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Abstract

Partially linear models are assumed to be linearly related to one or more variable, but the
relation to an additional variable or variables is not assumed to be easily parameterized. One
primary approach to estimate the parameter and nonparametric part is the method of penalized
least squares method, generalized cross-validation (GCV) approach is a popular method for
selecting the smoothing parameters. However, the optimality of GCV in the partial linear model
with penalized least squares has not been proved. In this article, we provide the support for using
GCV through its optimality of the smoothing parameter. Simulation studies are employed to
investigate the empirical performance of generalized cross-validation and that of cross-validation
for comparison in the context.
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§1. Introduction

Inference in partially linear model has received considerable attention in the last decade, the

specific model considered here is
yi = g(t) +z; B + €, 1)

where, the regression function g(t) is assumed to be a unknown smooth function; 8=(81,82, - -, 8p)”
is a p x 1 vector of regression coefficient associated with covariates z; = (za,Zi2, -+ ,Zip)"; €
are normal distribution with zero-mean and o? variance and are independent of each other; fur-
thermore, the conditional expectation of ¢ given (T, X) equals zero. This models, also called the
semiparametric model, was proposed in Wahba (1984a) and Engle, Granger, Rice and Weiss (1986).

There have been several approaches to estimate 8 and g. One primary approach is the method
of penalized least squares introduced by Engle, Granger, Rice and Weiss (1986) and Wahba (1984a,

b) among others. Estimates are obtained by minimizing the quantity over 8 and g
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where the quadratic function J(g) quantifies the roughness of g. If ¢ is one dimensional in the
bounded domain D = [0 1}, for example, we can take

1
Jg) = /o g™t

which gives the cubic smoothing spline for m = 2. The smoothing parameter A chosen by the
statistician for a suitable fit controls the trade-off between the goodness-of-fit and the smoothness
of g. Solving this minimization problem produces simultaneous estimates of 8§ and g. Because
equation (2) is the extension of the equation defining smoothing spline to the partial linear model,
this estimator of g has been called a ‘partial smoothing spline’ by Wahba (1984b).

Penalized least squares are attractive for several reasons. The principle of adding a penalty
term J(g) to a sum of squares or more generally to a log-likelihood applies to a wide variety of
linear and non-linear problems, see O’Sullivan (1986). There is also a Bayesian interpretation to
the method as in, among others, Shiller (1984), Green, Jennison and Seheult (1985) and Eubank
(1986). Most importantly, these researchers report that the method simply seems to work well.

From a practical point of view, however, we are more concerned with asymptotic properties
when the smoothing parameter A is chosen by some data-driven methods, such as the generalized
cross-validation (GCV) proposed by Craven and Wahba (1979). To my knowledge, the optimality
of GCV in the partial linear model with penalized least squares has not been proved. As a result,
it is of interest to study the optimality of GCV methods since there is no reference for this.

The purpose of this article is the selection of smoothing parameters, i.e. A, through GCV
method, which is shown to yield optimal smoothing. The proofs for the optimality of GCV may
be easy to extend to the proof of the optimality of some other data-driven method, for example,
cross-validation (CV).

§2. Penalized Least Squares Methods

In this article, the model terms g and # in (1) will be estimated using the penalized least
squares method through the minimization of (2). The purpose of this article is to select the
smoothing parameters A by standard generalized cross-validation method of Craven and Wahba
(1979).

Consider the minimization of (2) for g in a g-dimensional space span {£;,---,&,}. Functions
in this space can be expressed as

]

9(t) = 3 c;&;(t) = € (t)e. 3)

=1

Plugging (3) into (2), one minimizes

(Y-Rc- XB) (Y — Rc— XB) +nAc"Qc 4)
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with respect to ¢ and 3, where R is a n x g with the (i, j)th entry &;(¢:), and Q is a g x ¢ with the
(7, k)th entry J(&;,&). Differentiating (4) with respect to ¢ and 8 and setting the derivatives to

0, one has
R"R+n)\Q R X c)_ ([ RY 5)
xR xxJ\s) \xv)/)
R"R+n)Q R'X
Assume that the matrix of < X':'I’; Q X% ) is invertible, the solution of (5) is then given

by

-~ T T _l T
<E)=(RR+n,\Q RX) (R)Y=A(,\)Y,
B X"R XX XT

and simple algebra derives

AN = AN + (I - AN)X(XT(T - AN)X) X7(T - A(N),
B=(X"(I-AM)X)'X7(I-AN)Y, §=AMN(y-XB),

where A(\) = R(R"R + nAQ)~!RT is the smoothing matrix when the linear part X5 are absent.

