa (1996), who propose
testing hypothesis (2.1) under �1 = �2 = � based on

Mn = (X̄1 − X̄2)
′(X̄1 − X̄2) − τ tr(Sn),(2.2)

where Sn = 1
n

∑2
i=1

∑Ni

j=1(Xij −X̄i)(Xij −X̄i)
′ and τ = n1+n2

n1n2
. The key feature of

the Bai and Saranadasa proposal is removing S−1
n in Hotelling’s T 2 since having
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S−1
n is no longer beneficial when p/n → c > 0. The subtraction of tr(Sn) in (2.2) is

to make E(Mn) = ‖μ1 − μ2‖2. The asymptotic normality of Mn was established
and a test statistic was formulated by standardizing Mn with an estimate of its
standard deviation.

The following are the main conditions assumed in Bai–Saranadasa’s test:

p/n → c < ∞ and λp = o(p1/2);(2.3)

n1/(n1 + n2) → k ∈ (0,1) and (μ1 − μ2)
′�(μ1 − μ2) = o{tr(�2)/n},(2.4)

where λp denotes the largest eigenvalue of �.
A careful study of the Mn statistic reveals that the restrictions on p and n, and on

λp in (2.3) are needed to control terms
∑ni

j=1 X′
ijXij , i = 1 and 2, in ‖X̄1 − X̄2‖2.

However, these two terms are not useful in the testing. To appreciate this point, let
us consider

Tn =:
∑n1

i �=j X′
1iX1j

n1(n1 − 1)
+

∑n2
i �=j X′

2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 X′

1iX2j

n1n2

after removing
∑ni

j=1 X′
ijXij for i = 1 and 2 from ‖X̄1 − X̄2‖2. Elementary deriva-

tions show that

E(Tn) = ‖μ1 − μ2‖2.

Hence, Tn is basically all we need for testing. Bai and Saranadasa used tr(Sn)

to offset the two diagonal terms. However, tr(Sn) itself imposes demands on the
dimensionality too.

A derivation in the Appendix shows that under H1 and the condition in (3.4),

Var(Tn) =
{

2

n1(n1 − 1)
tr(�2

1)+ 2

n2(n2 − 1)
tr(�2

2)+ 4

n1n2
tr(�1�2)

}
{1 + o(1)},

where the o(1) term vanishes under H0.

3. Main results. We assume, like Bai and Saranadasa (1996), the following
general multivariate model:

Xij = �iZij + μi for j = 1, . . . , ni , i = 1 and 2,(3.1)

where each �i is a p×m matrix for some m ≥ p such that �i�
′
i = �i , and {Zij }ni

j=1
are m-variate independent and identically distributed (i.i.d.) random vectors satis-
fying E(Zij ) = 0, Var(Zij ) = Im, the m × m identity matrix. Furthermore, if we
write Zij = (zij1, . . . , zijm)′, we assume E(z4

ijk) = 3 + � < ∞, and

E(z
α1
ij l1

z
α2
ij l2

· · · zαq

ij lq
) = E(z

α1
ij l1

)E(z
α2
ij l2

) · · ·E(z
αq

ij lq
)(3.2)

for a positive integer q such that
∑q

l=1 αl ≤ 8 and l1 �= l2 �= · · · �= lq . Here � de-
scribes the difference between the fourth moments of zij l and N(0,1). Model (3.1)
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says that Xij can be expressed as a linear transformation of a m-variate Zij with
zero mean and unit variance that satisfies (3.2). Model (3.1) is similar to factor
models in multivariate analysis. However, instead of having the number of factors
m < p in the conventional multivariate analysis, we require m ≥ p. This is to allow
the basic characteristics of the covariance �i , for instance its rank and eigenval-
ues, to not be affected by the transformation. The rank and eigenvalues would be
affected if m < p. The fact that m is arbitrary offers much flexibility in generating
a rich collection of dependence structure. Condition (3.2) means that each Zij has
a kind of pseudo-independence among its components {zij l}ml=1. Obviously, if Zij

does have independent components, then (3.2) is trivially true.
We do not assume �1 = �2, as it is a rather strong assumption, and most im-

portantly such an assumption is harder to be verified for high-dimensional data.
Testing certain special structures of the covariance matrix when p and n are of the
same order have been considered in Ledoit and Wolf (2002) and Schott (2005).

We assume

n1/(n1 + n2) → k ∈ (0,1) as n → ∞,(3.3)

(μ1 − μ2)
′�i(μ1 − μ2) = o[n−1 tr{(�1 + �2)

2}] for i = 1 or 2,(3.4)

which generalize (2.4) to unequal covariances. Condition (3.4) is obviously satis-
fied under H0 and implies that the difference between μ1 and μ2 is small relative
to n−1 tr{(�1 + �2)

2} so that a workable expression for the variance of Tn under
H0, and the specified local alternative can be derived. It can be viewed as a high-
dimensional version of the local alternative hypotheses. When p is fixed, if we use
a standard test for two population means, for instance Hotelling’s T 2 test, the local
alternative hypotheses has the form of μ1 − μ2 = τn−1/2 for a nonzero constant
vector τ ∈ Rp . Hotelling’s test has nontrivial power under such local alternatives
[Anderson (2003)]. If we assume each component of μ1 − μ2 is the same, say δ,
then the local alternatives imply δ = O(n−1/2) for a fixed p. When the difference
is o(n−1/2), Hotelling’s test has nonpower beyond the level of significance.

To gain insight into (3.4) for high-dimensional situations, let us assume all the
eigen-values of �i are bounded above from infinity and below away from zero so
that �i = Ip is a special case of such a regime. Let us also assume, like above,
that each component of μ1 − μ2 is the same as a fixed δ, namely μ1l − μ2l = δ

for l = 1, . . . , p. Then (3.4) implies δ = o(n−1/2) which is a smaller order than
δ = O(n−1/2) for the fixed p case. This can be understood as the high-dimensional
data (p → ∞) contain more data information which allows finer resolution in
differentiating the two means in each component than that in the fixed p case.

To understand the performance of the test when (3.4) is not valid, we reverse
the local alternative condition (3.4) to

n−1 tr{(�1 + �2)
2} = o{(μ1 − μ2)

′�i(μ1 − μ2)} for i = 1 or 2,(3.5)
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implying that the Mahanalobis distance between μ1 and μ2 is a larger order than
that of n−1 tr{(�1 + �2)

2}. This condition can be viewed as a version of fixed
alternatives. We will establish asymptotic normally of Tn under either (3.4) or
(3.5) in Theorem 1.

The condition we impose on p to replace the first part of (2.3) is

tr(�i�j�l�h) = o[tr2{(�1 + �2)
2}] for i, j, l, h = 1 or 2,(3.6)

as p → ∞. To appreciate this condition, consider the case of �1 = �2 = �. Then
(3.6) becomes

tr(�4) = o{tr2(�2)}.(3.7)

Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of �. If all eigenvalues are bounded,
then (3.7) is trivially true. If, otherwise, there are b unbounded eigenvalues with
respect to p, and the remaining p − b eigenvalues are bounded above by a finite
constant M such that (p−b) → ∞ and (p−b)λ2

1 → ∞, then sufficient conditions
for (3.7) are

λp = o{(p − b)1/2λ1b
−1/4} or λp = o{(p − b)1/4λ

1/2
1 λ

1/2
p−b+1},(3.8)

where b can be either bounded or diverging to infinity, and the smallest eigen-value
λ1 can converge to zero. To appreciate these, we note that

tr(�4)

tr2(�2)
≤ (p − b)M4 + bλ4

p

(p − b)2λ4
1 + b2λ4

p−b+1 + 2(p − b)bλ2
1λ

2
p−b+1

.

