第 9 章 变化趋势图

参考来源:公众号“庄闪闪R语言学习手册”。

## 加载数据集
library(ggplot2)
library(plotrix)
data("midwest", package = "ggplot2") 
## 全局配色、主题设置。注意,本文使用离散色阶,如果需要使用连续色阶,则需要重写。
options(scipen=999)  # 关掉像 1e+48 这样的科学符号
# 颜色设置(灰色系列)
cbp1 <- c("#999999", "#E69F00", "#56B4E9", "#009E73",
          "#F0E442", "#0072B2", "#D55E00", "#CC79A7")

# 颜色设置(黑色系列)
cbp2 <- c("#000000", "#E69F00", "#56B4E9", "#009E73",
          "#F0E442", "#0072B2", "#D55E00", "#CC79A7")


ggplot <- function(...) ggplot2::ggplot(...) + 
  scale_color_manual(values = cbp1) +
  scale_fill_manual(values = cbp1) + # 注意: 使用连续色阶时需要重写
  theme_bw()

9.1 时间序列图

library(ggplot2)
library(ggfortify)
theme_set(theme_classic())

# 绘图 
autoplot(AirPassengers) + 
  labs(title="AirPassengers") + 
  theme(plot.title = element_text(hjust=0.5))

library(ggplot2)
theme_set(theme_classic())

# 使用默认的时间跨度
ggplot(economics, aes(x=date)) + 
  geom_line(aes(y=pce)) + 
  labs(title="Time Series Chart", 
       caption="Source: Economics")

library(ggplot2)
theme_set(theme_classic())

# 使用默认的时间跨度
ggplot(economics, aes(x=date)) + 
  geom_line(aes(y=pce)) + 
  labs(title="Time Series Chart", 
       caption="Source: Economics")

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_m <- economics[1:24, ]

# 设定时间跨度为一个月
lbls <- paste0(month.abb[month(economics_m$date)], " ", lubridate::year(economics_m$date))
brks <- economics_m$date

# 绘图
ggplot(economics_m, aes(x=date)) + 
  geom_line(aes(y=pce)) + 
  scale_x_date(labels = lbls, 
               breaks = brks) +  # change to monthly ticks and labels
  theme(axis.text.x = element_text(angle = 90, vjust=0.5),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics_long[economics_long$variable %in% c("psavert", "uempmed"), ]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# 绘图
ggplot(df, aes(x=date)) + 
  geom_line(aes(y=value, col=variable)) + 
  labs(title="Time Series of Returns Percentage", 
       subtitle="Drawn from Long Data format", 
       caption="Source: Economics", 
       y="Returns %", 
       color=NULL) +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_color_manual(labels = c("psavert", "uempmed"), 
                     values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_line(aes(y=psavert, col="psavert")) + 
  geom_line(aes(y=uempmed, col="uempmed")) + 
  labs(title="Time Series of Returns Percentage", 
       subtitle="Drawn From Wide Data format", 
       caption="Source: Economics", y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_color_manual(name="", 
                     values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(panel.grid.minor = element_blank())  # turn off minor grid

9.2 堆叠面积图

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_area(aes(y=psavert+uempmed, fill="psavert")) + 
  geom_area(aes(y=uempmed, fill="uempmed")) + 
  labs(title="Area Chart of Returns Percentage", 
       subtitle="From Wide Data format", 
       caption="Source: Economics", 
       y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_fill_manual(name="", 
                    values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(panel.grid.minor = element_blank())  # turn off minor grid

9.3 日历热力图

library(ggplot2)
library(plyr)
library(scales)
library(zoo)

df <- read.csv("data/yahoo.csv")
df$date <- as.Date(df$date)  # 格式化日期
df <- df[df$year >= 2012, ]  # filter reqd years