With the standard formulation of penalized least squares regression, the minimization of (4)
is in a so-called reproducing kernel Hilbert space, among others, see Gu (2002) in Chapter 2,
H C {g: J(g) < oo} in which J(g) is a square semi norm, and the solution exists in the space
N; @ span{Ry(t;,"), i = 1,2,---,n}, where N; = {g : J(g) = 0} is the null space of J(g) and
Ry(:,-) is the so-called reproducing kernel in H © N;. The expression of the solution is

g(t) = 2 dii(t) + E &Ry (tint), (6)

where {¢,}™, is a basis of ;. It follows that R = (S, é), where S is a n x m with the (i, j)th
entry ¢;(t;) and Q is a n x n with the (i, j)th entry Rjy(ti,t;). From the property of reproducing
kernel, we know that J(R;(t;,-), Rs(tj,-)) = Ry(ti,t;), 80 Q = diag(0, Q). See, e.g., Wahba (1990)
and Gu (2002).

The formulation of (3) and (4) also covers general penalized regression spline so long as (5) is
solvable. A sufficient condition for both R and X is to be of full column rank.

§3. Optimality of Generalized Cross-Validation

Generalized cross-validation offers a way to estimate appropriate values of parameters J, it,
to be minimized as a function of A, is given by
n YTl - A)?Y
(n—ttr(I — A))?°

where the arguments A are dropped from the notation of the smoothing matrix A. It will be

Ga(N) = (7)

shown in this section that the minimizers of G, ()) yield optimal smoothing asymptotically in the
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sense to be specified later. Numerical verification of the asymptotic analysis will be showed in this
section. Generalized cross-validation was proposed by Craven and Wahba (1979) for independent
data, with the asymptotic optimality established by Li (1986) in that setting, and by Hairdle and
Marron (1985) in the context of nonparametric regression with kernel estimator, see also Speckman
(1985) and Hirdle, Hall and Marron (1988) and the references therein.

Our aim in this paper is to select the optimal Amase which minimizes the following average
mean squared error (AMSE)

1 ~ ~
La(A) = —(E(Y) - Y)7(E(Y) - Y), (8)
which is a natural loss. Simple algebra yields
La(Y) = 2(g+ XB) (I - A)(g + XB) ~ 2(g+ XB)'(I ~ A)de+ +¢ A%

Taking expectation with respect to ¢, the risk is
1 2
Ra(X) = E(Ln(N) = (g + XB) (I - A(g + XB) + —tx(4?).

Let Xa and XMASE be the minimizers of Gn()\) and L,(A) respectively. The data-driven
smoothing parameter XG is called asymptotically optimal if

Ly, (:\};) /Ln (XM Ase) — 1 in probability.

Define
Ua()) = %Y’(I —APY + %a%r(A).

It is easily derive that
Un(A) = La(A) - %e’e = %(g + XB)T(I - A)e %(e’Ae - o?trA).

We shall establish the optimality under the following conditions.

C.1 Asn — 00, nR,(A) = 0.

C.2 Asn = oo, (n'tr(A))?/[n"1tr(4A7 A)] - 0.

In the absence of linear part, that is: model (1) change into a nonparametric model y; =
g(t;) + & (1 <i < n), the risk is seen to be n=1g” (I — A)2g + o2n='tr(A?) in this nonparametric
setting, and condition C.1 typically holds since n~1g" (I — x:f)zg = O(X*) for some s € [1,2], and
tr(A2) = O(A~1/") as A — 0 and nA!/" = oo for some r > 1 for univariate smoothing splines. See,
e.g., Craven and Wahba (1979), Wahba (1985), Gu (2002) and Gu (2005).In the partially linear
model, the following Lemma 2 will show the reasonableness of C.1. As to Condition C.2, in the
absence of linear part of model (1), that is, A = A it generally holds since trf{()‘) =0\ V") as
A = 0 and nAl/T = 0o, of the same order as trA2()). See, e.g., Craven and Wahba (1979), Wahba
(1985), Li (1986), Gu (2002) and Gu (2005). In the partially linear model, the following Lemma 3
illustrate the Condition C.2 clearly holds.