Hence, the ratio converges to 0 under either condition in (3.8).
The following theorem establishes the asymptotic normality of Tn.

THEOREM 1. Under the assumptions (3.1), (3.2), (3.3), (3.6) and either (3.4)
or (3.5),

Tn − ‖μ1 − μ2‖2
√

Var(Tn)

d→ N(0,1) as p → ∞ and n → ∞.

The asymptotic normality is attained without imposing any explicit restriction
between p and n directly. The only restriction on the dimension is (3.6) or (3.7).
As the discussion given just before Theorem 1 suggests, (3.7) is satisfied provided
that the number of divergent eigenvalues of � are not too many, and the divergence
is not too fast. The reason for attaining this in the case of high-data-dimension is
because the statistic Tn is univariate, despite the fact that the hypothesis H0 is of
high dimension. This is different from using a high-dimensional statistic. Indeed,
Portnoy (1986) considers the central limit theorem for the p-dimensional sample
mean X̄ and finds that the central limit theorem is not valid if p is not a smaller
order of

√
n.
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As shown in Section 6.1, Var(Tn) = σ 2
n {1 + o(1)} where, under (3.4),

σ 2
n =: σ 2

n1 = 2

n1(n1 − 1)
tr(�2

1) + 2

n2(n2 − 1)
tr(�2

2) + 4

n1n2
tr(�1�2)(3.9)

and under (3.5),

σ 2
n =: σ 2

n2 = 4

n1
(μ1 − μ2)

′�1(μ1 − μ2) + 4

n2
(μ1 − μ2)

′�2(μ1 − μ2).(3.10)

In order to formulate a test procedure based on Theorem 1, σ 2
n1 in (3.9) needs to

be estimated. Bai and Saranadasa (1996) used the following estimator for tr(�2)

under �1 = �2 = �:

̂tr(�2) = n2

(n + 2)(n − 1)

{
trS2

n − 1

n
(trSn)

2
}
.

Motivated by the benefits of excluding terms like
∑ni

j=1 X′
ijXij in the formula-

tion of Tn, we propose the following estimator of tr(�2
i ) and tr(�1�2):

̂tr(�2
i ) = {ni(ni − 1)}−1 tr

{
ni∑

j �=k

(
Xij − X̄i(j,k)

)
X′

ij

(
Xik − X̄i(j,k)

)
X′

ik

}

and

̂tr(�1�2) = (n1n2)
−1 tr

{
n1∑
l=1

n2∑
k=1

(
X1l − X̄1(l)

)
X′

1l

(
X2k − X̄2(k)

)
X′

2k

}
,

where X̄i(j,k) is the ith sample mean after excluding Xij and Xik , and X̄i(l) is
the ith sample mean without Xil . These are similar to the idea of cross-validation,
in that when we construct the deviations of Xij and Xik from the sample mean,
both Xij and Xik are excluded from the sample mean calculation. By doing so,

the above estimators ̂tr(�2
i ) and ̂tr(�1�2) can be written as the trace of sums of

products of independent matrices. We also note that subtraction of only one sample
mean per observation is needed in order to avoid a term like ‖Xij‖4 which is harder
to control asymptotically without an explicit assumption between p and n.

The next theorem shows that the above estimators are ratio-consistent to tr(�2
i )

and tr(�1�2), respectively.

THEOREM 2. Under the assumptions (3.1)–(3.4) and (3.6), for i = 1 or 2,

̂tr(�2
i )

tr(�2
i )

p→ 1 and
̂tr(�1�2)

tr(�1�2)

p→ 1 as p and n → ∞.
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A ratio-consistent estimator of σ 2
n1 under H0 is

σ̂ 2
n1 = 2

n1(n1 − 1)

̂tr(�2
1) + 2

n2(n2 − 1)

̂tr(�2
2) + 4

n1n2

̂tr(�1�2).

This together with Theorem 1 leads to the test statistic,

Qn = Tn/σ̂n1
d→ N(0,1) as p and n → ∞,

under H0. The proposed test with an α level of significance rejects H0 if Qn > ξα

where ξα is the upper α quantile of N(0,1).
Theorems 1 and 2 allow us to discuss the power properties of the proposed test.

The discussion is made under (3.4) and (3.5), respectively. The power under the
local alternative (3.4) is

βn1(‖μ1 − μ2‖) = �

(
−ξα + nk(1 − k)‖μ1 − μ2‖2√

2 tr{�̃(k)2}

)
,(3.11)

where �̃(k) = (1−k)�1 +k�2 and � is the standard normal distribution function.
The power of Bai–Saranadasa test has the same form if �1 = �2 and if p and n

are of the same order.
The power under (3.5) is

βn2(‖μ1 − μ2‖) = �

(
−σn1

σn2
ξα + ‖μ1 − μ2‖2

σn1

)
= �

(‖μ1 − μ2‖2

σn1

)
as σn1/σn2 → 0. Substitute the expression for σn1, and we have

βn2(‖μ1 − μ2‖) = �

(
nk(1 − k)‖μ1 − μ2‖2√

2 tr{�̃(k)2}

)
.(3.12)

Both (3.11) and (3.12) indicate that the proposed test has nontrivial power under
the two cases of the alternative hypothesis as long as

n‖μ1 − μ2‖2/

√
tr{�̃(k)2}

does not vanish to 0 as n and p → ∞. The flavor of the proposed test is differ-
ent from tests formulated by combining p marginal tests on H0l [defined after
(1.1)] for l = 1, . . . , p. The test statistics of such tests are usually constructed via
max1≤l≤p Tnl where Tnl is a marginal test statistic for H0l . This is the case of
Kosorok and Ma (2007) and Fan, Hall and Yao (2007). A condition on p and n is
needed to ensure (i) the convergence of max1≤l≤p Tnl , and (ii) p can reach an order
of exp(αnβ) for positive constants α and β . Usually some additional assumptions
are needed; for instance, Kosorok and Ma (2007) assume each component of the
random vector has compact support for testing means.

Naturally, if the number of significant univariate hypotheses (μ1l �= μ2l) is a lot
less than p, which is the so-called sparsity scenario, a simultaneous test like the
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one we propose may encounter a loss of power. This is actually quantified by the
power expression (3.11). Without loss of generality, suppose that each μi can be

partitioned as (μ
(1)′
i ,μ

(2)′
i )′ so that under H1 :μ(1)

1 = μ
(1)
2 and μ

(2)
1 �= μ

(2)
2 where

μ
(1)
i is of p1-dimensional and μ

(2)
i is of p2-dimensional and p1 + p2 = p. Then

‖μ1 −μ2‖ = p2δ
2 for some positive constant δ2. Suppose that λm0 be the smallest

nonzero eigenvalue of �̃(k). Then under the local alternative (3.4), the asymptotic
power is bounded above and below by

�

(
−ξα + nk(1 − k)p2δ

2
√

2pλp

)
≤ β(‖μ1 − μ2‖) ≤ �

(
−ξα + nk(1 − k)p2δ

2
√

2(p − m0)λm0

)
.

