第 5 章 其他误差SARAR
探究高维SARAR在不同误差分布下的表现。
5.1 覆盖率
- \(N(0,1)\)误差
100 100 100 400 400 400 900 900 900 0 3 0.890 0.892 3 0.931 0.935 3 0.954 0.955 0 4 0.858 0.864 4 0.932 0.937 4 0.941 0.947 0 5 0.821 0.829 5 0.922 0.932 5 0.938 0.943 0.14 6 0.769 0.782 7 0.934 0.946 8 0.940 0.946 0.14 8 0.721 0.738 9 0.911 0.919 10 0.923 0.931 0.14 10 0.662 0.676 12 0.903 0.911 13 0.918 0.927 0.24 9 0.697 0.722 13 0.896 0.916 15 0.934 0.940 0.24 12 0.549 0.572 17 0.843 0.862 20 0.924 0.940 0.24 15 0.433 0.459 21 0.833 0.846 26 0.904 0.910 0.3 12 0.555 0.582 18 0.838 0.861 23 0.886 0.905 0.3 16 0.360 0.380 24 0.778 0.803 31 0.843 0.872 0.3 20 0.192 0.216 30 0.707 0.743 38 0.850 0.876 0.4 19 0.280 0.301 33 0.651 0.690 46 0.791 0.822 0.4 25 0.086 0.098 44 0.440 0.484 61 0.703 0.751 0.4 32 0.008 0.010 55 0.275 0.312 76 0.518 0.578 - \(N(0,0.75)\)误差
100 | 100 | 100 | 400 | 400 | 400 | 900 | 900 | 900 | |
---|---|---|---|---|---|---|---|---|---|
0 | 3 | 0.867 | 0.870 | 3 | 0.928 | 0.931 | 3 | 0.947 | 0.953 |
0 | 4 | 0.834 | 0.847 | 4 | 0.936 | 0.943 | 4 | 0.940 | 0.942 |
0 | 5 | 0.815 | 0.827 | 5 | 0.931 | 0.940 | 5 | 0.941 | 0.943 |
0.14 | 6 | 0.792 | 0.806 | 7 | 0.910 | 0.918 | 8 | 0.954 | 0.964 |
0.14 | 8 | 0.728 | 0.744 | 9 | 0.915 | 0.922 | 10 | 0.933 | 0.943 |
0.14 | 10 | 0.685 | 0.694 | 12 | 0.898 | 0.913 | 13 | 0.929 | 0.936 |
0.24 | 9 | 0.716 | 0.745 | 13 | 0.884 | 0.888 | 15 | 0.928 | 0.943 |
0.24 | 12 | 0.561 | 0.592 | 17 | 0.878 | 0.889 | 20 | 0.913 | 0.924 |
0.24 | 15 | 0.423 | 0.448 | 21 | 0.828 | 0.849 | 26 | 0.894 | 0.902 |
0.3 | 12 | 0.562 | 0.584 | 18 | 0.845 | 0.863 | 23 | 0.895 | 0.912 |
0.3 | 16 | 0.391 | 0.410 | 24 | 0.780 | 0.797 | 31 | 0.883 | 0.905 |
0.3 | 20 | 0.218 | 0.240 | 30 | 0.701 | 0.745 | 38 | 0.836 | 0.862 |
0.4 | 19 | 0.245 | 0.267 | 33 | 0.642 | 0.692 | 46 | 0.782 | 0.811 |
0.4 | 25 | 0.091 | 0.100 | 44 | 0.471 | 0.513 | 61 | 0.662 | 0.712 |
0.4 | 32 | 0.009 | 0.012 | 55 | 0.243 | 0.277 | 76 | 0.506 | 0.562 |
- \(t(5)\)误差
100 100 100 400 400 400 900 900 900 0 3 0.780 0.789 3 0.894 0.903 3 0.928 0.930 0 4 0.737 0.741 4 0.913 0.916 4 0.927 0.934 0 5 0.716 0.727 5 0.879 0.891 5 0.922 0.932 0.14 6 0.681 0.695 7 0.870 0.880 8 0.912 0.920 0.14 8 0.585 0.605 9 0.853 0.868 10 0.889 0.906 0.14 10 0.500 0.515 12 0.816 0.836 13 0.897 0.908 0.24 9 0.555 0.570 13 0.834 0.858 15 0.888 0.904 0.24 12 0.405 0.423 17 0.732 0.761 20 0.843 0.864 0.24 15 0.267 0.285 21 0.683 0.719 26 0.827 0.850 0.3 12 0.400 0.423 18 0.741 0.770 23 0.839 0.852 0.3 16 0.237 0.258 24 0.617 0.658 31 0.772 0.814 0.3 20 0.107 0.114 30 0.508 0.550 38 0.695 0.728 0.4 19 0.152 0.165 33 0.421 0.466 46 0.617 0.668 0.4 25 0.040 0.044 44 0.226 0.269 61 0.427 0.478 0.4 32 0.003 0.004 55 0.088 0.108 76 0.239 0.284 - \(\chi^2(4)-4\)误差
100 100 100 400 400 400 900 900 900 0 3 0.792 0.799 3 0.902 0.905 3 0.932 0.936 0 4 0.770 0.778 4 0.891 0.897 4 0.928 0.933 0 5 0.732 0.743 5 0.889 0.898 5 0.926 0.934 0.14 6 0.699 0.709 7 0.874 0.882 8 0.922 0.929 0.14 8 0.596 0.609 9 0.843 0.855 10 0.907 0.914 0.14 10 0.500 0.528 12 0.828 0.849 13 0.889 0.902 0.24 9 0.588 0.602 13 0.820 0.844 15 0.895 0.902 0.24 12 0.445 0.463 17 0.781 0.801 20 0.868 0.887 0.24 15 0.316 0.331 21 0.696 0.729 26 0.817 0.843 0.3 12 0.466 0.486 18 0.726 0.760 23 0.856 0.876 0.3 16 0.270 0.292 24 0.661 0.694 31 0.803 0.827 0.3 20 0.169 0.185 30 0.532 0.574 38 0.748 0.785 0.4 19 0.180 0.198 33 0.487 0.538 46 0.657 0.701 0.4 25 0.052 0.061 44 0.285 0.326 61 0.484 0.537 0.4 32 0.008 0.011 55 0.137 0.166 76 0.294 0.357