[ &% | HEH $H% AESRERYAETR S ARSI RAARRHER 183
Lemma 1l Asn — 0o, nAY/T = 00 and A = 0,
tr(A) = tr(A)(1 + 0,(1))  and  tr(A?) = tr(A%)(1 + 0p(1))-

proof of Lemma 1 This proof is similar as the Lemma 2 of Speckman (1988).  #
Lemma 2 Asn - 00, nAl/" = 00 and A = 0, then Rp(A) = O(A* + n~tA~Y/r),

proof of Lemma 2 Because

Ra(d) = —Ellg+Xp -5 XB*

= ZEl(g+ XB) - AN(g + XB +¢ - XB) - XBIP

= %uu — A)(g - Xbias(B))|? (squared bias term)
+%2{tr(z2) +2X7(I - A)A(I - A)X(X7(I - A)X)™?
+X7(I - A)?XVar (B)/0?} (variance term),

we have that the two main terms in squared bias term are
1 ~ 1 ~ o
I - A)gl? = 0(»*), Sl - )X II*bias®(8) = O(X),

and it can be shown that the variance term is dominated by o2n=1tr(4%) = O(n~1A~V/"). #
Lemma 3 Asn — oo, . .
(n~'tr(4))
n-1tr(A?) = 0.
Proof of Lemma 3 Given Lemma 1 and trA(A) = O(A='/7) as A = 0 and rAY/" = o0, of
the same order as trZ2(,\), the lemma 3 follows. #

Theorem 1 Under the Conditions C.1, as n — oo, one has
Un(X) ~ La(A) = =€"¢ = 0p(La(N).

Proof of Theorem 1 For the proof of theorem 1, it suffices to show that
n~1(e" Ae — a%trA) = 0,(Rn())),

n~} g+ XB)7(I — A)e = 0p(Ra(N)),
Un(A) = Ra(N) = op(Rn(/\))-

Note that
Var (n™le" Ae) = n~220%tr(A?),

and from Lemma 1 and Condition C.1, it can easily derived

Var(n~le" Ae) = n':lO(R,.(,\)) = o(Rn(\)?).
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From the following expression

Var (n™'(g + XB8)7(I — A)e) n~%0*(g + XB) (I - A)*(g + XB)
= n~20%g"(I - 4)’g,

and that the term (I — A)g is dominated by (I — A)g, it is easy to see that Var (n~1(g + X8)”
(I — A)e) = o(Rn())?). Likewise

Var(La(A) = o(Ra(A)?).  #
Theorem 2 Under the Conditions C.1 and C.2, as n — oo, one has
Ga(A) = La(}) — %e"c = op(La(N)).

Proof of theorem 2 Write p = n~ltrA()\) and > = n~'¢"e. Straightforward algebra
yields '

GalN) = La() ~ =€ = (—ITIW{Un(A) —20% — (La() +3%)(1 - )}
UnN) = L) =7 (2= puln() __ W8 245" - o)
= =2 A-p2 -2t a=pr

Note that n~!tr(4?) < 1, so Condition C.2 implies that 4 — 0. The first term is 0p(Ln())) by
Theorem 1. The second term is 0p(Ln())) since 4 = 0o. By Condition C.2, p? = 0p(Ln(X)), so
the third term is 0p(L,())). Combining this with 2 — 02 = 0,(n"1/2) = op(L,l,/ 2())), one obtains
0p(Ln(A)) for the fourth term. #

Furthermore, assume that

C.3 For any zero-mean random variable series (,()) satisfying (,(A\) = 0p(Rn())) and
Var ((a(\)) = 0*(RZ(})), we have (n,(A) = 05(Rn())), where oy(-) indicates op(-) holds uniformly
in a neighborhood A, of Ag to which AMASE converges.

When Conditions C.1 and C.2 hold uniformly in A,, together with condition C.3, the mini-
mizer of G,()) and Uy, (A) approximate the minimizer of L,()), see Gu (2002, §3) and Gu and Ma
(2005). In fact, in the case of optimal bandwidth selection for semiparametric model, Condition
C.3 is reasonable, see Lemma 4.1 in Hong (1999). As a result, the selection of smoothing param-
eters through Gp(}), i.e., the GCV method is shown to yield optimally. From U,h(A), we can also
select the optimal smoothing parameters if o2 is given. All together, we have,

Ln(Ac)/La(Amasg) =+ 1 in probability.