If p is very large relative to n and p2 under both high-dimensionality and sparsity,
so that nk(1 − k)p2η

2/
√

2(p − m0) → 0, the test could endure low power. With
this in mind, we check on the performance of the test under sparsity in simulation
studies in Section 5. The simulations show that the proposed test has a robust power
and is in fact more powerful than tests based on multiple comparisons with either
the Bonferroni or false discovery rate (FDR) procedures. We note here that, due
to the multivariate nature of the test and the hypothesis, the proposed test cannot
identify which components are significant after the null multivariate hypothesis is
rejected. Additional follow-up procedures have to be employed for that purpose.
The proposed test becomes very useful when the purpose is to identify significant
groups of components like sets of genes, as illustrated in Section 4. The above
discussion can be readily extended to the case of (3.5) due to the similarity in the
two power functions.

The proposed two-sample test can be modified for paired observations {(Yi1,

Yi2)}ni=1 where Yi1 and Yi2 are two measurements of p-dimensions on a subject
i before and after a treatment. Let Xi = Yi2 − Yi1, μ = E(Xi) and � = Var(Xi).
This is effectively a one-sample problem with high-dimensional data. The hypoth-
esis of interest is

H0 :μ = 0 vs. H1 :μ �= 0.

We can use Fn = ∑n
i �=j X′

iXj/{n(n − 1)} as the test statistic. It is readily shown

that E(Fn) = μ′μ and Var(Fn) = 2
n(n−1)

tr(�2
1){1 + o(1)} under both H0 and H1

if we assume a condition similar to (3.4) so that μ′�μ = o{n−1 tr(�2)}, and the
asymptotic normality of Fn by adding tr(�4) = o{tr2(�2)}, a variation of (3.6),
can be established by utilizing part of the proof on the asymptotic normality of Tn.

The tr(�2) can be ratio-consistently estimated with n1 replaced by n in ̂tr(�2
1)

which leads to a ratio-consistent variance estimation for Fn. Then the test and its
power can be written out in similar ways as those for the two-sample test.

When p = O(1), which may be viewed as having finite dimension, the asymp-
totic normality as conveyed in Theorem 1 may not be valid anymore. It may
be shown under conditions (3.1)–(3.4) without (3.6), as condition (3.6) is no
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longer relevant when p is bounded, that the test statistic (n1 + n2)Tn converges
to

∑2p
l=1 ηlχ

2
1,l where {χ2

1,l}2p
l=1 are independent χ2

1 distributed random variables,

and {ηl}2p
l=1 is a set of constants. The conclusion of Theorem 2 remains valid when

p is bounded. The proposed test can still be used for testing in this situation of
bounded dimension with estimated critical values via estimation of {ηl}2p

l=1. How-
ever, people may like to use a test specially catered for such a case such as, for
instance, Hotelling’s test.

4. Gene-set testing. Identifying sets of genes which are significant with re-
spect to certain treatments is the latest development in genetics research [see Barry,
Nobel and Wright (2005), Recknor, Nettleton and Reecy (2008), Efron and Tib-
shrini (2007) and Newton et al. (2007)]. Biologically speaking, each gene does not
function individually in isolation. Rather, one gene tends to work with other genes
to achieve certain biological tasks.

Suppose that S1, . . . , Sq be q sets of genes, where the gene-set Sg consists of
pg genes. Let F1Sg and F2Sg be the distribution functions corresponding to Sg

under the treatment and control, and μ1Sg and μ2Sg be their respective means. The
hypothesis of interest is

H0g :μ1Sg = μ2Sg for g = 1, . . . , q.

The gene sets {Sg}qg=1 can overlap as a gene can belong to several functional
groups, and pg , the number of genes in a set, can range from a moderate to a very
large number. So, there are issues of both multiplicity and high-dimensionality in
gene-set testing.

We propose applying the proposed test for the significance of each gene-set Sg

when pg is large. When pg is of low-dimension, Hotelling’s test may be used.
Let pvg , g = 1, . . . , q be the P -values obtained from these tests. To control the
overall family-wise error rate, we can employ the Bonferroni procedure; to control
FDR, we can use Benjamini and Hochberg’s (1995) method or its variations as in
Benjamini and Yekutieli (2001) and Storey, Taylor and Siegmund (2004). These
lead to control of the family-wise error rate or FDR in the context of gene-sets
testing. In contrast, tests based on univariate testing have difficulties in producing
P -values for gene-sets.

Acute lymphoblastic leukemia (ALL) is a form of leukemia, a cancer of white
blood cells. The ALL data [Chiaretti et al. (2004)] contains microarray expres-
sions for 128 patients with either T-cell or B-cell type leukemia. Within the B-cell
type leukemia, there are two sub-classes representing two molecular classes: the
BCR/ABL class and NEG class. The data set has been analyzed by Dudoit, Keles
and van der Laan (2008) using a different technology.

Gene-sets are technically defined in gene ontology (GO) system that provides
structured and controlled vocabularies producing names of gene-sets (also called
GO terms). There are three groups of gene ontologies of interest: biological
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processes (BP), cellular components (CC) and molecular functions (MF). We car-
ried out preliminary screening for gene-filtering using the approach in Gentleman
et al. (2005), which left 2391 genes for analysis. There are 575 unique GO terms in
BP category, 221 in MF and 154 in CC for the ALL data. The largest gene-set con-
tains 2059 genes in BP, 2112 genes in MF and 2078 genes in CC; and the GO terms
of the three categories share 1861 common genes. We are interested in detecting
differences in the expression levels of gene-sets between the BCR/ABL molecular
sub-class (n1 = 37) and the NEG molecular sub-class (n2 = 42) for each of the
three categories.

We applied the proposed two-sample test with a 5% significance level to test
each of the gene-sets in conjunction with the Bonferroni correction to control the
family-wise error rate at 0.05 level. It was found that there were 259 gene-sets
declared significant in the BP group, 110 in the MF group and 53 in the CC group.
Figure 1 displays the histograms of the P -values and the values of test statistic
Qn for the three gene-categories. It shows a strong nonuniform distribution of the
P -values with a large number of P -values clustered near 0. At the same time, the
Qn-value plots indicate the average Qn-values are much larger than zero. These
explain the large number of significant gene-sets detected by the proposed test.

The number of the differentially expressed gene-sets may seem to be high. This
was mainly due to overlapping gene-sets. To appreciate this point, we computed for
each (say ith) significant gene-set, the number of other significant gene-sets which
overlapped with it, say bi ; and obtained the average of {bi} and their standard
deviation. The average number of overlaps (standard deviation) for BP group was
198.9 (51.3), 55.6 (25.2) for MF and 41.6 (9.5) for CC. These number are indeed
very high and reveals the gene-sets and their P -values are highly dependent.