# 创建月周
df$yearmonth <- as.yearmon(df$date)
df$yearmonthf <- factor(df$yearmonth)
df <- ddply(df,.(yearmonthf), transform, monthweek=1+week-min(week))  # compute week number of month
df <- df[, c("year", "yearmonthf", "monthf", "week", "monthweek", "weekdayf", "VIX.Close")]
head(df)
##   year yearmonthf monthf week monthweek weekdayf VIX.Close
## 1 2012   Jan 2012    Jan    1         1      Tue     22.97
## 2 2012   Jan 2012    Jan    1         1      Wed     22.22
## 3 2012   Jan 2012    Jan    1         1      Thu     21.48
## 4 2012   Jan 2012    Jan    1         1      Fri     20.63
## 5 2012   Jan 2012    Jan    2         2      Mon     21.07
## 6 2012   Jan 2012    Jan    2         2      Tue     20.69
ggplot(df, aes(monthweek, weekdayf, fill = VIX.Close)) + 
  geom_tile(colour = "white") + 
  facet_grid(year~monthf) + 
  scale_fill_gradient(low="red", high="green") +
  labs(x="Week of Month",
       y="",
       title = "Time-Series Calendar Heatmap", 
       subtitle="Yahoo Closing Price", 
       fill="Close")

9.4 坡度图

library(dplyr)
theme_set(theme_classic())
source_df <- read.csv("data/cancer_survival_rates.csv")

# 定义函数,来源: https://github.com/jkeirstead/r-slopegraph
tufte_sort <- function(df, x="year", y="value", group="group", method="tufte", min.space=0.05) {
    ## First rename the columns for consistency
    ids <- match(c(x, y, group), names(df))
    df <- df[,ids]
    names(df) <- c("x", "y", "group")

    ## Expand grid to ensure every combination has a defined value
    tmp <- expand.grid(x=unique(df$x), group=unique(df$group))
    tmp <- merge(df, tmp, all.y=TRUE)
    df <- mutate(tmp, y=ifelse(is.na(y), 0, y))
  
    ## Cast into a matrix shape and arrange by first column
    require(reshape2)
    tmp <- dcast(df, group ~ x, value.var="y")
    ord <- order(tmp[,2])
    tmp <- tmp[ord,]
    
    min.space <- min.space*diff(range(tmp[,-1]))
    yshift <- numeric(nrow(tmp))
    ## Start at "bottom" row
    ## Repeat for rest of the rows until you hit the top
    for (i in 2:nrow(tmp)) {
        ## Shift subsequent row up by equal space so gap between
        ## two entries is >= minimum
        mat <- as.matrix(tmp[(i-1):i, -1])
        d.min <- min(diff(mat))
        yshift[i] <- ifelse(d.min < min.space, min.space - d.min, 0)
    }

    
    tmp <- cbind(tmp, yshift=cumsum(yshift))

    scale <- 1
    tmp <- melt(tmp, id=c("group", "yshift"), variable.name="x", value.name="y")
    ## Store these gaps in a separate variable so that they can be scaled ypos = a*yshift + y

    tmp <- transform(tmp, ypos=y + scale*yshift)
    return(tmp)
   
}

plot_slopegraph <- function(df) {
    ylabs <- subset(df, x==head(x,1))$group
    yvals <- subset(df, x==head(x,1))$ypos
    fontSize <- 3
    gg <- ggplot(df,aes(x=x,y=ypos)) +
        geom_line(aes(group=group),colour="grey80") +
        geom_point(colour="white",size=8) +
        geom_text(aes(label=y), size=fontSize, family="American Typewriter") +
        scale_y_continuous(name="", breaks=yvals, labels=ylabs)
    return(gg)
}    

## 准备数据 
df <- tufte_sort(source_df, 
                 x="year", 
                 y="value", 
                 group="group", 
                 method="tufte", 
                 min.space=0.05)

df <- transform(df, 
                x=factor(x, levels=c(5,10,15,20), 
                            labels=c("5 years","10 years","15 years","20 years")), 
                y=round(y))

## 绘图
plot_slopegraph(df) + labs(title="Estimates of % survival rates") + 
                      theme(axis.title=element_blank(),
                            axis.ticks = element_blank(),
                            plot.title = element_text(hjust=0.5,
                                                      family = "American Typewriter",
                                                      face="bold"),
                            axis.text = element_text(family = "American Typewriter",
                                                     face="bold"))

9.5 季节图

library(ggplot2)
library(forecast)
theme_set(theme_classic())

# 使用子集数据
nottem_small <- window(nottem, start=c(1920, 1), end=c(1925, 12))  # 使用较小时间窗的子集
ggseasonplot(nottem_small) + 
  labs(title="Seasonal plot: Air temperatures at Nottingham Castle")

ggseasonplot(AirPassengers) + 
  labs(title="Seasonal plot: International Airline Passengers")