As a result, the selection of smoothing parameters through the generalize cross-validation method
is shown to yield optimal smoothing.

Remark 1 Speckman (1988) and Denby (1986) have proposed an estimator of 8 and g, that
is,

B=(X"I-AN2X)IXT(I - AN)?Y, §=AN@- XB),
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which can have a faster convergence rate than ﬁ The proofs of asymptotic optimal for A based on
generalized cross-validation is similar.

Remark 2 The cross-validation is another general procedure that can be applied to esti-
mate smoothing parameters. To be specific, let Y ~¢ be the n — 1 dimension vector with the ith
observation, y;, removed from the original response vector Y, and §~* and B~ be the estimators
of g and B in (1) based on Y —* observations respectively. A cross-validation estimate of ) is the

minimizer of

n . ~
Ca(A)=n""! _Zl(ya -§'(t) — =], (9)
=
with respect to A, which can be rewritten as
_ 1o mi—9t) - 278y
G =3 2 () (10)

where a;; are diagonal components of matrix A. In view of the asymptotic equivalence of these
two smooth parameters selectors, one would expect their performances to be about the same,
at least for large n. Indeed, it is shown in Hérdle, Hall and Marron (1988) that both of these
are asymptotically optimal for nonparametric curve estimators in the specific context of kernel
regression estimation. In this paper, the results of smoothing parameters selection based on these

two methods are shown in simulation part to demonstrate the performance of GCV and CV.

§4. Empirical Performance

In this section, we outline some Monte Carlo experiments designed to investigate the perfor-
mance of the proposed generalized cross-validation and that of cross-validation for comparison in

the context. In the simulation we conducted, the underlying model is
y =221 + 325 + 4(t2 — 1) + ¢,

where ¢ is uniformly distributed on [0, 1], ), z; and € are all normal distribution with zero mean
and one variance. One hundred replicates of sample of size n = 20 and n = 50 are generated
from the above model. Cubic smoothing splines, see Gu (2002, p33-p34) for selection R and Q,
are calculated with A minimizing L,(A), Un(X), Ga(A) and Cy()). The average mean square error
Ly ()) is calculated for all the one hundred replicates estimates, from which the optimal ) is located.
For purpose of convenience, the minimizers of L,()), Un(A), Gn(A) and Cy(X) are denoted by A,
Au, Ag and A respectively. The losses Ln(Ay), Ln(Ay) and Ly () are plotted against Ly(Am), for
all replicates in Figure 1, where a point on the line illustrates a perfect selection by the empirical
method. Figure 1(a) and (c) picture L,()\,) versus Ly(A,) with the sample size n = 20 and n = 50
respectively. Ln(Am) against L,(\;) and against Ln(A;) with sample size n = 20 are plotted in
Figure 1(b), and with sample size n = 50 in Figure 1(d). From the Figures, generally speaking, all
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of the methods seem to perform well most of time even when the sample size is 20, with occasional
failures. Also, the empirical performance with larger sample size n = 50 is better than that with
sample size n = 20. From Figure 1(b) and (d), it seems that CV method performs better than
GCV method when sample size equal to 20, whereas, in the case of n = 50 the results based on
GCV method is better.

L"thrnb:hm) versus L"(Wrbau) Ln(hrrbda") vorsus I.h(hrmdl‘). L"(hrnbdlc)
08 - 08 ~—H—— v
0.7} ~0.7}
_08f g 0.8} ° ®
ﬁ"'o.s ! S0t
Boa4 te] 0.4 o
Soat go.s L ©
02r ¢ =02t
0.1 i 0.1
02 04 06 02 04 06
Ltmbda ) (x) L,(ambda ) (b)
Lﬂ(hmtth) vorsus Lntlarrbau) L"uan'lbda") versus Lhtlmg). Lnthmb:hc)
0.4} ) __ 04
g 035 [
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Figure 1 Simulation for partial linear models
(a): ‘0’-Ln(Ap) versus L,(A,) with sample size n = 20;
(b): ‘0'~Ln(Am) versus Ln()g); ‘#’-Ln(Am) versus L, ();) with sample size n = 20;
(¢): ‘o’-Ln(Am) versus Lp(A,) with sample size n = 50;
(d): ‘0'-Ln(Am) versus Lp(Ag); ‘#’~Ln(Asm) versus Ln(A;) with sample size n = 50.
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