Finally, we carried out back-testing for the same hypothesis by randomly split-
ting the 42 NEG class into two sub-classes of equal sample size and testing for
mean differences. This set-up led to the situation of H0. Figure 2 reports the P -
values and Qn-values for the three gene ontology groups. We note that the distri-
butions of the P -values are much closer to the uniform distribution than Figure 1.
It is observed that the histograms of Qn-values are centered close to zero and are
much closer to the normal distribution than their counterparts in Figure 1 which is
reassuring.

5. Simulation studies. In this section, we report results from simulation stud-
ies which were designed to evaluate the performance of the proposed two-sample
tests for high-dimensional data. For comparison, we also conducted the test pro-
posed by Bai and Saranadasa (1996) (BS test), and two tests based on multiple
comparison procedures by employing the Bonferroni and the FDR control [Ben-
jamini and Hochberg (1995)]. The procedure controls the family-wise error rate
at a level of significance α which coincides with the significance for the FDR
control, the proposed test and the BS test. In the two multiple comparison proce-
dures, we conducted univariate two-sample t-tests for the univariate hypotheses
H0l :μ1l = μ2l vs H1l :μ1l �= μ2l for l = 1,2, . . . , p.
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FIG. 1. Two-sample tests for differentially expressed gene-sets between BCR/ABL and NEG class
ALL: histograms of P -values (left panels) and Qn-values (right panels) for BP, CC and MF gene
categories.

Two simulation models for Xij are considered. One has a moving average struc-
ture that allows a general dependent structure; the other could allocate the the al-
ternative hypotheses sparsely which enables us to evaluate the performance of the
tests under sparsity.

5.1. Moving average model. The first simulation model has the following
moving average structure:

Xijk = ρ1Zijk + ρ2Zijk+1 + · · · + ρpZijk+p−1 + μij

for i = 1 and 2, j = 1,2, . . . , ni and k = 1,2, . . . , p where {Zijk} are, respectively,
i.i.d. random variables. We consider two distributions for the innovations {Zijk}.
One is a centralized Gamma(4,1) so that it has zero mean, and the other is N(0,1).
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FIG. 2. Back-testing for differentially expressed gene-sets between two randomly assigned NEG
groups: histograms of P -values (left panels) and Qn-values (right panels) for BP, CC and MF gene
categories.

For each distribution of {Zijk}, we consider two configurations of dependence
among components of Xij . One has weaker dependence with ρl = 0 for l > 3.
This prescribes a “two dependence” moving average structure where Xijk1 and
Xijk2 are dependent only if |k1 − k2| ≤ 2. The {ρl}3

l=1 are generated independently
from U(2,3) which are ρ1 = 2.883, ρ2 = 2.794 and ρ3 = 2.849 and are kept fixed
throughout the simulation. The second configuration has all ρl’s generated from
U(2,3), and again remain fixed throughout the simulation. We call this the “full
dependence case.” The above dependence structures assigns equal covariance ma-
trices �1 = �2 = � and allows a meaningful comparison with the BS test.

Without loss of generality, we fix μ1 = 0 and choose μ2 in the same fashion
as Benjamini and Hochberg (1995). Specifically, the percentage of true null hy-
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TABLE 1
Empirical power and size for the 2-dependence model with Gamma innovation

Type of
allocation

p = 500,n = 124 p = 1000,n = 138

% of true null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% 0.511 0.399 0.13 0.16 0.521 0.413 0.11 0.16
25% 0.521 0.387 0.14 0.16 0.518 0.410 0.12 0.16
50% 0.513 0.401 0.13 0.17 0.531 0.422 0.12 0.17
75% 0.522 0.389 0.13 0.18 0.530 0.416 0.11 0.17
95% 0.501 0.399 0.14 0.16 0.500 0.398 0.13 0.17
99% 0.499 0.388 0.13 0.15 0.507 0.408 0.15 0.18

100% (size) 0.043 0.043 0.040 0.041 0.043 0.042 0.042 0.042

Increasing 0% 0.520 0.425 0.11 0.13 0.522 0.409 0.12 0.15
25% 0.515 0.431 0.12 0.15 0.523 0.412 0.14 0.16
50% 0.512 0.412 0.13 0.15 0.528 0.421 0.15 0.17
75% 0.522 0.409 0.15 0.17 0.531 0.431 0.16 0.19
95% 0.488 0.401 0.14 0.15 0.500 0.410 0.15 0.17
99% 0.501 0.409 0.15 0.17 0.511 0.412 0.15 0.16

100% (size) 0.042 0.041 0.040 0.041 0.042 0.040 0.039 0.041

Decreasing 0% 0.522 0.395 0.11 0.15 0.533 0.406 0.09 0.15
25% 0.530 0.389 0.11 0.15 0.530 0.422 0.11 0.17
50% 0.528 0.401 0.12 0.17 0.522 0.432 0.12 0.17
75% 0.533 0.399 0.13 0.18 0.519 0.421 0.12 0.17
95% 0.511 0.410 0.12 0.15 0.508 0.411 0.15 0.18
99% 0.508 0.407 0.14 0.15 0.507 0.418 0.16 0.17

100% (size) 0.041 0.042 0.041 0.042 0.042 0.040 0.040 0.042

potheses μ1l = μ2l for l = 1, . . . , p were chosen to be 0%, 25%, 50%, 75%, 95%
and 99% and 100%, respectively. By experimenting with 95% and 99% we gain
information on the performance of the test when μ1l �= μ2l are sparse. It pro-
vides empirical checks on the potential concerns of the power of the simultane-
ous high-dimensional tests as made at the end of Section 3. At each percentage
level of true null, three patterns of allocation are considered for the nonzero μ2l in
μ2 = (μ21, . . . ,μ2p)′: (i) the equal allocation where all the nonzero μ2l are equal;
(ii) linearly increasing and (iii) linearly decreasing allocations as specified in Ben-
jamini and Hochberg (1995). To make the power comparable among the configu-
rations of H1, we set η =: ‖μ1 − μ2‖2/

√
tr(�2) = 0.1 throughout the simulation.

We chose p = 500 and 1000 and n = [20 log(p)] = 124 and 138, respectively.
Tables 1 and 2 report the empirical power and size of the four tests with Gamma

innovations at a 5% nominal significance level or family-wise error rate or FDR
based on 5000 simulations. The results for the normal innovations have a simi-
lar pattern, and are not reported here. The simulation results in Tables 1 and 2
can be summarized as follows. The proposed test is much more powerful than the
Bai–Saranadasa test for all cases considered in the simulation while maintaining
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TABLE 2
Empirical power and size for the full-dependence model with Gamma innovation

Type of
allocation

p = 500,n = 124 p = 1000,n = 138

% of true null NEW BS Bonf FDR NEW BS Bonf FDR

Equal 0% 0.322 0.120 0.08 0.10 0.402 0.216 0.09 0.11
25% 0.318 0.117 0.08 0.10 0.400 0.218 0.08 0.11
50% 0.316 0.115 0.09 0.11 0.409 0.221 0.09 0.10
75% 0.307 0.113 0.10 0.12 0.410 0.213 0.09 0.13
95% 0.233 0.128 0.11 0.14 0.308 0.215 0.10 0.13
99% 0.225 0.138 0.12 0.15 0.316 0.207 0.11 0.12

100% (size) 0.041 0.041 0.043 0.043 0.042 0.042 0.040 0.041

Increasing 0% 0.331 0.121 0.09 0.12 0.430 0.225 0.10 0.11
25% 0.336 0.119 0.10 0.12 0.423 0.231 0.12 0.12
50% 0.329 0.123 0.12 0.14 0.422 0.226 0.13 0.14
75% 0.330 0.115 0.12 0.15 0.431 0.222 0.14 0.15
95% 0.219 0.120 0.12 0.13 0.311 0.218 0.14 0.15
99% 0.228 0.117 0.13 0.15 0.315 0.217 0.15 0.17

100% (size) 0.041 0.040 0.042 0.043 0.042 0.042 0.040 0.042

Decreasing 0% 0.320 0.117 0.08 0.11 0.411 0.213 0.08 0.10
25% 0.323 0.119 0.09 0.11 0.408 0.210 0.08 0.11
50% 0.327 0.120 0.11 0.12 0.403 0.208 0.09 0.10
75% 0.322 0.122 0.12 0.12 0.400 0.211 0.12 0.13
95% 0.217 0.109 0.12 0.15 0.319 0.207 0.12 0.15
99% 0.224 0.111 0.13 0.16 0.327 0.205 0.11 0.13

100% (size) 0.042 0.043 0.039 0.041 0.042 0.211 0.040 0.041

a reasonably-sized approximation to the nominal 5% level. Both the proposed test
and the Bai–Saranadasa test are more powerful than the two tests based on the mul-
tiple univariate testing using the Bonferroni and FDR procedures. This is expected
as both the proposed and Bai–Saranadasa test are designed to test for the entire
p-dimensional hypotheses while the multiple testing procedures are targeted at the
individual univariate hypothesis. What is surprising is that when the percentage of
true null is high, at 95% and 99%, the proposed test still is much more powerful
than the two multiple testing procedures for all three allocations of the nonzero
components in μ2. It is observed that the sparsity (95% and 99% true null) does
reduce the power of the proposed test a little. However, the proposed test still en-
joys good power, especially when compared with the other three tests. We also
observe that when there is more dependence among multivariate components of
the data vectors in the full dependence model, there is a drop in the power for each
of the tests. The power of the tests based on the Bonferroni and FDR procedures
is alarmingly low and is only slightly larger than the nominal significance level.

We also collected information on the quality of tr(�2) estimation. Table 3 re-

ports empirical averages and standard deviation of ̂tr(�2)/ tr(�2). It shows that
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TABLE 3
Empirical averages of ̂tr(�2)/ tr(�2) with standard deviations in the parentheses

Type of
innovation

Type of
dependence

p = 500,n = 124

NEW BS tr(�2)

Normal 2-dependence 1.03 (0.015) 1.39 (0.016) 3102
Full-dependence 1.008 (0.00279) 1.17 (0.0032) 35,911

Gamma 2-dependence 1.03 (0.006) 1.10 (0.007) 14,227
Full-dependence 1.108 (0.0019) 1.248 (0.0017) 152,248

p = 1000, n = 138

Normal 2-dependence 0.986 (0.0138) 1.253 (0.0136) 6563
Full-dependence 0.995 (0.0026) 1.072 (0.0033) 76,563

Gamma 2-dependence 1.048 (0.005) 1.138 (0.006) 32,104
Full-dependence 1.088 (0.00097) 1.231 (0.0013) 325,879

the proposed estimator for tr(�2) has a much smaller bias and standard deviation
than those proposed in Bai and Saranadasa (1996) in all cases, and provides an
empirical verification for Theorem 2.

5.2. Sparse model. An examination of the previous simulation setting reveals
that the strength of the “signals” μ2l − μ1l corresponding to the alternative hy-
potheses are low relative to the level of noise (variance) which may not be a fa-
vorable situation for the two tests based on multiple univariate testing. To gain
more information on the performance of the tests under sparsity, we consider the
following simulation model such that

X1il = Z1il and X2il = μl + Z2il for l = 1, . . . , p,

where {Z1il,Z2il}pl=1 are mutually independent N(0,1) random variables, and the
“signals,”

μl = ε
√

2 log(p) for l = 1, . . . , q = [pc] and μl = 0 for l > q,

for some c ∈ (0,1). Here q is the number of significant alternative hypotheses. The
sparsity of the hypotheses is determined by c: the smaller the c is, the more sparse
the alternative hypotheses with μl �= 0. This simulation model is similar to the one
used in Abramovich et al. (2006).

According to (3.11), the power of the proposed test has the asymptotic power

β(‖μ‖) = �

(
−ξα + np(c−1/2)ε2 log(p)

2
√

2

)
,
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TABLE 4
Empirical power and size for the sparse model

ε = 0.25 ε = 0.15

c = 0.25 c = 0.45 c = 0.35 c = 0.55
Sample size
(n1 = n2) Methods Power Size Power Size Power Size Power Size

10 FDR 0.084 0.056 0.180 0.040 0.044 0.034 0.066 0.034
Bonf 0.084 0.056 0.170 0.040 0.044 0.034 0.062 0.032
New 0.100 0.046 0.546 0.056 0.072 0.064 0.344 0.064

20 FDR 0.380 0.042 0.855 0.044 0.096 0.036 0.326 0.058
Bonf 0.368 0.038 0.806 0.044 0.092 0.034 0.308 0.056
New 0.238 0.052 0.976 0.042 0.106 0.052 0.852 0.046

30 FDR 0.864 0.042 1 0.060 0.236 0.048 0.710 0.038
Bonfe 0.842 0.038 0.996 0.060 0.232 0.048 0.660 0.038
New 0.408 0.050 0.998 0.058 0.220 0.054 0.988 0.042

which indicates that the test has a much reduced power if c < 1/2 with respect to p.
We, therefore, chose p = 1000 and c = 0.25,0.35,0.45 and 0.55, respectively,
which leads to q = 6,11,22, and 44, respectively. We call c = 0.25,0.35 and 0.45
the sparse cases.

In order to prevent trivial powers of α or 1 in the simulation, we set ε = 0.25
for c = 0.25 and 0.45; and ε = 0.15 for c = 0.35 and 0.55. Table 4 summarizes the
simulations results based on 500 simulations. It shows that in the extreme sparse
cases of c = 0.25, the FDR and Bonferroni tests have lower power than the pro-
posed test. The power is largely similar among the three tests for c = 0.35. How-
ever, when the sparsity is moderated to c = 0.45, the proposed test starts to surpass
the FDR and Bonferroni procedures. The gap in power performance is further in-
creased when c = 0.55. Table 5 reports the quality of the variance estimation in
Table 5 which shows the proposed variance estimators incur very little bias and
variance for even very small sample sizes of n1 = n2 = 10.

TABLE 5
Average ratios of σ̂ 2

M/σ 2
M and their standard deviation (in parenthesis) for the sparse model

ε = 0.25 ε = 0.15

Sample size True σ 2
M c = 0.25 c = 0.45 c = 0.35 c = 0.55

n1 = n2 = 10 84.4 1.003 (0.0123) 1.005 (0.0116) 0.998 (0.0120) 0.999 (0.0110)
n1 = n2 = 20 20.5 1.003 (0.0033) 1.000 (0.0028) 1.003 (0.0028) 1.002 (0.0029)
n1 = n2 = 30 9.0 0.996 (0.0013) 0.998 (0.0013) 1.004 (0.0014) 0.999 (0.0013)
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6. Technical details.

6.1. Derivations for E(Tn) and Var(Tn). As

Tn =
∑n1

i �=j X′
1iX1j

n1(n1 − 1)
+

∑n2
i �=j X′

2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 X′

1iX2j

n1n2
,

it is straightforward to show that E(Tn) = μ′
1μ1 + μ′

2μ2 − 2μ′
1μ2 = ‖μ1 − μ2‖2.

Let P1 =
∑n1

i �=j X′
1iX1j

n1(n1−1)
, P2 =

∑n2
i �=j X′

2iX2j

n2(n2−1)
and P3 = −2

∑n1
i=1

∑n2
j=1 X′

1iX2j

n1n2
. It can be

shown that

Var(P1) = 2

n1(n1 − 1)
tr(�2

1) + 4μ′
1�1μ1

n1
,

Var(P2) = 2

n2(n2 − 1)
tr(�2

2) + 4μ′
2�2μ2

n2

and

Var(P3) = 4

n1n2
tr(�1�2) + 4μ′

2�1μ2

n1
+ 4μ′

1�2μ1

n2
.

Because the two samples are independent, Cov(P1,P2) = 0. Also,

Cov(P1,P3) = −4μ′
1�1μ2

n1
and Cov(P2,P3) = −4μ′

1�2μ2

n2
.

In summary,

Var(Tn) = 2

n1(n1 − 1)
tr(�2

1) + 2

n2(n2 − 1)
tr(�2

2) + 4

n1n2
tr(�1�2)

+ 4

n1
(μ1 − μ2)

′�1(μ1 − μ2) + 4

n2
(μ1 − μ2)

′�2(μ1 − μ2).

Thus, under H0,

Var(Tn) = σ 2
n1 =: 2

n1(n1 − 1)
tr(�2

1) + 2

n2(n2 − 1)
tr(�2

2) + 4

n1n2
tr(�1�2).

Under H1 :μ1 �= μ2, with (3.4),

Var(Tn) = σ 2
n1{1 + o(1)};

and with (3.5),

Var(Tn) = σ 2
n2{1 + o(1)},

where σn2 = 4
n1

(μ1 − μ2)
′�1(μ1 − μ2) + 4

n2
(μ1 − μ2)

′�2(μ1 − μ2).
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6.2. Asymptotic normality of Tn. We note that Tn = Tn1 + Tn2 where

Tn1 =
∑n1

i �=j (X1i − μ1)
′(X1j − μ1)

n1(n1 − 1)
+

∑n2
i �=j (X2i − μ2)

′(X2j − μ2)

n2(n2 − 1)
(6.1)

− 2

∑n1
i=1

∑n2
j=1(X1i − μ1)

′(X2j − μ2)

n1n2

and

Tn2 = 2
∑n1

i=1(X1i − μ1)
′(μ1 − μ2)

n1
+ 2

∑n2
i=1(X2i − μ2)

′(μ2 − μ1)

n2

+ μ′
1μ1 + μ′

2μ2 − 2μ′
1μ2.

It is easy to show that E(Tn1) = 0 and E(Tn2) = ‖μ1 − μ2‖2, and

Var(Tn2) = 4n−1
1 (μ1 − μ2)

′�1(μ1 − μ2) + 4n−1
2 (μ2 − μ1)

′�2(μ2 − μ1).

Under (3.4), as

Var
(

Tn2 − ‖μ1 − μ2‖2

σn1

)
= o(1),

(6.2)
Tn − ‖μ1 − μ2‖2

√
Var(Tn)

= Tn1

σn1
+ op(1).

Under (3.5),

Tn − ‖μ1 − μ2‖2
√

Var(Tn)
= Tn2 − ‖μ1 − μ2‖2

σn2
+ op(1).(6.3)

As Tn2 are independent sample averages, its asymptotic normality is readily at-
tainable as shown later. The main task of the proof is for the case under (3.4) when
Tn1 is the contributor of the asymptotic distribution. From (6.1), in the derivation
for the asymptotic normality of Tn1, we can assume without loss of generality that
μ1 = μ2 = 0.

Let Yi = X1i for i = 1, . . . , n1 and Yj+n1 = X2j for j = 1, . . . , n2, and for i �= j

φij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−1

1 (n1 − 1)−1Y ′
i Yj , if i, j ∈ {1,2, . . . , n1},

−n−1
1 n−1

2 Y ′
i Yj , if i ∈ {1,2, . . . , n1}

and j ∈ {n1 + 1, . . . , n1 + n2},
n−1

2 (n2 − 1)−1Y ′
i Yj , if i, j ∈ {n1 + 1, . . . , n1 + n2}.

Define Vnj = ∑j−1
i=1 φij for j = 2,3, . . . , n1 + n2, Snm = ∑m

j=2 Vnj and Fnm =
σ {Y1, Y2, . . . , Ym} which is the σ algebra generated by {Y1, Y2, . . . , Ym}. Now

Tn = 2
n1+n2∑
j=2

Vnj .
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LEMMA 1. For each n, {Snm, Fnm}nm=1 is the sequence of zero mean and a
square integrable martingale.

PROOF. It’s obvious that Fnj−1 ⊆ Fnj , for any 1 ≤ j ≤ n and Snm is of
zero mean and square integrable. We only need to show E(Snq |Fnm) = Snm for

any q ≥ m. We note that if j ≤ m ≤ n, then E(Vnj |Fnm) = ∑j−1
i=1 E(φij |Fnm) =∑j−1

i=1 φij = Vnj . If j > m, then E(φij |Fnm) = E(Y ′
i Yj |Fnm).

If i > m, as Yi and Yj are both independent of Fnm,

E(φij |Fnm) = E(φij ) = 0.

If i ≤ m,E(φij |Fn,m) = E(Y ′
i Yj |Fn,m) = Y ′

i E(Yj ) = 0. Hence,

E(Vnj |Fn,m) = 0.

In summary, for q > m, E(Snq |Fnm) = ∑q
j=1 E(Vnj |Fnm) = ∑m

j=1 Vnj = Snm.
This completes the proof of the lemma. �

LEMMA 2. Under condition (3.4),∑n1+n2
j=2 E[V 2

nj |Fn,j−1]
σ 2

n1

P→ 1

4
.

PROOF. Note that

E(V 2
nj |Fnj−1) = E

{(j−1∑
i=1

Y ′
i Yj

)2∣∣∣∣Fnj−1

}
= E

( j−1∑
i1,i2=1

Y ′
i1
YjY

′
jYi2

∣∣∣∣Fnj−1

)

=
j−1∑

i1,i2=1

Y ′
i1
E(YjY

′
j |Fnj−1)Yi2 =

j−1∑
i1,i2=1

Y ′
i1
E(YjY

′
j )Yi2

=
j−1∑

i1,i2=1

Y ′
i1

�̃j

ñj (ñj − 1)
Yi2,

where �̃j = �1, ñj = n1, for j ∈ [1, n1] and �̃j = �2, ñj = n2, if j ∈ [n1 + 1,
n1 + n2].

Define

ηn =
n1+n2∑
j=2

E(V 2
nj |Fnj−1).

Then

E(ηn) = tr(�2
1)

2n1(n1 − 1)
+ tr(�2

2)

2n2(n2 − 1)
+ tr(�1�2)

(n1 − 1)(n2 − 1)
(6.4)

= 1

4
σ 2

n1
{1 + o(1)}.
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Now consider

E(η2
n) = E

{
n1+n2∑
j=2

j−1∑
i1,i2=1

Y ′
i1

�̃j

ñj (ñj − 1)
Yi2

}2

= E

{
2

n1+n2∑
2≤j1<j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

Y ′
i1

�̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

�̃j2

ñj2(ñj2 − 1)
Yi4

(6.5)

+
n1+n2∑
j=2

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

�̃j

ñj (ñj − 1)
Yi2Y

′
i3

�̃j

ñj (ñj − 1)
Yi4

}

= 2E(A) + E(B), say,

where

A =
n1+n2∑

2≤j1<j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

Y ′
i1

�̃j1

ñj1(ñj1 − 1)
Yi2Y

′
i3

�̃j2

ñj2(ñj2 − 1)
Yi4,

(6.6)

B =
n1+n2∑
j=2

j−1∑
i1,i2=1

j−1∑
i3,i4=1

Y ′
i1

�̃j

ñj (ñj − 1)
Yi2Y

′
i3

�̃j

ñj (ñj − 1)
Yi4 .

Derivations given in Chen and Qin (2008) show

2E(A) =
{

tr2(�2
1)

4n2
1(n1 − 1)2

+ tr2(�2
2)

4n2
2(n2 − 1)2

+ tr(�2
1) tr(�1�2)

n2
1(n1 − 1)(n2 − 1)

+ tr(�2
2) tr(�1�2)

(n1 − 1)n2(n2 − 1)
+ tr2(�2�1)

n1n2(n1 − 1)(n2 − 1)

+ tr(�2
1) tr(�2

2)

2n1(n1 − 1)n2(n2 − 1)

}
{1 + o(1)},

and E(B) = o(σ 2
n1

). Hence, from (6.5) and (6.6),

E(η2
n) =

{
tr2(�2

1)

4n2
1(n1 − 1)2

+ tr2(�2
2)

4n2
2(n2 − 1)2

+ tr(�2
1) tr(�1�2)

n2
1(n1 − 1)(n2 − 1)

+ tr(�2
2) tr(�1�2)

(n1 − 1)n2(n2 − 1)
+ tr2(�2�1)

n1n2(n1 − 1)(n2 − 1)
(6.7)

+ tr(�2
1) tr(�2

2)

2n1(n1 − 1)n2(n2 − 1)

}
+ o(σ 4

n1
).

Based on (6.4) and (6.7),

Var(ηn) = E(η2
n) − E2(ηn) = o(σ 4

n1
).(6.8)
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Combine (6.4) and (6.8), and we have

σ−2
n1

E

{
n1+n2∑
j=1

E(V 2
nj |Fn,j−1)

}
= σ−2

n1
E(ηn) = 1

4

and

σ−4
n1

Var

{
n1+n2∑
j=1

E(V 2
nj |Fn,j−1)

}
= σ−4

n1
Var(ηn) = o(1).

This completes the proof of Lemma 2. �

LEMMA 3. Under condition (3.4),
n1+n2∑
j=2

σ−2
n1

E{V 2
nj I (|Vnj | > εσn1)|Fnj−1} p−→ 0.

PROOF. We note that
n1+n2∑
j=2

σ−2
n1

E{V 2
nj I (|Vnj | > εσn1)|Fnj−1} ≤ σ−q

n1
ε2−q

n1+n2∑
j=1

E(V
q
nj |Fnj−1),

for some q > 2. By choosing q = 4, the conclusion of the lemma is true if we can
show

E

{
n1+n2∑
j=2

E(V 4
nj |Fnj−1)

}
= o(σ 4

n1
).(6.9)

We notice that

E

{
n1+n2∑
j=2

E(V 4
nj |Fnj−1)

}
=

n1+n2∑
j=2

E(V 4
nj ) = O(n−8)

n1+n2∑
j=2

E

(j−1∑
i=1

φij

)4

The last term can be decomposed as 3Q + P where

Q = O(n−8)

n1+n2∑
j=2

j−1∑
s �=t

E(Y ′
jYsY

′
sYjY

′
jYtY

′
t Yj )

and P = O(n−8)
∑n1+n2

j=2
∑j−1

s=1 E(Y ′
sYj )

4. Now (6.9) is true if 3Q + P = o(σ 4
n1

).
Note that

Q = O(n−8)

n1+n2∑
j=2

j−1∑
s �=t

E{tr(YjY
′
jYtY

′
t YjY

′
jYsY

′
s)}

= O(n−4)

{
n1∑

j=2

j−1∑
s �=t

E(Y ′
j�1YjY

′
j�1Yj ) +

n1+n2∑
j=n1+1

j−1∑
s �=t

E(Y ′
j�tYjY

′
j�sYj )

}

= o(σ 4
n1

).
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The last equation follows the similar procedure in Lemma 2 under (3.4).
It remains to show that P = O(n−8)

∑n1+n2
j=2

∑j−1
s=1 E(Y ′

sYj )
4 = o(σ 4

n1
). Note

that

P = O(n−8)

n1+n2∑
j=2

j−1∑
s=1

E(Y ′
sYj )

4

= O(n−8)

n1∑
j=2

j−1∑
s=1

E(Y ′
sYj )

4 + O(n−8)

n1+n2∑
j=n1+1

j−1∑
s=1

E(Y ′
sYj )

4

= O(n−8)

{
n1∑

j=2

j−1∑
s=1

E(X′
1sX1j )

4 +
n1+n2∑

j=n1+1

n1∑
s=1

E(X′
1sX2j−n1)

4

+
n1+n2∑

j=n1+1

j−1∑
s=n1+1

E(X′
2s−n1

X2j−n1)
4

}

= O(n−8)(P1 + P2 + P3),

where P1 = ∑n1
j=2

∑j−1
s=1 E(X′

1sX1j )
4, P2 = ∑n1+n2

j=n1+1
∑n1

s=1 E(X′
1sX2j−n1)

4 and

P3 =
n1+n2∑

j=n1+1

j−1∑
s=n1+1

E(X′
2s−n1

X2j−n1)
4.

Let us consider E(X′
1sX2j−n1)

4. Define �′
1�2 =: (vij )m×m and note the follow-

ing facts which will be used repeatedly in the rest of the Appendix:

m∑
i,j=1

v4
ij ≤

(
m∑

i,j=1

v2
ij

)2

= tr2(�′
1�2�

′
2�1)

= tr2(�2�1),

m∑
i=1

m∑
j1 �=j2

(v2
ij1

v2
ij2

) ≤
(

m∑
i,j=1

v2
ij

)2

= tr2(�2�1),

m∑
i1 �=i2

m∑
j1 �=j2

vi1j1vi1j2vi2j1vi2j2 ≤
m∑

i1 �=i2

v
(2)
i1i2

v
(2)
i1i2

≤
m∑

i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

,

m∑
i1,i2=1

v
(2)
i1i2

v
(2)
i1i2

= tr(�′
1�2�1�

′
1�2�1) =

m∑
i=1

v
(4)
ii

= tr{(�1�2)
2},

where �′
1�2�1 = (v

(2)
ij )m×m and (�′

1�2�1)
2 = (v

(4)
ij )m×m.
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From (3.1),

E(X′
1sX2j−n1)

4 =
m∑

i=1

m∑
j ′=1

(3 + �)2v4
ij ′ +

m∑
i=1

(3 + �)

m∑
j1 �=j2

v2
ij1

v2
ij2

+
m∑

j ′=1

(3 + �)

m∑
i1 �=i2

v2
i1j

v2
i2j

+ 9
m∑

i1 �=i2

m∑
j1 �=j2

vi1j1vi1j2vi2j1vi2j2

= O{tr2(�2�1)} + O{tr(�2�1)
2}.

Then we conclude

O(n−8)P2 =
n1+n2∑

j=n1+1

n1∑
s=1

[O{tr2(�2�1)} + O{tr(�2�1)
2}]

= O(n−5)[O{tr2(�2�1)} + O{tr(�2�1)
2}]

= o(σ 4
n1

).

We can also prove that O(n−8)P1 = o(σ 4
n1

) and O(n−8)P3 = o(σ 4
n1

) by going
through a similar procedure. This completes the proof of the lemma. �

PROOF OF THEOREM 1. We note equations (6.2) and (6.3) under conditions
(3.4) and (3.5), respectively. Based on Corollary 3.1 of Hall and Heyde (1980),

Lemmas 1, 2 and 3, it can be concluded that Tn1/σn1
d→ N(0,1). This implies the

desired asymptotic normality of Tn under (3.4). Under (3.5), as Tn2 is the sum of
two independent averages, its asymptotic normality can be attained by following
the standard means. Hence the theorem is proved. �

PROOF OF THEOREM 2. We only present the proof for the ratio consistency

of ̂tr(�2
1) as the proofs of the other two follow the same route. We want to show

E{̂tr(�2
1)} = tr(�2

1){1 + o(1)} and Var{̂tr(�2
1)} = o{tr2(�2

1)}.(6.10)

For notation simplicity, we denote X1j as Xj and �1 as �, since we are effectively
in a one-sample situation.

Note that

̂tr(�2) = {n(n − 1)}−1

× tr

[
n∑

j �=k

{
(Xj − μ)(Xj − μ)′(Xk − μ)(Xk − μ)′
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− 2
(
X̄(j,k) − μ

)
(Xj − μ)′(Xk − μ)(Xk − μ)′

}
+

n∑
j �=k

{
2(Xj − μ)μ′(Xk − μ)(Xk − μ)′

− 2
(
X̄(j,k) − μ

)
μ′(Xk − μ)(Xk − μ)′

}
+

n∑
j �=k

{(
X̄(j,k) − μ

)
(Xj − μ)′

(
X̄(j,k) − μ

)
(Xk − μ)′

}

−
n∑

j �=k

{
2(Xj − μ)μ′(X̄(j,k) − μ

)
(Xk − μ)′

− 2
(
X̄(j,k) − μ

)
μ′(X̄(j,k) − μ

)
(Xk − μ)′

}
+

n∑
j �=k

{
(Xj − μ)μ′(Xk − μ)μ′ − 2

(
X̄(j,k) − μ

)
μ′(Xk − μ)μ′}

+
n∑

j �=k

{(
X̄(j,k) − μ

)
μ′(X̄(j,k) − μ

)
μ′}]

=:
10∑
l=1

tr(Al), say.

It is easy to show that E{tr(A1)} = tr(�2), E{tr(Ai)} = 0 for i = 2, . . . ,9 and
E{tr(A10)} = μ′�μ/(n − 2) = o{tr(�2)}. The last equation is based on (3.4). This
leads to the first part of (6.10). Since tr(A10) is nonnegative and E{tr(A10)} =
o{tr(�2)}, we have tr(A10) = op{tr(�2)}. However, to establish the orders of other
terms, we need to derive Var{tr(Ai)}. We shall only show Var{tr(A1)} here. Deriva-
tions for other Var{tr(Ai)} are similar.

Note that

Var{tr(A1)} + tr2(�2)

= E

[
1

n(n − 1)
tr

{
n∑

j �=k

(Xj − μ)(Xj − μ)′(Xk − μ)(Xk − μ)′
}]2

= 1

n2(n − 1)2 E

[
tr

{
n∑

j1 �=k1

(Xj1 − μ)(Xj1 − μ)′(Xk1 − μ)(Xk1 − μ)′
}

× tr

{
n∑

j2 �=k2

(Xj2 − μ)(Xj2 − μ)′(Xk2 − μ)(Xk2 − μ)′
}]

.
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It can be shown, by considering the possible combinations of the subscripts
j1, k1, j2 and k2, that

Var{tr(A1)} = 2{n(n − 1)}−1E{(X1 − μ)′(X1 − μ)}4

+ 4(n − 2)

n(n − 1)
E{(X1 − μ)′�(X1 − μ)}2 + o{tr2(�2)}(6.11)

=: 2

n(n − 1)
B11 + 4(n − 2)

n(n − 1)
B12 + o{tr2(�2)},

where

B11 = E(Z′
1�

′�Z2)
4 = E

(
m∑

s,t=1

z1sνst z2t

)4

= E

(
m∑

s1,s2,s3,s4,t1,t2,t3,t4=1

νs1t1νs2t2νs3t3νs4t4z1s1z1s2z1s3z1s4z2t1z2t2z2t3z2t4

)

and

B12 = E(Z′
1�

′��′�Z1)
2 = E

(
m∑

s,t=1

z1sust z1t

)2

= E

(
m∑

s1,s2,t1,t2=1

us1t1us2t2z1s1z1s2z1t1z1t2

)
.

Here νst and ust are, respectively, the (s, t) element of �′� and �′��.
Since tr2(�2) = (

∑m
s,t=1 ν2

st )
2 = ∑m

s1,s2,t1,t2=1 ν2
s1t1

ν2
s2t2

and tr(�4) =∑m
t1,t2=1 u2

t1t2
. It can be shown that A11 ≤ c tr2(�2) for a finite positive number

c and hence {n(n − 1)}−1B11 = o{tr2(�2)}. It may also be shown that

B12 = 2
m∑

s,t=1

u2
st +

m∑
s,t=1

ussutt + �

m∑
s=1

u2
ss

= 2 tr(�4) + tr2(�2) + �

m∑
s=1

u2
ss

≤ (2 + �) tr(�4) + tr2(�2).

Therefore, from (6.11),

Var{tr(A1)} ≤ 2

n(n − 1)
c tr2(�2) + 4(n − 2)

n(n − 1)
{(2 + �) tr(�4) + tr2(�2)}

= o{tr2(�2)}.
This completes the proof. �
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